JP4673996B2 - Photosensitive resin composition - Google Patents

Photosensitive resin composition Download PDF

Info

Publication number
JP4673996B2
JP4673996B2 JP2001135545A JP2001135545A JP4673996B2 JP 4673996 B2 JP4673996 B2 JP 4673996B2 JP 2001135545 A JP2001135545 A JP 2001135545A JP 2001135545 A JP2001135545 A JP 2001135545A JP 4673996 B2 JP4673996 B2 JP 4673996B2
Authority
JP
Japan
Prior art keywords
group
acid
compound
thiol
photosensitive resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001135545A
Other languages
Japanese (ja)
Other versions
JP2002293815A (en
Inventor
隆生 大野
一郎 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamura Corp
Original Assignee
Tamura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Corp filed Critical Tamura Corp
Priority to JP2001135545A priority Critical patent/JP4673996B2/en
Publication of JP2002293815A publication Critical patent/JP2002293815A/en
Application granted granted Critical
Publication of JP4673996B2 publication Critical patent/JP4673996B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は、銅に対する密着性が高く、耐金めっき性、耐酸性、耐湿性に優れ、更に、熱安定性及び銅箔の変色の少ない、例えばプリント配線板用ソルダーレジストとして好適な感光性樹脂組成物に関する。
【0002】
【従来の技術】
プリント配線板は、基板の上に導体回路のパターンを形成し、そのパターンのはんだ付ランドに電子部品をはんだ付することにより搭載するためのものであり、そのはんだ付ランドを除く回路部分は永久保護皮膜としてのソルダーレジスト膜で被覆される。これにより、プリント配線板に電子部品をはんだ付する際にはんだが不必要な部分に付着するのを防止すると共に、回路導体が空気に直接曝されて酸化や湿度により腐食されるのを防止する。
従来、ソルダーレジスト膜は、基板上にその溶液組成物をスクリーン印刷法でパターン形成し、溶剤を除く乾燥をした後、紫外線または熱により硬化させることが主流とされてきた。
【0003】
ところが、最近、プリント配線基板の配線密度の向上(細密化)の要求にともないソルダーレジスト組成物(ソルダーレジストインキ組成物ともいう)も高解像性、高精度化が要求され、民生用基板、産業用基板を問わずスクリーン印刷法から、位置精度、導体エッジ部の被覆性に優れる液状フォトソルダーレジスト法(写真現像法)が提案されている。例えば特開昭50−144431号、特開昭51−40451号公報には、ビスフェノール型エポキシアクリレート、増感剤、エポキシ化合物、エポキシ硬化剤などからなるソルダーレジスト組成物が開示されている。これらのソルダーレジスト組成物は、プリント配線板上に感光性樹脂組成物である液状組成物を全面塗布し、溶媒を揮発させた後、露光して未露光部分を有機溶剤を用いて除去し、現像するものである。
しかし、この有機溶剤による未露光部分の除去(現像)は、有機溶剤を多量に使用するため、環境汚染や火災などの危険性があるのみならず、環境汚染の問題があり、特に人体に与える影響が最近大きくクローズアップされてきていることから、その対策に苦慮しているのが現状である。
【0004】
これらの問題を解決するために、希アルカリ水溶液で現像可能なアルカリ現像型フォトソルダーレジスト組成物が提案されている。例えば特開昭56−40329号、特開昭57−45785号公報には、エポキシ樹脂に不飽和モノカルボン酸を反応させ、更に多塩基酸無水物を付加させた反応生成物をベースポリマーとする材料が開示されている。また、特公平1−54390号公報には、ノボラック型エポキシ樹脂と不飽和モノカルボン酸との反応物と、飽和または不飽和多塩基酸無水物とを反応せしめて得られる活性エネルギー線硬化性樹脂と、光重合開始剤を含有する希アルカリ水溶液により現像可能な光硬化性の液状レジストインキ組成物が開示されている。
【0005】
これらの液状ソルダーレジスト組成物は、エポキシアクリレートにカルボキシル基を導入することによって、光感光性や希アルカリ水溶液での現像性を付与させたものであるが、この組成物にはさらに、その塗膜を露光、現像処理して所望のレジストパターンを形成した後、通常、熱硬化させるために、熱硬化性成分として、一般にエポキシ樹脂を含有させ、上記のエポキシアクリレートに導入した側鎖のカルボキシル基とエポキシ基とを反応させ、密着性、硬度、耐熱性、耐薬品性、電気絶縁性などに優れるレジスト膜を形成させている。この場合一般に、エポキシ樹脂とともに、エポキシ樹脂用硬化剤が併用される。
【0006】
【発明が解決しようとする課題】
基本的にはエポキシ化合物は、密着性の高い材料として知られているが、ソルダーレジストの熱硬化成分として使用した場合には、その他の感光性樹脂や、反応性希釈剤などと併用し、光硬化させた後、熱硬化させて使用するので、プリント配線板の基材や導体からなる回路部分に対する密着性が十分とはいえない。
この密着性を改善するために、例えば特許第2792298号公報には、トリアジンチオール化合物を例えば光重合性樹脂のカルボキシル基導入エポキシアクリレート、光重合開始剤及びエポキシ化合物とともに含有させたフォトソルダーレジスト組成物について、これをプリント配線板に用いると、トリアジンチオール化合物が金属とキレートを形成する作用と、上記の光重合性樹脂のカルボキシル基導入エポキシアクリレートや不飽和化合物の不飽和二重結合と反応する作用により、金属とフォトソルダーレジスト皮膜との密着性が飛躍的に向上させることができる旨の記載がある。そのため、耐金めっき性、耐酸性、耐湿性などを飛躍的に向上させることができる。
しかしながら、トリアジンチオール化合物のようなチオール基(−SH)を持った化合物は、光重合性樹脂等の不飽和二重結合と反応するため、ソルダーレジストの熱的安定性を低下させてしまい、熱感利幅の低下、現像不良(現像残り)の原因となる。又、現像された部分の銅箔上に錯体を形成して付着したまま残るため、銅箔の変色を起こすだけでなく、その後の部品搭載時に、はんだ付不良を起こすといった問題点がある。
【0007】
本発明目的は、上記の課題を解決したもので、銅に対する密着性が高く、耐金めっき性、耐酸性、耐湿性に優れ、更に、熱安定性及び銅箔の変色の少ない、例えばプリント配線板用ソルダーレジストとして好適な感光性樹脂組成物を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、上記目的を達成するために鋭意研究した結果、トリアジンチオール類のチオール基を変性することで、反応性を低下させ、熱的安定性を維持し、更に錯体の形成を防ぐことにより、銅箔への付着を防止でき、プリント配線板の基材や導体に対する密着性が向上するとともに、耐金めっき性、耐酸性、耐湿性に優れ、更に、熱安定性及び銅箔の変色の少なく、特にプリント配線板製造用ソルダーレジストとして好適な感光性樹脂膜を提供することを見出し、本発明をするに至った。すなわち、本発明は、
(1)(A)1分子中に少なくとも2個のエチレン性不飽和結合を有する活性エネルギー線硬化性樹脂、(B)チオール基を持った複素環化合物のチオール基を保護基によって潜在化した化合物、(C)光重合開始剤及び(D)熱硬化性化合物を含有することを特徴とする感光性樹脂組成物、
(2)チオール基を持った複素環化合物が下記〔化1〕で表されるトリアジンチオール類であることを特徴とする前記(1)記載の感光性樹脂組成物、
【化1】
(式中Rは、炭素数1〜10で表されるアルキル基、または芳香族基、またはアルコキシル基、アミノ基、チオール基を示す
(3)チオール基を2つ以上持った化合物のチオール基を保護基によって潜在化した化合物を得る際に使用した保護基がビニルエーテル化合物類であることを特徴とする前記(1)または前記(2)記載の感光性樹脂組成物、
)チオール基を2つ以上持った化合物のチオール基を保護基によって潜在化した化合物を得る際に使用した保護基がイソシアネート化合物類であることを特徴とする前記(1)または前記(2)記載の感光性樹脂組成物、を提供する。
【0009】
本発明において、「(A)1分子中に少なくとも2個のエチレン性不飽和結合を有する活性エネルギー線硬化性樹脂」には、例えば分子中にエポキシ基を2個以上有する多官能エポキシ樹脂のエポキシ基の少なくとも一部にアクリル酸又はメタクリル酸等のラジカル重合性不飽和モノカルボン酸を反応させた後、生成した水酸基に多塩基酸無水物を反応させたものなどを挙げることができる。
【0010】
上記多官能性エポキシ樹脂としては、2官能以上のエポキシ樹脂であればいずれでも使用可能であり、エポキシ当量の制限は特にないが、通常1,000以下、好ましくは100〜500のものを用いる。
例えば、ビスフェノールA型、ビスフノールF型、ビスフェノールAD型等のビスフェノール型エポキシ樹脂、o−クレゾールノボラック型等のノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、環状脂肪族多官能エポキシ樹脂、グリシジルエステル型多官能エポキシ樹脂、グリシジルアミン型多官能エポキシ樹脂、複素環式多官能エポキシ樹脂、ビスフェノール変性ノボラック型エポキシ樹脂、多官能変性ノボラック型エポキシ樹脂、フェノール類とフェノール性水酸基を有する芳香族アルデヒドとの縮合物型エポキシ樹脂等をあげることができる。また、これらの樹脂にBr,Cl等のハロゲン原子を導入したものなども挙げられる。これらの内でも耐熱性を考慮すると、ノボラック型エポキシ樹脂が好ましい。これらのエポキシ樹脂は単独で用いてもよく、また2種以上を併用してもよい。
【0011】
これらのエポキシ樹脂とラジカル重合性不飽和モノカルボン酸を反応させる。エポキシ基とカルボキシル基の反応によりエポキシ基が開裂し水酸基とエステル結合が生成する。使用するラジカル重合性不飽和モノカルボン酸としては、特に制限は無く、例えばアクリル酸、メタクリル酸、クロトン酸、桂皮酸などがあるが、アクリル酸及びメタクリル酸の少なくとも一方(以下、(メタ)アクリル酸ということがある。)が好ましく、特にアクリル酸が好ましい。エポキシ樹脂とラジカル重合性不飽和モノカルボン酸との反応方法に特に制限は無く、例えばエポキシ樹脂とアクリル酸を適当な希釈剤中で加熱することにより反応できる。希釈剤としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、トルエン、キシレン等の芳香族炭化水素類、メタノール、イソプロパノール、シクロヘキサノール、などのアルコール類、シクロヘキサン、メチルシクロヘキサン等の脂環式炭化水素類、石油エーテル、石油ナフサ等の石油系溶剤類、セロソルブ、ブチルセロソルブ等のセロソルブ類、カルビトール、ブチルカルビトール等のカルビトール類、酢酸エチル、酢酸ブチル、セロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、ブチルカルビトールアセテート等の酢酸エステル類等を挙げることができる。また触媒としては、例えば、トリエチルアミン、トリブチルアミンなどのアミン類、トリフェニルホスフィン、トリフェニルホスフェートなどのリン化合物類等を挙げることができる。
【0012】
上記のエポキシ樹脂とラジカル重合性不飽和モノカルボン酸の反応において、エポキシ樹脂が有するエポキシ基1当量あたりラジカル重合性不飽和モノカルボン酸を0.7〜1.2当量反応させる事が好ましい。アクリル酸又はメタクリル酸の少なくとも一方を用いるときは、さらに好ましくは0.8〜1.0当量加えて反応させる。ラジカル重合性不飽和モノカルボン酸が0.7当量未満であると、後続の工程の合成反応時にゲル化を起こすことがあったり、あるいは樹脂の安定性が低下する。また、ラジカル重合性不飽和モノカルボン酸が過剰であると未反応のカルボン酸が多く残存するため、硬化物の諸特性(例えば耐水性等)を低下させる恐れがある。エポキシ樹脂とラジカル重合性不飽和モノカルボン酸の反応は、加熱状態で行うのが好ましく、その反応温度は、80〜140℃である事が好ましい。反応温度が140℃を超えるとラジカル重合性不飽和モノカルボン酸が熱重合を起こし易くなり合成が困難になることがあり、また80℃未満では反応速度が遅くなり、実際の製造上好ましくないことがある。
エポキシ樹脂とラジカル重合性不飽和モノカルボン酸の希釈剤中での反応においては、希釈剤の配合量が反応系の総重量に対して、20〜50%である事が好ましい。エポキシ樹脂とラジカル重合性不飽和モノカルボン酸の反応生成物は単離することなく、希釈剤の溶液のまま、次の多塩基酸類との反応に供する事ができる。
【0013】
上記エポキシ樹脂とラジカル重合性不飽和モノカルボン酸との反応生成物である不飽和モノカルボン酸化エポキシ樹脂に、多塩基酸又はその無水物を反応させる。多塩基酸又はその無水物としては、特に制限は無く、飽和、不飽和のいずれも使用できる。このような多塩基酸としては、コハク酸、マレイン酸、アジピン酸、クエン酸、フタル酸、テトラヒドロフタル酸、3−メチルテトラヒドロフタル酸、4−メチルテトラヒドロフタル酸、3−エチルテトラヒドロフタル酸、4−エチルテトラヒドロフタル酸、ヘキサヒドロフタル酸、3−メチルヘキサヒドロフタル酸、4−メチルヘキサヒドロフタル酸、3−エチルヘキサヒドロフタル酸、4−エチルヘキサヒドロフタル酸、メチルテトラヒドロフタル酸、メチルヘキサヒドロフタル酸、エンドメチレンテトラヒドロフタル酸、メチルエンドメチレンテトラヒドロフタル酸、トリメリット酸、ピロメリット酸及びジグリコール酸等が挙げられ、多塩基酸無水物としてはこれらの無水物が挙げられる。これらの化合物は単独で使用することができ、また2種以上を混合してもよい。
多塩基酸又は多塩基酸無水物は、上記のエポキシ樹脂とラジカル重合性不飽和モノカルボン酸との反応で生成した水酸基に反応し、樹脂に遊離のカルボキシル基を持たせる。反応させようとする多塩基酸の使用量は、エポキシ樹脂とラジカル重合性不飽和モノカルボン酸との反応生成物が有する水酸基1モルに対し0.3〜1.0モルである事が望ましい。露光時に高感度の樹脂膜が得られる点からは、好ましくは0.4〜1.0モル、さらに好ましくは0.6〜1.0モルの割合で反応させる。0.3モル未満であると得られた樹脂の希アルカリ現像性が低下することがあり、また1.0モルを超えると最終的に得られる硬化塗膜の諸特性(例えば耐水性等)を低下させることがある。
多塩基酸は、上記の不飽和モノカルボン酸化エポキシ樹脂に添加され、脱水縮合反応され、反応時生成した水は反応系から連続的に取り出すことが好ましいが、その反応は加熱状態で行うのが好ましく、その反応温度は、70〜130℃である事が好ましい。反応温度が130℃を超えると、エポキシ樹脂に結合されたものや、未反応モノマーのラジカル重合性不飽和基が熱重合を起こし易くなり合成が困難になることがあり、また70℃以下では反応速度が遅くなり、実際の製造上好ましくないことがある。
上記の多塩基酸と不飽和モノカルボン酸化エポキシ樹脂との反応生成物である多塩基酸変性不飽和モノカルボン酸化エポキシ樹脂の酸価は、60〜300mgKOH/gが好ましい。反応させる多塩基酸の量により、反応生成物の酸価は調整できる。
【0014】
本発明においては、上記の多塩基酸変性不飽和モノカルボン酸化エポキシ樹脂も感光性樹脂として使用できるが、上記の多塩基酸変性不飽和モノカルボン酸化エポキシ樹脂の有するカルボキシル基に、1つ以上のラジカル重合性不飽和基とエポキシ基を持つグリシジル化合物を反応させることにより、ラジカル重合性不飽和基を更に導入し、さらに感光性を向上させた感光性樹脂とすることも好ましい。
この感光性を向上させた感光性樹脂は、最後のグリシジル化合物の反応によってラジカル重合性不飽和基が、その前駆体の感光性樹脂の高分子の骨格の側鎖に結合するため、光重合反応性が高く、優れた感光特性を持つことができる。1つ以上のラジカル重合性不飽和基とエポキシ基を持つ化合物としては、例えば、グリシジルアクリレート、グリシジルメタクリレート、アリルグリシジルエーテル、ペンタエリスリトールトリアクリレートモノグリシジルエーテル等が挙げられる。なお、グリシジル基は1分子中に複数有していてもよい。これらの化合物は単独で用いてもよく、混合して用いてもよい。
上記グリシジル化合物は、上記の多塩基酸変性不飽和モノカルボン酸化エポキシ樹脂の溶液に添加して反応させるが、その樹脂に導入したカルボキシル基1モルに対し、通常0.05〜0.5モルの割合で反応させる。得られる感光性樹脂を含有する感光性樹脂組成物の感光性(感度)や、上述した熱管理幅及び電気絶縁性等の電気特性などのことを考慮すると、好ましくは0.1〜0.5モルの割合で反応させるのが有利である。反応温度は80〜120℃が好ましい。このようにして得られるグリシジル化合物付加多塩基酸変性不飽和モノカルボン酸化エポキシ樹脂からなる感光性樹脂は酸価が45〜250mgKOH/gである事が好ましい。
【0015】
本発明において、「チオール基を持った複素環化合物」は、代表的には、下記〔化1〕で表されるトリアジンチオール類である。
【化1】
(式中Rは、炭素数1〜10で表されるアルキル基、または芳香族基、またはアルコキシル基、アミノ基、チオール基を示す)具体的には、2,4,6−トリチオール−1,3,5−トリアジン、2−ジメチルアミノ−4,6−ジチオール−1,3,5−トリアジン、2−ジブチルアミノ−4,6−ジチオール−1,3,5−トリアジン、2−フェニルアミノ−4,6−ジチオール−1,3,5−トリアジン等である。または、2,5−ジメルカプト−1,3,4−チアジアゾールに代表されるチアゾール類である。これらのチオール基を2つ以上持った化合物を保護基によって潜在化した化合物を得る際に使用する保護基としては、ビニルエーテル化合物類及びイソシアネート化合物類が例示される。ビニルエーテル化合物類としては、エチルビニルエーテル、ブチルビニルエーテル、2,3−ジヒドロフラン、2,3−ジヒドロピランがあげられる。イソシアネート化合物類としては、フェニルイソシアネート、エチルイソシアネート、ブチルイソシアネート、トルエンジイソシアネートがあげられる。〔化1〕で表されるトリアジンチオール類、チアゾール類等の、チオール基を2つ以上持った化合物を保護基によって潜在化した化合物を得るには、チオール基を2つ以上持った化合物のチオール基1当量に対してビニルエーテル類、あるいはイソシアネート類を1〜1.5当量を反応させる。反応温度は室温〜60℃が好ましい。そして、チオール基を持った複素環化合物を保護基によって潜在化した化合物としては、2,4,6−トリス−(1−エトキシエチルスルファニル)−1,3,5−トリアジン、2,4,6−トリス−(1−ブトキシエチルスルファニル)−1,3,5−トリアジン、2,4,6−トリス−(テトラヒドロフラン−2−イルスルファニル)−1,3,5−トリアジン、2,4,6−トリス−(フェニルチオカルバミオルスルファニル)−1,3,5−トリアジン等が例示される。チオール基を持った複素環化合物を保護基によって潜在化した使用量は、上記感光性樹脂100gに対して、通常0.1〜5gである。0.1g未満では、硬化塗膜の密着性の向上が困難となり、耐金めっき性、耐酸性、耐湿性の向上が望めない。また5gを超えると、熱安定性が低下するだけでなく、未反応物の影響により硬化塗膜の特性が低下する。光硬化性、経済性、硬化塗膜の機械的特性などの点からは、その使用量は、好ましくは1〜3gである。
【0016】
本発明において、「(C)光重合開始剤」としては、特に制限はなく、従来知られているものはいずれも使用できる。具体的には、代表的なものとしては例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾイン−n−ブチルエーテル、ベンゾインイソブチルエーテル、アセトフェノン、ジメチルアミノアセトフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、2,2−ジエトキシ−2−フェニルアセトフェノン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−〔4−(メチルチオ)フェニル〕−2−モルフォリノ−プロパン−1−オン、4−(2−ヒドロキシエトキシ)フェニル−2−(ヒドロキシ−2−プロピル)ケトン、ベンゾフェノン、p−フェニルベンゾフェノン、4,4′−ジエチルアミノベンゾフェノン、ジクロルベンゾフェノン、2−メチルアントラキノン、2−エチルアントラキノン、2−ターシャリーブチルアントラキノン、2−アミノアントラキノン、2−メチルチオキサントン、2−エチルチオキサントン、2−クロルチオキサントン、2,4−ジメチルチオキサントン、2,4−ジエチルチオキサントン、ベンジルジメチルケタール、アセトフェノンジメチルケタール、P−ジメチルアミノ安息香酸エチルエステル等が挙げられる。これらを単独または組み合わせて用いることができる。
光重合開始剤の使用量は、上記感光性樹脂100gに対して、通常0.5〜50gである。0.5g未満では、感光性樹脂の光硬化反応が進行し難くなり、50gを超えるとその加える量の割には効果は向上せず、むしろ経済的には不利となったり、硬化塗膜の機械的特性が低下することがある。光硬化性、経済性、硬化塗膜の機械的特性などの点からは、その使用量は、好ましくは2.0〜30gである。
【0017】
本発明において、「(D)熱硬化性化合物」には、例えば、エポキシ樹脂用硬化剤及び/又は硬化促進剤を使用することもできる。
その硬化剤としては、ジシアンジアミドの有機酸塩及びその誘導体のN−置換ジシアンジアミドの有機酸塩の少なくとも1種が挙げられる。N−置換ジシアンジアミドの置換基としては、炭素数1〜12の直鎖、分岐のいずれのアルキル基、アルキル基等の核置換基を有してもよいアリール基、アラルキル等が挙げられ、有機酸としては有機カルボン酸、有機リン酸、有機硫酸が挙げられる。
これらの化合物は少なくとも2種(2種以上)を組み合わせて用いてもよく、その含有量は、一般的には、上記(A)成分100g当たり、0.1〜10gの範囲で選ばれる。この含有量が0.1g未満では熱硬化特性が十分に発揮されないおそれがあるし、10gを超えると本発明の感光性樹脂組成物のポットライフが短くなり易く、その塗膜のソルダーレジスト膜の特性低下の原因となることがある。熱硬化特性、組成物のポットライフ及びソルダーレジスト膜の特性などを考慮すると、硬化剤としての上記の化合物の含有量は、特に1〜8gの範囲が好ましい。なお、詳細は特願2000−277430号明細書に記載されており、上記以外の点も適用できる。
硬化剤としては、上記の置換基を有するN−置換ジシアンジアミド、ジシアンジアミドも使用でき、上記の化合物を含めて、これらは少なくとも2種併用してもよい。
硬化促進剤としてメラミン化合物、イミダゾール化合物、フェノール化合物等の公知のエポキシ硬化促進剤が挙げられる。これらは上記(B)成分等がポストキュアーすることを促進する。
【0018】
本発明の感光性樹脂組成物は、上記(A)成分、(B)成分、(C)成分及び(D)成分のほかに、反応性希釈剤を混合して使用することにより、例えばプリント配線板製造用ソルダーレジスト組成物として好適に使用することができる。
【0019】
上記反応性希釈剤としては、上記感光性樹脂の光硬化を更に十分にして、耐酸性、耐熱性、耐アルカリ性などを有する塗膜を得るために使用するもので、1分子中に二重結合を少なくとも2個有する化合物が好ましく用いられる。
その反応性希釈剤の代表的なものとしては、例えば、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールアジペートジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、カプロラクトン変性ジシクロペンテニルジ(メタ)アクリレート、エチレンオキサイド変性燐酸ジ(メタ)アクリレート、アリル化シクロヘキシルジ(メタ)アクリレート、イソシアヌレートジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、プロピレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、プロピオン酸変性ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート等の反応性希釈剤が挙げられる。
【0020】
上記の2〜6官能その他の多官能反応性希釈剤は単品又は複数の混合系のいずれにおいても使用可能である。この反応性希釈剤の添加量は、感光性樹脂100gに対して、通常2.0〜40gである。その添加量が2.0gより少ないと十分な光硬化が得られず、硬化塗膜の耐酸性、耐熱性等において十分な特性が得られず、また、添加量が40gを越えるとタックが激しく、露光の際アートワークフィルムの基板への付着が生じ易くなり、目的とする硬化塗膜が得られ難くなる。
光硬化性、硬化塗膜の耐酸性、耐熱性等、アートワークフィルムの基板への付着の防止の点からは、反応性希釈剤の添加量は、好ましくは4.0〜20gである。
【0021】
本発明の感光性樹脂組成物には、上記の成分のほかに、必要に応じて種々の添加剤、例えばシリカ、アルミナ、タルク、炭酸カルシウム、硫酸バリウム等の無機顔料からなる充填剤、フタロシアニングリーン、フタロシアニンブルー等のフタロシアニン系、アゾ系等の有機顔料や二酸化チタン等の無機顔料の公知の着色顔料、消泡剤、レベリング剤等の塗料用添加剤などを含有させることができる。
【0022】
上述のようにして得られた本発明の感光性樹脂組成物は、例えば銅張り積層板の銅箔をエッチングして形成した回路のパターンを有するプリント配線板に所望の厚さで塗布し、60〜80℃程度の温度で15〜60分間程度加熱して溶剤を揮散させた後、これに上記回路のパターンのはんだ付ランド以外は透光性にしたパターンのネガフィルムを密着させ、その上から紫外線を照射させ、このはんだ付ランドに対応する非露光領域を希アルカリ水溶液で除去することにより塗膜が現像される。この際使用される希アルカリ水溶液としては0.5〜5%の炭酸ナトリウム水溶液が一般的であるが、他のアルカリも使用可能である。
次いで、熱硬化性化合物を含有する場合には、130〜170℃の熱風循環式の乾燥機等で20〜80分間ポストキュアーを行うことにより目的とするソルダーレジスト皮膜を形成せしめることができる。
このようにしてソルダーレジスト膜で被覆したプリント配線板が得られ、これに電子部品が噴流はんだ付方法や、リフローはんだ付方法によりはんだ付されることにより接続、固定されて搭載され、一つの電子回路ユニットが形成される。
本発明においては、その電子部品搭載前のソルダーレジスト皮膜を被覆したプリント配線板、このプリント配線板に電子部品搭載した電子部品搭載後のプリント配線板のいずれをもその対象に含む。
【0023】
【発明の実施の形態】
【0024】
【実施例】
次ぎに、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。
(上記(B)成分であるチオール基を持った複素環化合物を保護基によって潜在化した化合物の合成例)
【0025】
合成例1
還流管、攪拌装置を備えた2Lのフラスコに2,4,6−トリチオール−1,3,5−トリアジン177gとエチルビニルエーテル400gとアセトン1000mLを投入する。攪拌しながら12時間加熱還流を行い、その後、減圧蒸留で、アセトン及び過剰のエチルビニルエーテルを除去し、2,4,6−トリス−(1−エトキシエチルスルファニル)−1,3,5−トリアジン350gを得た。
【0026】
合成例2
還流管、攪拌装置を備えた2Lのフラスコに2,4,6−トリチオール−1,3,5−トリアジン177gとブチルビニルエーテル450gとアセトン1000mLを投入する。攪拌しながら12時間加熱還流を行い、その後、減圧蒸留で、アセトン及び過剰のブチルビニルエーテルを除去し、2,4,6−トリス−(1−ブトキシエチルスルファニル)−1,3,5−トリアジン430gを得た。
【0027】
合成例3
還流管、攪拌装置を備えた2Lのフラスコに2,4,6−トリチオール−1,3,5−トリアジン177gと2,3−ジヒドロフラン400gとアセトン1000mLを投入する。攪拌しながら12時間加熱還流を行い、その後、減圧蒸留で、アセトン及び過剰の2,3−ジヒドロフランを除去し、2,4,6−トリス−(テトラヒドロフラン−2−イルスルファニル)−1,3,5−トリアジン360gを得た。
【0028】
合成例4
還流管、攪拌装置を備えた2Lのフラスコに2,4,6−トリチオール−1,3,5−トリアジン177gとフェニルイソシアネート380gとアセトン1000mLを投入する。攪拌しながら12時間加熱還流を行い、その後、減圧蒸留で、アセトン及び過剰のフェニルイソシアネートを除去し、2,4,6−トリス−(フェニルチオカルバミオルスルファニル)−1,3,5−トリアジン480gを得た。
【0029】
感光性樹脂(A)の製造方法
エチルカルビトールアセテート206g中において、エポキシ当量が220のクレゾールノボラック型エポキシ樹脂のエポキシ基1モルに対し、アクリル酸を1モルの割合で反応させて得られた反応物に、無水テトラヒドロフタル酸を0.6モルの割合で反応させ、感光性樹脂を製造した。このものは、粘ちょうな液体であり、酸価は57mgKOH/gであった。
【0030】
実施例1
樹脂製造例で得た感光性樹脂(A)100gに、合成例1で得た2,4,6−トリス−(1−エトキシエチルスルファニル)−1,3,5−トリアジン2g、ジペンタエリスリトールヘキサアクリレート8g、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルフォリノ−プロパン−1−オン5g、2,4−ジエチルチオキサントン1g、シリカ10g、硫酸バリウム13g、トリグリシジルイソシアヌレート10g、フタロシアニングリーン1gを3本ロールで混合分散させて、感光性樹脂組成物を調製した。この組成物の現像性及び塗膜性能の評価結果を表1に示す。
【0031】
実施例2
樹脂製造例で得た感光性樹脂(A)100gに、合成例2で得た2,4,6−トリス−(1−ブトキシエチルスルファニル)−1,3,5−トリアジン2g、ジペンタエリスリトールヘキサアクリレート8g、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルフォリノ−プロパン−1−オン5g、2,4−ジエチルチオキサントン1g、シリカ10g、硫酸バリウム13g、トリグリシジルイソシアヌレート10g、フタロシアニングリーン1gを3本ロールで混合分散させて、感光性樹脂組成物を調製した。この組成物の現像性及び塗膜性能の評価結果を表1に示す。
【0032】
実施例3
樹脂製造例で得た感光性樹脂(A)100gに、合成例3で得た2,4,6−トリス−(テトラヒドロフラン−2−イルスルファニル)−1,3,5−トリアジン2g、ジペンタエリスリトールヘキサアクリレート8g、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルフォリノ−プロパン−1−オン5g、2,4−ジエチルチオキサントン1g、シリカ10g、硫酸バリウム13g、トリグリシジルイソシアヌレート10g、フタロシアニングリーン1gを3本ロールで混合分散させて、感光性樹脂組成物を調製した。この組成物の現像性及び塗膜性能の評価結果を表1に示す。
【0033】
実施例4
樹脂製造例で得た感光性樹脂(A)100gに、合成例4で得た2,4,6−トリス−(フェニルチオカルバミオルスルファニル)−1,3,5−トリアジン2g、ジペンタエリスリトールヘキサアクリレート8g、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルフォリノ−プロパン−1−オン5g、2,4−ジエチルチオキサントン1g、シリカ10g、硫酸バリウム13g、トリグリシジルイソシアヌレート10g、フタロシアニングリーン1gを3本ロールで混合分散させて、感光性樹脂組成物を調製した。この組成物の現像性及び塗膜性能の評価結果を表1に示す。
【0034】
比較例1
樹脂製造例で得た感光性樹脂(A)100gに、2,4,6−トリチオール−1,3,5−トリアジン1g、ジペンタエリスリトールヘキサアクリレート8g、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルフォリノ−プロパン−1−オン5g、2,4−ジエチルチオキサントン1g、シリカ10g、硫酸バリウム13g、トリグリシジルイソシアヌレート10g、フタロシアニングリーン1gを3本ロールで混合分散させて、感光性樹脂組成物を調製した。この組成物の現像性及び塗膜性能の評価結果を表1に示す。
【0035】
比較例2
樹脂製造例で得た感光性樹脂(A)100gに、ジペンタエリスリトールヘキサアクリレート8g、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルフォリノ−プロパン−1−オン5g、2,4−ジエチルチオキサントン1g、シリカ10g、硫酸バリウム13g、トリグリシジルイソシアヌレート10g、フタロシアニングリーン1gを3本ロールで混合分散させて、感光性樹脂組成物を調製した。この組成物の現像性及び塗膜性能の評価結果を表1に示す。
【0036】
評価試験方法
(1)熱管理幅
予備乾燥時間を10分間隔で延長した基板を評価基板とし1%の炭酸ナトリウム水溶液を用い、2.0kg/cmのスプレー圧で60秒現像を行い予備乾燥時間が何分まで完全に除去できるかを評価した。
(2)塗膜性能
感光性樹脂組成物をパターン形成された銅箔基板上に全面塗布し、80℃で20分間乾燥した。次いで、この基板にネガフィルムを密着させ、露光後、1重量%炭酸ナトリウム水溶液で現像処理してパターンを形成した。次に、この基板を150℃で60分間熱硬化して、硬化塗膜を有する評価基板を作製し、塗膜性能を評価した。
(イ)耐金めっき性
硬化塗膜を有する評価基板に金めっき加工後、セロハン粘着テープによるピーリング試験を行い、レジスト層の剥がれ、変色について観察し、金めっき性を評価した。
◎:全く変化が認められないもの、○:ほんのわずか変化しているもの
△:顕著に変化しているもの、×:塗膜が膨潤して剥離したもの
(ロ)密着性
JIS D−0202に準拠して、碁盤目試験により測定した。
(ハ)鉛筆硬度
JIS K−5400.6.14に準拠して測定した。
(ニ)耐酸性
硬化塗膜を有する評価基板を常温の10重量%の硫酸水溶液中に30分間浸せきしたのち、水洗後、セロハン粘着テープによるピーリング試験を行い、レジスト層の剥がれ、変色について観察し、耐酸性を評価した。
◎:全く変化が認められないもの、○:ほんのわずか変化しているもの
△:顕著に変化しているもの、×:塗膜が膨潤して剥離したもの
(ホ)耐溶剤性
硬化塗膜を有する評価基板を常温の塩化メチレンに30分間浸せきしたのち、水洗後、セロハン粘着テープによるピーリング試験を行い、レジスト層の剥がれ、変色について観察し、耐溶剤性を評価した。
◎:全く変化が認められないもの、○:ほんのわずか変化しているもの
△:顕著に変化しているもの、×:塗膜が膨潤して剥離したもの
(ヘ)耐熱性
硬化塗膜を有する評価基板をJIS C 6481の試験方法に従って、260℃のはんだ槽に30秒間浸せき後、セロハンテープによるピーリング試験を1サイクルとし、計1〜3のサイクルを行った後の塗膜状態を観察し、耐熱性を評価した。
◎:3サイクル後も塗膜に変化がないもの、○:3サイクル後にわずかに変化しているもの、△:2サイクル後に変化しているもの、×:1サイクル後に剥離が生じているもの
(ト)電気特性
IPC SM−840B B−25のくし型電極Bクーボンを用い、上記の条件で評価基板を作製し、60℃、90%RHの恒温恒湿槽中で100Vの直流電圧を印加し、500時間後の絶縁抵抗値を測定するとともに、変色を観察し、電気特性を評価した。
◎:全く変色していないもの、○:薄く変色しているもの
△:顕著に変色しているもの、×:黒く焦げ付いているもの
(チ)銅箔変色
150℃−60分間の熱硬化終了した基板の銅箔の変色度合いを見る。
◎:全く変色していないもの、○:薄く変色しているもの
△:顕著に変色しているもの、×:レジストで保護されている部分まで変色しているもの
【0037】
【表1】
【0038】
表1から判るように、保護基を用いて潜在化したチオール類を用いた系は熱安定性が優れた上に、銅箔の変色がなく、硬化塗膜の特性はチオール化合物を用いたものに遜色のない特性が得られる。
本発明は、プリント配線板の基材や導体に対する密着性が向上するとともに、耐金めっき性、耐酸性、耐湿性に優れ、更に、熱安定性及び銅箔の変色の少ないという効果があることが明らかである。
【0039】
【発明の効果】
本発明によれば、プリント配線板の基材や導体に対する密着性が向上するとともに、耐金めっき性、耐酸性、耐湿性に優れ、更に、熱安定性及び銅箔の変色の少ない感光性樹脂組成物を提供することができる。
[0001]
[Industrial application fields]
The present invention is a photosensitive resin having high adhesion to copper, excellent in gold plating resistance, acid resistance, moisture resistance, thermal stability and less discoloration of copper foil, for example, suitable as a solder resist for printed wiring boards. Relates to the composition.
[0002]
[Prior art]
A printed wiring board is for mounting by forming a pattern of a conductor circuit on a substrate and soldering an electronic component onto the soldered land of the pattern, and the circuit portion excluding the soldered land is permanent. It is coated with a solder resist film as a protective film. This prevents solder from adhering to unnecessary parts when soldering electronic components to a printed wiring board, and prevents circuit conductors from being directly exposed to air and being corroded by oxidation or humidity. .
Conventionally, a solder resist film has been mainly formed by patterning a solution composition on a substrate by a screen printing method, drying the solvent composition, and then curing it with ultraviolet rays or heat.
[0003]
However, recently, with the demand for improving the wiring density of printed wiring boards (fine densification), solder resist compositions (also called solder resist ink compositions) are also required to have high resolution and high precision. A liquid photo solder resist method (photo development method) has been proposed from the screen printing method regardless of the industrial substrate. For example, JP-A-50-144431 and JP-A-51-40451 disclose solder resist compositions comprising a bisphenol type epoxy acrylate, a sensitizer, an epoxy compound, an epoxy curing agent, and the like. These solder resist compositions are applied to the entire surface of a liquid composition, which is a photosensitive resin composition, on a printed wiring board, and after volatilizing the solvent, it is exposed to remove unexposed portions using an organic solvent, Develop.
However, the removal (development) of unexposed areas with organic solvents is not only dangerous for the environment and fire, but also has a problem of environmental pollution, especially because it uses a large amount of organic solvent. Since the impact has been greatly closed up recently, it is difficult to take countermeasures.
[0004]
In order to solve these problems, an alkali development type photo solder resist composition that can be developed with a dilute aqueous alkali solution has been proposed. For example, in Japanese Patent Application Laid-Open Nos. 56-40329 and 57-45785, a reaction product obtained by reacting an epoxy resin with an unsaturated monocarboxylic acid and further adding a polybasic acid anhydride is used as a base polymer. A material is disclosed. Japanese Patent Publication No. 1-54390 discloses an active energy ray-curable resin obtained by reacting a reaction product of a novolac type epoxy resin and an unsaturated monocarboxylic acid with a saturated or unsaturated polybasic acid anhydride. And a photocurable liquid resist ink composition that can be developed with a dilute alkaline aqueous solution containing a photopolymerization initiator.
[0005]
These liquid solder resist compositions are provided with photosensitivity and developability in a dilute alkaline aqueous solution by introducing a carboxyl group into epoxy acrylate. After forming a desired resist pattern by exposing and developing, generally, an epoxy resin is generally contained as a thermosetting component in order to thermally cure, and a side chain carboxyl group introduced into the above epoxy acrylate and By reacting with an epoxy group, a resist film having excellent adhesion, hardness, heat resistance, chemical resistance, electrical insulation and the like is formed. In this case, generally, an epoxy resin curing agent is used together with the epoxy resin.
[0006]
[Problems to be solved by the invention]
Basically, epoxy compounds are known as materials with high adhesion, but when used as thermosetting components for solder resists, they can be used in combination with other photosensitive resins and reactive diluents. Since it is cured and used after being cured, it cannot be said that the printed circuit board has sufficient adhesion to a circuit portion made of a substrate or a conductor.
In order to improve this adhesion, for example, Japanese Patent No. 2792298 discloses a photo solder resist composition containing a triazine thiol compound together with, for example, a carboxyl group-introduced epoxy acrylate of a photopolymerizable resin, a photopolymerization initiator and an epoxy compound. When this is used in a printed wiring board, the triazine thiol compound forms a chelate with a metal, and reacts with the carboxyl group-introduced epoxy acrylate of the photopolymerizable resin or the unsaturated double bond of the unsaturated compound. Thus, there is a description that the adhesion between the metal and the photo solder resist film can be drastically improved. Therefore, gold plating resistance, acid resistance, moisture resistance, and the like can be dramatically improved.
However, since a compound having a thiol group (—SH) such as a triazine thiol compound reacts with an unsaturated double bond such as a photopolymerizable resin, the thermal stability of the solder resist is reduced, and the heat This may cause a decrease in the sensitivity range and poor development (development residue). In addition, since the complex remains on the developed portion of the copper foil and remains attached, there is a problem that not only the copper foil is discolored but also a soldering failure is caused when mounting the components thereafter.
[0007]
The object of the present invention is to solve the above-mentioned problems, and has high adhesion to copper, excellent in gold plating resistance, acid resistance, and moisture resistance, and further has little thermal stability and discoloration of copper foil, for example, printed wiring. The object is to provide a photosensitive resin composition suitable as a solder resist for a plate.
[0008]
[Means for Solving the Problems]
  As a result of diligent research to achieve the above object, the present inventors have modified the thiol group of triazine thiols to reduce reactivity, maintain thermal stability, and prevent complex formation. This prevents adhesion to the copper foil, improves the adhesion of the printed wiring board to the base material and conductor, and is excellent in gold plating resistance, acid resistance, and moisture resistance. The inventors have found that a photosensitive resin film having little discoloration and particularly suitable as a solder resist for producing a printed wiring board is provided, and has led to the present invention. That is, the present invention
(1) (A) Active energy ray-curable resin having at least two ethylenically unsaturated bonds in one molecule, (B) A heterocyclic compound having a thiol groupThiol groupA photosensitive resin composition characterized by comprising a compound latently protected by a protecting group, (C) a photopolymerization initiator, and (D) a thermosetting compound,
(2) Heterocyclic compound with thiol groupThing isThe photosensitive resin composition according to (1) above, which is a triazine thiol represented by the following [Chemical Formula 1]:
[Chemical 1]
(In the formula, R represents an alkyl group having 1 to 10 carbon atoms, an aromatic group, an alkoxyl group, an amino group, or a thiol group.)
(3) Compounds with two or more thiol groupsThiol groupThe above-mentioned (1) is characterized in that the protecting group used in obtaining the compound latentized by the protecting group is a vinyl ether compound.Or (2)The photosensitive resin composition according to the description,
(4) Compounds with two or more thiol groupsThiol groupThe above-mentioned (1) is characterized in that the protecting group used in obtaining the compound latentized by the protecting group is an isocyanate compound.Or (2)The photosensitive resin composition of description is provided.
[0009]
In the present invention, “(A) an active energy ray-curable resin having at least two ethylenically unsaturated bonds in one molecule” includes, for example, an epoxy of a polyfunctional epoxy resin having two or more epoxy groups in the molecule. Examples thereof include those obtained by reacting at least a part of a group with a radically polymerizable unsaturated monocarboxylic acid such as acrylic acid or methacrylic acid and then reacting a polybasic acid anhydride with the generated hydroxyl group.
[0010]
Any polyfunctional epoxy resin can be used as long as it is a bifunctional or higher functional epoxy resin, and there is no particular limitation on the epoxy equivalent, but usually 1,000 or less, preferably 100-500.
For example, bisphenol A type, bisphenol F type, bisphenol AD type and other bisphenol type epoxy resins, o-cresol novolak type and other novolak type epoxy resins, bisphenol A novolac type epoxy resins, cycloaliphatic polyfunctional epoxy resins, glycidyl ester type Polyfunctional epoxy resin, glycidylamine type polyfunctional epoxy resin, heterocyclic polyfunctional epoxy resin, bisphenol-modified novolac type epoxy resin, polyfunctional modified novolac type epoxy resin, condensation of phenols with aromatic aldehydes having phenolic hydroxyl groups Examples include physical epoxy resins. Further, those obtained by introducing halogen atoms such as Br and Cl into these resins are also included. Among these, considering heat resistance, novolac type epoxy resin is preferable. These epoxy resins may be used alone or in combination of two or more.
[0011]
These epoxy resins are reacted with radically polymerizable unsaturated monocarboxylic acids. The epoxy group is cleaved by the reaction between the epoxy group and the carboxyl group to form a hydroxyl group and an ester bond. The radical polymerizable unsaturated monocarboxylic acid to be used is not particularly limited and includes, for example, acrylic acid, methacrylic acid, crotonic acid, cinnamic acid, etc., but at least one of acrylic acid and methacrylic acid (hereinafter referred to as (meth) acrylic). It is sometimes referred to as an acid.) And acrylic acid is particularly preferable. There is no restriction | limiting in particular in the reaction method of an epoxy resin and radically polymerizable unsaturated monocarboxylic acid, For example, it can react by heating an epoxy resin and acrylic acid in a suitable diluent. Examples of the diluent include ketones such as methyl ethyl ketone and cyclohexanone, aromatic hydrocarbons such as toluene and xylene, alcohols such as methanol, isopropanol and cyclohexanol, and alicyclic hydrocarbons such as cyclohexane and methylcyclohexane. Petroleum solvents such as petroleum ether and petroleum naphtha, cellosolves such as cellosolve and butylcellosolve, carbitols such as carbitol and butylcarbitol, ethyl acetate, butyl acetate, cellosolve acetate, butyl cellosolve acetate, carbitol acetate, butyl Examples include acetates such as carbitol acetate. Examples of the catalyst include amines such as triethylamine and tributylamine, and phosphorus compounds such as triphenylphosphine and triphenylphosphate.
[0012]
In the reaction between the epoxy resin and the radically polymerizable unsaturated monocarboxylic acid, it is preferable to react 0.7 to 1.2 equivalents of the radically polymerizable unsaturated monocarboxylic acid per 1 equivalent of the epoxy group of the epoxy resin. When at least one of acrylic acid or methacrylic acid is used, 0.8 to 1.0 equivalent is more preferably added and reacted. When the radically polymerizable unsaturated monocarboxylic acid is less than 0.7 equivalent, gelation may occur during the synthesis reaction in the subsequent step, or the stability of the resin is lowered. Further, if the radically polymerizable unsaturated monocarboxylic acid is excessive, a large amount of unreacted carboxylic acid remains, which may reduce various properties (for example, water resistance) of the cured product. The reaction between the epoxy resin and the radically polymerizable unsaturated monocarboxylic acid is preferably performed in a heated state, and the reaction temperature is preferably 80 to 140 ° C. If the reaction temperature exceeds 140 ° C, the radically polymerizable unsaturated monocarboxylic acid is likely to undergo thermal polymerization and may be difficult to synthesize, and if it is less than 80 ° C, the reaction rate will be slow, which is undesirable in actual production. There is.
In the reaction of the epoxy resin and the radically polymerizable unsaturated monocarboxylic acid in the diluent, the blending amount of the diluent is preferably 20 to 50% with respect to the total weight of the reaction system. The reaction product of the epoxy resin and the radically polymerizable unsaturated monocarboxylic acid can be subjected to the reaction with the next polybasic acid in the form of a diluent without isolation.
[0013]
A polybasic acid or an anhydride thereof is reacted with the unsaturated monocarboxylic oxide epoxy resin which is a reaction product of the epoxy resin and the radically polymerizable unsaturated monocarboxylic acid. There is no restriction | limiting in particular as a polybasic acid or its anhydride, Either saturated and unsaturated can be used. Examples of such polybasic acids include succinic acid, maleic acid, adipic acid, citric acid, phthalic acid, tetrahydrophthalic acid, 3-methyltetrahydrophthalic acid, 4-methyltetrahydrophthalic acid, 3-ethyltetrahydrophthalic acid, 4 -Ethyltetrahydrophthalic acid, hexahydrophthalic acid, 3-methylhexahydrophthalic acid, 4-methylhexahydrophthalic acid, 3-ethylhexahydrophthalic acid, 4-ethylhexahydrophthalic acid, methyltetrahydrophthalic acid, methylhexa Examples include hydrophthalic acid, endomethylenetetrahydrophthalic acid, methylendomethylenetetrahydrophthalic acid, trimellitic acid, pyromellitic acid, and diglycolic acid. Examples of polybasic acid anhydrides include these anhydrides. These compounds can be used alone or in combination of two or more.
The polybasic acid or polybasic acid anhydride reacts with a hydroxyl group generated by the reaction of the above-described epoxy resin and a radically polymerizable unsaturated monocarboxylic acid, thereby giving the resin a free carboxyl group. The amount of the polybasic acid to be reacted is preferably 0.3 to 1.0 mol with respect to 1 mol of the hydroxyl group of the reaction product of the epoxy resin and the radically polymerizable unsaturated monocarboxylic acid. From the point that a highly sensitive resin film can be obtained at the time of exposure, the reaction is preferably carried out at a rate of 0.4 to 1.0 mol, more preferably 0.6 to 1.0 mol. When the amount is less than 0.3 mol, the dilute alkali developability of the obtained resin may be reduced. When the amount exceeds 1.0 mol, various properties (for example, water resistance) of the finally obtained cured coating film may be reduced. May decrease.
The polybasic acid is preferably added to the unsaturated monocarboxylic oxide epoxy resin and subjected to a dehydration condensation reaction. The water produced during the reaction is preferably continuously removed from the reaction system, but the reaction is carried out in a heated state. Preferably, the reaction temperature is 70 to 130 ° C. When the reaction temperature exceeds 130 ° C., those bonded to an epoxy resin and radically polymerizable unsaturated groups of unreacted monomers may easily cause thermal polymerization, making synthesis difficult. The speed is slow, which may be undesirable in actual manufacturing.
The acid value of the polybasic acid-modified unsaturated monocarboxylic acid epoxy resin, which is a reaction product of the polybasic acid and the unsaturated monocarboxylic acid epoxy resin, is preferably 60 to 300 mgKOH / g. The acid value of the reaction product can be adjusted by the amount of the polybasic acid to be reacted.
[0014]
In the present invention, the polybasic acid-modified unsaturated monocarboxylic oxide epoxy resin can also be used as a photosensitive resin. However, one or more carboxyl groups in the polybasic acid-modified unsaturated monocarboxylic oxide epoxy resin have one or more. It is also preferable that a radically polymerizable unsaturated group is further introduced by reacting a radically polymerizable unsaturated group and a glycidyl compound having an epoxy group to further improve the photosensitivity.
The photosensitive resin with improved photosensitivity has a photopolymerization reaction because the radical polymerizable unsaturated group is bonded to the side chain of the polymer skeleton of the precursor photosensitive resin by the reaction of the last glycidyl compound. It has high properties and can have excellent photosensitivity. Examples of the compound having one or more radically polymerizable unsaturated groups and an epoxy group include glycidyl acrylate, glycidyl methacrylate, allyl glycidyl ether, pentaerythritol triacrylate monoglycidyl ether, and the like. In addition, you may have multiple glycidyl groups in 1 molecule. These compounds may be used alone or in combination.
The glycidyl compound is added to the polybasic acid-modified unsaturated monocarboxylic oxide epoxy resin solution and allowed to react. Usually, 0.05 to 0.5 mol of the carboxyl group introduced into the resin. React at a rate. In consideration of the photosensitivity (sensitivity) of the photosensitive resin composition containing the obtained photosensitive resin and the above-described electrical characteristics such as the thermal management width and electrical insulation, preferably 0.1 to 0.5. Preference is given to reacting in molar proportions. The reaction temperature is preferably 80 to 120 ° C. The photosensitive resin comprising the glycidyl compound-added polybasic acid-modified unsaturated monocarboxylic oxide epoxy resin thus obtained preferably has an acid value of 45 to 250 mgKOH / g.
[0015]
  In the present invention,"ChiHeterocyclic compounds with all groupsobject"Is typically a triazine thiol represented by the following [Chemical Formula 1].
[Chemical 1]
(In the formula, R represents an alkyl group having 1 to 10 carbon atoms, an aromatic group, an alkoxyl group, an amino group, or a thiol group). Specifically, 2,4,6-trithiol-1, 3,5-triazine, 2-dimethylamino-4,6-dithiol-1,3,5-triazine, 2-dibutylamino-4,6-dithiol-1,3,5-triazine, 2-phenylamino-4 , 6-dithiol-1,3,5-triazine and the like. Alternatively, thiazoles represented by 2,5-dimercapto-1,3,4-thiadiazole. Examples of the protecting group used when obtaining a compound in which a compound having two or more thiol groups is made latent by a protecting group include vinyl ether compounds and isocyanate compounds. Examples of vinyl ether compounds include ethyl vinyl ether, butyl vinyl ether, 2,3-dihydrofuran, and 2,3-dihydropyran. Examples of the isocyanate compounds include phenyl isocyanate, ethyl isocyanate, butyl isocyanate, and toluene diisocyanate. In order to obtain a compound in which a compound having two or more thiol groups, such as triazine thiols and thiazoles represented by [Chemical Formula 1], is hidden by a protecting group, the thiol of a compound having two or more thiol groups 1 to 1.5 equivalents of vinyl ethers or isocyanates are reacted with 1 equivalent of the group. The reaction temperature is preferably room temperature to 60 ° C. And as a compound which made the heterocyclic compound which has a thiol group latent with the protecting group, 2,4,6-tris- (1-ethoxyethylsulfanyl) -1,3,5-triazine, 2,4,6 -Tris- (1-butoxyethylsulfanyl) -1,3,5-triazine, 2,4,6-tris- (tetrahydrofuran-2-ylsulfanyl) -1,3,5-triazine, 2,4,6- Examples include tris- (phenylthiocarbamiolsulfanyl) -1,3,5-triazine. The use amount of the heterocyclic compound having a thiol group made latent by a protecting group is usually 0.1 to 5 g with respect to 100 g of the photosensitive resin. If it is less than 0.1 g, it becomes difficult to improve the adhesion of the cured coating film, and improvement in gold plating resistance, acid resistance and moisture resistance cannot be expected. If it exceeds 5 g, not only the thermal stability is lowered, but also the properties of the cured coating film are lowered due to the influence of unreacted substances. From the viewpoints of photocurability, economy, mechanical properties of the cured coating film, the amount used is preferably 1 to 3 g.
[0016]
In the present invention, the “(C) photopolymerization initiator” is not particularly limited, and any conventionally known one can be used. Specific examples include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin-n-butyl ether, benzoin isobutyl ether, acetophenone, dimethylaminoacetophenone, 2,2-dimethoxy-2. -Phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio ) Phenyl] -2-morpholino-propan-1-one, 4- (2-hydroxyethoxy) phenyl-2- (hydroxy-2-propyl) ketone, benzophenone, p-phenylbenzophenone, 4,4'-di Tylaminobenzophenone, dichlorobenzophenone, 2-methylanthraquinone, 2-ethylanthraquinone, 2-tertiarybutylanthraquinone, 2-aminoanthraquinone, 2-methylthioxanthone, 2-ethylthioxanthone, 2-chlorothioxanthone, 2,4-dimethyl Examples include thioxanthone, 2,4-diethylthioxanthone, benzyl dimethyl ketal, acetophenone dimethyl ketal, and P-dimethylaminobenzoic acid ethyl ester. These can be used alone or in combination.
The usage-amount of a photoinitiator is 0.5-50g normally with respect to the said photosensitive resin 100g. If it is less than 0.5 g, the photo-curing reaction of the photosensitive resin is difficult to proceed, and if it exceeds 50 g, the effect is not improved for the amount added, rather it is economically disadvantageous, Mechanical properties may be degraded. From the viewpoint of photocurability, economic efficiency, mechanical properties of the cured coating film, etc., the amount used is preferably 2.0 to 30 g.
[0017]
In the present invention, for “(D) thermosetting compound”, for example, a curing agent for epoxy resin and / or a curing accelerator can be used.
The curing agent includes at least one organic acid salt of dicyandiamide and an organic acid salt of N-substituted dicyandiamide as a derivative thereof. Examples of the substituent of the N-substituted dicyandiamide include a linear or branched alkyl group having 1 to 12 carbon atoms, an aryl group which may have a nuclear substituent such as an alkyl group, an aralkyl, and the like. Examples thereof include organic carboxylic acid, organic phosphoric acid, and organic sulfuric acid.
These compounds may be used in combination of at least two (two or more), and the content thereof is generally selected in the range of 0.1 to 10 g per 100 g of the component (A). If this content is less than 0.1 g, the thermosetting properties may not be sufficiently exhibited, and if it exceeds 10 g, the pot life of the photosensitive resin composition of the present invention tends to be shortened. It may cause deterioration of characteristics. Considering the thermosetting characteristics, the pot life of the composition, the characteristics of the solder resist film, etc., the content of the above compound as a curing agent is particularly preferably in the range of 1 to 8 g. Details are described in the specification of Japanese Patent Application No. 2000-277430, and points other than the above can also be applied.
As the curing agent, N-substituted dicyandiamide and dicyandiamide having the above-described substituents can also be used, and at least two of them may be used in combination, including the above-mentioned compounds.
Examples of the curing accelerator include known epoxy curing accelerators such as melamine compounds, imidazole compounds, and phenol compounds. These promote the post-curing of the component (B).
[0018]
The photosensitive resin composition of the present invention can be used by mixing a reactive diluent in addition to the components (A), (B), (C) and (D), for example, printed wiring. It can be suitably used as a solder resist composition for plate production.
[0019]
The reactive diluent is used to obtain a coating film having acid resistance, heat resistance, alkali resistance, etc. by further sufficient photocuring of the photosensitive resin, and a double bond in one molecule. A compound having at least two is preferably used.
Representative reactive diluents include, for example, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, polyethylene glycol Di (meth) acrylate, neopentyl glycol adipate di (meth) acrylate, hydroxypivalate neopentyl glycol di (meth) acrylate, dicyclopentanyl di (meth) acrylate, caprolactone-modified dicyclopentenyl di (meth) acrylate, ethylene Oxide-modified phosphoric acid di (meth) acrylate, allylated cyclohexyl di (meth) acrylate, isocyanurate di (meth) acrylate, trimethylolpropane tri (meth) acrylate, dipentaerythritol (Meth) acrylate, propionic acid modified dipentaerythritol tri (meth) acrylate, pentaerythritol tri (meth) acrylate, propylene oxide modified trimethylolpropane tri (meth) acrylate, tris (acryloxyethyl) isocyanurate, propionic acid modified di Examples include reactive diluents such as pentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and caprolactone-modified dipentaerythritol hexa (meth) acrylate.
[0020]
The above-mentioned 2-6 functional and other polyfunctional reactive diluents can be used in either a single product or a plurality of mixed systems. The addition amount of the reactive diluent is usually 2.0 to 40 g with respect to 100 g of the photosensitive resin. If the addition amount is less than 2.0 g, sufficient photocuring cannot be obtained, and sufficient characteristics such as acid resistance and heat resistance of the cured coating film cannot be obtained. If the addition amount exceeds 40 g, tackiness is severe. During the exposure, the artwork film is likely to adhere to the substrate, making it difficult to obtain the desired cured coating film.
From the viewpoint of preventing adhesion of the artwork film to the substrate, such as photocurability, acid resistance of the cured coating film, and heat resistance, the amount of the reactive diluent added is preferably 4.0 to 20 g.
[0021]
In addition to the above components, the photosensitive resin composition of the present invention includes various additives as necessary, for example, fillers composed of inorganic pigments such as silica, alumina, talc, calcium carbonate, barium sulfate, phthalocyanine green Furthermore, phthalocyanine-based organic pigments such as phthalocyanine blue, azo-based organic pigments, and known color pigments such as inorganic pigments such as titanium dioxide, paint additives such as antifoaming agents and leveling agents can be included.
[0022]
The photosensitive resin composition of the present invention obtained as described above is applied, for example, to a printed wiring board having a circuit pattern formed by etching a copper foil of a copper-clad laminate at a desired thickness. After heating for about 15 to 60 minutes at a temperature of about ~ 80 ° C to volatilize the solvent, a negative film with a translucent pattern other than the soldering land of the circuit pattern is adhered to this, and from above The coating film is developed by irradiating with ultraviolet rays and removing the non-exposed areas corresponding to the soldered lands with a dilute alkaline aqueous solution. The dilute alkaline aqueous solution used at this time is generally 0.5 to 5% sodium carbonate aqueous solution, but other alkalis can also be used.
Subsequently, when it contains a thermosetting compound, the target soldering resist film | membrane can be formed by performing a postcure for 20 to 80 minutes with a 130-170 degreeC hot-air circulation type dryer.
In this way, a printed wiring board coated with a solder resist film is obtained, on which electronic components are connected, fixed and mounted by being soldered by a jet soldering method or a reflow soldering method. A circuit unit is formed.
In the present invention, the printed wiring board coated with the solder resist film before mounting the electronic component and the printed wiring board mounted with the electronic component mounted on the printed wiring board are included in the object.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
[0024]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these Examples.
(Synthesis example of a compound in which a heterocyclic compound having a thiol group as the component (B) is made latent by a protecting group)
[0025]
Synthesis example 1
Into a 2 L flask equipped with a reflux tube and a stirrer, 177 g of 2,4,6-trithiol-1,3,5-triazine, 400 g of ethyl vinyl ether and 1000 mL of acetone are charged. The mixture was heated to reflux with stirring for 12 hours, and then acetone and excess ethyl vinyl ether were removed by distillation under reduced pressure to give 350 g of 2,4,6-tris- (1-ethoxyethylsulfanyl) -1,3,5-triazine. Got.
[0026]
Synthesis example 2
A 2 L flask equipped with a reflux tube and a stirrer is charged with 177 g of 2,4,6-trithiol-1,3,5-triazine, 450 g of butyl vinyl ether and 1000 mL of acetone. The mixture was heated to reflux for 12 hours with stirring, and then acetone and excess butyl vinyl ether were removed by distillation under reduced pressure to obtain 430 g of 2,4,6-tris- (1-butoxyethylsulfanyl) -1,3,5-triazine. Got.
[0027]
Synthesis example 3
A 2 L flask equipped with a reflux tube and a stirrer is charged with 177 g of 2,4,6-trithiol-1,3,5-triazine, 400 g of 2,3-dihydrofuran and 1000 mL of acetone. The mixture is heated under reflux for 12 hours with stirring, and then acetone and excess 2,3-dihydrofuran are removed by distillation under reduced pressure to obtain 2,4,6-tris- (tetrahydrofuran-2-ylsulfanyl) -1,3. , 5-triazine 360 g was obtained.
[0028]
Synthesis example 4
A 2 L flask equipped with a reflux tube and a stirrer is charged with 177 g of 2,4,6-trithiol-1,3,5-triazine, 380 g of phenyl isocyanate, and 1000 mL of acetone. The mixture is heated under reflux for 12 hours with stirring, and then acetone and excess phenyl isocyanate are removed by distillation under reduced pressure to obtain 2,4,6-tris- (phenylthiocarbamiolsulfanyl) -1,3,5-triazine. 480 g was obtained.
[0029]
Method for producing photosensitive resin (A)
In 206 g of ethyl carbitol acetate, tetrahydrophthalic anhydride was added to a reaction product obtained by reacting acrylic acid at a ratio of 1 mole to 1 mole of epoxy group of a cresol novolac type epoxy resin having an epoxy equivalent of 220. Reaction was carried out at a ratio of 0.6 mol to produce a photosensitive resin. This was a viscous liquid, and the acid value was 57 mgKOH / g.
[0030]
Example 1
To 100 g of the photosensitive resin (A) obtained in the resin production example, 2 g of 2,4,6-tris- (1-ethoxyethylsulfanyl) -1,3,5-triazine obtained in Synthesis Example 1 and dipentaerythritol hexa 8 g of acrylate, 5 g of 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one, 1 g of 2,4-diethylthioxanthone, 10 g of silica, 13 g of barium sulfate, 10 g of triglycidyl isocyanurate, A photosensitive resin composition was prepared by mixing and dispersing 1 g of phthalocyanine green with three rolls. Table 1 shows the evaluation results of developability and coating film performance of this composition.
[0031]
Example 2
To 100 g of the photosensitive resin (A) obtained in the resin production example, 2 g of 2,4,6-tris- (1-butoxyethylsulfanyl) -1,3,5-triazine obtained in Synthesis Example 2 and dipentaerythritol hexa 8 g of acrylate, 5 g of 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one, 1 g of 2,4-diethylthioxanthone, 10 g of silica, 13 g of barium sulfate, 10 g of triglycidyl isocyanurate, A photosensitive resin composition was prepared by mixing and dispersing 1 g of phthalocyanine green with three rolls. Table 1 shows the evaluation results of developability and coating film performance of this composition.
[0032]
Example 3
To 100 g of the photosensitive resin (A) obtained in the resin production example, 2 g of 2,4,6-tris- (tetrahydrofuran-2-ylsulfanyl) -1,3,5-triazine obtained in Synthesis Example 3 and dipentaerythritol 8 g of hexaacrylate, 5 g of 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one, 1 g of 2,4-diethylthioxanthone, 10 g of silica, 13 g of barium sulfate, 10 g of triglycidyl isocyanurate Then, 1 g of phthalocyanine green was mixed and dispersed with three rolls to prepare a photosensitive resin composition. Table 1 shows the evaluation results of developability and coating film performance of this composition.
[0033]
Example 4
100 g of the photosensitive resin (A) obtained in the resin production example, 2 g of 2,4,6-tris- (phenylthiocarbamiolsulfanyl) -1,3,5-triazine obtained in Synthesis Example 4, dipentaerythritol 8 g of hexaacrylate, 5 g of 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one, 1 g of 2,4-diethylthioxanthone, 10 g of silica, 13 g of barium sulfate, 10 g of triglycidyl isocyanurate Then, 1 g of phthalocyanine green was mixed and dispersed with three rolls to prepare a photosensitive resin composition. Table 1 shows the evaluation results of developability and coating film performance of this composition.
[0034]
Comparative Example 1
To 100 g of the photosensitive resin (A) obtained in the resin production example, 1 g of 2,4,6-trithiol-1,3,5-triazine, 8 g of dipentaerythritol hexaacrylate, 2-methyl-1- [4- (methylthio ) Phenyl] -2-morpholino-propan-1-one 5 g, 2,4-diethylthioxanthone 1 g, silica 10 g, barium sulfate 13 g, triglycidyl isocyanurate 10 g, and phthalocyanine green 1 g are mixed and dispersed by a three-roll roll. A functional resin composition was prepared. Table 1 shows the evaluation results of developability and coating film performance of this composition.
[0035]
Comparative Example 2
To 100 g of the photosensitive resin (A) obtained in the resin production example, 8 g of dipentaerythritol hexaacrylate, 5 g of 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one, 2, A photosensitive resin composition was prepared by mixing and dispersing 1 g of 4-diethylthioxanthone, 10 g of silica, 13 g of barium sulfate, 10 g of triglycidyl isocyanurate, and 1 g of phthalocyanine green with three rolls. Table 1 shows the evaluation results of developability and coating film performance of this composition.
[0036]
Evaluation test method
(1) Thermal management width
A substrate with a predrying time extended at 10-minute intervals was used as an evaluation substrate, and a 1% sodium carbonate aqueous solution was used, and 2.0 kg / cm.2Development was performed at a spray pressure of 60 seconds to evaluate how long the preliminary drying time could be completely removed.
(2) Coating film performance
The photosensitive resin composition was applied onto the entire surface of the patterned copper foil substrate and dried at 80 ° C. for 20 minutes. Next, a negative film was adhered to the substrate, and after exposure, a pattern was formed by developing with a 1% by weight aqueous sodium carbonate solution. Next, the substrate was thermally cured at 150 ° C. for 60 minutes to prepare an evaluation substrate having a cured coating film, and the coating film performance was evaluated.
(B) Gold plating resistance
After the gold plating process was performed on the evaluation substrate having a cured coating film, a peeling test using a cellophane adhesive tape was performed, and the resist layer was observed for peeling and discoloration to evaluate the gold plating property.
◎: No change at all, ○: Slight change
Δ: Remarkably changed, ×: Swelled and peeled off
(B) Adhesion
Based on JIS D-0202, it was measured by a cross cut test.
(C) Pencil hardness
It measured based on JIS K-5400.6.14.
(D) Acid resistance
After immersing the evaluation substrate having a cured coating film in 10% by weight sulfuric acid aqueous solution at room temperature for 30 minutes, after washing with water, a peeling test with a cellophane adhesive tape is performed, and the resist layer is peeled off and observed for discoloration to evaluate acid resistance. did.
A: No change at all, B: Slight change
Δ: Remarkably changed, ×: Swelled and peeled off
(E) Solvent resistance
The evaluation substrate having a cured coating film was immersed in methylene chloride at room temperature for 30 minutes, washed with water, and then subjected to a peeling test using a cellophane adhesive tape, and the resist layer was observed for peeling and discoloration to evaluate solvent resistance.
A: No change at all, B: Slight change
Δ: Remarkably changed, ×: Swelled and peeled off
(F) Heat resistance
After the evaluation substrate having a cured coating film is immersed in a solder bath at 260 ° C. for 30 seconds in accordance with the test method of JIS C 6481, the peeling test using a cellophane tape is defined as one cycle, and the coating film is subjected to a total of 1 to 3 cycles. The state was observed and heat resistance was evaluated.
◎: No change in coating film after 3 cycles, ○: Slight change after 3 cycles, △: Change after 2 cycles, ×: Peeling after 1 cycle
(G) Electrical characteristics
An evaluation substrate was prepared using the comb electrode B of IPC SM-840B B-25 under the above conditions, and a DC voltage of 100 V was applied in a constant temperature and humidity chamber at 60 ° C. and 90% RH, and after 500 hours. In addition to measuring the insulation resistance value, the discoloration was observed to evaluate the electrical characteristics.
◎: No discoloration, ○: Light discoloration
△: Remarkably discolored, ×: Black burned
(H) Copper foil discoloration
The degree of discoloration of the copper foil of the substrate after heat curing at 150 ° C. for 60 minutes is observed.
◎: No discoloration, ○: Light discoloration
Δ: Remarkably discolored, ×: Discolored to the part protected by the resist
[0037]
[Table 1]
[0038]
As can be seen from Table 1, the system using thiols latent with a protective group has excellent thermal stability, and there is no discoloration of the copper foil, and the characteristics of the cured coating film are those using thiol compounds. The characteristics comparable to the above are obtained.
The present invention improves the adhesion of the printed wiring board to the substrate and conductor, is excellent in gold plating resistance, acid resistance, and moisture resistance, and further has the effect of less thermal stability and discoloration of the copper foil. Is clear.
[0039]
【The invention's effect】
According to the present invention, the adhesion of a printed wiring board to a substrate and a conductor is improved, and the photosensitive resin is excellent in gold plating resistance, acid resistance, and moisture resistance, and has less thermal stability and discoloration of copper foil. A composition can be provided.

Claims (4)

(A)1分子中に少なくとも2個のエチレン性不飽和結合を有する活性エネルギー線硬化性樹脂、(B)チオール基を持った複素環化合物のチオール基を保護基によって潜在化した化合物、(C)光重合開始剤及び(D)熱硬化性化合物を含有することを特徴とする感光性樹脂組成物。(A) an active energy ray-curable resin having at least two ethylenically unsaturated bonds in one molecule, (B) a compound in which a thiol group of a heterocyclic compound having a thiol group is latentized by a protecting group, (C A photosensitive resin composition comprising a photopolymerization initiator and (D) a thermosetting compound. チオール基を持った複素環化合物が下記〔化1〕で表されるトリアジンチオール類であることを特徴とする請求項1記載の感光性樹脂組成物。
(式中Rは、炭素数1〜10で表されるアルキル基、または芳香族基、またはアルコキシル基、アミノ基、チオール基を示す)
The photosensitive resin composition according to claim 1, wherein the heterocyclic compound having a thiol group and wherein the triazine thiol represented by the following general formula [1].
(Wherein R represents an alkyl group having 1 to 10 carbon atoms, an aromatic group, an alkoxyl group, an amino group, or a thiol group)
チオール基を2つ以上持った化合物のチオール基を保護基によって潜在化した化合物を得る際に使用した保護基がビニルエーテル化合物類であることを特徴とする請求項1または請求項2記載の感光性樹脂組成物。The photosensitivity according to claim 1 or 2, wherein the protecting group used in obtaining a compound in which a thiol group of a compound having two or more thiol groups is made latent by a protecting group is a vinyl ether compound. Resin composition. チオール基を2つ以上持った化合物のチオール基を保護基によって潜在化した化合物を得る際に使用した保護基がイソシアネート化合物類であることを特徴とする請求項1または請求項2記載の感光性樹脂組成物。The photosensitivity according to claim 1 or 2, wherein the protecting group used in obtaining a compound in which a thiol group of a compound having two or more thiol groups is made latent by a protecting group is an isocyanate compound. Resin composition.
JP2001135545A 2001-03-29 2001-03-29 Photosensitive resin composition Expired - Fee Related JP4673996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001135545A JP4673996B2 (en) 2001-03-29 2001-03-29 Photosensitive resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001135545A JP4673996B2 (en) 2001-03-29 2001-03-29 Photosensitive resin composition

Publications (2)

Publication Number Publication Date
JP2002293815A JP2002293815A (en) 2002-10-09
JP4673996B2 true JP4673996B2 (en) 2011-04-20

Family

ID=18982987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001135545A Expired - Fee Related JP4673996B2 (en) 2001-03-29 2001-03-29 Photosensitive resin composition

Country Status (1)

Country Link
JP (1) JP4673996B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5118854B2 (en) * 2007-01-10 2013-01-16 ユニマテック株式会社 Method for producing thiol compound derivative
KR101727101B1 (en) * 2008-08-26 2017-04-14 타무라 카켄 코포레이션 Photopolymer composition, solder resist composition for print circuit boards and print circuit boards
JP5333512B2 (en) * 2011-05-13 2013-11-06 ユニマテック株式会社 Copper-resistant transfer agent for electronic circuit boards
WO2018012635A1 (en) * 2016-07-15 2018-01-18 富士フイルム株式会社 Transfer film, film sensor, and method for manufacturing film sensor
CN114096568B (en) * 2019-10-28 2023-08-18 株式会社艾迪科 Composition, cured product, method for producing cured product, and additive

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59154440A (en) * 1983-02-21 1984-09-03 Daicel Chem Ind Ltd Photosetting resin composition
JPS60138540A (en) * 1983-12-27 1985-07-23 Asahi Chem Ind Co Ltd Novel photopolymerizable composition
JPH10177108A (en) * 1996-12-18 1998-06-30 Mitsubishi Chem Corp Protective film composition for color filter, and color filter
JPH11223946A (en) * 1998-02-06 1999-08-17 Hitachi Chem Co Ltd Photosensitive resin composition and production of photosensitive solder resist by using the composition
JP2000249822A (en) * 1999-02-26 2000-09-14 Showa Denko Kk Photopolymerization initiator for color filter, photosensitive coloring composition and color filter
JP2002090993A (en) * 2000-09-13 2002-03-27 Tamura Kaken Co Ltd Photosensitive resin composition and printed wiring board

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59154440A (en) * 1983-02-21 1984-09-03 Daicel Chem Ind Ltd Photosetting resin composition
JPS60138540A (en) * 1983-12-27 1985-07-23 Asahi Chem Ind Co Ltd Novel photopolymerizable composition
JPH10177108A (en) * 1996-12-18 1998-06-30 Mitsubishi Chem Corp Protective film composition for color filter, and color filter
JPH11223946A (en) * 1998-02-06 1999-08-17 Hitachi Chem Co Ltd Photosensitive resin composition and production of photosensitive solder resist by using the composition
JP2000249822A (en) * 1999-02-26 2000-09-14 Showa Denko Kk Photopolymerization initiator for color filter, photosensitive coloring composition and color filter
JP2002090993A (en) * 2000-09-13 2002-03-27 Tamura Kaken Co Ltd Photosensitive resin composition and printed wiring board

Also Published As

Publication number Publication date
JP2002293815A (en) 2002-10-09

Similar Documents

Publication Publication Date Title
JP5066376B2 (en) Solder resist composition for printed wiring board and printed wiring board
JP5352340B2 (en) Photosensitive resin composition, solder resist composition for printed wiring board, and printed wiring board
JP4878597B2 (en) Photosensitive resin composition, printed wiring board, and semiconductor package substrate
JP3750101B2 (en) Photosensitive resin composition and printed wiring board
JP3672414B2 (en) Photosensitive resin composition
JP2003177528A (en) Photosensitive resin composition and printed wiring board
JP2002014467A (en) Photosensitive resin, photosensitive resin composition and printed wiring board
JP3673967B2 (en) Photosensitive resin composition and printed wiring board
US6756166B2 (en) Photosensitive resin composition and printed wiring board
JP4673996B2 (en) Photosensitive resin composition
JP2004138752A (en) Photosensitive resin composition and printed wiring board
JP4351463B2 (en) Active energy ray-curable alkali-soluble resin, active energy ray-curable alkali-soluble resin composition, solder resist composition, dry film, and printed wiring board
JP2934098B2 (en) Photosensitive resin composition
JP4573152B2 (en) Photosensitive resin composition for printed wiring board production
JP4299448B2 (en) Photosensitive resin composition and printed wiring board
JP2003195499A (en) Photosensitive resin composition and printed wiring board
JP2002196487A (en) Photosensitive resin composition and print circuit board
JPH11119429A (en) Photosensitive resin composition
JP4274914B2 (en) Solder resist composition and printed wiring board
JPH11305430A (en) Alkali devdlopable photosensitive resin composition
JP4290409B2 (en) Photosensitive resin composition and printed wiring board
JP2004138835A (en) Photosensitive resin composition and printed wiring board
JP3241452B2 (en) Unsaturated group-containing carboxylic acid resin composition and solder resist resin composition
JP2004157419A (en) Photosensitive resin composition and manufacturing method of circuit board for electronic component
JP2002256060A (en) Photosensitive resin composition and printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110124

R150 Certificate of patent or registration of utility model

Ref document number: 4673996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees