JP4673780B2 - Hazardous gas removal equipment - Google Patents

Hazardous gas removal equipment Download PDF

Info

Publication number
JP4673780B2
JP4673780B2 JP2006082687A JP2006082687A JP4673780B2 JP 4673780 B2 JP4673780 B2 JP 4673780B2 JP 2006082687 A JP2006082687 A JP 2006082687A JP 2006082687 A JP2006082687 A JP 2006082687A JP 4673780 B2 JP4673780 B2 JP 4673780B2
Authority
JP
Japan
Prior art keywords
tower
gas
abatement
detoxification
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006082687A
Other languages
Japanese (ja)
Other versions
JP2007253098A (en
Inventor
康弘 高橋
修康 富田
和浩 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2006082687A priority Critical patent/JP4673780B2/en
Publication of JP2007253098A publication Critical patent/JP2007253098A/en
Application granted granted Critical
Publication of JP4673780B2 publication Critical patent/JP4673780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treating Waste Gases (AREA)

Description

本発明は、処理ガス中に含まれる有害ガス成分を除害剤に吸着させて除去する除害装置に関し、さらに詳しくは、除害剤を無駄なく使用して有害ガスを除去することのできる除害装置に関する。 The present invention relates to a detoxification apparatus that removes harmful gas components contained in a processing gas by adsorbing them to a detoxifying agent. It relates to harmful equipment.

半導体製造工場等では、ヒ素やリンなどの水素化合物である揮発性無機水素化物、これらの水素原子をハロゲン原子やアルキル基等に置換したハロゲン化合物や有機化合物、フッ素や塩素などの酸性ガス、またはアンモニアやヒドラジンなどの塩基性ガスに代表される各種の有害ガスを使用している。これらの有害ガスを含む排ガスを大気中に排出する前には有害ガス成分の除害処理を行って無害化する必要がある。   In semiconductor manufacturing plants, etc., volatile inorganic hydrides that are hydrogen compounds such as arsenic and phosphorus, halogen compounds and organic compounds in which these hydrogen atoms are substituted with halogen atoms or alkyl groups, acidic gases such as fluorine and chlorine, or Various harmful gases represented by basic gases such as ammonia and hydrazine are used. Before exhaust gases containing these harmful gases are discharged into the atmosphere, it is necessary to detoxify the harmful gas components.

かかる無害化処理としては、固体除害剤を充填した除害塔に排ガスを流通させ、有害ガス成分を除害剤に吸着させたり、除害剤の作用で分解したりする乾式除害方法が多く採用されている。しかしかかる方式の場合、単位量あたりの除害剤によって除害できる有害ガスの量には固有の限界があり、所定量を超える有害ガスを吸着または分解することはできない。すなわち一定量の除害剤が充填された除害塔によって除害処理することのできる有害ガスの量には限界があり、これを超える有害ガスが導入された場合には、かかる超過分については有害ガスが除害されることなく除害塔を通過してしまう、いわゆる破過現象が生じることになる。   As such detoxification treatment, there is a dry detoxification method in which exhaust gas is circulated through a detoxification tower filled with a solid detoxifying agent, and harmful gas components are adsorbed to the detoxifying agent or decomposed by the action of the detoxifying agent. Many have been adopted. However, in the case of such a method, there is an inherent limit in the amount of harmful gas that can be detoxified by the detoxifying agent per unit amount, and it is not possible to adsorb or decompose more than a predetermined amount of harmful gas. In other words, there is a limit to the amount of harmful gas that can be removed by a detoxification tower filled with a certain amount of a detoxifying agent. A so-called breakthrough phenomenon occurs in which the harmful gas passes through the detoxification tower without being detoxified.

そこで未除害の有害ガスの漏出を防止するため、除害剤の破過の有無を絶えず監視し、除害塔が除害能力を失う前にその運転を停止し、除害剤を交換またはリフレッシュするなどして更新する必要がある。そこで従来は、主として以下の2つの方法のいずれかによって除害剤の破過の有無を検知していた。
1)有害ガスとの接触によって変色する検知剤を、主除害剤層と予備除害剤層との間に層状に充填し、その変色を、覗窓を通じて目視またはカラーマークセンサー等によって観察することで主除害剤層の破過を検知する方法(下記特許文献1参照)。
2)除害剤を充填した除害塔を前段と後段とに直列に配置し、後段の除害塔の重量が増加し始めることを検知するか(下記特許文献2参照)、または除害塔同士の間にガス検知器を設置することにより前段の除害塔の破過を検知する(例えば下記特許文献3参照)方法。
Therefore, in order to prevent the leakage of undetoxified harmful gases, the presence or absence of breakthrough of the detoxifying agent is constantly monitored, the operation is stopped before the detoxifying tower loses its detoxifying capacity, and the detoxifying agent is replaced or It is necessary to update by refreshing. Therefore, conventionally, the presence or absence of breakthrough of the detoxifying agent has been detected mainly by one of the following two methods.
1) The detection agent that changes color by contact with harmful gas is packed in layers between the main removal agent layer and the preliminary removal agent layer, and the color change is observed visually or with a color mark sensor or the like through a viewing window. This is a method for detecting breakthrough of the main scavenger layer (see Patent Document 1 below).
2) Is it possible to detect that an abatement tower filled with an abatement agent is arranged in series in the front and rear stages and the weight of the rear abatement tower starts to increase (see Patent Document 2 below) or the abatement tower? A method of detecting breakthrough of the abatement tower in the previous stage by installing a gas detector between them (see, for example, Patent Document 3 below).

特開平10−2894号公報Japanese Patent Laid-Open No. 10-2894 特開平7−185256号公報JP-A-7-185256 特開2002−267606号公報JP 2002-267606 A

しかし、上記特許文献1に記載の検知方法については、主除害剤層の破過が検知剤によって迅速に検知されてただちに除害装置が停止された場合は、予備除害剤層がまったく使用されることなくこれを更新することとなるため、除害剤の無駄が生じる。一方、予備除害剤層を設けないか、またはその量を減じて充填した場合は、除害塔内の有害ガスの流れに偏流が生じたときに検知剤の変色の検知遅れが生じ、予備除害剤層が既に破過して有害ガスが漏出する虞が生じるという問題が生じる。
かかる問題は、仮に主除害剤層と予備除害剤層が充填された同様の除害塔を直列多段に設けた場合であっても、両者の間に充填される検知剤によって主除害剤層の破過を検知する限り同様に生じうる問題である。
However, with regard to the detection method described in Patent Document 1, if the removal device is stopped immediately after the breakthrough of the main removal agent layer is quickly detected by the detection agent, the preliminary removal agent layer is used at all. Since this is renewed without being carried out, the use of the detoxifying agent occurs. On the other hand, if the preliminary detoxifying agent layer is not provided or the amount is reduced and packed, the detection agent discoloration detection delay occurs when drift occurs in the flow of harmful gas in the detoxifying tower. There arises a problem that the harmful agent layer may already break through and the harmful gas may leak out.
Even when such a detoxification tower filled with the main detoxifying agent layer and the pre-determination agent layer is provided in multiple stages in series, the main detoxification is caused by the detection agent filled between the two. This is a problem that can occur in the same manner as long as breakthrough of the agent layer is detected.

また上記特許文献2に記載の検知方法については、後段の除害塔の重量を測定することでその除害剤が有害ガスを吸着し始めたか否かを知ることにより、前段の除害剤の破過を検知するという原理に基づくものであることから、そもそも検知精度が高くない。なぜならば、後段の除害塔には、これを通過する際に生じる圧力損失に相当する荷重が処理ガスから常に負荷されているところ、特別な調圧装置を介することなく処理ガスが後段の除害塔に導入される該発明の場合は、ロードセル等による後段の除害塔の重量の測定結果には常に相当の揺らぎを伴うことになる。したがって、前段の除害剤の破過によって有害ガスが後段に流れ込んだことをその重量の増加によって検知する場合、除害塔のわずかな重量の変化は上記揺らぎに埋没するため、後段の除害塔の明確な重量の増加が検知された時点では、その遥か以前に前段の除害剤が破過していることとなる。すなわち前段の除害塔の破過の発生から、後段によるその検知までのタイムラグは相当なものとなる。
一方、上記特許文献2に記載の処理装置の如き直列式の除害装置を連続的に運転するためには、前段に次いで後段の除害剤が破過する前に、既に破過した前段の除害剤を更新して後段の除害塔の下流側に設置しなければならないことから、前段の破過の上記検知遅れは、後段の除害可能時間の拡大、すなわち後段の除害塔に充填すべき除害剤の量の増大をもって補う必要があり、装置の大型化を引き起こすという本質的な問題がある。
Moreover, about the detection method of the said patent document 2, by knowing whether or not the detoxifying agent started to adsorb harmful gas by measuring the weight of the detoxifying tower in the subsequent stage, Since it is based on the principle of detecting breakthrough, the detection accuracy is not high in the first place. This is because the downstream abatement tower is always loaded with a load corresponding to the pressure loss generated when passing through it, and the processing gas is removed from the downstream without using a special pressure regulator. In the case of the present invention introduced into the harmful tower, the measurement result of the weight of the latter-stage harmful tower using a load cell or the like always involves considerable fluctuation. Therefore, when detecting the increase in the weight of harmful gas flowing into the latter stage due to the breakthrough of the first stage detoxifying agent, the slight change in the weight of the detoxification tower is buried in the above fluctuation, so When a clear increase in the weight of the tower is detected, the previous detoxifying agent has broken through long before. That is, the time lag from the occurrence of breakthrough of the first stage detoxification tower to the detection by the second stage is considerable.
On the other hand, in order to continuously operate an in-series abatement apparatus such as the treatment apparatus described in Patent Document 2, before the rear-stage detoxifying agent breaks through after the previous stage, the previous stage that has already broken through Since the detoxifying agent must be updated and installed downstream of the rear-stage detoxification tower, the above-mentioned detection delay of the breakthrough in the front stage is extended to the post-stage detoxification tower. There is an essential problem that it is necessary to compensate for the increase in the amount of the detoxifying agent to be filled, resulting in an increase in the size of the apparatus.

また上記特許文献3に記載の検知方法は、特殊なガス濃度計測器と警報機とを組み合わせた破過検知器によって除害装置の破過を検知するものであるため、装置の大型化とコストアップを引き起こす。また破過検知器として一般的なガス検知器を用いた場合は検知器のセンサーの劣化が著しく、破過した除害剤を更新するたびに検知器を交換する必要があるため、除害装置の連続運転にも支障を及ぼすという問題がある。これは、ガス検知器とは本来そのガスが無いことを確認するための機器であって高濃度ガスに連続的に曝露することを前提に作られるものではないため、前段の除害剤の破過によって流入する高濃度の有害ガスを一般的なガス検知器で検知した場合、センサーの感度低下は避けられず、その交換なしにはすぐに有害ガスが検知不能となる虞があるためである。また高濃度の有害ガスの連続曝露に耐え得る特別なセンサーを用いることは当然にコストアップが生じる問題がある。   In addition, the detection method described in Patent Document 3 detects breakthrough of the abatement device by a breakthrough detector that combines a special gas concentration measuring device and an alarm device. Cause up. In addition, when a general gas detector is used as a breakthrough detector, the sensor of the detector is significantly deteriorated, and it is necessary to replace the detector every time the breakthrough pesticide is updated. There is also a problem that it interferes with continuous operation. This is because the gas detector is a device for confirming the absence of the gas and is not made on the assumption that the gas detector is continuously exposed to high-concentration gas. This is because when a general gas detector detects high-concentration harmful gas that flows in due to excessive flow, the sensitivity of the sensor is unavoidable, and without replacement, the hazardous gas may soon be undetectable. . In addition, using a special sensor that can withstand continuous exposure to a high concentration of harmful gas naturally has a problem of increasing costs.

本発明は上記課題を解決するためになされたものであり、除害塔に充填した除害剤を無駄なく使用することができ、除害剤の破過が迅速に検知可能であって、かつ除害処理の連続的な実施が可能であるとともに、安価で装置の小型化を図ることのできる有害ガスの除害を実現する除害装置を提供することを目的とする。 The present invention has been made in order to solve the above-mentioned problems, the detoxifying agent filled in the detoxifying tower can be used without waste, breakthrough of the detoxifying agent can be detected quickly, and as well as a possible continuous implementation of the abatement process can be miniaturized inexpensive apparatus, and to provide a removal device for implementing the abatement of hazardous gases.

本発明にかかる有害ガスの除害装置は、除害塔が前段と後段とに直列配置された除害装置において、前段の除害塔に充填された除害剤の破過の発生を、後段の除害塔に設けた検知剤の変色の有無によって検知するという技術思想に基づいてなされたものである。 The harmful gas removal apparatus according to the present invention, in the removal apparatus in which the removal tower is arranged in series in the front stage and the rear stage, occurrence of breakthrough of the removal agent filled in the previous stage removal tower, This is based on the technical idea of detecting the presence or absence of discoloration of the detection agent provided in the abatement tower.

本発明にかかる有害ガスの除害装置は、
(1)有害ガスとの接触によって変色する検知剤が装填される検知剤容器と、検知剤の前記変色を観察するための覗窓とを備える検知窓が設けられるとともに、前記有害ガスを吸着して除害する除害剤が充填された除害塔が少なくとも二式以上直列に配置され、導入された有害ガスを前記二式以上の除害塔を通過させて除害する除害装置であって、前記検知剤が除害剤とは異なる化合物であり、前記除害塔の内部には、前記通過する有害ガスの流れ方向について、前記充填された除害剤よりも上流側に処理ガス貯留空間が形成されており、
前記検知剤容器の少なくとも一部が、前記処理ガス貯留空間に直接露出していることを特徴とする除害装置;
(2)前記覗窓から視認可能な最表面に位置する検知剤の少なくとも一部が、通気性の検知剤容器を介して処理ガス貯留空間に直接露出していることを特徴とする前記(1)に記載の除害装置;
(3)前記覗窓の処理ガス接触面(接ガス面)が除害塔の内壁面位置と一致するように設けるとともに、除害塔を流通する有害ガスを検知剤容器に導入するガス導入口を、少なくとも覗窓の接ガス面に隣接して形成していることを特徴とする前記(1)または(2)に記載の除害装置;
(4)直列に配置された第一および第二の除害塔を少なくとも備え、有害ガスを含む処理ガスが導入される上記(1)から(3)のいずれかに記載の除害装置であって、第一の除害塔に処理ガスを導入し、該第一の除害塔から排出された処理ガスを第二の除害塔に導き、該第二の除害塔から排出された処理ガスを系外に導出する第一ガスラインと、第二の除害塔に処理ガスを導入し、該第二の除害塔から排出された処理ガスを第一の除害塔に導き、該第一の除害塔から排出された処理ガスを系外に導出する第二ガスラインと、処理ガスの流路を前記第一ガスラインまたは第二ガスラインに切り換える切換手段とを備える除害装置;
を要旨とする。
The harmful gas removal apparatus according to the present invention is:
(1) A detection window including a detection agent container loaded with a detection agent that changes color by contact with harmful gas and a viewing window for observing the color change of the detection agent is provided, and adsorbs the harmful gas. A detoxification device in which at least two or more types of detoxification towers filled with a detoxifying agent to be detoxified are arranged in series, and the introduced harmful gas is detoxified by passing through the two or more types of detoxification towers. The detection agent is a compound different from the detoxifying agent, and a processing gas is stored in the detoxifying tower upstream of the packed detoxifying agent in the flow direction of the passing harmful gas. A space is formed,
A detoxifying device, wherein at least part of the detection agent container is directly exposed to the processing gas storage space;
(2) At least a part of the detection agent positioned on the outermost surface visible from the viewing window is directly exposed to the processing gas storage space through the breathable detection agent container (1) Abatement device as described in);
(3) A gas inlet for introducing the harmful gas flowing through the detoxification tower into the detection agent container while providing the processing gas contact surface (gas contact surface ) of the viewing window to coincide with the inner wall surface position of the detoxification tower The abatement device according to (1) or (2) above, wherein at least the gas contact surface of the viewing window is formed;
(4) The abatement apparatus according to any one of (1) to (3), wherein the abatement apparatus includes at least first and second abatement towers arranged in series, and a treatment gas containing a harmful gas is introduced. The treatment gas is introduced into the first removal tower, the treatment gas discharged from the first removal tower is guided to the second removal tower, and the treatment discharged from the second removal tower A first gas line for deriving the gas out of the system, and a treatment gas is introduced into the second detoxification tower, and the treatment gas discharged from the second detoxification tower is led to the first detoxification tower, A detoxification device comprising a second gas line for deriving the processing gas discharged from the first detoxification tower outside the system, and a switching means for switching the flow path of the processing gas to the first gas line or the second gas line ;
Is the gist.

さらに本発明においては、
)第一ガスラインが、第一の除害塔に処理ガスを導入する配管と、第一および第二の除害塔を連通する配管と、第二の除害塔から排出された処理ガスを系外に導出する配管とからなり、
第二ガスラインが、第二の除害塔に処理ガスを導入する配管と、第二および第一の除害塔を連通する配管と、第一の除害塔から排出された処理ガスを系外に導出する配管とからなり、
切換手段が、有害ガスを含む処理ガスが導入される流路を、第一または第二の除害塔に切り換える機能と、第一の除害塔から排出される処理ガスの流路を第二の除害塔または系外に切り換える機能と、第二の除害塔から排出される処理ガスの流路を第一の除害塔または系外に切り換える機能とを少なくとも備える一以上の切換弁である上記()に記載の除害装置;
)検知窓が、除害塔に着脱可能に装着されている上記()から()のいずれかに記載の除害装置;
)覗窓の処理ガス接触面が、除害塔の内壁面位置と一致するか、または該位置よりも除害塔の中心側に設けられている上記()から()のいずれかに記載の除害装置;
によっても上記課題を解決し、本発明の目的を達成することができる。
Furthermore, in the present invention,
( 5 ) The first gas line introduces the processing gas into the first detoxification tower, the pipe communicating the first and second detoxification towers, and the treatment discharged from the second detoxification tower It consists of piping that leads gas out of the system,
The second gas line includes a pipe for introducing the processing gas to the second detoxification tower, a pipe for communicating the second and first detoxification towers, and the processing gas discharged from the first detoxification tower. Consisting of piping leading out,
The switching means has a function of switching the flow path into which the processing gas containing harmful gas is introduced to the first or second detoxification tower, and the flow path of the processing gas discharged from the first detoxification tower to the second. One or more switching valves having at least a function of switching to a detoxification tower or outside of the system and a function of switching the flow path of the processing gas discharged from the second detoxification tower to outside of the first detoxification tower or system The abatement apparatus according to ( 4 ) above,
( 6 ) The abatement apparatus according to any one of ( 1 ) to ( 5 ), wherein the detection window is detachably attached to the abatement tower;
( 7 ) Any of the above ( 1 ) to ( 6 ), wherein the processing gas contact surface of the viewing window coincides with the inner wall surface position of the detoxification tower or is provided closer to the center of the detoxification tower than the position An abatement device according to crab;
The above-mentioned problems can be solved and the object of the present invention can be achieved.

本発明にかかる有害ガスの除害装置は、除害塔に充填された除害剤の破過を、当該除害塔ではなく、直列に配設された後段の除害塔に設けられた検知窓等によって観察および検知するものである。これにより、前段・後段とも除害塔に予備除害剤層を充填する必要がなく、前段の除害塔に充填された除害剤が完全に破過してからこれを検知することができるため、未使用のまま残される除害剤の無駄が排除される。
なお、充填された除害剤の破過の検知を、当該除害塔においてその除害剤の下流側にて行う場合は、除害剤の内部を流通する有害ガスに偏流が生じた際に検知剤の反応遅れが生じて検知漏れが発生する虞があるところ、本発明にかかる除害装置のように、有害ガスが導入される導入口の近傍に検知剤を設けることにより、検知剤の周囲には有害ガスの偏流が生じることがなく、検知剤が迅速かつ確実に変色反応を呈することが期待される。
また本発明によれば、検知窓に充填された検知剤の変色を目視等で観察することで前段の除害剤の破過をただちに検知することができるため、例えば除害塔の重量を測定して行う従来の検知方法に比べ、ガスの流速や圧力の揺らぎによることなく破過現象の発生を迅速かつ確実に検知することができる。このため各段の除害塔に充填すべき除害剤の量を抑えることができ、除害塔および除害装置全体のスケールダウンが可能であるとともにハンドリング性が向上する。
さらに、後段に設けられた検知剤の変色によって前段の除害剤の破過を検知する本発明によれば、高濃度の有害ガスの曝露によって高価なガス検知器を汚損することがなく、前段の破過の検知に供された後段の検知剤は、後段の除害剤が破過した際にこれとともに更新すればよいことから除害作業を途中で中断する必要がなく、除害処理の連続実施が可能となり、また作業性およびコスト性に優れる。
The harmful gas removal apparatus according to the present invention detects the breakthrough of the removal agent filled in the removal tower, not in the removal tower, but in the downstream removal tower arranged in series. It is observed and detected by a window or the like. As a result, it is not necessary to fill the detoxifying tower with the preliminary detoxifying agent layer in both the first and second stages, and this can be detected after the detoxifying agent filled in the first detoxifying tower has completely passed through. Therefore, waste of the pesticide that remains unused is eliminated.
In addition, when detecting the breakthrough of the packed pesticide on the downstream side of the pesticide in the pesticide tower, when a drift occurs in the harmful gas flowing through the pesticide. Where there is a risk that detection delay may occur due to a reaction delay of the detection agent, by providing the detection agent in the vicinity of the inlet to which harmful gas is introduced as in the abatement apparatus according to the present invention, It is expected that no harmful gas drift occurs in the surroundings, and that the detection agent exhibits a color change reaction quickly and reliably.
In addition, according to the present invention, it is possible to immediately detect the breakthrough of the removal agent in the previous stage by visually observing the discoloration of the detection agent filled in the detection window. For example, the weight of the removal column is measured. Compared with the conventional detection method performed in this way, the occurrence of a breakthrough phenomenon can be detected quickly and reliably without being caused by fluctuations in gas flow velocity or pressure. For this reason, the amount of the detoxifying agent to be charged in the detoxifying towers in each stage can be suppressed, and the entire detoxifying tower and the detoxifying apparatus can be scaled down, and the handleability is improved.
Furthermore, according to the present invention for detecting the breakthrough of the upstream detoxifying agent by the discoloration of the detecting agent provided in the subsequent stage, the expensive gas detector is not contaminated by exposure to a high concentration of harmful gas. The detection agent in the latter stage used for the detection of breakthrough of the water can be renewed along with the subsequent removal agent, so there is no need to interrupt the removal process. Continuous implementation is possible, and workability and cost are excellent.

以下、本発明を実施するための最良の形態について、図面を用いて具体的に説明する。ただし本発明においては、上記手段を具現し、また上記効果を奏するものである限り、直列に配設された除害塔同士を連通する配管の具体的な構成や、ガスの流路を切り換えるための切換弁の具体的な組み合わせまたは配置位置などについては以下の実施の形態に限定されるものではない。   Hereinafter, the best mode for carrying out the present invention will be specifically described with reference to the drawings. However, in the present invention, as long as the above-described means are implemented and the above-described effects are obtained, the specific configuration of the piping that communicates between the abatement towers arranged in series and the gas flow path are switched. The specific combinations or arrangement positions of the switching valves are not limited to the following embodiments.

<除害装置の系統図および除害方法について>
図1は本発明の実施の形態にかかる有害ガスの除害装置の系統図である。ただし、同図における上下方向は、除害装置の設置空間内の鉛直または水平方向を何ら意味するものではなく、また除害塔を通過する有害ガスの流れ方向が鉛直上方から下方に向かうダウンフローであるか、逆に鉛直下方から上方に向かうアップフローであるかについても限定されない。このほか、ガスの入口と出口を除害塔の一端側にともに形成し、除害塔内に有害ガスの流路をU字状などに形成してもよく、除害塔の設置形態を縦置き型とするか横置き型とするかについても任意である。これらのいずれを選択したとしても、当業者であれば有害ガスの流れ方向および切換弁の一次側/二次側のインタフェースを適宜設定することで、本発明にかかる有害ガスの除害装置を実現することができる。
<About the system diagram of the abatement system and the abatement method>
FIG. 1 is a system diagram of a harmful gas removal apparatus according to an embodiment of the present invention. However, the vertical direction in the figure does not mean any vertical or horizontal direction in the installation space of the abatement device, and the flow direction of the harmful gas passing through the abatement tower is a downward flow from the top to the bottom. There is also no limitation on whether the flow is upflow from the vertically downward direction to the upward direction. In addition, a gas inlet and outlet may be formed on one end side of the detoxification tower, and a harmful gas flow path may be formed in a U-shape in the detoxification tower. It is arbitrary whether it is set as a horizontal type or a horizontal type. Regardless of which of these is selected, those skilled in the art can implement the harmful gas removal apparatus according to the present invention by appropriately setting the flow direction of the harmful gas and the primary / secondary interface of the switching valve. can do.

本発明にかかる除害装置は、少なくとも二式以上の直列に配置された除害塔と、これらを連通する配管と、ガスの流路を切り換える切換手段とを有している。本実施の形態においては、除害装置10は第一の除害塔(以下、第一除害塔という。)40aおよび第二の除害塔(以下、第二除害塔という。)40bを有するものとするが、さらに第三や第四の除害塔を直列に配置しても、または直列に配置される各段の除害塔を、それぞれ互いに並列に接続された複数台の除害塔により構成してもよい。
第一,第二除害塔40a,40bには、有害ガスとの接触によって変色する検知剤30a,30bが装填される通気性の検知剤容器と、検知剤の前記変色を観察するための覗窓とを備える検知窓20a,20bがそれぞれ設けられ、また第一,第二除害塔40a,40bの内部には、有害ガスを吸着して除害する除害剤41a,41bがそれぞれ充填されている。
すなわち除害装置10は、導入された有害ガスを二式以上の直列に配置された除害塔を通すことで吸着除去する直列多塔式の除害装置である。
The detoxification apparatus according to the present invention includes at least two or more detoxification towers arranged in series, piping that communicates these, and switching means for switching the gas flow path. In the present embodiment, the abatement apparatus 10 includes a first abatement tower (hereinafter referred to as a first abatement tower) 40a and a second abatement tower (hereinafter referred to as a second abatement tower) 40b. Even if a third or fourth abatement tower is arranged in series, or a plurality of abatement towers arranged in series, a plurality of abatement towers connected in parallel to each other. You may comprise by a tower.
The first and second detoxification towers 40a and 40b have a breathable detection agent container loaded with detection agents 30a and 30b that change color by contact with harmful gas, and a view for observing the color change of the detection agent. Detection windows 20a and 20b each having a window are provided, and the first and second detoxification towers 40a and 40b are respectively filled with detoxifying agents 41a and 41b that adsorb and detoxify harmful gases. ing.
That is, the abatement apparatus 10 is a series multi-column abatement apparatus that adsorbs and removes the introduced harmful gas through two or more series of abatement towers arranged in series.

除害装置10は、半導体製造装置などから排出された有害ガスを導入する開閉弁50aと、窒素などの希釈ガスを有害ガスに混合して所定の流量の処理ガスを生成するための流量調整弁50bとを備える。処理ガスの圧力を圧力計51でモニタし、所定の全圧が維持されるよう流量調整弁50bの開閉を制御するとよい。希釈ガスとしては、窒素、水素、アルゴンまたはヘリウムなどが一般的である。なお本発明において希釈ガスの供給は任意であり、「有害ガスを含む処理ガス」とは、一種または二種以上の有害ガスと無害のガスとが混合してなる場合と、一種または二種以上の有害ガスのみからなる場合とを含む。   The abatement apparatus 10 includes an on-off valve 50a for introducing harmful gas discharged from a semiconductor manufacturing apparatus and the like, and a flow rate adjusting valve for generating a processing gas having a predetermined flow rate by mixing a diluent gas such as nitrogen with the harmful gas. 50b. The pressure of the processing gas may be monitored by the pressure gauge 51, and the opening / closing of the flow rate adjustment valve 50b may be controlled so that a predetermined total pressure is maintained. Nitrogen, hydrogen, argon, helium, etc. are common as a dilution gas. In the present invention, the supply of the dilution gas is optional, and the “processing gas containing a harmful gas” refers to a case where one or two or more kinds of harmful gas and a harmless gas are mixed, and one or two or more kinds. The case of consisting only of harmful gases.

有害ガスの除害処理が連続的に行われた場合、除害塔に充填された除害剤は有害ガスの入口側から徐々にその除害能力を失い、いずれは除害塔全体に破過現象が生じる。本実施の形態にかかる除害装置10においては、除害剤の破過の発生を検知するための検知窓20a,20bを、第一,第二除害塔40a,40bに対し、通過する有害ガスの流れ方向の上流側にそれぞれ設けてなることを特徴とする。   When harmful gas removal treatment is performed continuously, the removal agent filled in the removal tower gradually loses its removal ability from the inlet side of the harmful gas, and eventually it breaks through to the entire removal tower. A phenomenon occurs. In the abatement apparatus 10 according to the present embodiment, the harmful passing through the detection windows 20a and 20b for detecting the occurrence of breakthrough of the detoxifying agent with respect to the first and second abatement towers 40a and 40b. It is provided respectively on the upstream side in the gas flow direction.

本実施の形態にかかる除害装置10は、導入された処理ガスの流路として2本のガスラインを備えている。具体的には、第一除害塔40aに処理ガスを導入し、該第一除害塔40aから排出された処理ガスを第二除害塔40bに導き、該第二除害塔40bから排出された処理ガスを系外に導出する第一ガスライン11(図1参照)と、第二除害塔40bに処理ガスを導入し、該第二除害塔40bから排出された処理ガスを第一除害塔40aに導き、該第一除害塔40aから排出された処理ガスを系外に導出する第二ガスライン12(図3参照)である。   The abatement apparatus 10 according to the present embodiment includes two gas lines as flow paths for the introduced processing gas. Specifically, the processing gas is introduced into the first abatement tower 40a, the processing gas discharged from the first abatement tower 40a is guided to the second abatement tower 40b, and is discharged from the second abatement tower 40b. The processing gas is introduced into the first gas line 11 (see FIG. 1) for deriving the processed gas out of the system and the second abatement tower 40b, and the processing gas discharged from the second abatement tower 40b It is the 2nd gas line 12 (refer FIG. 3) which guide | induces to the 1 detoxification tower 40a, and guides the process gas discharged | emitted from this 1st detoxification tower 40a out of the system.

処理ガスの流路を切り換える切換手段として、本実施の形態にかかる除害装置10では、一次側と二次側とをそれぞれ二つずつ備える二式の四方弁15および16を組み合わせることでこれを実現している。
また第一ガスライン11は、前段にあたる第一除害塔40aに処理ガスを導入する配管と、第一除害塔40aの排出口と後段にあたる第二除害塔40bの導入口とを連通する配管と、第二除害塔40bから排出された処理ガスを系外に導出する配管とからなる。
一方、第二ガスライン12は、前段にあたる第二除害塔40bに処理ガスを導入する配管と、第二除害塔40bの排出口と後段にあたる第一除害塔40aの導入口とを連通する配管と、第一除害塔40aから排出された処理ガスを系外に導出する配管とからなる。なお、第一および第二ガスラインは切換手段によって切り換えられて選択的に用いられるため、上記配管の一部または全部が本実施の形態のように両ガスラインに共通して用いられるものであってもよく、また当然ガスラインごとに個別の配管を設けてもよい。
As a switching means for switching the flow path of the processing gas, the abatement apparatus 10 according to the present embodiment combines this with two sets of four-way valves 15 and 16 each having two primary sides and two secondary sides. Realized.
Moreover, the 1st gas line 11 connects the piping which introduce | transduces process gas into the 1st removal tower 40a which is a front | former stage, the discharge port of the 1st removal tower 40a, and the introduction port of the 2nd removal tower 40b which is a back | latter stage. It consists of piping and piping which guide | induces the process gas discharged | emitted from the 2nd removal tower 40b out of the system.
On the other hand, the second gas line 12 communicates the piping for introducing the processing gas to the second detoxification tower 40b, which is the front stage, and the discharge port of the second detoxification tower 40b and the introduction port of the first detoxification tower 40a, which is the latter stage. And a pipe for leading the processing gas discharged from the first detoxification tower 40a out of the system. Since the first and second gas lines are selectively used by being switched by the switching means, a part or all of the piping is used in common for both gas lines as in this embodiment. Of course, an individual pipe may be provided for each gas line.

図1の矢印は、第一ガスライン11にしたがって処理ガスが除害装置10を流通し、除害処理が施された上で系外に導出される様子を示している。
第一ガスライン11は、除害装置10に導入された処理ガスを、
(1)四方弁15を介して第一除害塔40aの導入口46aに導き、
(2)第一除害塔40aに充填された除害剤41aを通過させることで除害処理を施し、
(3)第一除害塔40aの排出口47aから排出された処理ガスを四方弁16、逆止弁17および四方弁15を介して第二除害塔40bの導入口46bに導き、
(4)第二除害塔40bの排出口47bから排出された処理ガスを、四方弁16を介して系外に導出する流路である。
The arrows in FIG. 1 indicate how the processing gas flows through the abatement apparatus 10 according to the first gas line 11 and is led out of the system after being subjected to the abatement process.
The first gas line 11 is used to treat the processing gas introduced into the abatement apparatus 10.
(1) Lead to the inlet 46a of the first detoxification tower 40a through the four-way valve 15,
(2) The detoxification treatment is performed by passing the detoxifying agent 41a packed in the first detoxification tower 40a,
(3) The processing gas discharged from the discharge port 47a of the first removal tower 40a is guided to the introduction port 46b of the second removal tower 40b through the four-way valve 16, the check valve 17 and the four-way valve 15.
(4) A flow path for leading the processing gas discharged from the discharge port 47b of the second detoxification tower 40b out of the system via the four-way valve 16.

有害ガスを含む処理ガスが第一除害塔40aに導入されると、充填された除害剤41aのうち、もっとも上流側(表面側)に位置するものから順に有害ガスを吸着除去し、処理ガスを無害化していく。このとき、第一除害塔40aには処理ガスの流れ方向の上流側に処理ガス貯留空間42aとして空隙部が画成され、該空間に検知窓20aの検知剤容器が露出していることから、有害ガスを含む処理ガスが除害装置10に導入された場合、検知剤容器に装填された検知剤30aは速やかに該有害ガスと接触して変色反応を呈し、有害ガスの導入が覗窓22aを通じて外部から視認される。   When the processing gas containing harmful gas is introduced into the first detoxification tower 40a, the harmful gas is adsorbed and removed in order from the most upstream side (surface side) of the packed detoxifying agent 41a. Detoxify gas. At this time, in the first abatement tower 40a, a gap is defined as a processing gas storage space 42a on the upstream side in the flow direction of the processing gas, and the detection agent container of the detection window 20a is exposed in the space. When the processing gas containing the harmful gas is introduced into the abatement apparatus 10, the detection agent 30a loaded in the detection agent container quickly contacts the harmful gas and exhibits a discoloration reaction. Visible from the outside through 22a.

除害剤41aは、有害ガスの吸着除害反応を行うとその上流側から徐々に除害能力を失い、未だ有害ガスと接触せず除害処理に供されていないフレッシュな除害剤との境目(以下、「破過ライン」という。)45は第一除害塔40aの下流側に進行していく。破過ライン45は、三次元的には除害塔の中心近傍が下流側にやや突出しつつ全体としてほぼフラットな曲面状となることが一般的であり、これを側面または正面から観察すると同図に模式的に示すようにやや下流側に凸の曲線状となる。ただし、破過ライン45の形状は除害剤の局所的な充填密度や、有害ガスと除害塔の内壁面との親和性などによって揺らぎをもつ。   When the harmful gas adsorption / detoxification reaction is performed, the detoxifying agent 41a gradually loses its detoxifying ability from the upstream side, and is not yet in contact with the harmful gas and has not been subjected to the detoxification treatment. The boundary (hereinafter referred to as “breakthrough line”) 45 proceeds downstream of the first abatement tower 40a. In general, the breakthrough line 45 has a substantially flat curved surface as a whole while the center of the abatement tower protrudes slightly downstream in a three-dimensional manner. As shown schematically in Fig. 4, the curve is slightly convex on the downstream side. However, the shape of the breakthrough line 45 varies depending on the local packing density of the detoxifying agent and the affinity between the harmful gas and the inner wall surface of the detoxifying tower.

一方、除害塔の内部下方には、処理ガスの通過可能なステンレスメッシュ43a(43b)などの仕切り部材が張架され、充填された除害剤41a(41b)の落下を防止しつつその下方に除害ガス貯留部44a(44b)を画成している。除害ガス貯留部44a(44b)には、除害剤を通過した処理ガスが一時的に貯留され、圧力が安定化された状態で排出口47a(47b)から配管を通じて四方弁16へと送られる。   On the other hand, a partition member such as a stainless steel mesh 43a (43b) through which the processing gas can pass is stretched under the interior of the detoxification tower, and the bottom of the detoxification tower 41a (41b) is prevented while falling. A detoxifying gas storage section 44a (44b) is defined. The treatment gas that has passed through the detoxifying agent is temporarily stored in the detoxification gas storage unit 44a (44b), and is sent from the discharge port 47a (47b) to the four-way valve 16 through the piping while the pressure is stabilized. It is done.

破過ライン45がステンレスメッシュ43aに到達すると除害剤41aは破過したこととなり、以後、処理ガス中の有害ガス成分は第一除害塔40aでは十分には除害されず四方弁16、逆止弁17および四方弁15を通じて第二除害塔40bに流入する。しかし、第二除害塔40bにはフレッシュな除害剤41bが充填されているため、第二除害塔40bにて有害ガスは除害され、処理ガスは無害化されて四方弁16および開閉弁50dを介して除害装置10の系外に導出される。なお、前段と後段の除害塔に充填された除害剤がともに破過する虞がある場合などは、開閉弁50dを閉止することで除害装置10を安全に停止することができる。   When the breakthrough line 45 reaches the stainless steel mesh 43a, the detoxifying agent 41a is broken, and thereafter, the harmful gas component in the processing gas is not sufficiently removed by the first removal tower 40a, and the four-way valve 16, It flows into the second detoxification tower 40 b through the check valve 17 and the four-way valve 15. However, since the second detoxifying tower 40b is filled with a fresh detoxifying agent 41b, the harmful gas is detoxified in the second detoxifying tower 40b, the processing gas is rendered harmless, and the four-way valve 16 and the open / close are opened and closed. It is led out of the system of the abatement apparatus 10 through the valve 50d. In addition, when there is a possibility that both the detoxifying agents filled in the first and second stage detoxification towers may break through, the detoxification apparatus 10 can be safely stopped by closing the on-off valve 50d.

第二除害塔40bには、その上流側に検知剤30bが装填された検知窓20bが設けられているため、有害ガスが第二除害塔40bに流入するとただちに検知剤30bと接触して変色反応を引き起こし、第一除害塔40aの破過が検知される。
このように、第一除害塔40aの破過を第二除害塔40bの上流側に設けた検知剤30bの変色をもって検知するという除害方式は、前段の除害塔に現に破過が生じたことを後段によって検知する方式であるため、充填された除害剤の一部が未使用のままこれを更新する無駄がない。また該方法によれば、第二除害塔40bの除害剤よりも上流位置で検知剤と有害ガスとが接触し、また検知剤の変色の発生が目視またはカラーマークセンサーなどにより観察されるため、有害ガスを含む処理ガスの偏流の影響を受けることがなく、かつ後段の除害塔の重量増加の発生をモニタする従来の除害方法などに比べて迅速かつ確実に前段の破過を検知することができる。
Since the detection window 20b loaded with the detection agent 30b is provided on the upstream side of the second abatement tower 40b, it immediately contacts the detection agent 30b when harmful gas flows into the second abatement tower 40b. A discoloration reaction is caused and breakthrough of the first detoxification tower 40a is detected.
Thus, the detoxification method of detecting the breakthrough of the first detoxification tower 40a by the discoloration of the detection agent 30b provided upstream of the second detoxification tower 40b is actually a breakthrough in the previous detoxification tower. Since this is a method of detecting the occurrence later, there is no waste of renewing a part of the filled pesticides unused. Further, according to this method, the detection agent and the harmful gas come into contact with each other at a position upstream of the removal agent of the second removal tower 40b, and occurrence of discoloration of the detection agent is observed visually or with a color mark sensor or the like. Therefore, it is not affected by the drift of the processing gas containing harmful gas, and the breakthrough of the first stage can be carried out quickly and reliably compared to the conventional removal method that monitors the occurrence of weight increase of the latter removal tower. Can be detected.

第一除害塔40aの破過が検知窓20bによって検知された場合には、次に、第二除害塔40bが前段となり、処理ガスがまず第二除害塔40bの導入口46bに導入されるようガスラインの切り換えを行う。これにより、有害ガスを第二除害塔40bによって除害処理している間に、除害装置10を停止することなく、第一除害塔40aの除害剤41aを交換またはリフレッシュするなどして更新することが可能となる。   If breakthrough of the first detoxification tower 40a is detected by the detection window 20b, then the second detoxification tower 40b is the previous stage, and the processing gas is first introduced into the inlet 46b of the second detoxification tower 40b. The gas line is switched so that Thereby, while the harmful gas is being removed by the second removal tower 40b, the removal agent 41a of the first removal tower 40a is replaced or refreshed without stopping the removal apparatus 10. Can be updated.

図2に示す系統図は、第一除害塔40aを除害装置10から取り外し、内部に充填された除害剤41aおよび検知窓20aに装填された検知剤30aをともに交換している状態を示している。
具体的には、四方弁15の流路を切り換えて、除害装置10に導入される有害ガスを第二除害塔40bの導入口46bに導く。一方、四方弁16については図1と同様に、第二除害塔40bの排出口47bから排出される処理ガスを、開閉弁50dを通じて系外に導出する流路としている。なお、第二除害塔40bには所定量の除害剤41bが充填されており、破過ライン45が除害剤41bの下流端に設けられたステンレスメッシュ43bに到達するまでの所定時間は第二除害塔40bのみによって有害ガスを十分に除害することができるため、この間に第一除害塔40aの除害剤41aおよび検知剤30aを更新することによって有害ガスの除害処理を中断することなく継続的に実施することができる。
The system diagram shown in FIG. 2 shows a state in which the first abatement tower 40a is removed from the abatement apparatus 10, and the abatement agent 41a filled in the inside and the detection agent 30a loaded in the detection window 20a are exchanged together. Show.
Specifically, the flow path of the four-way valve 15 is switched to guide the harmful gas introduced into the abatement apparatus 10 to the inlet 46b of the second abatement tower 40b. On the other hand, as in FIG. 1, the four-way valve 16 has a flow path for leading the processing gas discharged from the discharge port 47b of the second abatement tower 40b to the outside through the on-off valve 50d. The second abatement tower 40b is filled with a predetermined amount of the detoxifying agent 41b, and the predetermined time until the breakthrough line 45 reaches the stainless mesh 43b provided at the downstream end of the detoxifying agent 41b is as follows. Since the harmful gas can be sufficiently removed only by the second removal tower 40b, the removal process of the harmful gas is performed by updating the removal agent 41a and the detection agent 30a of the first removal tower 40a during this period. It can be carried out continuously without interruption.

図3に示す系統図は、除害剤および検知剤が更新された第一除害塔40aが再び除害装置10に取り付けられ、第二除害塔40bの後段として設置された状態を示している。図2の状態と比較すると、第一除害塔40aの交換作業中にも除害処理が継続して行われたため破過ライン45は第二除害塔40bの下流側に進行しているものの、除害剤41bは未だ破過していない状態にある。   The system diagram shown in FIG. 3 shows a state in which the first abatement tower 40a in which the abatement agent and the detection agent are updated is attached to the abatement apparatus 10 again, and is installed as a subsequent stage of the second abatement tower 40b. Yes. Compared with the state of FIG. 2, although the detoxification process was continuously performed during the replacement operation of the first detoxification tower 40a, the breakthrough line 45 is proceeding to the downstream side of the second detoxification tower 40b. The detoxifying agent 41b is not yet broken through.

処理ガスの流路には第二ガスライン12が選択されている。すなわち四方弁16が切り換えられて、第二除害塔40bの排出口47bから排出される処理ガスが四方弁15へと導かれるよう変更され、除害装置10に導入された有害ガスを含む処理ガスを、
(1)四方弁15を介して第二除害塔40bの導入口46aに導き、
(2)第二除害塔40bに充填された除害剤41bを通過させることで除害処理し、
(3)第二除害塔40bの排出口47bから排出された処理ガスを四方弁16、逆止弁17および四方弁15を介して第一除害塔40aの導入口46aに導き、
(4)リフレッシュされた除害剤41aの間を通過した後、第一除害塔40aの排出口47aから排出された処理ガスを、四方弁16および開閉弁50dを介して系外に導出する流路がとられている。
The second gas line 12 is selected for the processing gas flow path. That is, the four-way valve 16 is switched so that the processing gas discharged from the discharge port 47b of the second removal tower 40b is led to the four-way valve 15, and the treatment including the harmful gas introduced into the removal apparatus 10 is performed. Gas,
(1) It leads to the inlet 46a of the second abatement tower 40b through the four-way valve 15,
(2) Detoxifying treatment by passing the detoxifying agent 41b packed in the second detoxifying tower 40b,
(3) The processing gas discharged from the discharge port 47b of the second removal tower 40b is guided to the introduction port 46a of the first removal tower 40a through the four-way valve 16, the check valve 17 and the four-way valve 15.
(4) After passing between the refreshed detoxifying agents 41a, the processing gas discharged from the discharge port 47a of the first detoxifying tower 40a is led out of the system through the four-way valve 16 and the on-off valve 50d. A flow path is taken.

さらにこの状態から除害処理が進行し、第二除害塔40bに充填された除害剤41bが破過すると、一部の有害ガスは除害されずに第二除害塔40bを通過し、第一除害塔40aに流入する。この場合の前段に相当する第二除害塔40bの破過の発生は、後段に相当する第一除害塔40aの検知窓20aによって迅速に検知可能であるため、次に処理ガスの除害処理を第一除害塔40aのみで行う間に、図4に示すように第二除害塔40bを取り外して除害剤41bおよび検知剤30bを更新することができる。この場合、四方弁15を介して第一除害塔40aに導入された有害ガスを含む処理ガスは、除害剤41aによって除害され、四方弁16および開閉弁50dを介して除害装置10の系外に導出される。
除害剤41bおよび検知剤30bを更新した第二除害塔40bが再び除害装置10に取り付けられた場合は、図1に示す第一ガスライン11にしたがって処理ガスを流通させることで、第一除害塔40aの破過を後段の第二除害塔40bの検知窓20bで検知することができる。
以上のように本発明にかかる除害装置10は、破過した除害塔の除害剤や検知剤を更新する際も運転を中断する必要がなく、連続的に有害ガスを除害することができる。
Further, when the detoxification process proceeds from this state and the detoxifying agent 41b filled in the second detoxification tower 40b breaks through, a part of the harmful gas passes through the second detoxification tower 40b without being detoxified. , Flows into the first detoxification tower 40a. In this case, the occurrence of breakthrough of the second abatement tower 40b corresponding to the former stage can be quickly detected by the detection window 20a of the first abatement tower 40a corresponding to the latter stage. While the treatment is performed only in the first detoxification tower 40a, the second detoxification tower 40b can be removed and the detoxification agent 41b and the detection agent 30b can be updated as shown in FIG. In this case, the processing gas containing the harmful gas introduced into the first detoxification tower 40a through the four-way valve 15 is detoxified by the detoxifying agent 41a, and the detoxification apparatus 10 through the four-way valve 16 and the on-off valve 50d. Derived outside the system.
When the second abatement tower 40b updated with the abatement agent 41b and the detection agent 30b is attached to the abatement apparatus 10 again, the processing gas is circulated according to the first gas line 11 shown in FIG. The breakthrough of one abatement tower 40a can be detected by the detection window 20b of the second abatement tower 40b at the subsequent stage.
As described above, the abatement apparatus 10 according to the present invention eliminates harmful gas continuously without the need to interrupt the operation when renewing the detoxifying agent or detecting agent of the detoxifying tower that has passed through. Can do.

なお、処理ガスの流路を切り換える切換手段は、導入される処理ガスの流路を第一または第二除害塔に切り換える機能と、第一除害塔から排出される処理ガスの流路を第二除害塔または系外に切り換える機能と、第二除害塔から排出される処理ガスの流路を第一除害塔または系外に切り換える機能とを少なくとも備えるものであれば特に限定されるものではなく、上記実施の形態にて例示したように二式の四方弁15および16を用いる態様のほか、例えば第一から第三の三つの三方弁を組み合わせたものでもよい。
具体的には、
第一の三方弁の一次側を、半導体製造装置などから排出された有害ガスを含む処理ガスの導入口とし、二次側の一方を第一除害塔40aの導入口46a、他方を第二除害塔40bの導入口46bに連通し;
第二の三方弁の一次側を第一除害塔40aの排出口47aと接続し、二次側の一方を第二除害塔40bの導入口46b、他方を開閉弁50dとそれぞれ接続し;
第三の三方弁の一次側を第二除害塔40bの排出口47bと接続し、二次側の一方を開閉弁50d、他方を第一除害塔40aの導入口46aとそれぞれ接続するとよい。
かかる構成の除害装置10において、各三方弁の二次側をいずれも上記一方の側とすることにより、処理ガスの流路として第一ガスライン11が選択される。また各三方弁の二次側をいずれも上記他方の側とすることにより、処理ガスの流路として第二ガスライン12が選択される。
The switching means for switching the flow path of the processing gas has a function of switching the flow path of the introduced processing gas to the first or second detoxification tower and the flow path of the processing gas discharged from the first detoxification tower. It is particularly limited as long as it has at least a function of switching to the second detoxification tower or outside the system and a function of switching the flow path of the processing gas discharged from the second detoxification tower to the first detoxification tower or outside the system. In addition to an embodiment using two types of four-way valves 15 and 16 as exemplified in the above embodiment, for example, a combination of first to third three-way valves may be used.
In particular,
The primary side of the first three-way valve is used as an inlet for processing gas containing harmful gas discharged from a semiconductor manufacturing apparatus or the like, one of the secondary sides is the inlet 46a of the first abatement tower 40a, and the other is the second. Communicating with the inlet 46b of the detoxification tower 40b;
The primary side of the second three-way valve is connected to the outlet 47a of the first abatement tower 40a, one of the secondary sides is connected to the inlet 46b of the second abatement tower 40b, and the other is connected to the on-off valve 50d;
The primary side of the third three-way valve is connected to the outlet 47b of the second abatement tower 40b, one of the secondary sides is connected to the on-off valve 50d, and the other is connected to the inlet 46a of the first abatement tower 40a. .
In the abatement apparatus 10 having such a configuration, the first gas line 11 is selected as a processing gas flow path by setting the secondary side of each three-way valve to the one side. Moreover, the 2nd gas line 12 is selected as a flow path of process gas by making all the secondary sides of each three-way valve into the said other side.

なお除害装置10には、処理ガスに有害ガス成分が混合していない場合のバイパスラインとして、または第一ガスライン11や第二ガスライン12が不通になった場合の迂回ラインとして、開閉弁50cによって開閉される排気ライン13を設けてもよい(図1参照)。   The abatement device 10 has an on-off valve as a bypass line when no harmful gas component is mixed with the processing gas or as a bypass line when the first gas line 11 or the second gas line 12 is disconnected. You may provide the exhaust line 13 opened and closed by 50c (refer FIG. 1).

<検知窓について>
図5は、本実施の形態にかかる検知窓の模式図であり、同図(a)は正面図、(b)はそのb−b断面図である。本発明にかかる除害装置は、直列に配置された二式以上の除害塔がそれぞれ検知窓を備えることを特徴とする。検知窓20は、処理ガスを透過する通気性の検知剤容器23と、透明の覗窓22とを組み合わせてなる。また除害塔40への固定用または着脱時のハンドリング用にフランジ25を有している。
検知剤容器23には検知剤30が装填され、有害ガスとの接触によって変色反応が生じた際は、かかる色の変化を覗窓22を通じて除害塔40の外部から観察することができる。また本実施の形態にかかる検知窓20は、検知剤容器23が、除害塔内部のうち、処理ガスの流れ方向(図中白抜き矢印にて示す)の上流側に形成された処理ガス貯留空間42に露出していることを特徴とする。
<About the detection window>
5A and 5B are schematic views of the detection window according to the present embodiment, in which FIG. 5A is a front view, and FIG. 5B is a bb cross-sectional view thereof. The abatement apparatus according to the present invention is characterized in that each of the two or more types of abatement towers arranged in series includes a detection window. The detection window 20 is a combination of a gas-permeable detection agent container 23 that transmits a processing gas and a transparent observation window 22. In addition, a flange 25 is provided for fixing to the detoxification tower 40 or for handling at the time of attachment / detachment.
When the detection agent 30 is loaded in the detection agent container 23 and a color change reaction occurs due to contact with harmful gas, the color change can be observed from the outside of the detoxification tower 40 through the observation window 22. Further, the detection window 20 according to the present embodiment has a processing gas reservoir in which the detection agent container 23 is formed on the upstream side of the processing gas flow direction (indicated by a white arrow in the figure) inside the detoxification tower. It is exposed to the space 42.

なお、直列に多段配置される除害塔がそれぞれ備える検知窓は同一構造であっても互いに相違してもよい。本実施の形態にかかる除害装置10については同一構造の検知窓20を備えるものとする。すなわち上記除害塔40は図1乃至図4に示す第一除害塔40aおよび第二除害塔40bに、検知窓20は同じく検知窓20aおよび20bに、検知剤30は同じく検知剤30aおよび30bに、覗窓22は同じく覗窓22aおよび22bに、除害剤41は同じく除害剤41aおよび41bに、処理ガス貯留空間42は同じく処理ガス貯留空間42aおよび42bに、それぞれ相当するものである。   Note that the detection windows provided in the multi-stage abatement towers in series may have the same structure or may be different from each other. The abatement apparatus 10 according to this embodiment is provided with a detection window 20 having the same structure. That is, the abatement tower 40 is the same as the first abatement tower 40a and the second abatement tower 40b shown in FIGS. 1 to 4, the detection window 20 is the same as the detection windows 20a and 20b, and the detection agent 30 is the same as the detection agent 30a and 30b, the viewing window 22 corresponds to the viewing windows 22a and 22b, the removal agent 41 also corresponds to the removal agents 41a and 41b, and the processing gas storage space 42 corresponds to the processing gas storage spaces 42a and 42b, respectively. is there.

ここで、有害ガスを含む処理ガスの吸着除去処理を除害剤によって効率的に行うためには、除害剤を平均直径0.5乃至2mmの粒子状に成形して用いることが好ましい。かかる粒子径とすることで、処理ガスとの接触面積を十分に確保しつつ、除害塔を通過する際の処理ガスの圧力損失を抑制することができる。
ここで、粒子状の除害剤の間を処理ガスが通過するに際しては、除害剤の充填密度や除害塔の内壁面の材質などによって所定の偏流が生じるため、除害剤の破過ラインは除害剤の内部を必ずしも均一に進行するわけではない。このため、検知剤容器が除害剤の内部に完全に埋設されるように除害塔に装着された場合、例えばその近傍の除害剤の充填密度が高い場合などは、有害ガスの検知窓への到達が遅れ、覗窓から検知剤の変色の発生をもってこれを検知するまでには所定のタイムラグが生じてしまう。
これに対し、本実施の形態にかかる検知剤容器23のように、その少なくとも一部が処理ガス貯留空間42に露出しているので、検知剤30は、配管60を通じて処理ガス貯留空間42に流入した処理ガス中の有害ガスとただちに接触することができる。これは、粒子状の除害剤の充填層に比べて処理ガス貯留空間42では処理ガスの流動性が高く、均一に拡散しやすいためである。
したがって前段の除害塔の破過によって後段に流入した有害ガスの存在は、図5に示すように後段の検知窓20に装填された検知剤30が変色済みの検知剤31に変化することによって迅速に検知される。
Here, in order to efficiently perform the adsorption removal treatment of the processing gas containing the harmful gas with the detoxifying agent, it is preferable to use the detoxifying agent formed into particles having an average diameter of 0.5 to 2 mm. By setting it as this particle diameter, the pressure loss of the process gas at the time of passing a detoxification tower can be suppressed, ensuring a sufficient contact area with process gas.
Here, when the processing gas passes between the particulate harmful agents, a predetermined drift occurs depending on the packing density of the harmful agents and the material of the inner wall surface of the harmful column. The line does not necessarily travel uniformly through the pesticide. For this reason, when the detection agent container is mounted in the removal tower so as to be completely buried inside the removal agent, for example, when the packing density of the removal agent in the vicinity thereof is high, a harmful gas detection window is used. A predetermined time lag occurs until the detection of the detection agent with the occurrence of discoloration of the detection agent from the viewing window is delayed.
In contrast, as in such detection container 23 to the present embodiment, since at least a part is exposed to the processing gas storage space 42, the detection agent 30 flows into the processing gas storage space 42 through the pipe 60 Immediate contact with harmful gases in the treated gas. This is because the process gas storage space 42 has a higher fluidity of the process gas than the packed bed of the particulate detoxifying agent, and easily diffuses uniformly.
Therefore, the presence of harmful gas that has flowed into the subsequent stage due to the breakthrough of the upstream detoxification tower is caused by the change of the detection agent 30 loaded in the subsequent detection window 20 to the color-detected detection agent 31 as shown in FIG. Detected quickly.

また検知窓20においては、覗窓22から視認可能な最表面に位置する検知剤30の少なくとも一部が、通気性の検知剤容器23を介して処理ガス貯留空間42に直接露出していることが好ましい。これにより、除害塔40に有害ガスが流入して検知剤30の変色反応が生じた際に、ただちにこれを覗窓22より観察することができる。このため、本実施の形態においては、図5(b)に示すように覗窓22の処理ガス接触面(接ガス面)27が除害塔40の内壁面位置と一致するように設けるとともに、除害塔40を流通する有害ガスを検知剤容器23に導入するガス導入口26を、少なくとも覗窓22の接ガス面27に隣接して形成している。
ここで、「覗窓22の接ガス面27が除害塔40の内壁面位置と一致する」とは、仮に検知窓20を装着するための装着孔や取付部材などの構造が除害塔40に設けられていないと仮定した場合に想定される除害塔40の内壁面と、除害塔40に装着された検知窓20の備える覗窓22の内側の面(接ガス面27)とが面一であるかまたは互いに交わることを意味し、除害塔40と覗窓22の曲率半径が相違する場合を含む。
Further, in the detection window 20, at least a part of the detection agent 30 positioned on the outermost surface visible from the observation window 22 is directly exposed to the processing gas storage space 42 through the breathable detection agent container 23. Is preferred. Thereby, when harmful gas flows into the detoxification tower 40 and the color change reaction of the detection agent 30 occurs, it can be immediately observed from the viewing window 22. Therefore, in the present embodiment, as shown in FIG. 5B, the processing gas contact surface (gas contact surface) 27 of the viewing window 22 is provided so as to coincide with the inner wall surface position of the detoxification tower 40, and A gas inlet 26 for introducing harmful gas flowing through the detoxification tower 40 into the detection agent container 23 is formed adjacent to at least the gas contact surface 27 of the viewing window 22.
Here, “the gas contact surface 27 of the viewing window 22 coincides with the position of the inner wall surface of the detoxification tower 40” means that the structure of the mounting hole and mounting member for mounting the detection window 20 is assumed to be the detoxification tower 40. The inner wall surface of the detoxification tower 40 assumed when it is assumed that the detection window 20 is not provided, and the inner surface (gas contact surface 27) of the observation window 22 of the detection window 20 attached to the detoxification tower 40 It means that they are flush or cross each other, and includes the case where the radius of curvature of the abatement tower 40 and the viewing window 22 are different.

以上のように、覗窓22の接ガス面27を除害塔40の内壁面の面位置と一致させ、さらに覗窓22の接ガス面27に隣接する位置に処理ガスを導入するためのガス導入口26を設けることにより、処理ガス貯留空間42に流入した有害ガスが覗窓22から視認可能な検知剤30をただちに変色させるため、前段の除害塔の破過を精度よく検知することができる。   As described above, the gas for introducing the processing gas to the position adjacent to the gas contact surface 27 of the observation window 22 by matching the gas contact surface 27 of the observation window 22 with the surface position of the inner wall surface of the detoxification tower 40. By providing the introduction port 26, the harmful gas that has flowed into the processing gas storage space 42 immediately changes the color of the detection agent 30 that is visible from the viewing window 22, so that it is possible to accurately detect the breakthrough of the previous detoxification tower. it can.

また、検知窓20においては、覗窓22の接ガス面27が除害塔40の内壁面位置よりも除害塔40の中心側に設けられていてもよい。かかる構成とすることにより、配管60を通じて処理ガス貯留空間42に流入した有害ガスと、覗窓22から観察可能な検知剤30との接触性がさらに良好となる。なお、「覗窓22の接ガス面27が除害塔40の内壁面位置よりも除害塔40の中心側に設けられている」とは、処理ガスの流れ方向から見た場合に覗窓22の接ガス面27の少なくとも一部が、除害塔40の内壁面よりも除害塔40の中心側にあることを意味するものである。   In the detection window 20, the gas contact surface 27 of the observation window 22 may be provided closer to the center of the detoxification tower 40 than the inner wall surface position of the detoxification tower 40. With such a configuration, the contact property between the harmful gas that has flowed into the processing gas storage space 42 through the pipe 60 and the detection agent 30 that can be observed from the viewing window 22 is further improved. “The gas contact surface 27 of the viewing window 22 is provided closer to the center side of the detoxification tower 40 than the inner wall surface position of the detoxification tower 40” means that the viewing window is viewed from the flow direction of the processing gas. This means that at least a part of the 22 gas contact surfaces 27 is closer to the center of the detoxification tower 40 than the inner wall surface of the detoxification tower 40.

また、検知窓20を除害塔40に着脱可能とすることにより、除害塔40に除害剤41を充填した状態からでも、検知剤30を充填した検知窓20を除害塔40に外部から装着することができ、ハンドリング性に優れる。
さらに、前段の除害塔の破過を検知した変色済みの検知剤30を更新する場合は、次の検知の際にその変色の発生の有無を見誤らぬよう、特に覗窓22の接ガス面27に付着した変色済みの検知剤31をきれいに除去することが必要であるところ、かかる作業性の観点からも、検知窓20を除害塔40に着脱可能とすることが好ましい。
Further, by making the detection window 20 detachable from the detoxification tower 40, the detection window 20 filled with the detection agent 30 can be externally attached to the detoxification tower 40 even when the detoxification tower 40 is filled with the detoxification agent 41. It can be installed from above and has excellent handling properties.
Furthermore, when updating the discolored detection agent 30 that has detected breakthrough of the abatement tower in the previous stage, in particular, the gas contact with the viewing window 22 should not be misunderstood during the next detection. Although it is necessary to cleanly remove the discolored detection agent 31 attached to the surface 27, it is preferable that the detection window 20 be detachable from the detoxification tower 40 from the viewpoint of workability.

覗窓22は、ガラスまたはアクリル樹脂等の光透過性の材料からなる。覗窓22の形状は図5(a)に示す円形に限らず、矩形等でもよい。また検知窓20を除害塔40の周方向に複数箇所に設けてもよく、また除害塔40の側面全周にわたる帯状の窓形状としてもよい。かかる検知窓20を設けることにより覗窓22からの視認面積が拡大し、前段の除害塔の破過を確実に検知することができる。
また、覗窓22から検知される検知剤30の変色の有無は、目視で確認しても、市販のカラーマークセンサーによって観察してもよい。
The viewing window 22 is made of a light transmissive material such as glass or acrylic resin. The shape of the viewing window 22 is not limited to the circular shape shown in FIG. In addition, the detection windows 20 may be provided at a plurality of locations in the circumferential direction of the detoxification tower 40, or may be a belt-like window shape extending over the entire side surface of the detoxification tower 40. By providing such a detection window 20, the viewing area from the observation window 22 is enlarged, and breakthrough of the abatement tower in the previous stage can be reliably detected.
Moreover, the presence or absence of discoloration of the detection agent 30 detected from the viewing window 22 may be confirmed by visual observation or may be observed by a commercially available color mark sensor.

<有害ガスについて>
本発明において除害することのできる有害ガスは、これを好適に除害する除害剤との組み合わせが選択可能である限り特に限定されるものではなく、例えばアルシン、ホスフィン、シラン、ジボランもしくはヒ素、リン、セレン等の水素化物などの揮発性無機水素化物、または該揮発性無機水素化物の水素の一部もしくは全部をハロゲン原子に置換した揮発性無機ハロゲン化物、または該水素をアルキル基もしくはアルコキシド基に置換した揮発性有機化合物、あるいはフッ素、塩素、フッ化水素、塩化水素、三フッ化塩素、三フッ化ホウ素、三塩化ホウ素、四フッ化珪素、四塩化ケイ素、四塩化チタン、塩化アルミニウム、四フッ化ゲルマニウムもしくは六フッ化タングステン等の酸性ガス、アンモニア、モノメチルアミン、ジメチルアミン、トリメチルアミンもしくはヒドラジン等の塩基性ガスを挙げることができる。
<About hazardous gas>
The harmful gas that can be detoxified in the present invention is not particularly limited as long as a combination with a detoxifying agent that suitably detoxifies can be selected. For example, arsine, phosphine, silane, diborane or arsenic , A volatile inorganic hydride such as a hydride such as phosphorus or selenium, or a volatile inorganic halide obtained by substituting a part or all of hydrogen of the volatile inorganic hydride with a halogen atom, or the hydrogen is an alkyl group or an alkoxide Volatile organic compounds substituted in the group, or fluorine, chlorine, hydrogen fluoride, hydrogen chloride, chlorine trifluoride, boron trifluoride, boron trichloride, silicon tetrafluoride, silicon tetrachloride, titanium tetrachloride, aluminum chloride , Acidic gas such as germanium tetrafluoride or tungsten hexafluoride, ammonia, monomethylamine, dimethylamino , It can be exemplified basic gas such as trimethylamine or hydrazine.

<除害剤について>
本発明に用いる除害剤41は、前記有害ガスを含む処理ガスを乾式浄化法により除害できるものであれば特に限定されない。具体的には、例えば二酸化マンガン、酸化銅もしくは水酸化第二銅を主成分とする除害剤は揮発性無機水素化物を浄化可能であり、活性炭に蟻酸のアルカリ金属塩やアルカリ土類金属塩を添着した除害剤は揮発性無機ハロゲン化物を浄化可能であり、二酸化マンガンや酸化銅に銅塩を添着した除害剤は塩基性ガスを浄化可能である。有害ガスが二種以上の混合ガスである場合、いずれの有害ガス成分をも浄化可能な除害剤を選択して用いても、それぞれの有害ガス成分を浄化可能な除害剤を混合して用いてもよい。
<About the pesticide>
The detoxifying agent 41 used in the present invention is not particularly limited as long as it can detoxify the processing gas containing the harmful gas by a dry purification method. Specifically, for example, a detoxifying agent containing manganese dioxide, copper oxide or cupric hydroxide as a main component can purify volatile inorganic hydrides, and activated carbon has an alkali metal salt or alkaline earth metal salt of formic acid. The detoxifying agent impregnated with can remove volatile inorganic halides, and the detoxifying agent impregnated with manganese dioxide or copper oxide with a copper salt can purify basic gas. When the harmful gas is a mixed gas of two or more types, even if a harmful agent capable of purifying any harmful gas component is selected and used, the harmful gases that can purify each harmful gas component are mixed. It may be used.

<検知剤について>
検知剤30は、除害剤とは異なる化合物であり、検知すべき有害ガスの種類によって様々なものが用いられているが、一般に、前記有害ガスと接触すると変色する物質、例えば、塩化ビスマスやリトマス、水酸化第二銅などが用いられている。これらの変色物質は、処理ガスと検知剤との接触効率を高めつつ処理ガスの流動性を確保するため、例えば直径1乃至10mm程度の球形や円柱形などの成型体にして用いるか、かかる粒径のシリカゲルやアルミナなどの担体に担持させて用いるとよい。
なお、除害剤および検知剤の平均直径は、全充填量のうちの所定割合をサンプリングし、市販の画像処理装置によって各粒子を球形近似してその直径の平均値を算出することで求めることができる。
<About detection agent>
The detection agent 30 is a compound different from the detoxifying agent, and various compounds are used depending on the type of harmful gas to be detected. In general, a substance that changes color when contacted with the harmful gas, for example, bismuth chloride, Litmus, cupric hydroxide, etc. are used. These discoloring substances are used in the form of a molded body such as a sphere or a cylinder having a diameter of about 1 to 10 mm, or such particles in order to secure the fluidity of the processing gas while improving the contact efficiency between the processing gas and the detection agent. It may be used by supporting it on a carrier such as silica gel or alumina having a diameter.
In addition, the average diameter of the pesticide and the detection agent is obtained by sampling a predetermined ratio of the total filling amount, and calculating the average value of the diameters by approximating each particle to a sphere by a commercially available image processing apparatus. Can do.

<除害塔について>
除害塔40は、耐食性の金属材料などからなる筒状容器とすることが一般的であるが、その断面形状や中心線形状は特に限定されるものではない。本実施の形態では、円筒状または矩形筒状のステンレス容器を用いることができる。
<About the abatement tower>
The abatement tower 40 is generally a cylindrical container made of a corrosion-resistant metal material or the like, but its cross-sectional shape and center line shape are not particularly limited. In the present embodiment, a cylindrical or rectangular cylindrical stainless steel container can be used.

本発明の実施の形態にかかる有害ガスの除害装置の系統図である。It is a systematic diagram of the harmful gas elimination apparatus concerning an embodiment of the invention. 第一除害塔を取り外した状態の除害装置の系統図である。It is a systematic diagram of the abatement apparatus with the first abatement tower removed. 除害剤および検知剤を更新した第一除害塔を取り付けた除害装置の系統図である。It is a systematic diagram of the abatement apparatus which attached the 1st abatement tower which updated the abatement agent and the detection agent. 第二除害塔を取り外した状態の除害装置の系統図である。It is a systematic diagram of the abatement apparatus with the second abatement tower removed. 本発明の実施の形態にかかる検知窓の模式図であり、(a)は正面図、(b)はそのb−b断面図である。It is a schematic diagram of the detection window concerning embodiment of this invention, (a) is a front view, (b) is the bb sectional drawing.

符号の説明Explanation of symbols

10 除害装置
11 第一ガスライン
12 第二ガスライン
13 排気ライン
15,16 四方弁
20 検知窓
22 覗窓
23 検知剤容器
30 検知剤
40 除害塔
41 除害剤
42 処理ガス貯留空間
44 除害ガス貯留部
45 破過ライン
DESCRIPTION OF SYMBOLS 10 Detoxification apparatus 11 1st gas line 12 2nd gas line 13 Exhaust lines 15, 16 Four-way valve 20 Detection window 22 Viewing window 23 Detection agent container 30 Detection agent 40 Detoxification tower 41 Detoxification agent 42 Processing gas storage space 44 Removal Harmful gas storage 45 breakthrough line

Claims (4)

有害ガスとの接触によって変色する検知剤が装填される検知剤容器と、検知剤の前記変色を観察するための覗窓とを備える検知窓が設けられるとともに、前記有害ガスを吸着して除害する除害剤が充填された除害塔が少なくとも二式以上直列に配置され、導入された有害ガスを前記二式以上の除害塔を通過させて除害する除害装置であって、
前記検知剤が除害剤とは異なる化合物であり、
前記除害塔の内部には、前記通過する有害ガスの流れ方向について、前記充填された除害剤よりも上流側に処理ガス貯留空間が形成されており、
前記検知剤容器の少なくとも一部が、前記処理ガス貯留空間に露出している
ことを特徴とする除害装置。
A detection window comprising a detection agent container loaded with a detection agent that changes color by contact with harmful gas and a viewing window for observing the color change of the detection agent is provided, and the harmful gas is adsorbed and removed. A detoxification tower filled with at least two types of detoxifying agents filled in order to detoxify the harmful gas introduced through the two or more types of detoxification towers,
The detection agent is a compound different from the detoxifying agent,
Inside the detoxification tower, a processing gas storage space is formed on the upstream side of the filled detoxifying agent with respect to the flow direction of the harmful gas passing therethrough,
At least a part of said detection container is, abatement apparatus characterized by being exposed to the treatment gas retention space.
前記覗窓から視認可能な最表面に位置する検知剤の少なくとも一部が、通気性の検知剤容器を介して処理ガス貯留空間に直接露出していることを特徴とする請求項1に記載の除害装置。The at least part of the detection agent located on the outermost surface visible from the viewing window is directly exposed to the processing gas storage space through a breathable detection agent container. Abatement equipment. 前記覗窓の処理ガス接触面(接ガス面)が除害塔の内壁面位置と一致するように設けるとともに、除害塔を流通する有害ガスを検知剤容器に導入するガス導入口を、少なくとも覗窓の接ガス面に隣接して形成しているA gas introduction port for introducing a harmful gas flowing through the detoxification tower into the detection agent container and at least providing a processing gas contact surface (gas contact surface) of the viewing window coincides with an inner wall surface position of the detoxification tower, It is formed adjacent to the gas contact surface of the viewing window
ことを特徴とする請求項1または2に記載の除害装置。The abatement apparatus according to claim 1 or 2, characterized in that.
直列に配置された第一および第二の除害塔を少なくとも備え、有害ガスを含む処理ガスが導入される請求項1から3のいずれかに記載の除害装置であって、
第一の除害塔に処理ガスを導入し、該第一の除害塔から排出された処理ガスを第二の除害塔に導き、該第二の除害塔から排出された処理ガスを系外に導出する第一ガスラインと、
第二の除害塔に処理ガスを導入し、該第二の除害塔から排出された処理ガスを第一の除害塔に導き、該第一の除害塔から排出された処理ガスを系外に導出する第二ガスラインと、
処理ガスの流路を前記第一ガスラインまたは第二ガスラインに切り換える切換手段とを備える除害装置。
The abatement apparatus according to any one of claims 1 to 3, comprising at least first and second abatement towers arranged in series, wherein a processing gas containing a harmful gas is introduced.
A processing gas is introduced into the first abatement tower, the processing gas discharged from the first abatement tower is guided to the second abatement tower, and the processing gas discharged from the second abatement tower is A first gas line leading out of the system,
A processing gas is introduced into the second detoxification tower, the processing gas discharged from the second detoxification tower is guided to the first detoxification tower, and the processing gas discharged from the first detoxification tower is A second gas line leading out of the system;
A detoxifying device comprising switching means for switching the flow path of the processing gas to the first gas line or the second gas line.
JP2006082687A 2006-03-24 2006-03-24 Hazardous gas removal equipment Active JP4673780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006082687A JP4673780B2 (en) 2006-03-24 2006-03-24 Hazardous gas removal equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006082687A JP4673780B2 (en) 2006-03-24 2006-03-24 Hazardous gas removal equipment

Publications (2)

Publication Number Publication Date
JP2007253098A JP2007253098A (en) 2007-10-04
JP4673780B2 true JP4673780B2 (en) 2011-04-20

Family

ID=38627862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006082687A Active JP4673780B2 (en) 2006-03-24 2006-03-24 Hazardous gas removal equipment

Country Status (1)

Country Link
JP (1) JP4673780B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150033265A (en) 2013-09-24 2015-04-01 다이요 닛산 가부시키가이샤 Apparatus for detoxifying harmful gas

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5066021B2 (en) * 2007-07-10 2012-11-07 株式会社荏原製作所 PFC processing apparatus and PFC-containing gas processing method
JP5346482B2 (en) * 2008-04-01 2013-11-20 岩谷産業株式会社 Fluorine recovery method and calcium fluoride purification method
JP2016080484A (en) * 2014-10-15 2016-05-16 大陽日酸株式会社 Harmful gas detecting method, and apparatus
JP7218311B2 (en) * 2017-07-03 2023-02-06 コベストロ、ドイチュラント、アクチエンゲゼルシャフト Manufacturing facility and method of operation for reacting H-functional reactants with phosgene to produce chemicals
GB2579788B (en) 2018-12-13 2021-06-30 Edwards Ltd Abatement apparatus
CN113154264B (en) * 2021-04-28 2022-05-24 北京京仪自动化装备技术股份有限公司 Safety monitoring system for semiconductor waste gas treatment equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04358516A (en) * 1991-02-05 1992-12-11 Teisan Kk Exhaust gas treatment device
JPH09173772A (en) * 1995-12-28 1997-07-08 Meidensha Corp Operation of waste ozone treating device using active carbon contact method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150033265A (en) 2013-09-24 2015-04-01 다이요 닛산 가부시키가이샤 Apparatus for detoxifying harmful gas

Also Published As

Publication number Publication date
JP2007253098A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
JP4673780B2 (en) Hazardous gas removal equipment
JP4881814B2 (en) Cuboid fluid storage and dispensing container
US4133651A (en) Methods for removing radioactive isotopes from contaminated streams
TW409170B (en) Large quantity supply apparatus for the gas in semiconductor process
ES2366912T3 (en) GAS SURVEILLANCE SET INCLUDING ONE OR VARIOUS GAS SENSORS AND ONE OR VARIOUS DEGASIFIER.
KR20100005695A (en) Dual-flow valve and internal processing vessel isolation system
JP5357709B2 (en) Hydrogen fluoride-containing gas detection device, processing device, and detection method
KR101036972B1 (en) Movable apparatus for removing radioactive noble gases
KR101613575B1 (en) Device for adsorption treatment of a fluid or fluid stream
JP2007253082A (en) Detoxifying apparatus of harmful gas
JP3710296B2 (en) Bulk supply equipment for semiconductor process gas
JP2009287753A (en) Valve for corrosive gas filling vessel
JP5620942B2 (en) Hazardous gas removal equipment
US6471750B1 (en) Gas cabinet assembly comprising back migration scrubber unit
JP4195831B2 (en) How to detect harmful gases
JP4195833B2 (en) Detecting agent storage container and toxic gas detection method using the same
KR20150033265A (en) Apparatus for detoxifying harmful gas
JP3746107B2 (en) Simple gas abatement system
KR101894915B1 (en) Equipment for supplying gases
JP2009028643A (en) Fixed-bed reaction vessel and method for packing absorbent
JPH0611499A (en) Harmful gas sensing system
JP2003222300A (en) Bulk supplying device for semiconductor process gas
JP2006055854A (en) Detoxification apparatus
JP2012076008A (en) Cleaning cylinder for exhaust gas
JPH11267443A (en) Dry type harm removing device and method for gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110121

R150 Certificate of patent or registration of utility model

Ref document number: 4673780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250