JP2000347753A - Solar battery controller and solar power generating device - Google Patents

Solar battery controller and solar power generating device

Info

Publication number
JP2000347753A
JP2000347753A JP11160435A JP16043599A JP2000347753A JP 2000347753 A JP2000347753 A JP 2000347753A JP 11160435 A JP11160435 A JP 11160435A JP 16043599 A JP16043599 A JP 16043599A JP 2000347753 A JP2000347753 A JP 2000347753A
Authority
JP
Japan
Prior art keywords
solar cell
output voltage
power
maximum power
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11160435A
Other languages
Japanese (ja)
Other versions
JP3930999B2 (en
Inventor
Hideo Iwamoto
英雄 岩本
Takahiko Iida
隆彦 飯田
Nobuyuki Ryu
展幸 笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Kake Educational Institution
Original Assignee
Mitsubishi Electric Corp
Kake Educational Institution
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Kake Educational Institution filed Critical Mitsubishi Electric Corp
Priority to JP16043599A priority Critical patent/JP3930999B2/en
Publication of JP2000347753A publication Critical patent/JP2000347753A/en
Application granted granted Critical
Publication of JP3930999B2 publication Critical patent/JP3930999B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Abstract

PROBLEM TO BE SOLVED: To provide a solar power generating device having a maximum power point tracking function capable of accurately detecting a maximum power point even when the output power-output voltage characteristic of a solar battery has a plurality of peaks without making the output voltage and output power of the solar battery fluctuate needlessly. SOLUTION: An output power-output voltage characteristic detecting means CD1 provided with a solar battery PV1 having the same environmental condition as a main solar battery PV2 is provided apart from a main generation circuit. Then, an output voltage controlling means CT1 obtains the numerical data of the output power-output voltage characteristic of the battery PV1 for characteristic detection by turning a switch SW on or off and detects a maximum power point. Then, control signals S1a to S1d are given to respective transistors T1 to T4 of a voltage type inverter IV1 so that the main solar battery PV2 can generate a voltage value corresponding to the detected maximum power point.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、気象や温度等に
よりその出力電力が刻々と変化する太陽電池から常時、
最大電力値を取り出し得るよう制御するための最大電力
点追尾機能を有する太陽光発電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell whose output power is constantly changing due to weather, temperature, and the like.
The present invention relates to a photovoltaic power generator having a maximum power point tracking function for controlling so that a maximum power value can be extracted.

【0002】[0002]

【従来の技術】近年、太陽電池を用いた発電装置の開発
が進んでおり、太陽電池の発電した直流電力を効率よく
負荷や既存の電力系統に与えるための研究が広く行われ
ている。
2. Description of the Related Art In recent years, a power generation device using a solar cell has been developed, and researches for efficiently applying the DC power generated by the solar cell to a load or an existing power system have been widely conducted.

【0003】一般に、太陽電池の出力電力特性は気象
(日射量)や温度等の環境条件によって変化する。すな
わち、環境条件によって出力電力が最大となるときの出
力電圧及び出力電流の値が変化するのである。よって、
太陽電池を最も有効に利用するためには、常に最大電力
を出力するよう太陽電池の出力電圧または出力電流を制
御する最大電力点追尾機能が必要となる。
Generally, the output power characteristics of a solar cell change depending on environmental conditions such as weather (solar radiation) and temperature. That is, the values of the output voltage and the output current when the output power is maximized vary depending on the environmental conditions. Therefore,
In order to use the solar cell most effectively, a maximum power point tracking function for controlling the output voltage or output current of the solar cell so as to always output the maximum power is required.

【0004】図7は、従来の最大電力点追尾機能を有す
る太陽光発電装置ST5を示したものである。この太陽
光発電装置ST5は、太陽電池PV2と、負荷LDとを
備えている。そしてさらに太陽光発電装置ST5は、ノ
ードN4,N5において太陽電池PV2の出力端に、ノ
ードN6,N7において負荷LDの入力端にそれぞれ接
続されて太陽電池PV2の出力電力を負荷LDに伝達す
る電力変換手段IVを備え、また、ノードN4,N5間
の太陽電池PV2の出力電圧を信号S2として出力する
電圧検出手段VD2と、信号S2を得て太陽電池PV2
の現在の最大電力点を検出し、太陽電池PV2をその最
大電力点の下で動作させるよう電力変換手段IVに制御
信号S1を与える出力電圧制御手段CT2とを備えてい
る。
FIG. 7 shows a conventional solar power generation apparatus ST5 having a maximum power point tracking function. This solar power generation device ST5 includes a solar cell PV2 and a load LD. Further, the solar power generation device ST5 is connected to the output terminal of the solar cell PV2 at the nodes N4 and N5, and is connected to the input terminal of the load LD at the nodes N6 and N7 to transmit the output power of the solar cell PV2 to the load LD. A voltage detecting means VD2 for outputting the output voltage of the solar cell PV2 between the nodes N4 and N5 as a signal S2; and a solar cell PV2 for obtaining the signal S2.
And the output voltage control means CT2 which supplies the control signal S1 to the power conversion means IV so as to operate the solar cell PV2 under the maximum power point.

【0005】この太陽光発電装置ST5の動作を、太陽
電池の一般的な出力電力―出力電圧特性を示した図8を
用いて説明する。図8に示すとおり、太陽電池の出力電
力―出力電圧特性は、出力電圧が零から増大するにつれ
て出力電力が増加し、ピークとなる最大電力点P1を越
えると出力電力が急激に減少する、というものである。
よって、太陽電池から最大電力を取り出すためには、最
大電力点P1に対応する出力電圧V1に一致するよう太
陽電池の出力電圧を制御すればよい。
The operation of the photovoltaic power generator ST5 will be described with reference to FIG. 8 showing a general output power-output voltage characteristic of a solar cell. As shown in FIG. 8, the output power-output voltage characteristics of the solar cell indicate that the output power increases as the output voltage increases from zero, and that the output power sharply decreases when the output power exceeds a peak maximum power point P1. Things.
Therefore, in order to extract the maximum power from the solar cell, the output voltage of the solar cell may be controlled to match the output voltage V1 corresponding to the maximum power point P1.

【0006】太陽光発電装置ST5の場合、例えば電力
変換手段IVとしてDC/DCコンバータやDC/AC
インバータを採用し、それらの有するスイッチング素子
のゲートパルスのデューティ比を変化させることによっ
て太陽電池PV2の出力電圧を任意の値に制御すること
が可能である。つまり、出力電圧制御手段CT2が、電
圧検出手段VD2を介して太陽電池PV2の最大電力点
を検出し、太陽電池PV2の出力電圧を最大電力点に対
応する値に一致させるように、デューティ比を変化させ
る制御信号S1を電力変換手段IVに送ることで、太陽
電池PV2から最大電力を取り出すことが可能となる。
In the case of the photovoltaic power generator ST5, for example, a DC / DC converter or DC / AC
It is possible to control the output voltage of the solar cell PV2 to an arbitrary value by employing an inverter and changing the duty ratio of the gate pulse of the switching element of the inverter. That is, the output voltage control means CT2 detects the maximum power point of the solar cell PV2 via the voltage detection means VD2, and adjusts the duty ratio so that the output voltage of the solar cell PV2 matches the value corresponding to the maximum power point. By sending the control signal S1 to be changed to the power conversion means IV, it becomes possible to extract the maximum power from the solar cell PV2.

【0007】ここで、太陽電池PV2の最大電力点に対
応する出力電圧の値を出力電圧制御手段CT2が検出す
る手法の一例を示す。まず、太陽電池PV2の出力電圧
が低めの値(例えば図8の動作点P2に対応する電圧
値)となるよう、出力電圧制御手段CT2の制御信号S
1を設定しておく。次に、制御信号S1を変化させて太
陽電池PV2の出力電圧を徐々に高くしてゆく。このと
き出力電圧制御手段CT2は、電圧検出手段VD2の出
力する信号S2から太陽電池PV2の出力電圧の値を得
て、出力電圧が微小量変化するごとに出力電力を計算す
る。そしてそれとともに、出力電力の変化量を出力電圧
の変化量で除した値、すなわち出力電力を出力電圧で微
分した値の近似値をも計算する。
Here, an example of a method of detecting the value of the output voltage corresponding to the maximum power point of the solar cell PV2 by the output voltage control means CT2 will be described. First, the control signal S2 of the output voltage control means CT2 is set so that the output voltage of the solar cell PV2 becomes a lower value (for example, a voltage value corresponding to the operating point P2 in FIG. 8).
Set 1 in advance. Next, the output voltage of the solar cell PV2 is gradually increased by changing the control signal S1. At this time, the output voltage control means CT2 obtains the value of the output voltage of the solar cell PV2 from the signal S2 output from the voltage detection means VD2, and calculates the output power every time the output voltage changes by a small amount. At the same time, a value obtained by dividing the change amount of the output power by the change amount of the output voltage, that is, an approximate value of a value obtained by differentiating the output power with the output voltage is calculated.

【0008】このようにすれば、出力電力を出力電圧で
微分した値の近似値が正から負に転じたときに最大電力
点P1を越えたと判断できる。すなわち、そのときの出
力電圧の値が最大電力点P1に対応する値である。よっ
て、太陽電池PV2がこの出力電圧値を発生するように
制御信号S1を電力変換手段IVに与えれば、太陽電池
PV2から最大電力が取り出せることになる。
In this manner, it can be determined that the maximum power point P1 has been exceeded when the approximate value of the value obtained by differentiating the output power with the output voltage changes from positive to negative. That is, the value of the output voltage at that time is a value corresponding to the maximum power point P1. Therefore, if the control signal S1 is given to the power converter IV so that the solar cell PV2 generates this output voltage value, the maximum power can be extracted from the solar cell PV2.

【0009】上記の手法は、動作点がP2からP1へと
山を昇るように変化することから「山登り法」と呼ばれ
ている。
The above technique is called the "hill climbing method" because the operating point changes from P2 to P1 so as to climb the mountain.

【0010】[0010]

【発明が解決しようとする課題】先述のように、最大電
力点P1は環境条件によって時々刻々と変化する。よっ
て従来の太陽光発電装置ST5では、常時、太陽電池か
ら最大電力を取り出すために、山登り法のような検出動
作が頻繁に行われていた。
As described above, the maximum power point P1 changes every moment depending on environmental conditions. Therefore, in the conventional solar power generation device ST5, a detection operation such as a hill-climbing method is frequently performed in order to always extract the maximum power from the solar cell.

【0011】しかし、上記の太陽光発電装置ST5でそ
のような検出動作を頻繁に行うと、環境条件にほとんど
変化がなく太陽電池がほぼ一定の電力を出力することが
可能な場合であっても、太陽電池の出力電圧及び出力電
力を絶えず変動させてしまうことになる。そのため、太
陽光発電装置全体の動作の安定度が損なわれる可能性が
あり、また、負荷LDが商用周波電力系統である場合に
は電力系統全体に対しても安定度の低下をもたらす可能
性があった。
However, if such a detecting operation is frequently performed in the solar power generation device ST5, even if the solar cell can output substantially constant power with little change in environmental conditions. As a result, the output voltage and output power of the solar cell are constantly fluctuated. Therefore, the stability of the operation of the entire photovoltaic power generator may be impaired, and when the load LD is a commercial frequency power system, the stability may be reduced for the entire power system. there were.

【0012】またさらに、先述の山登り法自身にも問題
が存在する。例えば太陽電池の受光面の一部が日陰とな
った場合などには、太陽電池の出力電力−出力電圧特性
が、図8ではなく図9に示すグラフのようになる場合が
ある。図9では、出力電圧の値がV3のときに一つの出
力電力のピークP5を有し、さらに、出力電圧の値がV
2のときにP5よりも大きな値の出力電力のピークP4
を有している。もしこのような出力電力−出力電圧特性
のもとで山登り法を行えば、真の最大電力点である動作
点P4を検出する前に、誤って動作点P5を最大電力点
であると認識し、太陽電池の出力電圧の値をV2ではな
くV3に設定してしまう可能性がある。
Further, there is a problem in the above-mentioned hill-climbing method itself. For example, when a part of the light receiving surface of the solar cell is shaded, the output power-output voltage characteristic of the solar cell may become a graph shown in FIG. 9 instead of FIG. In FIG. 9, when the value of the output voltage is V3, there is one output power peak P5, and when the value of the output voltage is V3.
In the case of 2, a peak P4 of output power having a value larger than P5
have. If the hill-climbing method is performed under such output power-output voltage characteristics, the operating point P5 is erroneously recognized as the maximum power point before the operating point P4, which is the true maximum power point, is detected. There is a possibility that the value of the output voltage of the solar cell is set to V3 instead of V2.

【0013】この発明は、上記の問題に鑑みて、太陽電
池の出力電圧及び出力電力を不必要に変動させずに、か
つ、太陽電池の出力電力−出力電圧特性が複数のピーク
を有する場合であっても正確に最大電力点を検出するこ
とが可能な、最大電力点追尾機能を有する太陽光発電装
置を実現するものである。
The present invention has been made in consideration of the above problems, and has been made in consideration of a case where the output voltage and output power of a solar cell do not needlessly fluctuate and the output power-output voltage characteristic of the solar cell has a plurality of peaks. The present invention realizes a photovoltaic power generator having a maximum power point tracking function capable of accurately detecting the maximum power point.

【0014】[0014]

【課題を解決するための手段】この発明のうち請求項1
にかかるものは、第1の太陽電池と、前記第1の太陽電
池に並列に接続された第1のコンデンサと、前記第1の
コンデンサの一端に接続された一端及び他端を有するス
イッチと、前記スイッチの前記他端に接続された一端及
び前記コンデンサの他端に接続された他端を有する抵抗
と、前記スイッチを制御して前記第1の太陽電池の前記
最大電力点に対応する出力電圧を検出する出力電圧制御
手段とを備える太陽電池制御装置である。
Means for Solving the Problems Claim 1 of the present invention
A first solar cell, a first capacitor connected in parallel to the first solar cell, a switch having one end and the other end connected to one end of the first capacitor, A resistor having one end connected to the other end of the switch and the other end connected to the other end of the capacitor; and an output voltage corresponding to the maximum power point of the first solar cell by controlling the switch. And an output voltage control means for detecting the voltage.

【0015】この発明のうち請求項2にかかるものは、
請求項1記載の太陽電池制御装置であって、前記第1の
太陽電池の前記最大電力点は所定の範囲内にあることが
既知であり、前記抵抗は、前記スイッチがオンして前記
第1の太陽電池と前記第1のコンデンサと前記抵抗とが
第1の定常状態にあるときに、前記第1の太陽電池の出
力電圧が前記所定の範囲の下限よりも低くなる値を有
し、前記出力電圧制御手段は、前記第1の太陽電池の出
力電圧及び前記出力電力を検出しつつ、前記第1の定常
状態から前記スイッチをオフして前記第1の太陽電池と
前記第1のコンデンサとを第2の定常状態へと移行させ
る第1の動作、及び前記第2の定常状態から前記スイッ
チをオフして前記第1の定常状態へと移行させる第2の
動作を行って、前記第1及び第2の動作のいずれにおい
ても前記第1の太陽電池の出力電圧及び出力電力の経時
変化を求めることによって前記第1の太陽電池の前記最
大電力点に対応する出力電圧を検出する。
According to a second aspect of the present invention,
2. The solar cell control device according to claim 1, wherein the maximum power point of the first solar cell is known to be within a predetermined range, and the resistance of the first solar cell is reduced when the switch is turned on. When the solar cell, the first capacitor, and the resistor are in a first steady state, the output voltage of the first solar cell has a value that is lower than a lower limit of the predetermined range, The output voltage control means turns off the switch from the first steady state while detecting the output voltage and the output power of the first solar cell, and the first solar cell and the first capacitor Performing a first operation of shifting the first steady state to a second steady state, and a second operation of turning off the switch from the second steady state to the first steady state. The first sun in any of the first and second operations. Detecting an output voltage corresponding to the maximum power point of the first solar cell by measuring the change in the output voltage and output power of the pond.

【0016】この発明のうち請求項3にかかるものは、
請求項1または2記載の太陽電池制御装置であって、前
記抵抗に並列接続された第2のコンデンサをさらに備え
る。
According to a third aspect of the present invention, there is provided:
The solar cell control device according to claim 1, further comprising a second capacitor connected in parallel to the resistor.

【0017】この発明のうち請求項4にかかるものは、
請求項1乃至請求項3のいずれか一つに記載の太陽電池
制御装置と、前記第1の太陽電池の前記最大電力点と一
定の関係を有する最大電力点を有し、前記第1の太陽電
池と同じ環境条件に置かれた第2の太陽電池と、負荷
と、前記第2の太陽電池の出力電圧を、前記第1の太陽
電池の前記最大電力点に対応する出力電圧と前記一定の
関係とに基づいて制御しつつ、前記負荷に伝達する電力
変換手段とを備える太陽光発電装置である。
According to a fourth aspect of the present invention,
4. The solar cell control device according to claim 1, wherein the first solar cell has a maximum power point having a fixed relationship with the maximum power point of the first solar cell. 5. A second solar cell placed under the same environmental conditions as the battery, a load, and an output voltage of the second solar cell, the output voltage of the first solar cell corresponding to the maximum power point and the constant And a power conversion unit that transmits the load to the load while controlling based on the relationship.

【0018】この発明のうち請求項5にかかるものは、
請求項4記載の太陽光発電装置であって、前記第1の太
陽電池は、複数の同特性の第3の太陽電池を直列に接続
したものであり、前記第3の太陽電池の各々が、前記第
2の太陽電池と絶縁されつつ前記第2の太陽電池の各部
分と同じ環境条件に置かれている。
According to a fifth aspect of the present invention,
The photovoltaic power generator according to claim 4, wherein the first solar cell is obtained by connecting a plurality of third solar cells having the same characteristics in series, and each of the third solar cells is: While being insulated from the second solar cell, it is placed in the same environmental condition as each part of the second solar cell.

【0019】この発明のうち請求項6にかかるものは、
請求項1乃至請求項3のいずれか一つに記載の太陽電池
制御装置と、負荷と、前記第1の太陽電池の出力電圧
を、前記第1の太陽電池の前記最大電力点に対応する出
力電圧に基づいて制御しつつ、前記負荷に伝達する電力
変換手段とを備える太陽光発電装置である。
According to a sixth aspect of the present invention, there is provided:
4. The solar cell control device according to claim 1, a load, and an output voltage of the first solar cell corresponding to the maximum power point of the first solar cell. 5. And a power converter that transmits the load to the load while controlling based on the voltage.

【0020】この発明のうち請求項7にかかるものは、
請求項6記載の太陽光発電装置であって、前記電力変換
手段から前記太陽電池制御装置への電力の逆流を阻止す
る電力逆流阻止手段をさらに備える。
According to a seventh aspect of the present invention,
7. The photovoltaic power generator according to claim 6, further comprising a power backflow prevention unit for preventing a backflow of power from the power conversion unit to the solar cell control device.

【0021】[0021]

【発明の実施の形態】実施の形態1.図1は、本実施の
形態にかかる太陽光発電装置ST1を示したものであ
る。この太陽光発電装置ST1は、太陽電池PV2と、
負荷の一例として交流負荷LD1とを備えている。そし
てさらに太陽光発電装置ST1は、ノードN4において
太陽電池PV2の正極に、ノードN5において太陽電池
PV2の負極に、ノードN6,N7において交流負荷L
D1の入力端にそれぞれ接続されて太陽電池PV2の出
力電力を交流負荷LD1に伝達する電力変換手段の一例
として電圧形インバータIV1を備え、また、信号S2
を出力し、太陽電池PV2の出力電力−出力電圧特性を
検出するために用いられる特性検出手段CD1と、信号
S2を受信し、特性検出手段CD1に制御信号S3を与
え、太陽電池PV2を最大電力点の下で動作させるよう
電圧形インバータIV1に制御信号S1a〜S1dを与
える出力電圧制御手段CT1とを備えている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 shows a solar power generation device ST1 according to the present embodiment. This solar power generation device ST1 includes a solar cell PV2,
An AC load LD1 is provided as an example of the load. Further, the photovoltaic power generation device ST1 further includes the positive electrode of the solar cell PV2 at the node N4, the negative electrode of the solar cell PV2 at the node N5, and the AC load L at the nodes N6 and N7.
A voltage type inverter IV1 is provided as an example of power conversion means connected to the input terminals of D1 to transmit the output power of the solar cell PV2 to the AC load LD1, and the signal S2
, And receives a signal S2 and a signal S2 used to detect the output power-output voltage characteristic of the solar cell PV2, and supplies a control signal S3 to the characteristic detecting means CD1 to supply the maximum power to the solar cell PV2. And an output voltage control means CT1 for supplying control signals S1a to S1d to the voltage source inverter IV1 so as to operate below the point.

【0022】なお、特性検出手段CD1は、特性検出用
太陽電池PV1と、ノードN1,N2において特性検出
用太陽電池PV1の出力端にその両端が接続されたコン
デンサC1と、ノードN1,N2間の特性検出用太陽電
池PV1の出力電圧を信号S2として出力電圧制御手段
CT1に出力する電圧検出手段VD1と、一端がノード
N1に接続され、出力電圧制御手段CT1からの制御信
号S3によりオンオフするスイッチSWと、一端がスイ
ッチSWの他端に接続され、他端がノードN2に接続さ
れた抵抗RSとを有している。
The characteristic detecting means CD1 includes a characteristic detecting solar cell PV1, a capacitor C1 having both ends connected to the output terminal of the characteristic detecting solar cell PV1 at the nodes N1 and N2, and a node N1 and a node N2. A voltage detection means VD1 for outputting the output voltage of the characteristic detection solar cell PV1 as a signal S2 to the output voltage control means CT1, and a switch SW having one end connected to the node N1 and turned on and off by a control signal S3 from the output voltage control means CT1. And a resistor RS having one end connected to the other end of the switch SW and the other end connected to the node N2.

【0023】ここで太陽電池PV2は、特性検出用太陽
電池PV1とほぼ同様の特性を有するものを例えば直列
にN(N≧1を満たす整数)個接続して構成されたもの
であり、また、太陽電池PV2と特性検出用太陽電池P
V1とは、日射量や温度等の環境条件が等しくなるよ
う、例えば両者が同一平面上に近接して設置されてい
る。なお出力電圧の数値例としては、特性検出用太陽電
池PV1の出力電圧を例えば10V程度とした場合、太
陽電池PV2の出力電圧が200V程度となるようにす
る。
Here, the solar cell PV2 is formed by connecting, for example, N (an integer that satisfies N ≧ 1) cells having substantially the same characteristics as the solar cell PV1 for detecting characteristics. Solar cell PV2 and solar cell P for characteristic detection
For example, V1 is installed close to the same plane so that environmental conditions such as the amount of solar radiation and temperature are equal. As a numerical example of the output voltage, when the output voltage of the characteristic detecting solar cell PV1 is set to, for example, about 10 V, the output voltage of the solar cell PV2 is set to be about 200 V.

【0024】なお、電圧形インバータIV1は周知の構
造と同じものであり、両端がノードN4,N5に接続さ
れたコンデンサC2と、コレクタがノードN4に、エミ
ッタがノードN7にそれぞれ接続されたトランジスタT
1と、コレクタがノードN7に、エミッタがノードN5
にそれぞれ接続されたトランジスタT2と、コレクタが
ノードN4に、エミッタがノードN6にそれぞれ接続さ
れたトランジスタT3と、コレクタがノードN6に、エ
ミッタがノードN5にそれぞれ接続されたトランジスタ
T4とを有し、直流電力を交流電力に変換する。なお、
トランジスタT1〜T4の各ゲートには、制御信号S1
a〜S1dの各信号が与えられている。
The voltage-source inverter IV1 has the same structure as that of the well-known one, and includes a capacitor C2 having both ends connected to nodes N4 and N5, a transistor T2 having a collector connected to node N4 and an emitter connected to node N7.
1, the collector is at the node N7, and the emitter is at the node N5.
, A transistor T3 having a collector connected to the node N4, an emitter connected to the node N6, and a transistor T4 having a collector connected to the node N6 and an emitter connected to the node N5, respectively. Converts DC power to AC power. In addition,
A control signal S1 is provided to each gate of the transistors T1 to T4.
Signals a to S1d are provided.

【0025】以下に、この太陽光発電装置ST1の動作
について図8を用いて説明する。
Hereinafter, the operation of the photovoltaic power generator ST1 will be described with reference to FIG.

【0026】まず最初に、出力電圧制御手段CT1は、
スイッチSWがオフとなるよう制御信号S3を設定す
る。するとコンデンサC1は、その両端の電圧が特性検
出用太陽電池PV1の最大発電可能電圧近くになるまで
充電されて定常状態に至る(なお、特性検出用太陽電池
PV1の内部抵抗が存在するため、特性検出用太陽電池
PV1の最大発電可能電圧までは充電されない)。つま
り、この定常状態での特性検出用太陽電池PV1の状態
は、図8に示した出力電力−出力電圧特性の動作点P3
に相当する。
First, the output voltage control means CT1
The control signal S3 is set so that the switch SW is turned off. Then, the capacitor C1 is charged until the voltage at both ends thereof becomes close to the maximum power generation possible voltage of the characteristic detecting solar cell PV1, and reaches a steady state (note that the internal resistance of the characteristic detecting solar cell PV1 has an It is not charged up to the maximum power generation voltage of the detection solar cell PV1). That is, the state of the characteristic detecting solar cell PV1 in the steady state is the operating point P3 of the output power-output voltage characteristic shown in FIG.
Is equivalent to

【0027】そして、出力電圧制御手段CT1は、信号
S2によってコンデンサC1の充電を検知してスイッチ
SWがオンとなるよう制御信号S3を設定する。する
と、コンデンサC1と抵抗RSとの並列接続が特性検出
用太陽電池PV1にとっての新たな負荷となるので、特
性検出用太陽電池PV1の出力電圧はこの負荷に対応す
る他の定常状態へと移行することになる。抵抗RSへと
特性検出用太陽電池PV1から電流が流れるので、特性
検出用太陽電池PV1の内部抵抗により特性検出用太陽
電池PV1の出力電圧、すなわちノードN1,N2間の
電圧は低下する。この際、コンデンサC1に蓄積された
電荷の一部も抵抗RSへと流れるので、ノードN1,N
2間の電圧は、急峻にではなくコンデンサC1の容量値
と抵抗RSの抵抗値とで定まる時定数で変動する。よっ
て、予め抵抗RSの値を小さく調整しておけば、特性検
出用太陽電池PV1の出力電圧が図8における電圧V1
よりも低い値となり、動作点P3から最大電力点P1を
経て動作点P2へと所定の時定数で至るようにすること
ができる。なお、通常は最大電力点P1の位置は、ある
程度の範囲内に収まっていることが既知であるので、抵
抗RSの値は、スイッチSWをオンして定常状態にした
ときに動作点P2がこの範囲よりもグラフ上で左側に存
在する程度に、小さく設定することができる。そして、
コンデンサC1の容量値は、後述するサンプリング時間
の間隔よりも時定数が大きくなるように設定される。
The output voltage control means CT1 detects the charging of the capacitor C1 based on the signal S2 and sets the control signal S3 so that the switch SW is turned on. Then, since the parallel connection of the capacitor C1 and the resistor RS becomes a new load for the characteristic detecting solar cell PV1, the output voltage of the characteristic detecting solar cell PV1 shifts to another steady state corresponding to this load. Will be. Since a current flows from the characteristic detecting solar cell PV1 to the resistor RS, the output voltage of the characteristic detecting solar cell PV1, that is, the voltage between the nodes N1 and N2, decreases due to the internal resistance of the characteristic detecting solar cell PV1. At this time, a part of the electric charge accumulated in the capacitor C1 also flows to the resistor RS, so that the nodes N1, N1
The voltage between the two varies not steeply but with a time constant determined by the capacitance value of the capacitor C1 and the resistance value of the resistor RS. Therefore, if the value of the resistance RS is adjusted in advance to a small value, the output voltage of the characteristic detecting solar cell PV1 becomes equal to the voltage V1 in FIG.
Thus, the operating point P3 reaches the operating point P2 via the maximum power point P1 with a predetermined time constant. Since the position of the maximum power point P1 is usually known to be within a certain range, the value of the resistor RS is set such that the operating point P2 is It can be set small enough to be on the left side of the graph than the range. And
The capacitance value of the capacitor C1 is set so that the time constant becomes larger than the sampling time interval described later.

【0028】そして、出力電圧制御手段CT1は信号S
2によってコンデンサC1の両端の電圧の低下を検知し
て、再びスイッチSWがオフとなるよう制御信号S3を
設定し、コンデンサC1を充電して特性検出用太陽電池
PV1の出力電圧の値を増加させる。すなわち、動作点
P2の定常状態から最大電力点P1を経て動作点P3の
定常状態にまで戻す。
The output voltage control means CT1 outputs the signal S
2, the control signal S3 is set so that the switch SW is turned off again, and the capacitor C1 is charged to increase the value of the output voltage of the characteristic detection solar cell PV1. . That is, the operation state is returned from the steady state at the operating point P2 to the steady state at the operating point P3 via the maximum power point P1.

【0029】以上のようなスイッチSWのオンオフの動
作を繰り返すことで、特性検出用太陽電池PV1の出力
電力及び出力電圧が、最大電力点P1を含む広い範囲の
出力電力−出力電圧特性を何度も描くことになる。つま
りこれによって、環境条件により時々刻々と変化する出
力電力−出力電圧特性及び最大電力点P1の最新の情報
を採取することができる。なお、スイッチSWのオンオ
フのスイッチング周波数をコンデンサC1の容量値と抵
抗RSの抵抗値とで定まる時定数の逆数よりも小さく、
例えば数Hz〜数十Hz程度にしておけば、環境条件の
時間変化には充分に対応できる。
By repeating the ON / OFF operation of the switch SW as described above, the output power and the output voltage of the characteristic detecting solar cell PV1 change over a wide range of output power-output voltage characteristics including the maximum power point P1. Will also draw. That is, this makes it possible to collect the latest information on the output power-output voltage characteristics and the maximum power point P1 that change moment by moment due to environmental conditions. Note that the on / off switching frequency of the switch SW is smaller than the reciprocal of a time constant determined by the capacitance value of the capacitor C1 and the resistance value of the resistor RS,
For example, if the frequency is set to several Hz to several tens Hz, it is possible to sufficiently cope with a temporal change in environmental conditions.

【0030】また以上のことは、特性検出用太陽電池P
V1の出力電力−出力電圧特性が図9に示すような複数
のピークを有する形状やその他の形状になった場合であ
っても、同様に当てはまる。
The above is also true of the characteristic detecting solar cell P
The same applies to the case where the output power-output voltage characteristic of V1 has a shape having a plurality of peaks as shown in FIG. 9 or another shape.

【0031】さて特性検出手段CD1にこのような動作
をさせている間、出力電圧制御手段CT1では、電圧検
出手段VD1の出力する信号S2から特性検出用太陽電
池PV1の出力電圧の値を微小時間ごとにサンプリング
しており、それとともに各サンプリング時点において出
力電力を計算している。このときのサンプリング周波数
はコンデンサC1の容量値と抵抗RSの抵抗値とで定ま
る時定数の逆数よりも大きく、例えば数百Hzとしてお
けばよい。なお、出力電力は出力電圧と出力電流との積
で求めることができるので、計算は以下のようにして行
う。
While the characteristic detecting means CD1 performs such an operation, the output voltage control means CT1 determines the value of the output voltage of the characteristic detecting solar cell PV1 from the signal S2 output from the voltage detecting means VD1 for a very short time. And the output power is calculated at each sampling time. The sampling frequency at this time is larger than the reciprocal of a time constant determined by the capacitance value of the capacitor C1 and the resistance value of the resistor RS, and may be set to, for example, several hundred Hz. Since the output power can be obtained by the product of the output voltage and the output current, the calculation is performed as follows.

【0032】まず特性検出用太陽電池PV1の出力電流
は、スイッチSWがオフの場合は、
First, when the switch SW is off, the output current of the solar cell PV1 for detecting characteristics is

【0033】[0033]

【数1】 (Equation 1)

【0034】で表される。ここで、iは出力電流を、v
は出力電圧を、tは時間を、C1はコンデンサC1の容
量をそれぞれ表している。よって、このときの出力電力
をpとすれば、
Is represented by Here, i is the output current, v
The output voltage, t the time, C 1 represents respectively the capacitance of the capacitor C1. Therefore, if the output power at this time is p,

【0035】[0035]

【数2】 (Equation 2)

【0036】として特性検出用太陽電池PV1の出力電
力を計算することが可能である。ここで、Δvは一つ前
のサンプリング時点と現在のサンプリング時点との間の
出力電圧vの変化量を、Δtはサンプリングの時間間隔
をそれぞれ表している。
The output power of the characteristic detecting solar cell PV1 can be calculated. Here, Δv represents the amount of change in the output voltage v between the immediately preceding sampling point and the current sampling point, and Δt represents the sampling time interval.

【0037】またスイッチSWがオンの場合、特性検出
用太陽電池PV1の出力電流は数1と同様に、
When the switch SW is turned on, the output current of the characteristic detecting solar cell PV1 is calculated by

【0038】[0038]

【数3】 (Equation 3)

【0039】で表される。ここで、Rは抵抗RSの抵抗
値を表している。よって、このときの出力電力pは、
Is represented by Here, R represents the resistance value of the resistor RS. Therefore, the output power p at this time is

【0040】[0040]

【数4】 (Equation 4)

【0041】として計算することが可能である。It is possible to calculate

【0042】すると、スイッチSWがオンまたはオフす
るごとに、出力電圧制御手段CT1において特性検出用
太陽電池PV1の出力電力−出力電圧特性の数値データ
が得られることになる。よってそのデータから、そのと
き採取した出力電力−出力電圧特性の最大電力点及び最
大電力点に対応する出力電圧値が判明する。
Then, every time the switch SW is turned on or off, the output voltage control means CT1 obtains numerical data of the output power-output voltage characteristic of the characteristic detecting solar cell PV1. Therefore, from the data, the maximum power point and the output voltage value corresponding to the maximum power point of the output power-output voltage characteristic collected at that time are found.

【0043】さて太陽電池PV2は、特性検出用太陽電
池PV1と同特性の太陽電池をN個直列に接続したもの
であって同じ環境条件下に置かれているので、その出力
電力−出力電圧特性は、図8に示したグラフと同じ形
で、縦軸、横軸をともにN倍しただけのものとなる。よ
って、太陽電池PV2の最大電力点と特性検出用太陽電
池PV1の最大電力点とは一定の関係を有することにな
り、そのため、太陽電池PV2の最大電力点に対応する
出力電圧値は、特性検出用太陽電池PV1の最大電力点
に対応する出力電圧値をN倍した値に一致する。
Since the solar cell PV2 is composed of N solar cells having the same characteristics as those of the characteristic detecting solar cell PV1 connected in series and placed under the same environmental conditions, the output power-output voltage characteristics Is the same as the graph shown in FIG. 8 and is obtained by simply multiplying both the vertical and horizontal axes by N times. Therefore, the maximum power point of the solar cell PV2 and the maximum power point of the characteristic detecting solar cell PV1 have a fixed relationship, and the output voltage value corresponding to the maximum power point of the solar cell PV2 is determined by the characteristic detection. It is equal to a value obtained by multiplying the output voltage value corresponding to the maximum power point of the solar cell PV1 by N times.

【0044】そこで、太陽電池PV2の出力電圧が、特
性検出用太陽電池PV1の最大電力点に対応する出力電
圧値をN倍した値となるように、電圧形インバータIV
1の各トランジスタT1〜T4を動作させればよい。す
なわち出力電圧制御手段CT1が、各トランジスタT1
〜T4のオン期間を計算して、各トランジスタT1〜T
4が上記の動作をするように制御信号S1a〜S1dを
与える。
Therefore, the voltage-source inverter IV is set so that the output voltage of the solar cell PV2 becomes N times the output voltage value corresponding to the maximum power point of the characteristic detecting solar cell PV1.
One transistor T1 to T4 may be operated. That is, the output voltage control means CT1
To T4 are calculated, and each transistor T1 to T4 is calculated.
4 provides control signals S1a to S1d so as to perform the above operation.

【0045】本実施の形態にかかる太陽光発電装置ST
1を用いれば、従来の太陽光発電装置ST5の場合と異
なり、特性検出手段CD1を用いて太陽電池PV2の最
大電力点及び最大電力点に対応する出力電圧を検出する
ので、太陽電池PV2の出力電圧及び出力電力を不必要
に変動させることがなく、そのため太陽光発電装置全体
の動作の安定度を損なうことがない。また、山登り法の
ように出力電力を出力電圧で微分した値の近似値を用い
るのではなく、広い範囲の出力電力−出力電圧特性の数
値データを採取した上で最大電力点を検出するので、出
力電力−出力電圧特性が複数のピークを有する場合であ
っても、正確に最大電力点を検出することが可能であ
る。
The photovoltaic power generator ST according to the present embodiment
1, the maximum power point of the solar cell PV2 and the output voltage corresponding to the maximum power point are detected using the characteristic detecting means CD1, unlike the case of the conventional solar power generation apparatus ST5. The voltage and the output power do not needlessly fluctuate, so that the stability of operation of the entire photovoltaic power generator is not impaired. Also, instead of using the approximate value of the value obtained by differentiating the output power with the output voltage as in the hill-climbing method, the maximum power point is detected after sampling numerical data of the output power-output voltage characteristics in a wide range. Even when the output power-output voltage characteristic has a plurality of peaks, it is possible to accurately detect the maximum power point.

【0046】なお、図1のうちノードN2をノードN5
と共通にして図2に示すような回路構成にしたとして
も、上記の説明は全てそのまま当てはまり、動作上支障
が生じることはない。図2のようにすれば、ノードN5
とノードN2とのそれぞれに固定電位を与える必要がな
くなる、必要配線数が削減できる、といった利点が生ま
れる。
It should be noted that the node N2 in FIG.
Even if a circuit configuration as shown in FIG. 2 is used in common with the above, all of the above description applies as it is, and there is no problem in operation. According to FIG. 2, the node N5
It is no longer necessary to apply a fixed potential to each of the node and the node N2, and the number of required wirings can be reduced.

【0047】また上記の説明では、太陽電池PV2は、
特性検出用太陽電池PV1とほぼ同様の特性を有するも
のがN個直列に接続されて構成されていたが、この他に
も直並列構造のものであってもよい。
In the above description, the solar cell PV2 is
Although the solar cell PV1 having substantially the same characteristics as the solar cell PV1 for characteristic detection is configured to be connected in series, N may be a series-parallel structure.

【0048】さらに、上記の説明では負荷として交流負
荷を用い、電力変換手段として電圧形インバータを用い
ていたが、例えば他に、負荷として直流負荷を採用する
場合には、電力変換手段として昇降圧形チョッパなどの
DC/DCコンバータを用いればよい。
Further, in the above description, an AC load is used as the load and a voltage source inverter is used as the power conversion means. However, for example, when a DC load is used as the load, a step-up / step-down voltage is used as the power conversion means. A DC / DC converter such as a chopper may be used.

【0049】なお、特性検出用太陽電池PV1について
は、例えば図3に示すように複数の同特性の太陽電池を
直列に接続したものを用いてもよい。図3では、回路的
に太陽電池PV2と絶縁されつつ太陽電池PV2が設け
られたパネルの各部分に配置された複数の太陽電池PV
1a〜PV1dを直列接続したものが、全体として一つ
の特性検出用太陽電池PV1を構成している。
As the solar cell PV1 for detecting characteristics, for example, a solar cell having a plurality of solar cells having the same characteristics connected in series as shown in FIG. 3 may be used. In FIG. 3, a plurality of solar cells PV arranged in each part of the panel provided with the solar cells PV2 while being insulated from the solar cells PV2 in a circuit manner.
One in which 1a to PV1d are connected in series constitutes one characteristic detecting solar cell PV1 as a whole.

【0050】もし特性検出用太陽電池PV1が一つの太
陽電池しか有していなかったとすると、例えば、太陽電
池PV2の受光面の一部は日陰になるが特性検出用太陽
電池PV1の受光面が日陰にならないという状況になっ
た場合に、太陽電池PV2の出力電力−出力電圧特性は
変化するにもかかわらず、特性検出用太陽電池PV1の
出力電力−出力電圧特性にその変化が反映されないこと
になる。
If the characteristic detecting solar cell PV1 has only one solar cell, for example, a part of the light receiving surface of the solar cell PV2 is shaded but the light receiving surface of the characteristic detecting solar cell PV1 is shaded. When the situation does not occur, although the output power-output voltage characteristic of the solar cell PV2 changes, the change is not reflected in the output power-output voltage characteristic of the characteristic detection solar cell PV1. .

【0051】よって、図3のように太陽電池PV2の各
部分に分散して太陽電池PV1a〜PV1dを配置して
おれば、太陽電池PV2の受光面の環境条件の変化が、
特性検出用太陽電池PV1でも検出できることになる。
すなわち、太陽電池PV2がその各部分で異なる環境条
件となった場合であっても、特性検出用太陽電池PV1
の最大電力点が、太陽電池PV2の最大電力点との一定
の関係を保つようにすることができる。ただしこの場
合、特性検出用太陽電池PV1が複数の同特性の太陽電
池の直列接続から構成されているので、特性検出用太陽
電池PV1の最大電力点に対応する出力電圧値をN倍し
て太陽電池PV2の出力電圧とするのではなく、N/
(特性検出用太陽電池PV1の有する太陽電池の数)倍
して太陽電池PV2の出力電圧とする必要がある。
Therefore, if the solar cells PV1a to PV1d are arranged dispersedly in each part of the solar cell PV2 as shown in FIG. 3, the change in the environmental condition of the light receiving surface of the solar cell PV2 is
It can be detected even by the solar cell PV1 for detecting characteristics.
That is, even when the solar cell PV2 has different environmental conditions in each part thereof, the characteristic detecting solar cell PV1
Can maintain a constant relationship with the maximum power point of the solar cell PV2. However, in this case, since the characteristic detecting solar cell PV1 is composed of a plurality of solar cells having the same characteristic connected in series, the output voltage value corresponding to the maximum power point of the characteristic detecting solar cell PV1 is multiplied by N to obtain the solar cell. Instead of using the output voltage of battery PV2, N /
It is necessary to multiply (the number of solar cells included in the characteristic detection solar cell PV1) by the output voltage of the solar cell PV2.

【0052】さて、本実施の形態と類似した技術思想と
して、特開平8−297516号公報に記載の太陽光発
電装置がある。この技術を太陽光発電装置ST2として
図4に示す。太陽光発電装置ST2は、太陽電池1と、
負荷4と、太陽電池1の動作電圧を所望の電圧に変換し
PWM制御する制御部2と、制御部2へ太陽電池1の最
大電力点検出動作を指令するとともに最大電力点での動
作電圧を指令する演算部3とを備え、太陽電池1と制御
部2との間にスイッチ5、コンデンサ6及び抵抗7をさ
らに備えている。なお、制御部2はスイッチ5に対し、
コンデンサ6を太陽電池1に並列に接続するか、放電の
ためにコンデンサ6を抵抗7に接続するかを切り替える
制御信号11を与える。
Now, as a technical idea similar to that of the present embodiment, there is a photovoltaic power generator described in Japanese Patent Application Laid-Open No. 8-297516. This technology is shown in FIG. 4 as a solar power generation device ST2. The solar power generation device ST2 includes a solar cell 1,
A load 4, a control unit 2 that converts the operating voltage of the solar cell 1 to a desired voltage and performs PWM control, and instructs the control unit 2 to perform an operation of detecting the maximum power point of the solar cell 1, and also converts the operating voltage at the maximum power point to It has a computing unit 3 for instructing, and further comprises a switch 5, a capacitor 6 and a resistor 7 between the solar cell 1 and the control unit 2. The control unit 2 controls the switch 5
A control signal 11 is provided to switch between connecting the capacitor 6 to the solar cell 1 in parallel or connecting the capacitor 6 to the resistor 7 for discharging.

【0053】この太陽光発電装置ST2の動作は以下の
ようなものである。すなわち、コンデンサ6が太陽電池
1に並列に接続されているときに、演算部3が、太陽電
池1の出力電圧をサンプリングして、各サンプリング値
とその時間微分値とから出力電力を計算し、太陽電池1
の出力電力−出力電圧特性の数値データを得る。そし
て、演算部3はそのデータから、そのとき採取した出力
電力−出力電圧特性の最大電力点に対応する出力電圧値
を太陽電池1が出力するよう制御部2へと制御信号9,
10を送信する。そしてその後、コンデンサ6を抵抗7
に接続してコンデンサ6に蓄積した電荷を放電させる。
このような特性検出動作を頻繁に繰り返し、太陽電池1
から常に最大電力を取り出すようにする。
The operation of the photovoltaic power generator ST2 is as follows. That is, when the capacitor 6 is connected to the solar cell 1 in parallel, the calculation unit 3 samples the output voltage of the solar cell 1 and calculates the output power from each sampled value and its time derivative, Solar cell 1
Numerical data of the output power-output voltage characteristics of FIG. Then, the arithmetic unit 3 sends the control signal 9 and the control signal 9 to the control unit 2 so that the solar cell 1 outputs the output voltage value corresponding to the maximum power point of the output power-output voltage characteristic collected at that time from the data.
Send 10 Then, the capacitor 6 is connected to the resistor 7
To discharge the charge accumulated in the capacitor 6.
Such a characteristic detection operation is frequently repeated, and the solar cell 1
To always extract the maximum power from

【0054】この特開平8−297516号公報に記載
の太陽光発電装置と本実施の形態にかかる太陽光発電装
置とは、太陽電池と並列接続されたコンデンサの端子電
圧を利用して太陽電池の出力電力−出力電圧特性を求め
最大電力点を検出する、という発想においては類似して
いるものの、以下に示すような大きな差異が存在する。
The photovoltaic power generation device described in Japanese Patent Application Laid-Open No. 8-297516 and the photovoltaic power generation device according to the present embodiment use the terminal voltage of a capacitor connected in parallel with the photovoltaic cell. Although the concept of obtaining the output power-output voltage characteristic and detecting the maximum power point is similar, there are significant differences as described below.

【0055】まず、太陽光発電装置ST2ではコンデン
サ6がスイッチ5によって太陽電池1に接続されたりさ
れなかったりするが、本実施の形態にかかる太陽光発電
装置ST1ではコンデンサC1が常に特性検出用太陽電
池PV1に接続されている。そのため、太陽光発電装置
ST2では、コンデンサ6を抵抗7に接続してコンデン
サ6に蓄積した電荷を放電させている間は、太陽電池1
の最大電力点を検出することはできない。一方、太陽光
発電装置ST1では、コンデンサC1の両端の電圧は、
常に特性検出用太陽電池PV1の出力電圧を示している
ので、スイッチSWがオンであってもオフであっても特
性検出用太陽電池PV1の最大電力点を検出することが
可能である。すると、太陽光発電装置ST1と太陽光発
電装置ST2との間で、同一回数分だけ太陽電池の出力
電力−出力電圧特性を求めるのに、スイッチSWのオン
オフのスイッチング周波数は、スイッチ5のスイッチン
グ周波数の半分でよいことになる。スイッチング周波数
を低く抑えることができると、出力電圧制御手段CT1
での制御が容易になる、という利点がある。
First, in the photovoltaic power generator ST2, the capacitor 6 is connected or not connected to the solar cell 1 by the switch 5, but in the photovoltaic power generator ST1 according to the present embodiment, the capacitor C1 is always connected to the solar cell for characteristic detection. Connected to battery PV1. Therefore, in the solar power generation device ST2, while the capacitor 6 is connected to the resistor 7 and the electric charge stored in the capacitor 6 is discharged, the solar cell 1
Cannot be detected. On the other hand, in the solar power generation device ST1, the voltage across the capacitor C1 is
Since the output voltage of the characteristic detecting solar cell PV1 is always shown, it is possible to detect the maximum power point of the characteristic detecting solar cell PV1 regardless of whether the switch SW is on or off. Then, in order to obtain the output power-output voltage characteristics of the solar cell for the same number of times between the photovoltaic power generation devices ST1 and ST2, the on / off switching frequency of the switch SW is set to the switching frequency of the switch 5. Half of that would be fine. If the switching frequency can be kept low, the output voltage control means CT1
There is an advantage that the control in is easy.

【0056】また、スイッチSWのスイッチング周波数
をスイッチ5のスイッチング周波数と同じ値にした場合
には、太陽光発電装置ST2では一回しか最大電力点を
検出できないところを、太陽光発電装置ST1では最大
電力点を二回検出できるので、最大電力点の時間変化を
より正確に捉えることが可能となる。
When the switching frequency of the switch SW is set to the same value as the switching frequency of the switch 5, the point at which the maximum power point can be detected only once in the photovoltaic power generator ST2 is different from that in the photovoltaic power generator ST1. Since the power point can be detected twice, the time change of the maximum power point can be grasped more accurately.

【0057】また、太陽光発電装置ST2では、特性を
検出するためのコンデンサ6が直接、太陽電池1に接続
されるので、コンデンサ6の検出動作が太陽電池1の出
力電力に対して変動等の悪影響を与える可能性がないと
はいえない。一方、太陽光発電装置ST1では、特性検
出手段CD1が太陽電池PV2を含む主回路側と回路的
に分離されているので、特性検出手段CD1での検出動
作が主回路の太陽電池PV2の出力電力に対して悪影響
を与える可能性はほとんどない。
In the photovoltaic power generator ST2, since the capacitor 6 for detecting the characteristics is directly connected to the solar cell 1, the operation of detecting the capacitor 6 may vary with respect to the output power of the solar cell 1. It cannot be said that there is no possibility of adverse effects. On the other hand, in the photovoltaic power generation device ST1, the characteristic detecting means CD1 is separated in circuit from the main circuit side including the solar cell PV2, so that the detection operation in the characteristic detecting means CD1 determines the output power of the solar cell PV2 in the main circuit. Is unlikely to have an adverse effect on

【0058】さて、主回路の太陽電池とは別に特性検出
用太陽電池を設けた太陽光発電装置の他の例として、例
えば特開平6−131065号公報に記載の技術があ
る。しかし、この公報に記載の技術では制御信号S1に
相当する信号を計算する際に主回路側から電流を抽出し
ているので、やはり太陽電池の特性検出動作が主回路の
太陽電池の出力電力に対して悪影響を与える可能性がな
いとはいえない。
As another example of a photovoltaic power generator provided with a solar cell for characteristic detection separately from the solar cell of the main circuit, there is a technique described in, for example, Japanese Patent Application Laid-Open No. H6-131065. However, in the technique described in this publication, the current is extracted from the main circuit side when calculating a signal corresponding to the control signal S1, so that the characteristic detection operation of the solar cell also reduces the output power of the solar cell of the main circuit. It cannot be said that there is no possibility that it will adversely affect the situation.

【0059】なお、本実施の形態を変形して、特性検出
用太陽電池PV1を用いずに直接、太陽電池PV2の特
性を検出することも不可能ではない。図5は、その場合
の変形例である太陽光発電装置ST3を示したものであ
る。この太陽光発電装置ST3は、太陽光発電装置ST
1における特性検出手段CD1の代わりに、特性検出用
太陽電池PV1を除去して、ノードN1をノードN4と
共通にし、ノードN2をノードN5と共通にした構造の
特性検出手段CD2を備えるものである。さらに太陽光
発電装置ST4は、ノードN4にアノードが接続され、
インバータIV1のトランジスタT1のコレクタにカソ
ードが接続されたダイオードDIをも備えている。この
ダイオードDIは、太陽電池PV2の出力電圧が小さく
なってしまった場合に、コンデンサC2に蓄積されたエ
ネルギーが太陽電池PV2またはコンデンサC1または
抵抗RSへと逆流して最大電力点を誤検知するのを防止
する目的で挿入されている。
It is not impossible to modify the present embodiment to directly detect the characteristics of the solar cell PV2 without using the solar cell PV1 for detecting characteristics. FIG. 5 shows a photovoltaic power generation device ST3 which is a modified example in that case. This solar power generation device ST3 is a solar power generation device ST3.
In place of the characteristic detecting means CD1 in FIG. 1, a characteristic detecting means CD2 having a structure in which the characteristic detecting solar cell PV1 is removed, the node N1 is made common to the node N4, and the node N2 is made common to the node N5. . Further, in the solar power generation device ST4, an anode is connected to the node N4,
It also has a diode DI whose cathode is connected to the collector of the transistor T1 of the inverter IV1. When the output voltage of the solar cell PV2 is reduced, the energy stored in the capacitor C2 flows back to the solar cell PV2, the capacitor C1, or the resistor RS, and the diode DI erroneously detects the maximum power point. It is inserted for the purpose of preventing.

【0060】特性検出手段CD2を直接、太陽電池PV
2に接続しても支障がないことが明らかな場合には、こ
のような簡易な回路構成にしてもよい。
The characteristic detecting means CD2 is directly connected to the solar cell PV.
If it is clear that there is no problem even if the connection is made to the second connection, such a simple circuit configuration may be adopted.

【0061】実施の形態2.図6は、本実施の形態にか
かる太陽光発電装置ST3を示したものである。この太
陽光発電装置ST3は、太陽光発電装置ST1にさら
に、抵抗RSに並列に接続されたコンデンサC3を加え
たものである。この太陽光発電装置ST3も、太陽光発
電装置ST1とほぼ同様の動作を行う。
Embodiment 2 FIG. 6 shows a photovoltaic power generator ST3 according to the present embodiment. This solar power generation device ST3 is obtained by further adding a capacitor C3 connected in parallel with the resistor RS to the solar power generation device ST1. The photovoltaic power generation device ST3 also performs substantially the same operation as the photovoltaic power generation device ST1.

【0062】ただし、コンデンサC3が追加されている
ことから、スイッチSWがオンの場合の特性検出用太陽
電池PV1の出力電流は、数3の代わりに、
However, since the capacitor C3 is added, the output current of the characteristic detecting solar cell PV1 when the switch SW is turned on becomes

【0063】[0063]

【数5】 (Equation 5)

【0064】で計算される。ここで、C3はコンデンサ
C3の容量値を表している。よって、このときの出力電
力pは、数4の代わりに、
Is calculated. Here, C 3 represents the capacitance value of the capacitor C3. Therefore, the output power p at this time is:

【0065】[0065]

【数6】 (Equation 6)

【0066】として計算される。Is calculated.

【0067】また、スイッチSWがオフのときには、コ
ンデンサC3が追加されているので、抵抗RSにはコン
デンサC3からの放電電流が流れることになる。
When the switch SW is turned off, the discharge current from the capacitor C3 flows through the resistor RS because the capacitor C3 is added.

【0068】本実施の形態にかかる太陽光発電装置を用
いれば、スイッチSWのオンオフにかかわらず、常に抵
抗RSに電流を流し続けられるので、抵抗RSで消費さ
れる電力の全部または一部を、例えば出力電圧制御回路
CT1の直流電源用電力として有効に活用することが可
能となる。そうすれば、太陽光発電装置ST3全体とし
ての電力効率が上昇する。
When the photovoltaic power generator according to the present embodiment is used, the current can be continuously supplied to the resistor RS regardless of the on / off state of the switch SW. For example, it can be effectively used as DC power for the output voltage control circuit CT1. Then, the power efficiency of the entire solar power generation device ST3 increases.

【0069】さらに例えば、太陽電池PV2から出力電
圧制御回路CT1の直流電源用電力を得るとすれば、そ
のために太陽電池PV2の200V程度の出力電圧に耐
え得る高耐圧の半導体素子を用いた降圧回路が必要とな
る。しかし、特性検出用太陽電池PV1の出力電圧は1
0V程度であるので、高耐圧素子を備えない簡単な降圧
回路を使用することができる。
Further, for example, if the power for the DC power supply of the output voltage control circuit CT1 is to be obtained from the solar cell PV2, a step-down circuit using a high withstand voltage semiconductor element capable of withstanding the output voltage of about 200V of the solar cell PV2 is used for that purpose. Is required. However, the output voltage of the characteristic detection solar cell PV1 is 1
Since the voltage is about 0 V, a simple step-down circuit having no high-voltage element can be used.

【0070】[0070]

【発明の効果】この発明のうち請求項1にかかる太陽電
池制御装置を用いれば、第1のコンデンサの両端には常
時第1の太陽電池の出力電圧が与えられているので、ス
イッチがオンする期間においても、オフする期間におい
ても、第1の太陽電池の最大電力点を検出することが可
能となる。
According to the solar cell controller of the present invention, the switch is turned on because the output voltage of the first solar cell is always applied to both ends of the first capacitor. The maximum power point of the first solar cell can be detected both during the period and during the period during which the first solar cell is turned off.

【0071】この発明のうち請求項2にかかる太陽電池
制御装置を用いれば、最大電力点を含む範囲の第1の太
陽電池の出力電力−出力電圧特性が判明するので、環境
条件により時々刻々と変化する最大電力点の最新の情報
を採取することができる。さらに、第1の太陽電池の出
力電力−出力電圧特性が複数のピークを有する形状やそ
の他の形状になった場合であっても、最大電力点を正確
に検出することができる。また、第1及び第2の動作を
行うので第1の太陽電池の最大電力点の時間変化を正確
に捉えることができ、スイッチのスイッチング周波数を
高くする必要がなく、出力電圧制御手段の制御が容易で
ある。
According to the solar cell control device of the second aspect of the present invention, the output power-output voltage characteristic of the first solar cell in the range including the maximum power point can be determined, so that it can be changed momentarily according to environmental conditions. The latest information of the changing maximum power point can be collected. Further, even when the output power-output voltage characteristic of the first solar cell has a shape having a plurality of peaks or another shape, the maximum power point can be accurately detected. Further, since the first and second operations are performed, the time change of the maximum power point of the first solar cell can be accurately grasped, and it is not necessary to increase the switching frequency of the switch, and the control of the output voltage control means can be performed. Easy.

【0072】この発明のうち請求項3にかかる太陽電池
制御装置を用いれば、スイッチのオンオフにかかわら
ず、常に抵抗に電流を流し続けられるので、抵抗で消費
される電力の全部または一部を有効に活用することが可
能となる。例えば、出力電圧制御手段に活用することが
できる。
According to the third aspect of the present invention, since the current can be continuously supplied to the resistor regardless of whether the switch is on or off, all or a part of the power consumed by the resistor can be effectively used. It can be used for For example, it can be used for output voltage control means.

【0073】この発明のうち請求項4にかかる太陽光発
電装置を用いれば、第1の太陽電池を用いて第2の太陽
電池の最大電力点に対応する出力電圧が検出されるの
で、第2の太陽電池の出力電圧及び出力電力を不必要に
変動させることなく、常時その最大電力下で動作させる
ことができる。従って動作が安定しつつ最大電力を供給
する太陽光発電を行うことができる。
When the photovoltaic power generator according to claim 4 of the present invention is used, the output voltage corresponding to the maximum power point of the second solar cell is detected using the first solar cell. Can be constantly operated at its maximum power without unnecessarily changing the output voltage and output power of the solar cell. Therefore, it is possible to perform solar power generation that supplies the maximum power while stabilizing the operation.

【0074】この発明のうち請求項5にかかる太陽光発
電装置を用いれば、第2の太陽電池がその各部分で異な
る環境条件となった場合であっても、第1の太陽電池の
最大電力点が第2の太陽電池の最大電力点との関係を一
定に保つようにすることができる。
According to the photovoltaic power generator of the present invention, the maximum power of the first solar cell can be obtained even when the second solar cell has different environmental conditions in each part. The point can maintain a constant relationship with the maximum power point of the second solar cell.

【0075】この発明のうち請求項6にかかる太陽光発
電装置を用いれば、簡易な回路構成で、最大電力を得る
ための制御を行って太陽光発電を行うことができる。
According to the photovoltaic power generator of the present invention, the photovoltaic power generation can be performed with a simple circuit configuration by performing control for obtaining the maximum power.

【0076】この発明のうち請求項7にかかる太陽光発
電装置を用いれば、第1の太陽電池の出力電圧が小さく
なった場合であっても、太陽電池制御装置の誤動作を回
避することができる。
According to the photovoltaic power generator of the present invention, even if the output voltage of the first photovoltaic cell becomes small, it is possible to avoid malfunction of the photovoltaic cell control device. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1の太陽光発電装置を
示す回路図である。
FIG. 1 is a circuit diagram showing a photovoltaic power generator according to Embodiment 1 of the present invention.

【図2】 この発明の実施の形態1の太陽光発電装置の
変形例を示す回路図である。
FIG. 2 is a circuit diagram showing a modified example of the photovoltaic power generator according to Embodiment 1 of the present invention.

【図3】 この発明の実施の形態1の太陽光発電装置に
用いられる太陽電池PV2と特性検出用太陽電池PV1
の物理的配置例を示した図である。
FIG. 3 shows a solar cell PV2 and a characteristic detecting solar cell PV1 used in the solar power generation device according to Embodiment 1 of the present invention.
FIG. 3 is a diagram showing an example of a physical arrangement of FIG.

【図4】 従来の太陽光発電装置を示す図である。FIG. 4 is a diagram showing a conventional solar power generation device.

【図5】 この発明の実施の形態1の太陽光発電装置の
変形例を示す回路図である。
FIG. 5 is a circuit diagram showing a modified example of the photovoltaic power generator according to Embodiment 1 of the present invention.

【図6】 この発明の実施の形態2の太陽光発電装置を
示す回路図である。
FIG. 6 is a circuit diagram showing a photovoltaic power generator according to Embodiment 2 of the present invention.

【図7】 従来の太陽光発電装置を示す図である。FIG. 7 is a diagram showing a conventional solar power generation device.

【図8】 太陽電池の出力電力−出力電圧特性を示す図
である。
FIG. 8 is a diagram showing output power-output voltage characteristics of a solar cell.

【図9】 太陽電池の出力電力−出力電圧特性を示す図
である。
FIG. 9 is a diagram showing output power-output voltage characteristics of a solar cell.

【符号の説明】[Explanation of symbols]

PV1 特性検出用太陽電池、PV2 太陽電池、VD
1,VD2 電圧検出手段、C1〜C3 コンデンサ、
RS 抵抗、SW スイッチ、CD 特性検出手段、C
T1 出力電圧制御手段、IV1 電圧形インバータ、
LD1 交流負荷。
PV1 solar cell for characteristic detection, PV2 solar cell, VD
1, VD2 voltage detecting means, C1 to C3 capacitors,
RS resistance, SW switch, CD characteristic detecting means, C
T1 output voltage control means, IV1 voltage source inverter,
LD1 AC load.

フロントページの続き (72)発明者 笠 展幸 岡山県岡山市津島本町3−8パルテール桑 の木307 Fターム(参考) 5H420 BB03 BB12 CC03 DD03 EA10 EA45 FF03 Continued on the front page (72) Inventor Nobuyuki Kasa 3-8 Palter Mulberry Tree 3-8 Tsushimahonmachi, Okayama City, Okayama Prefecture F-term (reference) 5H420 BB03 BB12 CC03 DD03 EA10 EA45 FF03

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 第1の太陽電池と、 前記第1の太陽電池に並列に接続された第1のコンデン
サと、 前記第1のコンデンサの一端に接続された一端及び他端
を有するスイッチと、 前記スイッチの前記他端に接続された一端及び前記コン
デンサの他端に接続された他端を有する抵抗と、 前記スイッチを制御して前記第1の太陽電池の前記最大
電力点に対応する出力電圧を検出する出力電圧制御手段
とを備える太陽電池制御装置。
A first solar cell; a first capacitor connected in parallel to the first solar cell; a switch having one end and the other end connected to one end of the first capacitor; A resistor having one end connected to the other end of the switch and the other end connected to the other end of the capacitor; and an output voltage corresponding to the maximum power point of the first solar cell by controlling the switch. And a voltage control means for detecting the voltage.
【請求項2】 前記第1の太陽電池の前記最大電力点は
所定の範囲内にあることが既知であり、 前記抵抗は、前記スイッチがオンして前記第1の太陽電
池と前記第1のコンデンサと前記抵抗とが第1の定常状
態にあるときに、前記第1の太陽電池の出力電圧が前記
所定の範囲の下限よりも低くなる値を有し、 前記出力電圧制御手段は、 前記第1の太陽電池の出力電圧及び前記出力電力を検出
しつつ、 前記第1の定常状態から前記スイッチをオフして前記第
1の太陽電池と前記第1のコンデンサとを第2の定常状
態へと移行させる第1の動作、及び前記第2の定常状態
から前記スイッチをオフして前記第1の定常状態へと移
行させる第2の動作を行って、前記第1及び第2の動作
のいずれにおいても前記第1の太陽電池の出力電圧及び
出力電力の経時変化を求めることによって前記第1の太
陽電池の前記最大電力点に対応する出力電圧を検出す
る、請求項1記載の太陽電池制御装置。
2. It is known that the maximum power point of the first solar cell is within a predetermined range, and the resistance is such that the switch is turned on and the first solar cell and the first solar cell are connected to each other. When the capacitor and the resistor are in a first steady state, the output voltage of the first solar cell has a value that is lower than a lower limit of the predetermined range, and the output voltage control unit includes: While detecting the output voltage and the output power of the first solar cell, the switch is turned off from the first steady state to bring the first solar cell and the first capacitor into the second steady state. A first operation for shifting, and a second operation for turning off the switch from the second steady state to shift to the first steady state, and performing any of the first and second operations. Also the output voltage and output voltage of the first solar cell. Detecting an output voltage by determining the change over time corresponding to the maximum power point of the first solar cell, solar battery control device according to claim 1.
【請求項3】 前記抵抗に並列接続された第2のコンデ
ンサをさらに備える請求項1または2記載の太陽電池制
御装置。
3. The solar cell control device according to claim 1, further comprising a second capacitor connected in parallel to said resistor.
【請求項4】 請求項1乃至請求項3のいずれか一つに
記載の太陽電池制御装置と、 前記第1の太陽電池の前記最大電力点と一定の関係を有
する最大電力点を有し、前記第1の太陽電池と同じ環境
条件に置かれた第2の太陽電池と、 負荷と、 前記第2の太陽電池の出力電圧を、前記第1の太陽電池
の前記最大電力点に対応する出力電圧と前記一定の関係
とに基づいて制御しつつ、前記負荷に伝達する電力変換
手段とを備える太陽光発電装置。
4. The solar cell control device according to claim 1, comprising: a maximum power point having a fixed relationship with the maximum power point of the first solar cell; A second solar cell placed under the same environmental conditions as the first solar cell; a load; and an output voltage corresponding to the maximum power point of the first solar cell. A photovoltaic power generator comprising: power conversion means for transmitting to the load while controlling based on a voltage and the predetermined relationship.
【請求項5】 前記第1の太陽電池は、複数の同特性の
第3の太陽電池を直列に接続したものであり、 前記第3の太陽電池の各々が、前記第2の太陽電池と絶
縁されつつ前記第2の太陽電池の各部分と同じ環境条件
に置かれた、請求項4記載の太陽光発電装置。
5. The first solar cell is obtained by connecting a plurality of third solar cells having the same characteristics in series, and each of the third solar cells is insulated from the second solar cell. The photovoltaic power generation device according to claim 4, wherein the photovoltaic power generation device is placed under the same environmental conditions as those of the respective parts of the second solar cell.
【請求項6】 請求項1乃至請求項3のいずれか一つに
記載の太陽電池制御装置と、 負荷と、 前記第1の太陽電池の出力電圧を、前記第1の太陽電池
の前記最大電力点に対応する出力電圧に基づいて制御し
つつ、前記負荷に伝達する電力変換手段とを備える太陽
光発電装置。
6. The solar cell control device according to claim 1, wherein: a load; and an output voltage of the first solar cell, the maximum power of the first solar cell. And a power converter that transmits the load to the load while controlling based on an output voltage corresponding to the point.
【請求項7】 前記電力変換手段から前記太陽電池制御
装置への電力の逆流を阻止する電力逆流阻止手段をさら
に備える請求項6記載の太陽光発電装置。
7. The photovoltaic power generator according to claim 6, further comprising power backflow prevention means for preventing backflow of power from said power conversion means to said solar cell control device.
JP16043599A 1999-06-08 1999-06-08 Solar cell control device and solar power generation device Expired - Fee Related JP3930999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16043599A JP3930999B2 (en) 1999-06-08 1999-06-08 Solar cell control device and solar power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16043599A JP3930999B2 (en) 1999-06-08 1999-06-08 Solar cell control device and solar power generation device

Publications (2)

Publication Number Publication Date
JP2000347753A true JP2000347753A (en) 2000-12-15
JP3930999B2 JP3930999B2 (en) 2007-06-13

Family

ID=15714881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16043599A Expired - Fee Related JP3930999B2 (en) 1999-06-08 1999-06-08 Solar cell control device and solar power generation device

Country Status (1)

Country Link
JP (1) JP3930999B2 (en)

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004100348A1 (en) * 2003-05-06 2004-11-18 Enecsys Limited Power supply circuits
WO2005069096A1 (en) * 2004-01-12 2005-07-28 Koninklijke Philips Electronics, N.V. Solar power source with maximum power-point tracking
JP2006059126A (en) * 2004-08-20 2006-03-02 Daihen Corp Controlling method of solar power generation system
JP2010117744A (en) * 2008-11-11 2010-05-27 Sharp Corp Solar photovoltaic power generator and solar photovoltaic power generation system
WO2010079517A1 (en) * 2009-01-07 2010-07-15 Power-One Italy S.P.A. Method and system for extracting electric power from a renewable energy source
US8067855B2 (en) 2003-05-06 2011-11-29 Enecsys Limited Power supply circuits
JP2012230673A (en) * 2011-04-19 2012-11-22 Mitsubishi Electric R&D Centre Europe B.V. Device and method for acquiring information for determining characteristic such as maximum power point of power source
JP2013033365A (en) * 2011-08-01 2013-02-14 Kyocera Corp Control device
CN102957165A (en) * 2011-08-09 2013-03-06 控制技术有限公司 Renewable energy output monitoring
US8405367B2 (en) 2006-01-13 2013-03-26 Enecsys Limited Power conditioning units
US8472220B2 (en) 2011-11-01 2013-06-25 Enecsys Limited Photovoltaic power conditioning units
US8526205B2 (en) 2011-11-01 2013-09-03 Enecsys Limited Photovoltaic power conditioning units
US8674668B2 (en) 2010-06-07 2014-03-18 Enecsys Limited Solar photovoltaic systems
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
CN105262096A (en) * 2015-08-06 2016-01-20 国家电网公司 Voltage frequency adjustment method considering photovoltaic maximum power tracking for active power distribution network
US9246397B2 (en) 2006-01-13 2016-01-26 Solarcity Corporation Solar power conditioning unit
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US9438035B2 (en) 2003-05-28 2016-09-06 Solaredge Technologies Ltd. Power converter for a solar panel
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
JP2017184304A (en) * 2016-03-28 2017-10-05 富士通株式会社 Charging circuit and electronic apparatus
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
CN112904929A (en) * 2021-01-19 2021-06-04 珠海格力电器股份有限公司 Photovoltaic solar system, control method thereof and computer-readable storage medium
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations

Cited By (157)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8067855B2 (en) 2003-05-06 2011-11-29 Enecsys Limited Power supply circuits
US9425623B2 (en) 2003-05-06 2016-08-23 Solarcity Corporation Power supply circuits
US8405248B2 (en) 2003-05-06 2013-03-26 Enecsys Limited Power supply circuits
US10291032B2 (en) 2003-05-06 2019-05-14 Tesla, Inc. Power supply circuits
WO2004100348A1 (en) * 2003-05-06 2004-11-18 Enecsys Limited Power supply circuits
US11658508B2 (en) 2003-05-28 2023-05-23 Solaredge Technologies Ltd. Power converter for a solar panel
US9438035B2 (en) 2003-05-28 2016-09-06 Solaredge Technologies Ltd. Power converter for a solar panel
US10910834B2 (en) 2003-05-28 2021-02-02 Solaredge Technologies Ltd. Power converter for a solar panel
US11476663B2 (en) 2003-05-28 2022-10-18 Solaredge Technologies Ltd. Power converter for a solar panel
US11075518B2 (en) 2003-05-28 2021-07-27 Solaredge Technologies Ltd. Power converter for a solar panel
US11817699B2 (en) 2003-05-28 2023-11-14 Solaredge Technologies Ltd. Power converter for a solar panel
US11824398B2 (en) 2003-05-28 2023-11-21 Solaredge Technologies Ltd. Power converter for a solar panel
US10135241B2 (en) 2003-05-28 2018-11-20 Solaredge Technologies, Ltd. Power converter for a solar panel
WO2005069096A1 (en) * 2004-01-12 2005-07-28 Koninklijke Philips Electronics, N.V. Solar power source with maximum power-point tracking
JP4676176B2 (en) * 2004-08-20 2011-04-27 株式会社ダイヘン Control method of photovoltaic power generation system
JP2006059126A (en) * 2004-08-20 2006-03-02 Daihen Corp Controlling method of solar power generation system
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10193467B2 (en) 2006-01-13 2019-01-29 Tesla, Inc. Power conditioning units
US8405367B2 (en) 2006-01-13 2013-03-26 Enecsys Limited Power conditioning units
US9812980B2 (en) 2006-01-13 2017-11-07 Solarcity Corporation Power conditioning units
US9812985B2 (en) 2006-01-13 2017-11-07 Solarcity Corporation Solar power conditioning unit
US9246397B2 (en) 2006-01-13 2016-01-26 Solarcity Corporation Solar power conditioning unit
US9270191B2 (en) 2006-01-13 2016-02-23 Solarcity Corporation Power condition units with MPPT
US9853490B2 (en) 2006-12-06 2017-12-26 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11043820B2 (en) 2006-12-06 2021-06-22 Solaredge Technologies Ltd. Battery power delivery module
US11002774B2 (en) 2006-12-06 2021-05-11 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11073543B2 (en) 2006-12-06 2021-07-27 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11658482B2 (en) 2006-12-06 2023-05-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11962243B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US10637393B2 (en) 2006-12-06 2020-04-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11594882B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11961922B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594881B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594880B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11575261B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11575260B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US10116217B2 (en) 2007-08-06 2018-10-30 Solaredge Technologies Ltd. Digital average input current control in power converter
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US10516336B2 (en) 2007-08-06 2019-12-24 Solaredge Technologies Ltd. Digital average input current control in power converter
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11183969B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US9979280B2 (en) 2007-12-05 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters
US11183923B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Parallel connected inverters
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11894806B2 (en) 2007-12-05 2024-02-06 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10644589B2 (en) 2007-12-05 2020-05-05 Solaredge Technologies Ltd. Parallel connected inverters
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US11693080B2 (en) 2007-12-05 2023-07-04 Solaredge Technologies Ltd. Parallel connected inverters
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
JP2010117744A (en) * 2008-11-11 2010-05-27 Sharp Corp Solar photovoltaic power generator and solar photovoltaic power generation system
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
WO2010079517A1 (en) * 2009-01-07 2010-07-15 Power-One Italy S.P.A. Method and system for extracting electric power from a renewable energy source
US8937827B2 (en) 2009-01-07 2015-01-20 Power-One Italy S.P.A. Method and system for extracting electric power from a renewable power source
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US8674668B2 (en) 2010-06-07 2014-03-18 Enecsys Limited Solar photovoltaic systems
US9496803B2 (en) 2010-06-07 2016-11-15 Solarcity Corporation Solar photovoltaic system with maximized ripple voltage on storage capacitor
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11070051B2 (en) 2010-11-09 2021-07-20 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US11271394B2 (en) 2010-12-09 2022-03-08 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9935458B2 (en) 2010-12-09 2018-04-03 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US10141745B2 (en) 2011-01-11 2018-11-27 Tesla, Inc. Photovoltaic power conditioning units
US11205946B2 (en) 2011-01-12 2021-12-21 Solaredge Technologies Ltd. Serially connected inverters
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
JP2012230673A (en) * 2011-04-19 2012-11-22 Mitsubishi Electric R&D Centre Europe B.V. Device and method for acquiring information for determining characteristic such as maximum power point of power source
JP2013033365A (en) * 2011-08-01 2013-02-14 Kyocera Corp Control device
CN102957165A (en) * 2011-08-09 2013-03-06 控制技术有限公司 Renewable energy output monitoring
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US8472220B2 (en) 2011-11-01 2013-06-25 Enecsys Limited Photovoltaic power conditioning units
US9520803B2 (en) 2011-11-01 2016-12-13 Solarcity Corporation Photovoltaic power conditioning units
US8526205B2 (en) 2011-11-01 2013-09-03 Enecsys Limited Photovoltaic power conditioning units
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US10608553B2 (en) 2012-01-30 2020-03-31 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11929620B2 (en) 2012-01-30 2024-03-12 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
US9639106B2 (en) 2012-03-05 2017-05-02 Solaredge Technologies Ltd. Direct current link circuit
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US11177768B2 (en) 2012-06-04 2021-11-16 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US11742777B2 (en) 2013-03-14 2023-08-29 Solaredge Technologies Ltd. High frequency multi-level inverter
US11545912B2 (en) 2013-03-14 2023-01-03 Solaredge Technologies Ltd. High frequency multi-level inverter
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US10778025B2 (en) 2013-03-14 2020-09-15 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US11424617B2 (en) 2013-03-15 2022-08-23 Solaredge Technologies Ltd. Bypass mechanism
US10651647B2 (en) 2013-03-15 2020-05-12 Solaredge Technologies Ltd. Bypass mechanism
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US11632058B2 (en) 2014-03-26 2023-04-18 Solaredge Technologies Ltd. Multi-level inverter
US10886831B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US11296590B2 (en) 2014-03-26 2022-04-05 Solaredge Technologies Ltd. Multi-level inverter
US11855552B2 (en) 2014-03-26 2023-12-26 Solaredge Technologies Ltd. Multi-level inverter
US10886832B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
CN105262096A (en) * 2015-08-06 2016-01-20 国家电网公司 Voltage frequency adjustment method considering photovoltaic maximum power tracking for active power distribution network
JP2017184304A (en) * 2016-03-28 2017-10-05 富士通株式会社 Charging circuit and electronic apparatus
US10587145B2 (en) 2016-03-28 2020-03-10 Fujitsu Limited Charging circuit and electronic device
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US11201476B2 (en) 2016-04-05 2021-12-14 Solaredge Technologies Ltd. Photovoltaic power device and wiring
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
CN112904929A (en) * 2021-01-19 2021-06-04 珠海格力电器股份有限公司 Photovoltaic solar system, control method thereof and computer-readable storage medium
CN112904929B (en) * 2021-01-19 2022-07-29 珠海格力电器股份有限公司 Photovoltaic solar system, control method thereof and computer-readable storage medium

Also Published As

Publication number Publication date
JP3930999B2 (en) 2007-06-13

Similar Documents

Publication Publication Date Title
JP2000347753A (en) Solar battery controller and solar power generating device
US10230310B2 (en) Safety switch for photovoltaic systems
CN102820808B (en) Photovoltaic array combiner box
US10374447B2 (en) Power converter circuit including at least one battery
US9612608B2 (en) Maximum power point tracker bypass
JP5503745B2 (en) Photovoltaic power generation system, control device used in solar power generation system, control method and program thereof
US10218272B2 (en) Control circuit and control method for switch power supply, and switch power supply
EP2408096A9 (en) Current-fed converter with quadratic conversion ratio
JP5857193B2 (en) Current collection box
JP2009110510A (en) Method and apparatus for power conversion with maximum power point tracking and burst mode capability
JP2009207239A (en) Charging controller for solar cells
JP3949350B2 (en) Interconnection device
US20140139200A1 (en) Energy storage system and method thereof
JP6357966B2 (en) Power supply control device and electronic device
JP2017059094A (en) Power generation operation point control circuit device with step-up function of solar battery
US20230299680A1 (en) Power Supply and Current Sampling Method
Kolluru et al. Development and implementation of control algorithms for a photovoltaic system
TWI458239B (en) Dc/dc converter and photovoltatic power generation system thereof
JP2012174070A (en) Solar cell characteristic acquisition circuit and solar cell control device
JP2010081711A (en) Charging circuit, charging circuit control method and charging circuit control program
Keerthana et al. Continuous tracking of maximum power point of PV array with controller
Ilayaraja et al. Modeling of an e-vehicle charging station using DC-DC self-lift SEPIC converter
JP2007221893A (en) Capacitor-charging circuit by solar cell
Siouane et al. A thermoelectric energy harvester with a single switch unified control for autonomous applications
CN110198073B (en) Energy supply system and energy management method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees