JP4673653B2 - Abnormal discharge prevention method and vacuum apparatus in vacuum apparatus - Google Patents

Abnormal discharge prevention method and vacuum apparatus in vacuum apparatus Download PDF

Info

Publication number
JP4673653B2
JP4673653B2 JP2005097848A JP2005097848A JP4673653B2 JP 4673653 B2 JP4673653 B2 JP 4673653B2 JP 2005097848 A JP2005097848 A JP 2005097848A JP 2005097848 A JP2005097848 A JP 2005097848A JP 4673653 B2 JP4673653 B2 JP 4673653B2
Authority
JP
Japan
Prior art keywords
voltage
rate
change
abnormal discharge
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005097848A
Other languages
Japanese (ja)
Other versions
JP2006274393A (en
Inventor
浩幸 射越
照夫 戸巻
清美 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
Original Assignee
Origin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd filed Critical Origin Electric Co Ltd
Priority to JP2005097848A priority Critical patent/JP4673653B2/en
Publication of JP2006274393A publication Critical patent/JP2006274393A/en
Application granted granted Critical
Publication of JP4673653B2 publication Critical patent/JP4673653B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Description

本発明は、真空中で発生されるプラズマを利用するPVD装置、CVD装置、あるいはスパッタ装置、又は電子ビーム蒸着装置などの真空装置における異常放電発生予防方法及び真空装置に関する。   The present invention relates to a method for preventing abnormal discharge in a vacuum apparatus such as a PVD apparatus, a CVD apparatus, a sputtering apparatus, or an electron beam evaporation apparatus using plasma generated in a vacuum, and a vacuum apparatus.

従来、真空中で発生されるプラズマを利用する真空負荷と、この真空負荷に電力を供給する電源装置とからなるPVD装置、CVD装置、あるいはスパッタ装置、エッチング装置、又は電子ビーム蒸着装置などの真空装置においては、真空負荷が有する電極の電極間インピーダンスが低下したり、あるいは導電性のゴミなどの異物が電極間を短絡したりすることがある。このような場合には、真空負荷の真空中に発生しているプラズマが一時的に異常放電などの異常放電に移行、あるいは電子ビーム蒸着装置では高電位にあるフィラメントとその周囲に位置する電極との間で異常放電が発生することがある。特に、スパッタ装置では異常放電が発生すると、ターゲットが溶融してスパッタリング中の液晶パネルなどの基板材料に欠陥を与え、製品の歩留まりを低下させるという問題がある。また、電子ビーム蒸着装置では放電エネルギーによりフィラメントを断線させる原因となる。   Conventionally, a vacuum such as a PVD apparatus, a CVD apparatus, a sputtering apparatus, an etching apparatus, or an electron beam vapor deposition apparatus that includes a vacuum load that uses plasma generated in a vacuum and a power supply device that supplies power to the vacuum load. In the apparatus, the interelectrode impedance of the electrodes of the vacuum load may decrease, or foreign substances such as conductive dust may short-circuit between the electrodes. In such a case, the plasma generated in the vacuum of the vacuum load temporarily shifts to abnormal discharge such as abnormal discharge, or in the electron beam vapor deposition apparatus, a high potential filament and surrounding electrodes An abnormal discharge may occur between the two. In particular, when an abnormal discharge occurs in the sputtering apparatus, there is a problem that the target melts and gives a defect to a substrate material such as a liquid crystal panel during the sputtering, thereby reducing the product yield. In addition, in the electron beam evaporation apparatus, the filament is broken by the discharge energy.

したがって、このような異常放電の発生を防止しなければならず、既に異常放電防止技術が提案されている(例えば、特許文献1、2参照)。この特許文献1による異常放電防止方法を実現する代表的な真空装置の回路構成を示す図5を用いて概略を説明する。図5において、直流入力電源1の負極と真空負荷2との間にインダクタ3が直列に接続されており、真空負荷2に逆電圧を印加する逆電圧パルス発生回路4が備えられている。逆電圧パルス発生回路4は、IGBT又はMOSFETのような半導体スイッチ素子5と直流入力電源1の電圧と逆極性、つまり正極性の逆電圧源6と半導体スイッチ素子5を選択的に駆動するゲート信号発生回路7とからなる。かかる構成の真空装置にあっては、異常放電を発生しないときも常時、連続的に数十kHzの繰り返し周波数で半導体スイッチ素子5がオンオフを繰り返すことによって、図6(A)に示すような数十kHzの繰り返し周波数の逆電圧パルスを発生している。この逆電圧パルスは、真空負荷2における異常放電の発生原因となるターゲット(不図示)の帯電を中和し、異常放電の発生を未然に防いでいる。   Therefore, the occurrence of such abnormal discharge must be prevented, and an abnormal discharge prevention technique has already been proposed (see, for example, Patent Documents 1 and 2). An outline will be described with reference to FIG. 5 showing a circuit configuration of a typical vacuum apparatus for realizing the abnormal discharge preventing method according to Patent Document 1. In FIG. 5, an inductor 3 is connected in series between the negative electrode of the DC input power source 1 and the vacuum load 2, and a reverse voltage pulse generation circuit 4 that applies a reverse voltage to the vacuum load 2 is provided. The reverse voltage pulse generation circuit 4 is a gate signal that selectively drives the reverse voltage source 6 and the semiconductor switch element 5 having a polarity opposite to that of the voltage of the semiconductor switch element 5 and the DC input power source 1 such as IGBT or MOSFET. And generating circuit 7. In the vacuum apparatus having such a configuration, even when no abnormal discharge occurs, the semiconductor switch element 5 is repeatedly turned on and off continuously at a repetition frequency of several tens of kHz, so that the number shown in FIG. A reverse voltage pulse having a repetition frequency of 10 kHz is generated. This reverse voltage pulse neutralizes the charging of a target (not shown) that causes the occurrence of abnormal discharge in the vacuum load 2 and prevents the occurrence of abnormal discharge.

このような真空装置にあっては、インダクタ3にそれまで流れていた電流をIo、直流入力電源1が出力する直流電圧をV、逆電圧パルスの幅をT、インダクタ3のインダクタンスをLとすると、逆電圧パルスの発生時に、逆電圧源6から、(Io+V×T/L)である電流を供給しなければならず、逆電圧パルスの繰り返し周波数が高いほど逆電圧源6は大電力を必要とする。常時逆電圧パルスを発生して、真空負荷2に繰り返し逆電圧パルスを印加するこの方式は異常放電を未然に防止するという面では優れているが、常時逆電圧パルスを発生しているので、半導体スイッチ素子5の高周波スイッチングによる電力損失、また、図示していないが、半導体スイッチ素子5を過電圧から保護するスナバ回路の電力損失が大きくなるという問題がある。   In such a vacuum apparatus, if the current that has been flowing to the inductor 3 is Io, the DC voltage output from the DC input power supply 1 is V, the width of the reverse voltage pulse is T, and the inductance of the inductor 3 is L. When a reverse voltage pulse is generated, a current of (Io + V × T / L) must be supplied from the reverse voltage source 6, and the reverse voltage source 6 requires more power as the repetition frequency of the reverse voltage pulse increases. And This method of constantly generating a reverse voltage pulse and repeatedly applying the reverse voltage pulse to the vacuum load 2 is superior in terms of preventing abnormal discharge in advance, but since it always generates a reverse voltage pulse, the semiconductor There is a problem that the power loss due to high-frequency switching of the switch element 5 and the power loss of the snubber circuit that protects the semiconductor switch element 5 from an overvoltage increase, although not shown.

かかる電力損失を小さくするために、図5には図示しないが、異常放電を検出する異常放電検出回路を備え、図6(B)に示すように、異常放電が検出されたときのみ半導体スイッチ素子5を数μ秒から数十μ秒の時間幅でオンさせ、逆電圧源6から逆電圧パルスを真空負荷2に印加して、異常放電を消滅させる方法が提案されている(例えば、特許文献2、3参照)。しかし、この方法は異常放電が発生したときにこれを検出して異常放電を消滅させる方法なので、異常放電の発生防止効果は無く、異常放電が発生する度に最小限の異常放電電流が真空負荷2に流れるので、少なからずその悪影響は真空負荷2に生じる。
特表平8−510504公報 特開8−311647号公報 特開2004−48903公報
In order to reduce such power loss, although not shown in FIG. 5, an abnormal discharge detection circuit for detecting abnormal discharge is provided, and as shown in FIG. 6 (B), the semiconductor switch element only when abnormal discharge is detected. A method has been proposed in which 5 is turned on for several microseconds to several tens of microseconds and a reverse voltage pulse is applied to the vacuum load 2 from the reverse voltage source 6 to extinguish the abnormal discharge (for example, Patent Documents). 2 and 3). However, this method detects abnormal discharge when it occurs and extinguishes abnormal discharge.Therefore, there is no effect to prevent abnormal discharge, and every time abnormal discharge occurs, the minimum abnormal discharge current is applied to the vacuum load. As a result, the negative effect is generated in the vacuum load 2.
JP-T 8-510504 JP-A-8-31647 JP 2004-48903 A

このような従来方法の問題点を解決するために、本発明では異常放電の発生の前兆を電圧の変化によって検知し、異常放電の発生の前兆が検出されたときに逆電圧源6から逆電圧パルスを真空負荷に印加することによって、電力損失を低減すると共に、異常放電の発生を未然に防ぐことを課題としている。   In order to solve such problems of the conventional method, in the present invention, a sign of occurrence of abnormal discharge is detected by a change in voltage, and when a sign of occurrence of abnormal discharge is detected, the reverse voltage source 6 applies a reverse voltage. By applying a pulse to a vacuum load, it is an object to reduce power loss and prevent the occurrence of abnormal discharge.

第1の発明は、前記課題を解決するために、真空負荷と、該真空負荷に電力を供給する直流入力電源と、該直流入力電源と前記真空負荷との間に直列に接続されているインダクタと、前記直流入力電源の出力電圧と逆極性のパルス電圧を前記真空負荷に印加する逆極性パルス発生回路とを備える真空装置に発生する異常放電の前兆を検出し、その異常放電の発生を未然に防止する方法であって、前記真空負荷あるいは前記インダクタの電圧の時間に対する変化率(電圧の変化率という)、又はそれらを流れる電流の時間に対する変化率の変化率電流の2次変化率という)を検出し、前記電圧の変化率又は前記電流の2次変化率が、前記電圧の変化率又は前記電流の2次変化率が実際の異常放電発生時の最小の電圧の変化率又は電流の2次変化率に相当する値よりも小さく、かつ異常放電に至らない微小放電の電圧の変化率又は電流の2次変化率よりも大きい設定値以上であるときには、前記真空負荷に逆極性パルスを印加することによって、アーク放電のような異常放電の発生を未然に防ぐことを特徴とする真空装置における異常放電発生予防方法を提供する。 In order to solve the above problems, a first invention provides a vacuum load, a DC input power supply for supplying power to the vacuum load, and an inductor connected in series between the DC input power supply and the vacuum load. And detecting a precursor of abnormal discharge generated in a vacuum apparatus including a reverse polarity pulse generation circuit that applies a pulse voltage having a polarity opposite to that of the output voltage of the DC input power source to the vacuum load. a method for preventing the change rate (that voltage change rate) with respect to time of said vacuum load or voltage of the inductor, or the rate of change of the rate of change with time of the current flowing through them (referred to secondary rate of change of current ) detecting the secondary rate of change of the rate of change or the current of the voltage, the secondary rate of change of the rate of change or the current of the voltage is actually abnormal discharge occurrence of the minimum rate of voltage change or current Secondary change Smaller than the value corresponding to the ratio, when and at higher set value or more than the second-order rate of change of the rate of change or the current of the minute discharge voltage does not reach the abnormal discharge, applies a reverse polarity pulses to the vacuum load Thus, there is provided a method for preventing the occurrence of abnormal discharge in a vacuum apparatus, characterized by preventing the occurrence of abnormal discharge such as arc discharge.

の発明は、真空負荷と、その真空負荷に電力を供給する直流入力電源と、その直流入力電源と前記真空負荷との間に直列に接続されているインダクタと、前記直流入力電源の出力電圧と逆極性のパルス電圧を前記真空負荷に印加する逆極性パルス発生回路とを備える真空装置において、前記真空負荷あるいは前記インダクタの電圧の時間に対する変化率(電圧の変化率という)、又はそれらを流れる電流の時間に対する変化率の変化率電流の2次変化率という)を検出する変化率検出回路と、その変化率検出回路によって検出された前記電圧の変化率又は前記電流の2次変化率が設定値よりも大きいか小さいかを判定し、前記電圧の変化率又は前記電流の2次変化率が前記設定値以上であるときに前記逆極性パルス発生回路に出力信号を発生する電圧判定回路とを備え、前記電圧の変化率又は前記電流の2次変化率が、前記電圧の変化率又は前記電流の2次変化率が実際の異常放電発生時の最小の電圧の変化率又は電流の2次変化率に相当する値よりも小さく、かつ異常放電に至らない微小放電の電圧の変化率又は電流の2次変化率よりも大きい設定値以上であるときには、前記逆極性パルス発生回路が前記真空負荷に逆極性パルスを印加することによって、アーク放電のような異常放電の発生を未然に防ぐことを特徴とする真空装置を提供する。 A second invention includes a vacuum load, a DC input power supply for supplying power to the vacuum load, an inductor connected in series between the DC input power supply and the vacuum load, and an output of the DC input power supply in a vacuum apparatus and a reverse polarity pulse generating circuit for applying a pulse voltage of the voltage polarity opposite to the vacuum load, the rate of change with time of the vacuum load or voltage of the inductor (that the change rate of the voltage), or their A rate-of-change detection circuit that detects a rate of change of the rate of change of current with respect to time (referred to as a secondary rate of change of current ), and the rate of change of the voltage or the rate of secondary change of the current detected by the rate-of-change detector There determines whether larger or smaller than the set value, the output signal to the opposite polarity pulse generating circuit when the secondary rate of change of the rate of change or the current of the voltage is above the set value And a voltage determination circuit that generates, secondary rate of change of the rate of change or the current of the voltage, a change in the minimum voltage at the secondary change rate of the actual occurrence of abnormal discharge rate of change or the current of the voltage smaller than the value corresponding to the secondary rate of change of rate or current to and when it is abnormal rate of change of the discharge micro discharge voltage does not reach or current secondary change rate larger set value or more than of the reverse There is provided a vacuum apparatus characterized in that an abnormal discharge such as arc discharge is prevented in advance by applying a reverse polarity pulse to the vacuum load by a polarity pulse generating circuit.

の発明は、前記第の発明において、前記真空負荷あるいは前記インダクタの電圧の前記変化率を検出する前記変化率検出回路は、前記真空負荷又は前記インダクタに並列接続されたコンデンサと該コンデンサに直列接続された電流検出手段とからなることを特徴とする真空装置を提供する。 According to a third invention, in the second invention, the change rate detection circuit for detecting the change rate of the voltage of the vacuum load or the inductor includes a capacitor connected in parallel to the vacuum load or the inductor and the capacitor And a current detecting means connected in series to each other.

の発明は、前記第2又は第3の発明において、前記判定回路は、前記電圧の変化率を示す検出量を充電するコンデンサと、前記設定値に対応する基準電圧を与える基準電圧源と、前記コンデンサの電圧と前記基準電圧源の前記基準電圧とを比較して、前記コンデンサの電圧が前記基準電圧以上になるときに変化する出力信号を出力する比較回路とからなることを特徴とする真空装置を提供する。 According to a fourth invention, in the second or third invention, the determination circuit includes a capacitor that charges a detection amount that indicates a change rate of the voltage, and a reference voltage source that supplies a reference voltage corresponding to the set value. And a comparison circuit that compares the voltage of the capacitor with the reference voltage of the reference voltage source and outputs an output signal that changes when the voltage of the capacitor becomes equal to or higher than the reference voltage. A vacuum device is provided.

の発明は、前記第2から第4のいずれか1つの発明において、前記電圧判定回路は、前記電圧の変化率を示す検出量を充電するコンデンサと、第1の基準電圧を有する第1の基準電圧源と、前記第1の基準電圧と前記コンデンサの充電電圧とを比較して、後者が前者を超えるときに出力信号を生ずる第1の比較回路と、前記第1の基準電圧よりも大きな値の第2の基準電圧を有する第2の基準電圧源と、前記第2の基準電圧と前記コンデンサの充電電圧とを比較して、後者が前者を超えるときに出力信号を生ずる第2の比較回路とからなることを特徴とする真空装置を提供する。 According to a fifth invention, in any one of the second to fourth inventions, the voltage determination circuit includes a capacitor that charges a detection amount indicating a rate of change of the voltage, and a first reference voltage. A first reference voltage source, a first comparison circuit that compares the first reference voltage and a charging voltage of the capacitor and generates an output signal when the latter exceeds the former, and the first reference voltage A second reference voltage source having a second reference voltage having a greater value than the second reference voltage, and comparing the second reference voltage and the charging voltage of the capacitor to generate an output signal when the latter exceeds the former. And a comparison circuit.

の発明は、前記第2から第5のいずれか1つの発明において、前記異常放電に至らない微小放電の発生時に比べて、前記異常放電の発生時にはパルス幅の広い前記逆電圧パルスを前記真空負荷に印加することを特徴とする真空装置を提供する。 According to a sixth aspect of the invention, in any one of the second to fifth aspects, the reverse voltage pulse having a wider pulse width is generated when the abnormal discharge occurs than when the minute discharge that does not lead to the abnormal discharge occurs. A vacuum apparatus is provided that is applied to the vacuum load.

前記第1、第の発明によれば、電力損失を低減すると共に、異常放電の発生を大幅に少なくすることができる。また、真空負荷に逆電圧を印加する回数を大幅に少なくでき、影響を軽減できる。 According to the first and second inventions, power loss can be reduced and the occurrence of abnormal discharge can be greatly reduced. In addition, the number of times the reverse voltage is applied to the vacuum load can be greatly reduced, and the influence can be reduced.

前記第の発明によれば、前記第の発明で得られる効果の他に、簡単な回路構成の電圧変化率検出回路を提案する。 According to the third aspect of the invention, in addition to the effects obtained by the second aspect of the invention, a voltage change rate detection circuit having a simple circuit configuration is proposed.

前記第の発明によれば、前記第の発明で得られる効果の他に、逆電圧パルスの印加による電力損失を低減できる。 According to the fourth invention, in addition to the effects obtained by the second invention, power loss due to application of a reverse voltage pulse can be reduced.

前記第の発明によれば、前記第の発明で得られる効果の他に、微小放電の発生と異常放電の発生とを区別できる簡単な回路構成の電圧判定回路を提案する。 According to the fifth aspect of the invention, in addition to the effects obtained by the second aspect of the invention, a voltage determination circuit having a simple circuit configuration capable of distinguishing between occurrence of minute discharge and occurrence of abnormal discharge is proposed.

前記第の発明によれば、電力損失を更に低減すると共に、異常放電の発生をほとんど防止することができる。また、真空負荷に逆電圧を印加する回数を大幅に少なくできると共にその印加時間を更に短くできるので、より一層影響を軽減できる。 According to the sixth aspect of the invention, it is possible to further reduce power loss and to prevent occurrence of abnormal discharge. In addition, since the number of times of applying the reverse voltage to the vacuum load can be greatly reduced and the application time can be further shortened, the influence can be further reduced.

[実施形態1]
先ず、図1と図2とを用いて本発明を実施するための実施形態1の真空装置について説明する。図1は、本発明の第1の実施形態である真空装置100を示す図である。図2(A)は本発明の放電防止機能を有しない場合の真空装置の電圧状態を説明するための図であり、図2(B)は本発明の放電防止機能を有する真空装置の電圧状態を説明するための図である。図1において、直流入力電源装置1は単相又は三相の商用交流電圧を整流して直流電力に変換する整流装置及びその整流電圧を平滑化する平滑回路などからなる一般的な直流電源である。直流入力電源1と真空負荷2との間にはインダクタ3が直列に接続されている。直流入力電源1はMOSFETなどを用いたいわゆるスイッチングレギュレータ電源でもよい。
[Embodiment 1]
First, the vacuum apparatus of Embodiment 1 for implementing this invention using FIG. 1 and FIG. 2 is demonstrated. FIG. 1 is a diagram showing a vacuum apparatus 100 according to the first embodiment of the present invention. FIG. 2A is a diagram for explaining the voltage state of the vacuum apparatus when the discharge prevention function of the present invention is not provided, and FIG. 2B is the voltage state of the vacuum apparatus having the discharge prevention function of the present invention. It is a figure for demonstrating. In FIG. 1, a DC input power supply 1 is a general DC power supply comprising a rectifier that rectifies a single-phase or three-phase commercial AC voltage and converts it into DC power, and a smoothing circuit that smoothes the rectified voltage. . An inductor 3 is connected in series between the DC input power source 1 and the vacuum load 2. The DC input power source 1 may be a so-called switching regulator power source using a MOSFET or the like.

真空負荷2は、PVD装置、CVD装置、スパッタ装置、エッチング装置、電子ビーム蒸着装置などの真空装置における真空中でプラズマを生成する真空部であり、インダクタ3は負荷電流を連続させる働きと、アーク放電のような異常放電(以下、異常放電という。)発生時に急激に電流が増大するのを抑制する働きとを行う。また従来と同様に、真空負荷2に跨って逆電圧パルス発生回路4が接続されている。逆電圧パルス発生回路4は、互いに直列接続されたIGBT又はMOSFETのような半導体スイッチ素子5と、直流入力電源1とは逆極性の逆電圧源6と、半導体スイッチ素子5をオンオフ駆動するゲート信号を出力するゲート信号発生回路7とから構成されている。半導体スイッチ素子5がオンする度に、逆電圧パルス発生回路4は逆電圧パルスを真空負荷2に印加する。   The vacuum load 2 is a vacuum unit that generates plasma in vacuum in a vacuum apparatus such as a PVD apparatus, a CVD apparatus, a sputtering apparatus, an etching apparatus, or an electron beam evaporation apparatus. It functions to suppress a sudden increase in current when an abnormal discharge such as a discharge (hereinafter referred to as an abnormal discharge) occurs. As in the prior art, a reverse voltage pulse generation circuit 4 is connected across the vacuum load 2. The reverse voltage pulse generation circuit 4 includes a semiconductor switch element 5 such as an IGBT or a MOSFET connected in series to each other, a reverse voltage source 6 having a polarity opposite to that of the DC input power supply 1, and a gate signal for driving the semiconductor switch element 5 on and off. And a gate signal generating circuit 7 for outputting. Each time the semiconductor switch element 5 is turned on, the reverse voltage pulse generation circuit 4 applies a reverse voltage pulse to the vacuum load 2.

この実施形態1では、真空負荷2の電圧降下率を検出する電圧降下率検出回路8が真空負荷2に跨って接続されている。電圧降下率検出回路8は、互いに直列接続されているコンデンサ9と、電流制限抵抗10と、検出抵抗11と、検出抵抗11に並列接続されてその両端の電圧を制限するための定電圧素子12とからなる。なお、後述する実施形態2ではインダクタの電圧の増加率を検出する電圧増加率検出回路を備えるが、電圧降下率検出回路と電圧増加率検出回路の双方を指すときには電圧変化率検出回路という。真空負荷2の電圧降下率を示す検出電圧は、放電防止用ダイオード13を通して電圧判定回路14のコンデンサ15に充電される。電圧判定回路14は、コンデンサ15の他に、基準電圧源16、コンデンサ15の電圧と基準電圧源16の基準電圧とを比較して、前者が後者を越えるときに出力信号を出力する比較回路17、コンデンサ15に並列に接続された放電用抵抗18とからなる。この実施形態1におけるコンデンサ15と放電用抵抗18とで形成される時定数は、比較回路17が安定に比較動作を行える最小の時間が好ましく、例えば5μs程度である。放電用抵抗18は、例えば比較回路17が動作した後に所定時間にオンしてコンデンサ15の充電電荷を放電するFETのような半導体素子と、これを駆動する駆動回路とに替えることもできる。   In the first embodiment, a voltage drop rate detection circuit 8 that detects the voltage drop rate of the vacuum load 2 is connected across the vacuum load 2. The voltage drop rate detection circuit 8 includes a capacitor 9 connected in series with each other, a current limiting resistor 10, a detection resistor 11, and a constant voltage element 12 connected in parallel to the detection resistor 11 to limit the voltage at both ends thereof. It consists of. In the second embodiment to be described later, a voltage increase rate detection circuit that detects an increase rate of the voltage of the inductor is provided, but when referring to both the voltage drop rate detection circuit and the voltage increase rate detection circuit, it is referred to as a voltage change rate detection circuit. The detection voltage indicating the voltage drop rate of the vacuum load 2 is charged to the capacitor 15 of the voltage determination circuit 14 through the discharge preventing diode 13. In addition to the capacitor 15, the voltage determination circuit 14 compares the reference voltage source 16, the voltage of the capacitor 15 with the reference voltage of the reference voltage source 16, and outputs an output signal when the former exceeds the latter. And a discharging resistor 18 connected in parallel to the capacitor 15. The time constant formed by the capacitor 15 and the discharging resistor 18 in the first embodiment is preferably the minimum time during which the comparison circuit 17 can stably perform the comparison operation, and is, for example, about 5 μs. For example, the discharging resistor 18 may be replaced with a semiconductor element such as an FET that is turned on at a predetermined time after the comparison circuit 17 is operated to discharge the charge of the capacitor 15 and a driving circuit that drives the semiconductor element.

次に、真空装置100の動作説明を行う。真空負荷2がマグネトロンスパッタである場合、プラズマ運転中において、異常放電が発生しにくい安定状態では、真空負荷2の電圧Vo、つまりプラズマ電圧は磁石の移動に伴う緩やかな電圧変動があるだけである。したがって、電圧降下率検出回路8が検出する真空負荷2の電圧の変化率、この場合には降下率は小さく、基準電圧源16の基準電圧に達しないので、比較回路17はゲート信号発生回路7を駆動し得る出力信号を発生しない。この状態が続く限り、ゲート信号発生回路7は駆動信号を半導体スイッチ素子5に与えないので、真空負荷2に逆電圧パルスは印加されない。したがって、異常放電が発生しにくい安定状態では、半導体スイッチ素子5がスイッチングしないので、スイッチング損失は発生せず、真空負荷2においても不要な逆電力の消費が行われない。   Next, the operation of the vacuum apparatus 100 will be described. When the vacuum load 2 is magnetron sputtering, the voltage Vo of the vacuum load 2, that is, the plasma voltage, only has a gradual voltage fluctuation accompanying the movement of the magnet in a stable state in which abnormal discharge hardly occurs during plasma operation. . Accordingly, the rate of change of the voltage of the vacuum load 2 detected by the voltage drop rate detection circuit 8, in this case, the drop rate is small and does not reach the reference voltage of the reference voltage source 16. An output signal that can drive the signal is not generated. As long as this state continues, the gate signal generation circuit 7 does not apply a drive signal to the semiconductor switch element 5, and therefore no reverse voltage pulse is applied to the vacuum load 2. Therefore, in a stable state in which abnormal discharge is unlikely to occur, the semiconductor switch element 5 does not switch, so that switching loss does not occur and unnecessary reverse power is not consumed even in the vacuum load 2.

しかし、真空負荷2のターゲットが帯電することなどによって異常放電が発生し易い状態になると、異常放電には移行しない微小放電が発生し、この微小放電で電流が増加しようとすると、インダクタ3が存在するために電流の増加は真空負荷2の電圧Voを短時間降下させる。図2(A)においてA1、A2、A3で示すように、微小放電が発生するときに真空負荷2の電圧Voが短時間降下する。このように微小放電によって真空負荷2の電圧降下が生じる状態は、真空負荷2がプラズマ状態から異常放電状態に移行し易い不安定な状態であり、もしインダクタ3が存在しなければ、異常放電に移行する場合が多い。
図2では、スパッタ電源の出力極性が負のため、−Voと表示している。
However, when the target of the vacuum load 2 is easily charged and abnormal discharge is likely to occur, a small discharge that does not shift to the abnormal discharge occurs. If the current is increased by this small discharge, the inductor 3 is present. In order to do so, the increase in current causes the voltage Vo of the vacuum load 2 to drop for a short time. As shown by A1, A2, and A3 in FIG. 2A, the voltage Vo of the vacuum load 2 drops for a short time when a minute discharge occurs. The state in which the voltage drop of the vacuum load 2 is caused by such a minute discharge is an unstable state in which the vacuum load 2 easily shifts from the plasma state to the abnormal discharge state. If the inductor 3 does not exist, abnormal discharge occurs. Often migrated.
In FIG. 2, −Vo is displayed because the output polarity of the sputtering power source is negative.

本発明では、異常放電状態に移行し易い不安定な状態を、異常放電発生の前兆現象として捉え、実施形態1ではこの前兆現象を真空負荷2の電圧の降下率として電圧降下率検出回路8が検出し、その電圧降下率を示す検出電圧が基準値、つまり設定値よりも高ければ、電圧判定回路14が異常放電に移行する危険性が高いと判定して、逆電圧パルス発生回路4を動作させ、逆電圧パルスを真空負荷2に印加する。真空装置2の図示しないターゲットは、逆電圧パルスによって帯電が中和され、異常放電に移行することが無くなる。また、異常放電に移行してしまった場合にも、真空負荷2の電圧降下率は最大になるので、逆電圧パルス発生回路4が動作し、逆電圧パルスを真空負荷2に印加することによって、異常放電を消滅させる。   In the present invention, an unstable state that easily shifts to an abnormal discharge state is regarded as a precursor phenomenon of occurrence of abnormal discharge. In the first embodiment, the voltage drop rate detection circuit 8 uses the precursor phenomenon as a voltage drop rate of the vacuum load 2. If the detected voltage indicating the voltage drop rate is higher than a reference value, that is, a set value, the voltage determination circuit 14 determines that the risk of shifting to abnormal discharge is high, and operates the reverse voltage pulse generation circuit 4 The reverse voltage pulse is applied to the vacuum load 2. The target (not shown) of the vacuum apparatus 2 is neutralized by the reverse voltage pulse and does not shift to abnormal discharge. In addition, even when the abnormal discharge has occurred, the voltage drop rate of the vacuum load 2 is maximized, so that the reverse voltage pulse generation circuit 4 operates and the reverse voltage pulse is applied to the vacuum load 2 by Disappear abnormal discharge.

異常放電の発生を予防する詳細な動作説明を行う。図2(A)に示すように、A1、A2、A3で示す微小放電の発生によって、真空負荷2の電圧Voが短時間降下すると、直流入力電源1の電圧によって図示極性に充電されていたコンデンサ9の電圧は、電流制限抵抗10、検出抵抗11及び真空負荷2を通して放電される。この放電電流のピーク値は真空負荷2の電圧Voの電圧降下率に比例する。図2(A)の微小放電A1、A3では、真空負荷2の電圧Voの電圧降下率が大きく、これに伴いコンデンサ9の放電電流のピーク値が大きいために、電圧判定回路14のコンデンサ15の充電電圧が基準電圧源16の基準電圧よりも高くなり、比較回路17が逆電圧パルス発生回路4のゲート信号発生回路7に出力信号を与えることによって、半導体スイッチ素子5が所定時間オンし、図2(B)に示すような逆電圧パルスPを真空負荷2に印加する。   Detailed operation for preventing the occurrence of abnormal discharge will be described. As shown in FIG. 2 (A), when the voltage Vo of the vacuum load 2 drops for a short time due to the occurrence of minute discharges indicated by A1, A2 and A3, the capacitor charged with the polarity shown in the figure by the voltage of the DC input power supply 1 The voltage 9 is discharged through the current limiting resistor 10, the detection resistor 11 and the vacuum load 2. The peak value of this discharge current is proportional to the voltage drop rate of the voltage Vo of the vacuum load 2. In the minute discharges A1 and A3 in FIG. 2A, the voltage drop rate of the voltage Vo of the vacuum load 2 is large, and the peak value of the discharge current of the capacitor 9 is accordingly large. When the charging voltage becomes higher than the reference voltage of the reference voltage source 16 and the comparison circuit 17 gives an output signal to the gate signal generation circuit 7 of the reverse voltage pulse generation circuit 4, the semiconductor switch element 5 is turned on for a predetermined time. A reverse voltage pulse P as shown in 2 (B) is applied to the vacuum load 2.

しかし、図2(A)の微小放電A2では、真空負荷2の電圧Voの電圧降下率が小さく、これに伴いコンデンサ9の放電電流のピーク値が微小放電A1、A3に比べて小さく、電圧判定回路14のコンデンサ15の充電電圧が基準電圧源16の基準電圧に達しないために、比較回路17が逆電圧パルス発生回路4のゲート信号発生回路7に出力信号を与えない。したがって、半導体スイッチ素子5はオンせず、図2(B)に示すように逆電圧パルスが発生しないので、逆電圧パルスは真空負荷2に印加されない。基準電圧源16の基準電圧、つまり設定値は、種々の実験結果から求めた値であって、実際の異常放電発生時における最小の電圧降下率に相当する電圧値よりも小さな電圧値に設定されている。   However, in the minute discharge A2 in FIG. 2A, the voltage drop rate of the voltage Vo of the vacuum load 2 is small, and accordingly, the peak value of the discharge current of the capacitor 9 is smaller than that of the minute discharges A1 and A3. Since the charging voltage of the capacitor 15 of the circuit 14 does not reach the reference voltage of the reference voltage source 16, the comparison circuit 17 does not give an output signal to the gate signal generation circuit 7 of the reverse voltage pulse generation circuit 4. Therefore, the semiconductor switch element 5 is not turned on and no reverse voltage pulse is generated as shown in FIG. 2B, so that the reverse voltage pulse is not applied to the vacuum load 2. The reference voltage of the reference voltage source 16, that is, the set value, is a value obtained from various experimental results, and is set to a voltage value smaller than the voltage value corresponding to the minimum voltage drop rate when an actual abnormal discharge occurs. ing.

次に具体例について説明する。図1において、電圧降下率検出回路8のコンデンサ9の容量Cが1nF、検出抵抗11の抵抗値が100Ωであるとし、微小放電A1、A3の場合には、真空負荷2の電圧が500Vから5μsの期間tに400Vまで降下したとすると、電圧降下率による検出電流iは、i=C(V1−V2)/tの式から、0.02Aとなる。ここで電流制限抵抗10を1kΩとすれば、真空負荷2の電圧が500Vのときに、電流制限抵抗10で決まる最大の放電電流は0.5Aであり、0.02Aの電流よりも25倍と大きくなるから、検出電圧を考えるときに電流制限抵抗10の存在を無視することができる。検出電流iによる検出抵抗11の検出電圧Vsは、Vs=0.02×100から、2Vとなる。この検出電圧は放電防止用ダイオード13を通して電圧判定回路14のコンデンサ15をピーク充電する。簡単のためにダイオード13の順方向電圧降下を無視すれば充電電圧は2Vとなる。その充電電圧は、コンデンサ15と放電用抵抗18とで決まる時定数で数μs程度(例えば5μs)の時間保持される。比較回路17はその保持された検出電圧と基準電圧源16の基準電圧とを比較する。ここで、基準電圧源16の基準電圧は、前述したように、実際の異常放電発生時の最小の電圧降下率に相当する電圧値よりも小さな値に設定されている。   Next, a specific example will be described. In FIG. 1, it is assumed that the capacitance C of the capacitor 9 of the voltage drop rate detection circuit 8 is 1 nF, the resistance value of the detection resistor 11 is 100Ω, and the voltage of the vacuum load 2 is 500 V to 5 μs in the case of minute discharges A1 and A3. Assuming that the voltage drops to 400 V during the period t, the detected current i due to the voltage drop rate is 0.02 A from the equation i = C (V1−V2) / t. If the current limiting resistor 10 is 1 kΩ, the maximum discharge current determined by the current limiting resistor 10 is 0.5 A when the voltage of the vacuum load 2 is 500 V, which is 25 times the current of 0.02 A. Therefore, the presence of the current limiting resistor 10 can be ignored when considering the detection voltage. The detection voltage Vs of the detection resistor 11 by the detection current i is 2V from Vs = 0.02 × 100. The detected voltage peaks charge the capacitor 15 of the voltage determination circuit 14 through the discharge preventing diode 13. For simplicity, if the forward voltage drop of the diode 13 is ignored, the charging voltage is 2V. The charging voltage is held for a time of about several μs (for example, 5 μs) with a time constant determined by the capacitor 15 and the discharging resistor 18. The comparison circuit 17 compares the held detection voltage with the reference voltage of the reference voltage source 16. Here, as described above, the reference voltage of the reference voltage source 16 is set to a value smaller than the voltage value corresponding to the minimum voltage drop rate when the actual abnormal discharge occurs.

基準電圧源16の基準電圧が、例えば1.9Vに設定されているとすれば、検出電圧(2V)は基準電圧(1.9V)を越えるので、比較回路17は出力信号を逆電圧パルス発生回路4のゲート信号発生回路7に与える。つまり、電圧判定回路14は異常放電発生の前兆であると判定して、逆電圧パルス発生回路4を動作させるための信号を与える。この場合、ゲート信号発生回路7は、例えば半導体スイッチ素子5を10μsの時間オンさせる。したがって、10μsのパルス幅をもつ逆電圧パルスが真空負荷2に印加される。電圧判定回路14のコンデンサ15の電圧は、放電用抵抗18により放電され、次の電圧降下率の検出に備える。   If the reference voltage of the reference voltage source 16 is set to 1.9V, for example, the detection voltage (2V) exceeds the reference voltage (1.9V), so the comparison circuit 17 generates the reverse voltage pulse as the output signal. The signal is supplied to the gate signal generation circuit 7 of the circuit 4. That is, the voltage determination circuit 14 determines that it is a precursor of the occurrence of abnormal discharge, and provides a signal for operating the reverse voltage pulse generation circuit 4. In this case, the gate signal generation circuit 7 turns on the semiconductor switch element 5 for 10 μs, for example. Therefore, a reverse voltage pulse having a pulse width of 10 μs is applied to the vacuum load 2. The voltage of the capacitor 15 of the voltage determination circuit 14 is discharged by the discharging resistor 18 to prepare for detection of the next voltage drop rate.

次に、微小放電A2の場合には、真空負荷2の電圧が500Vから5μsの期間tに450Vまで降下したとすると、検出電流iは、i=C(V1−V2)/tの式から、0.01Aとなる。この検出電流iによる検出抵抗11の検出電圧Vsは、Vs=0.01×100から、1Vとなる。したがって、電圧判定回路14のコンデンサ15の充電電圧のピーク値はほぼ1Vになり、この電圧は基準電圧源16の基準電圧(1.9V)よりも低いので、比較回路17は出力信号を逆電圧パルス発生回路4のゲート信号発生回路7に与えない。つまり、電圧判定回路14は異常放電発生の危険性がないと判定して、逆電圧パルス発生回路4を動作させない。したがって、微小放電A2の発生時には真空負荷2に逆電圧パルスは印加されない。   Next, in the case of the minute discharge A2, if the voltage of the vacuum load 2 drops from 450V to 450V in a period t of 500 μs, the detected current i is obtained from the equation i = C (V1−V2) / t: 0.01A. The detection voltage Vs of the detection resistor 11 by the detection current i is 1 V from Vs = 0.01 × 100. Accordingly, the peak value of the charging voltage of the capacitor 15 of the voltage determination circuit 14 is approximately 1 V, and this voltage is lower than the reference voltage (1.9 V) of the reference voltage source 16, so that the comparison circuit 17 converts the output signal to a reverse voltage. It is not given to the gate signal generation circuit 7 of the pulse generation circuit 4. That is, the voltage determination circuit 14 determines that there is no risk of occurrence of abnormal discharge, and does not operate the reverse voltage pulse generation circuit 4. Therefore, the reverse voltage pulse is not applied to the vacuum load 2 when the minute discharge A2 is generated.

前述のような異常放電の発生予防を行っていても、基準電圧源16の基準電圧は異常放電の発生予防と異常放電への移行との兼ね合いで決められるので、異常放電に移行する場合も起こり得る。図2(A)で、異常放電の発生をA4で示す。異常放電の発生時には、異常放電を短絡と見做せるから、電圧降下率は微小放電の場合よりも急峻になる。この場合は、電圧降下率検出回路8のコンデンサ9の放電電流iは、電流制限用抵抗10で決まる。異常放電A4の発生時には、真空負荷2の最初の電圧(V1)が500Vから1μsの時間tでほぼ0Vの電圧(V2)まで降下したとすると、前述から電流制限用抵抗10の抵抗値(R1)は1kΩであるので、検出電流iは、V1/R1から0.5Aとなる。電圧降下率で算出すると、検出電流iは、i=C(V1−V2)/tの式から0.5Aとなる。したがって、検出電圧Vsは、Vs=0.5×100となり、この式から50Vとなる。   Even if the occurrence of abnormal discharge is prevented as described above, the reference voltage of the reference voltage source 16 is determined by the balance between the occurrence of abnormal discharge and the shift to abnormal discharge. obtain. In FIG. 2A, the occurrence of abnormal discharge is indicated by A4. When abnormal discharge occurs, the abnormal discharge can be regarded as a short circuit, so the voltage drop rate is steeper than that in the case of minute discharge. In this case, the discharge current i of the capacitor 9 of the voltage drop rate detection circuit 8 is determined by the current limiting resistor 10. When the abnormal discharge A4 occurs, assuming that the initial voltage (V1) of the vacuum load 2 drops from 500V to a voltage (V2) of approximately 0V at time t of 1 μs, the resistance value (R1) of the current limiting resistor 10 is as described above. ) Is 1 kΩ, the detection current i is 0.5A from V1 / R1. When calculated by the voltage drop rate, the detected current i is 0.5 A from the equation i = C (V1−V2) / t. Therefore, the detection voltage Vs is Vs = 0.5 × 100, and is 50 V from this equation.

異常放電A4の発生時には、異常放電の発生の前兆を示す微小放電の場合に比べて、このように大幅に大きな検出電圧又はこの前後の高い検出電圧を呈するので、検出電圧の最大値を定電圧素子12によって例えば15V程度に制限する。前述したように、基準電圧源16の基準電圧は1.9Vに設定されているから、この制限された検出電圧15Vは基準電圧1.9Vよりも当然に高いので、比較回路17は出力信号を逆電圧パルス発生回路4のゲート信号発生回路7に与える。したがって、異常放電A4の発生時にも、微小放電A1、A3と同様に、半導体スイッチ素子5がオンして逆電圧パルスPを真空負荷2に印加し、異常放電A4を消弧させる。前述から明らかなように、実施形態1では異常放電に移行する可能性のある微小放電が発生したときと異常放電が発生したときだけ、逆電圧パルスを発生させているので、異常放電の発生に至る可能性を最小限に抑え、しかも逆電圧パルスの発生を最小限に抑制できるので、電力損失を低減することができる。   When the abnormal discharge A4 is generated, the detection voltage is set to a constant voltage because the detection voltage is significantly larger than that of the minute discharge indicating the occurrence of the abnormal discharge or a high detection voltage around this. For example, the voltage is limited to about 15 V by the element 12. As described above, since the reference voltage of the reference voltage source 16 is set to 1.9V, the limited detection voltage 15V is naturally higher than the reference voltage 1.9V, so that the comparison circuit 17 outputs the output signal. This is applied to the gate signal generation circuit 7 of the reverse voltage pulse generation circuit 4. Accordingly, even when the abnormal discharge A4 occurs, the semiconductor switch element 5 is turned on and the reverse voltage pulse P is applied to the vacuum load 2 to extinguish the abnormal discharge A4, similarly to the minute discharges A1 and A3. As is clear from the foregoing, in the first embodiment, the reverse voltage pulse is generated only when a minute discharge that may shift to an abnormal discharge occurs and when an abnormal discharge occurs. Therefore, the generation of the reverse voltage pulse can be suppressed to the minimum, and the power loss can be reduced.

[実施形態2]
図2、図3によって本発明にかかる第2の実施形態について説明する。図3は第2の真空装置200の回路図を示す。図3において、図1で示された記号と同一の記号は同じ名称の部材を示すものとする。この実施形態2の真空装置200が第1の真空装置100と異なる点は、インダクタ3の両端に、電圧降下率検出回路8とほぼ同一の回路構成を有する電圧増加率検出回路8’を備えているところにあり、他は真空装置1の構成と同じであり、動作も同様であるので、主として真空装置100と異なる点について説明する。
[Embodiment 2]
A second embodiment according to the present invention will be described with reference to FIGS. FIG. 3 shows a circuit diagram of the second vacuum apparatus 200. In FIG. 3, the same symbols as those shown in FIG. 1 indicate members having the same names. The vacuum device 200 of the second embodiment is different from the first vacuum device 100 in that a voltage increase rate detection circuit 8 ′ having substantially the same circuit configuration as the voltage drop rate detection circuit 8 is provided at both ends of the inductor 3. The rest of the configuration is the same as the configuration of the vacuum apparatus 1 and the operation is also the same. Therefore, differences from the vacuum apparatus 100 will be mainly described.

図2(A)に示すように、A1、A2、A3で示す微小放電の発生することにより、インダクタ3を流れる電流が微小放電A1、A2、A3の大きさに従って増大する。インダクタ3を流れる電流の増加率に従ってインダクタ3の電圧の増加率も上昇する。これに伴って、電圧増加率検出回路8’のコンデンサ9、電流制限抵抗10、検出抵抗11を流れる電流の増加率も大きくなり、検出抵抗11の両端にはインダクタ3を流れる電流の増加率に相当する増加率で上昇する電圧が検出される。その検出電圧は放電防止用ダイオード13を通して電圧判定回路14のコンデンサ15に充電される。   As shown in FIG. 2A, the occurrence of the minute discharges indicated by A1, A2, and A3 increases the current flowing through the inductor 3 in accordance with the magnitudes of the minute discharges A1, A2, and A3. As the current flowing through the inductor 3 increases, the voltage increase rate of the inductor 3 also increases. Along with this, the increasing rate of the current flowing through the capacitor 9, the current limiting resistor 10, and the detecting resistor 11 of the voltage increase rate detecting circuit 8 ′ also increases, and the increasing rate of the current flowing through the inductor 3 at both ends of the detecting resistor 11 is increased. A voltage rising at a corresponding increase rate is detected. The detected voltage is charged in the capacitor 15 of the voltage determination circuit 14 through the discharge preventing diode 13.

以後は前述した真空装置100の場合と同様に、コンデンサ15の充電電圧が基準電圧源16の基準電圧以上になるときだけ、比較回路17が出力信号を逆電圧パルス発生回路4のゲート信号発生回路7に与えることによって、半導体スイッチ素子5が所定時間オンし、図2(B)に示すような逆電圧パルスPを真空負荷2に印加する。異常放電に移行してしまった場合も、真空装置100と同様な動作を行うので、説明を省略する。この実施形態でも、異常放電に移行する可能性のある微小放電が発生したとき、及び異常放電が発生したときだけ、逆電圧パルスを発生させているので、異常放電の発生に至る可能性を最小限に抑え、しかも逆電圧パルスの発生も最小限に抑制できるので、電力損失を低減することができる。なお、実施形態2におけるゲート信号発生回路7は電位が浮いているので、図示しないが、パルストランス又はホトカプラのような絶縁手段を備えている。   Thereafter, as in the case of the vacuum device 100 described above, the comparison circuit 17 outputs the output signal to the gate signal generation circuit of the reverse voltage pulse generation circuit 4 only when the charging voltage of the capacitor 15 becomes equal to or higher than the reference voltage of the reference voltage source 16. 7, the semiconductor switch element 5 is turned on for a predetermined time, and a reverse voltage pulse P as shown in FIG. 2B is applied to the vacuum load 2. Since the operation similar to that of the vacuum apparatus 100 is performed even when the abnormal discharge is started, the description is omitted. Even in this embodiment, since a reverse voltage pulse is generated only when a minute discharge that may shift to an abnormal discharge occurs and when an abnormal discharge occurs, the possibility of causing an abnormal discharge is minimized. Further, the generation of the reverse voltage pulse can be suppressed to the minimum, and the power loss can be reduced. The gate signal generation circuit 7 according to the second embodiment has an insulating means such as a pulse transformer or a photocoupler (not shown) because the potential is floating.

[実施形態3]
図2、図4によって本発明にかかる第3の実施形態について説明する。図4は第3の真空装置300の回路図を示す。図4において、図1、図3で示された記号と同一の記号は同じ名称の部材を示すものとする。この実施形態3の真空装置300の特徴は、微小放電と異常放電とを区別して、微小放電の場合には異常放電の場合に比べてパルス幅の小さい逆電圧パルスを真空負荷に印加して、小さな逆電力で異常放電に移行するのを防止するところにある。
[Embodiment 3]
A third embodiment according to the present invention will be described with reference to FIGS. FIG. 4 shows a circuit diagram of the third vacuum apparatus 300. In FIG. 4, the same symbols as those shown in FIGS. 1 and 3 indicate members having the same names. The feature of the vacuum device 300 of the third embodiment is that the minute discharge is distinguished from the abnormal discharge, and in the case of the minute discharge, a reverse voltage pulse having a smaller pulse width than that of the abnormal discharge is applied to the vacuum load, This is to prevent the transition to abnormal discharge with a small reverse power.

電圧降下率検出回路8は図1で述べたものと同様であるので特に説明はしない。実施形態3の真空装置300が真空装置100と異なる主な点は、電圧判定回路14と逆電圧パルス発生回路4とにある。電圧判定回路14は、電圧降下率検出回路8により検出された電圧変化率が微小放電によるものか、あるいは異常放電によるものかを判定する。そして、逆電圧パルス発生回路4は、電圧降下率検出回路8により検出された電圧変化率が微小放電によるものであるときにはパルス幅の狭い逆電圧パルスを発生し、電圧降下率検出回路8により検出された電圧変化率が異常放電によるものであるときには微小放電の場合に比べてパルス幅の広い逆電圧パルスを発生する。   The voltage drop rate detection circuit 8 is the same as that described with reference to FIG. The main difference between the vacuum apparatus 300 of the third embodiment and the vacuum apparatus 100 is in the voltage determination circuit 14 and the reverse voltage pulse generation circuit 4. The voltage determination circuit 14 determines whether the voltage change rate detected by the voltage drop rate detection circuit 8 is due to minute discharge or abnormal discharge. The reverse voltage pulse generation circuit 4 generates a reverse voltage pulse with a narrow pulse width when the voltage change rate detected by the voltage drop rate detection circuit 8 is due to a minute discharge, and the voltage drop rate detection circuit 8 detects the reverse voltage pulse. When the applied voltage change rate is due to abnormal discharge, a reverse voltage pulse having a wider pulse width than that in the case of minute discharge is generated.

電圧判定回路14は、前述実施形態と同様のコンデンサ15と放電用抵抗18の他に、第1の基準電圧源16A、第1の比較回路17A、第2の基準電圧源16B、第2の比較回路17Bからなる。第1の基準電圧源16Aは、真空装置100の基準電圧源16と同様に設定された基準電圧V1を有し、基準電圧V1は実際の異常放電発生時の電圧降下率に相当する電圧値よりも小さな電圧に設定されている。第2の基準電圧源16Bは、実際のアーク電圧発生時の最小の電圧降下率に相当する電圧値又はその電圧値よりも小さな値であって、基準電圧V1よりも大きな基準電圧V2を有する。前にも述べたように、異常放電の発生時には、異常放電の発生の前兆を示す微小放電の場合に比べて、大幅に大きな検出電圧又はこの前後の高い検出電圧を呈する、逆に言えば、異常放電の発生の前兆を示す微小放電の発生時には、異常放電の発生時の場合に比べて、大幅に小さな検出電圧を呈するだけであるので、基準電圧V2と基準電圧V1との間には異常放電と微小放電とを区別するのに十分な電圧差を設けることができる。この実施形態では、例えば、基準電圧V1は1.9Vであり、基準電圧V2は10Vであるとする。   The voltage determination circuit 14 includes a first reference voltage source 16A, a first comparison circuit 17A, a second reference voltage source 16B, and a second comparison, in addition to the capacitor 15 and the discharge resistor 18 similar to those in the above-described embodiment. It consists of a circuit 17B. The first reference voltage source 16A has a reference voltage V1 set in the same manner as the reference voltage source 16 of the vacuum apparatus 100. The reference voltage V1 is based on a voltage value corresponding to a voltage drop rate when an actual abnormal discharge occurs. Even a small voltage is set. The second reference voltage source 16B has a reference voltage V2 that is a voltage value corresponding to the minimum voltage drop rate when an actual arc voltage is generated or a value smaller than the voltage value and larger than the reference voltage V1. As mentioned before, when an abnormal discharge occurs, it presents a significantly larger detection voltage or a higher detection voltage around this compared to the case of a minute discharge indicating a sign of the occurrence of an abnormal discharge. When a micro discharge indicating a sign of occurrence of abnormal discharge occurs, only a significantly smaller detection voltage is exhibited than when abnormal discharge occurs, so an abnormality is present between the reference voltage V2 and the reference voltage V1. A sufficient voltage difference can be provided to distinguish between discharge and microdischarge. In this embodiment, for example, it is assumed that the reference voltage V1 is 1.9V and the reference voltage V2 is 10V.

逆電圧パルス発生回路4は、半導体スイッチ素子5と逆電圧源6との他に、第1の比較回路17Aからの出力信号を受けて駆動信号を発生する第1のゲート信号発生回路7A、第2の比較回路17Bからの出力信号を受けて駆動信号を発生する第2のゲート信号発生回路7B、及び第1のゲート信号発生回路7Aと第2のゲート信号発生回路7Bとの出力信号をOR論理して一方の駆動信号を半導体スイッチ素子5に印加するORゲート回路19とからなる。ただし、このORゲート回路19は省略しても構わない。   The reverse voltage pulse generation circuit 4 includes, in addition to the semiconductor switch element 5 and the reverse voltage source 6, a first gate signal generation circuit 7A for receiving a signal output from the first comparison circuit 17A and generating a drive signal. The second gate signal generation circuit 7B that generates a drive signal in response to the output signal from the second comparison circuit 17B, and ORs the output signals of the first gate signal generation circuit 7A and the second gate signal generation circuit 7B. The OR gate circuit 19 logically applies one drive signal to the semiconductor switch element 5. However, the OR gate circuit 19 may be omitted.

次に、真空装置300の動作説明を行う。電圧降下率検出回路8の動作は真空装置100と同じであるので説明を省略する。図2で示したように、異常放電発生の前兆を示す微小放電A1、A3が発生し、真空負荷2の電圧降下率を示すコンデンサ15の充電電圧が2Vまで上昇したとすると、その充電電圧2Vは第1の基準電圧源16Aの基準電圧V1(例えば1.9V)を越えるので、第1の比較回路17Aは出力信号を第1のゲート信号発生回路7Aに与える。これに伴い、第1のゲート信号発生回路7Aは予め決められているパルス幅の駆動信号を発生する。第1のゲート信号発生回路7Aが発生する駆動信号のパルス幅は、実施形態1における真空装置100のゲート信号発生回路7が発生する駆動信号のパルス幅よりも狭く設定されている。第1のゲート信号発生回路7Aが発生するパルス幅の駆動信号によって、半導体スイッチ素子5がオンし、図2(B)の鎖線で示すように、狭いパルス幅の逆電圧パルスを真空負荷2に印加する。この逆電圧パルスは微小放電が異常放電に移行しないように、微小放電の段階で消滅させることができる程度の逆電力を有すればよいので、発生した異常放電を消滅させる逆電圧パルスに比べてパルス幅が狭くても良い。   Next, the operation of the vacuum apparatus 300 will be described. Since the operation of the voltage drop rate detection circuit 8 is the same as that of the vacuum apparatus 100, description thereof is omitted. As shown in FIG. 2, if the small discharges A1 and A3 indicating the precursor of abnormal discharge occur and the charging voltage of the capacitor 15 indicating the voltage drop rate of the vacuum load 2 rises to 2V, the charging voltage 2V Exceeds the reference voltage V1 (for example, 1.9 V) of the first reference voltage source 16A, the first comparison circuit 17A provides an output signal to the first gate signal generation circuit 7A. Accordingly, the first gate signal generation circuit 7A generates a drive signal having a predetermined pulse width. The pulse width of the drive signal generated by the first gate signal generation circuit 7A is set to be narrower than the pulse width of the drive signal generated by the gate signal generation circuit 7 of the vacuum apparatus 100 in the first embodiment. The semiconductor switch element 5 is turned on by the pulse width drive signal generated by the first gate signal generation circuit 7A, and a reverse voltage pulse having a narrow pulse width is applied to the vacuum load 2 as shown by a chain line in FIG. Apply. This reverse voltage pulse only needs to have a reverse power that can be extinguished at the stage of the micro discharge so that the micro discharge does not shift to the abnormal discharge, so compared with the reverse voltage pulse that extinguishes the generated abnormal discharge. The pulse width may be narrow.

他方、異常放電発生の前兆を示す微小放電A1、A3の発生時には、真空負荷2の電圧降下率を示すコンデンサ15の充電電圧が、例えば2Vまで上昇するだけであり、この電圧は第2の基準電圧源16Bの基準電圧V2(例えば10V)に達することがないので、第2の比較回路17Bは出力信号を発生せず、したがって、第2のゲート信号発生回路7Bは駆動信号を発生しない。   On the other hand, when the micro discharges A1 and A3 indicating the occurrence of abnormal discharge are generated, the charging voltage of the capacitor 15 indicating the voltage drop rate of the vacuum load 2 only rises to 2 V, for example, and this voltage is the second reference. Since the reference voltage V2 (for example, 10V) of the voltage source 16B is not reached, the second comparison circuit 17B does not generate an output signal, and therefore the second gate signal generation circuit 7B does not generate a drive signal.

次に、図2(A)で示すように、異常放電(A4)が発生すると、前述したように異常放電を短絡と見做せるから、電圧降下率は微小放電の場合よりも急峻になる。この場合は、電圧降下率検出回路8のコンデンサ9の放電電流iは、電流制限用抵抗10で決まり、真空装置100の例を適用すると、異常放電A4の発生時には、検出抵抗11の両端に現出する検出電圧Vsは約50Vとなる。この電圧は定電圧素子12によって15V程度に制限されるものの、電圧判定回路14のコンデンサ15はピーク充電されるので、コンデンサ15の充電電圧は15V程度まで上昇する。したがって、先ず、コンデンサ15の充電電圧が第1の基準電圧源16Aの基準電圧V1(例えば1.9V)を越えた時点で、第1の比較回路17Aが出力信号を第1のゲート信号発生回路7Aに与え、次に、コンデンサ15の充電電圧が第2の基準電圧源16Bの基準電圧V2(例えば10V)を越えた時点で第2の比較回路17Bが出力信号を第2のゲート信号発生回路7Bに与える。   Next, as shown in FIG. 2A, when the abnormal discharge (A4) occurs, the abnormal discharge can be regarded as a short circuit as described above, and thus the voltage drop rate becomes steeper than that in the case of the minute discharge. In this case, the discharge current i of the capacitor 9 of the voltage drop rate detection circuit 8 is determined by the current limiting resistor 10, and when the example of the vacuum device 100 is applied, when the abnormal discharge A4 occurs, the discharge current i is present at both ends of the detection resistor 11. The detection voltage Vs to be output is about 50V. Although this voltage is limited to about 15V by the constant voltage element 12, since the capacitor 15 of the voltage determination circuit 14 is peak-charged, the charging voltage of the capacitor 15 rises to about 15V. Therefore, first, when the charging voltage of the capacitor 15 exceeds the reference voltage V1 (for example, 1.9 V) of the first reference voltage source 16A, the first comparison circuit 17A outputs the output signal to the first gate signal generation circuit. 7A, and then when the charging voltage of the capacitor 15 exceeds the reference voltage V2 (for example, 10V) of the second reference voltage source 16B, the second comparison circuit 17B outputs the output signal to the second gate signal generation circuit. Give to 7B.

第2のゲート信号発生回路7Bは、図示しないが、第1のゲート信号発生回路7Aが発生する駆動信号のパルス幅に比べて大きなパルス幅を有する駆動信号を発生する。この駆動信号のパルス幅は、図2(B)において実線で示す逆電圧パルスのパルス幅に相当し、異常放電を確実に消弧できる逆電力を与えることのできる値以上である。ORゲート回路19は、先ず、第1のゲート信号発生回路7Aからの駆動信号を通過させ、少し遅れて第2のゲート信号発生回路7Bからの駆動信号を通過させる。例えば、ORゲート回路19が2個のダイオードからなるOR回路であっても、第2のゲート信号発生回路7Bからの駆動信号の電圧レベルを第1のゲート信号発生回路7Aからの駆動信号よりも高く設定しておけば、第1のゲート信号発生回路7Aからの駆動信号よりも第2のゲート信号発生回路7Bからの駆動信号が優先して半導体スイッチ5のゲートに印加される。   Although not shown, the second gate signal generation circuit 7B generates a drive signal having a pulse width larger than the pulse width of the drive signal generated by the first gate signal generation circuit 7A. The pulse width of this drive signal corresponds to the pulse width of the reverse voltage pulse indicated by the solid line in FIG. 2B, and is equal to or greater than a value that can provide reverse power that can reliably extinguish an abnormal discharge. The OR gate circuit 19 first passes the drive signal from the first gate signal generation circuit 7A, and passes the drive signal from the second gate signal generation circuit 7B with a slight delay. For example, even if the OR gate circuit 19 is an OR circuit composed of two diodes, the voltage level of the drive signal from the second gate signal generation circuit 7B is set to be higher than that of the drive signal from the first gate signal generation circuit 7A. If set high, the drive signal from the second gate signal generation circuit 7B is applied to the gate of the semiconductor switch 5 with priority over the drive signal from the first gate signal generation circuit 7A.

この実施形態3では、異常放電の前兆とされる大きさの微小放電の発生に対してはパルス幅の小さな逆電圧パルスを真空負荷2に印加し、また、異常放電の発生時には異常放電の発生と判定される前に、コンデンサ15の充電電圧が第1の基準電圧源16Aの基準電圧V1(例えば1.9V)を越えた時点で、第1の比較回路17Aが出力信号を第1のゲート信号発生回路7Aに与え、第1のゲート信号発生回路7Aはその時点で駆動信号を半導体スイッチ素子5に印加して駆動を始め、その後で第2のゲート信号発生回路7Bからの駆動信号が半導体スイッチ素子5に印加されるので、異常放電の発生に瞬時に対応でき、異常放電を最短の時点で消弧することができる。この真空装置300では、真空装置100、200に比べてより電力損失を低減することができる。   In the third embodiment, a reverse voltage pulse having a small pulse width is applied to the vacuum load 2 for the occurrence of a micro discharge having a magnitude that is a precursor of the abnormal discharge, and when the abnormal discharge occurs, the abnormal discharge is generated. When the charging voltage of the capacitor 15 exceeds the reference voltage V1 (for example, 1.9 V) of the first reference voltage source 16A before the determination is made, the first comparison circuit 17A outputs the output signal to the first gate. The first gate signal generation circuit 7A applies the drive signal to the semiconductor switch element 5 to start driving at that time, and then the drive signal from the second gate signal generation circuit 7B is applied to the semiconductor. Since it is applied to the switch element 5, it is possible to instantly cope with the occurrence of abnormal discharge and extinguish the abnormal discharge at the shortest point. In the vacuum apparatus 300, power loss can be further reduced as compared with the vacuum apparatuses 100 and 200.

なお、以上の実施形態では、電圧降下率検出回路8又は電圧増加率検出回路8’のような電圧変化率検出回路として簡単な回路構成のものを例示したが、電圧変化率検出回路は真空負荷2の電圧又はインダクタ3の電圧をある時間幅、例えば5μs毎にサンプリングし、直ぐ前のサンプリング電圧と直ぐ後のサンプリング電圧との差をとって、その差の電圧をサンプリング時間(5μs)で除算することにより、1μs当たりの電圧変化率を求めてもよい。更に、直ぐ前のサンプリングで得られた電圧変化率と直ぐ後のサンプリングで得られた電圧変化率との差を求め、サンプリング時間で除算して求めた2次の変化率に相当する電圧を検出値とすれば、より高速で微小放電の消滅、異常放電の消弧が可能となる。電流制限用抵抗10は必ずしも必要でない。   In the above embodiment, the voltage change rate detection circuit such as the voltage drop rate detection circuit 8 or the voltage increase rate detection circuit 8 ′ is exemplified as a simple circuit configuration, but the voltage change rate detection circuit is a vacuum load. 2 voltage or inductor 3 voltage is sampled at a certain time width, for example, every 5 μs, the difference between the immediately preceding sampling voltage and the immediately following sampling voltage is taken, and the difference voltage is divided by the sampling time (5 μs). By doing so, you may obtain | require the voltage change rate per microsecond. Further, the difference between the voltage change rate obtained by the immediately preceding sampling and the voltage change rate obtained by the immediately following sampling is obtained, and a voltage corresponding to the secondary change rate obtained by dividing by the sampling time is detected. With this value, it is possible to extinguish a minute discharge and extinguish an abnormal discharge at a higher speed. The current limiting resistor 10 is not always necessary.

また、切り替え回路17、17A、17Bとスイッチ5の制御極間の電位が異なるため、ゲート信号発生回路7、7A、7B、もしくはORゲート回路19の内部にパルストランス、ホトカプラなどの信号絶縁手段を必要とすることは言うまでもない。   Further, since the potentials between the control electrodes of the switching circuits 17, 17A, 17B and the switch 5 are different, signal insulation means such as a pulse transformer and a photocoupler are provided in the gate signal generation circuit 7, 7A, 7B or the OR gate circuit 19. Needless to say, you need it.

[実施形態4]
次に図示しないが、真空負荷、インダクタを通して流れる電流を検出して、異常放電の前兆を検出する例について説明する。図1に示す回路において、インダクタ3を流れる電流の変化によってインダクタ3の電圧が変化し、真空負荷2の電圧が変化することについては前述した。したがって、インダクタ3のインダクタンスをL、インダクタ3の電圧をv、流れる電流をiとすると、v=L・di/dtで表され、インダクタ3の電圧vの変化率は、dv/dt=L・(di/dt)となる。この式から明かなように、インダクタ3の電圧vの変化率は、インダクタ3を流れる電流の変化率の変化率、つまり2次変化率(2次微分)となる。前記実施形態では、電流の変化率を用いて異常放電の前兆を検出すると、前兆の検出が遅れ、好ましくないと述べたが、電流の2次変化率(2次微分)を用いれば、電圧の変化率で異常放電の前兆を検出する場合と同様な速度で検出を行うことが可能である。
[Embodiment 4]
Next, although not illustrated, an example will be described in which a current flowing through a vacuum load and an inductor is detected to detect a precursor of abnormal discharge. In the circuit shown in FIG. 1, the voltage of the inductor 3 is changed by the change of the current flowing through the inductor 3, and the voltage of the vacuum load 2 is changed as described above. Therefore, when the inductance of the inductor 3 is L, the voltage of the inductor 3 is v, and the flowing current is i, v = L · di / dt, and the rate of change of the voltage v of the inductor 3 is dv / dt = L · (Di / dt) 2 As is apparent from this equation, the rate of change of the voltage v of the inductor 3 is the rate of change of the rate of change of the current flowing through the inductor 3, that is, the secondary rate of change (secondary differentiation). In the embodiment described above, detection of a precursor of abnormal discharge using the rate of change of current is not preferable because detection of the precursor is delayed. However, if a secondary change rate (secondary derivative) of current is used, It is possible to perform detection at the same speed as when detecting a precursor of abnormal discharge with the rate of change.

電流の2次変化率(2次微分)は、図示しない簡単な構成のマイクロコンピュータを用いて電流検出値を処理することにより容易に求められる。電流検出値をある時間幅、例えば5μs毎にサンプリングし、直ぐ前のサンプリング電流検出値と直ぐ後のサンプリング電流検出値との差をとって、その差の電流検出値をサンプリング時間(5μs)で除算することにより、単位時間当たりの電流変化率を求め、さらにサンプリング時間(5μs)で除算することにより、単位時間当たりの電流の2次変化率(2次微分)を求めることができる。あるいは微分回路とその微分出力信号を微分する微分回路からなる2次微分回路によっても2次変化率(2次微分)を求めることができる。電流の2次変化率が求められたら、その電流の2次変化率を比較手段で基準値と比較して、電流の2次変化率が予め決めた設定値を超えた時点で、図1における逆電圧パルス発生回路4を動作させ、逆電圧パルスを真空負荷2に印加することによって、異常放電の発生を予防することができる。ここで、前記設定値は、前記2次変化率が実際の異常放電発生時の最小の2次変化率に相当する値よりも小さく、かつ異常放電に至らない微小放電の2次変化率よりも大きくなるように設定されている。なお、マイクロコンピュータを用いることによって、装置の起動後における真空負荷の状態の変化などに対応して、予め設定値をプログラミングしておくことができるので、より一層、好ましい異常放電の発生予防を行うことが可能である。   The secondary change rate (secondary differential) of the current can be easily obtained by processing the detected current value using a microcomputer having a simple configuration (not shown). The current detection value is sampled at a certain time width, for example, every 5 μs, and the difference between the immediately preceding sampling current detection value and the immediately following sampling current detection value is taken, and the difference current detection value is determined by the sampling time (5 μs). By dividing, the current change rate per unit time can be obtained, and by dividing by the sampling time (5 μs), the secondary change rate (secondary derivative) of the current per unit time can be obtained. Alternatively, the secondary change rate (secondary differentiation) can also be obtained by a secondary differentiation circuit comprising a differentiation circuit and a differentiation circuit that differentiates the differential output signal. When the secondary change rate of the current is obtained, the secondary change rate of the current is compared with a reference value by the comparison means, and when the secondary change rate of the current exceeds a predetermined set value, By operating the reverse voltage pulse generation circuit 4 and applying the reverse voltage pulse to the vacuum load 2, the occurrence of abnormal discharge can be prevented. Here, the set value is smaller than the value corresponding to the minimum secondary change rate when the actual abnormal discharge occurs, and is smaller than the secondary change rate of the minute discharge that does not lead to the abnormal discharge. It is set to be large. By using a microcomputer, a preset value can be programmed in advance in response to a change in the state of the vacuum load after the start of the apparatus, so that even more preferable abnormal discharge can be prevented. It is possible.

本発明の1実施形態である真空装置100を示す図である。It is a figure which shows the vacuum apparatus 100 which is one Embodiment of this invention. 本発明の真空装置を説明するための波形図である。It is a wave form diagram for demonstrating the vacuum apparatus of this invention. 本発明の他の1実施形態である放電用電源装置200を示す図である。It is a figure which shows the power supply device 200 for discharge which is other one Embodiment of this invention. 本発明の他の1実施形態である放電用電源装置300を示す図である。It is a figure which shows the power supply device 300 for discharge which is other one Embodiment of this invention. 従来の真空装置の一例を示す図である。It is a figure which shows an example of the conventional vacuum apparatus. 従来の真空装置の一例を説明するための図である。It is a figure for demonstrating an example of the conventional vacuum apparatus.

符号の説明Explanation of symbols

1・・・入力直流電源
2・・・真空負荷
3・・・インダクタ
4・・・逆電圧パルス発生回路
5・・・半導体スイッチ素子
6・・・逆電圧源
7・・・ゲート信号発生回路
8・・・電圧降下率検出回路(電圧変化率検出回路)
8’・・・電圧増加率検出回路(電圧変化率検出回路)
9・・・電圧変化率検出用のコンデンサ
10・・・電流制限抵抗
11・・・検出抵抗(検出手段)
12・・・定電圧素子
13・・・放電防止用ダイオード
14・・・電圧判定回路
15・・・コンデンサ
16・・・基準電圧源
17・・・比較回路
18・・・放電用抵抗
19・・・ORゲート回路
DESCRIPTION OF SYMBOLS 1 ... Input DC power source 2 ... Vacuum load 3 ... Inductor 4 ... Reverse voltage pulse generation circuit 5 ... Semiconductor switch element 6 ... Reverse voltage source 7 ... Gate signal generation circuit 8 ... Voltage drop rate detection circuit (voltage change rate detection circuit)
8 '... voltage increase rate detection circuit (voltage change rate detection circuit)
DESCRIPTION OF SYMBOLS 9 ... Voltage change rate detection capacitor 10 ... Current limiting resistor 11 ... Detection resistor (detection means)
DESCRIPTION OF SYMBOLS 12 ... Constant voltage element 13 ... Discharge prevention diode 14 ... Voltage judgment circuit 15 ... Capacitor 16 ... Reference voltage source 17 ... Comparison circuit 18 ... Discharge resistance 19 ...・ OR gate circuit

Claims (6)

真空負荷と、該真空負荷に電力を供給する直流入力電源と、該直流入力電源と前記真空負荷との間に直列に接続されているインダクタと、前記直流入力電源の出力電圧と逆極性のパルス電圧を前記真空負荷に印加する逆極性パルス発生回路とを備える真空装置に発生する異常放電の前兆を検出し、その異常放電の発生を未然に防止する方法であって、
前記真空負荷あるいは前記インダクタの電圧の時間に対する変化率(電圧の変化率という)、又はそれらを流れる電流の時間に対する変化率の変化率電流の2次変化率という)を検出し、
前記電圧の変化率又は前記電流の2次変化率が、前記電圧の変化率又は前記電流の2次変化率が実際の異常放電発生時の最小の電圧の変化率又は電流の2次変化率に相当する値よりも小さく、かつ異常放電に至らない微小放電の電圧の変化率又は電流の2次変化率よりも大きい設定値以上であるときには、前記真空負荷に逆極性パルスを印加することによって、アーク放電のような異常放電の発生を未然に防ぐことを特徴とする真空装置における異常放電発生予防方法。
A vacuum load; a DC input power supply for supplying power to the vacuum load; an inductor connected in series between the DC input power supply and the vacuum load; and a pulse having a polarity opposite to the output voltage of the DC input power supply A method for detecting a precursor of abnormal discharge generated in a vacuum device including a reverse polarity pulse generation circuit for applying a voltage to the vacuum load and preventing the occurrence of the abnormal discharge in advance,
The vacuum load or the rate of change with time of the voltage of the inductor (that the change rate of the voltage), or to detect the rate of change of the rate of change (that secondary rate of change of current) with respect to time of the current flowing through them,
The rate of change of voltage or the rate of secondary change of current is the rate of change of voltage or the rate of secondary change of current becomes the minimum rate of change of voltage or the rate of secondary change of current when an actual abnormal discharge occurs. Apply a reverse polarity pulse to the vacuum load when it is greater than a set value that is less than the corresponding value and greater than the rate of change of voltage or current secondary change of minute discharge that does not lead to abnormal discharge A method for preventing the occurrence of abnormal discharge in a vacuum apparatus, wherein the occurrence of abnormal discharge such as arc discharge is prevented in advance.
真空負荷と、該真空負荷に電力を供給する直流入力電源と、該直流入力電源と前記真空負荷との間に直列に接続されているインダクタと、前記直流入力電源の出力電圧と逆極性のパルス電圧を前記真空負荷に印加する逆極性パルス発生回路とを備える真空装置において、
前記真空負荷あるいは前記インダクタの電圧の時間に対する変化率(電圧の変化率という)、又はそれらを流れる電流の時間に対する変化率の変化率電流の2次変化率という)を検出する変化率検出回路と、
該変化率検出回路によって検出された前記電圧の変化率又は前記電流の2次変化率が設定値よりも大きいか小さいかを判定し、前記電圧の変化率又は前記電流の2次変化率が前記設定値以上であるときに前記逆極性パルス発生回路に出力信号を発生する電圧判定回路と、
を備え、
前記電圧の変化率又は前記電流の2次変化率が、前記電圧の変化率又は前記電流の2次変化率が実際の異常放電発生時の最小の電圧の変化率又は電流の2次変化率に相当する値よりも小さく、かつ異常放電に至らない微小放電の電圧の変化率又は電流の2次変化率よりも大きい設定値以上であるときには、前記逆極性パルス発生回路が前記真空負荷に逆極性パルスを印加することによって、アーク放電のような異常放電の発生を未然に防ぐことを特徴とする真空装置。
A vacuum load; a DC input power supply for supplying power to the vacuum load; an inductor connected in series between the DC input power supply and the vacuum load; and a pulse having a polarity opposite to the output voltage of the DC input power supply In a vacuum apparatus comprising a reverse polarity pulse generation circuit for applying a voltage to the vacuum load,
Change rate detection circuit for detecting a rate of change with time of the vacuum load or voltage of the inductor (voltage of rate of change), or rate of change of the rate of change with time of the current flowing through them (referred to secondary rate of change of current) When,
Determining whether the secondary rate of change of the rate of change or the current of the voltage detected by said change rate detecting circuit is greater than the set value smaller, secondary rate of change of the rate of change or the current of the voltage the A voltage determination circuit that generates an output signal to the reverse polarity pulse generation circuit when the value is equal to or greater than a set value;
With
The voltage change rate or the current secondary change rate is changed to the voltage change rate or the current secondary change rate which is the minimum voltage change rate or current secondary change rate when an actual abnormal discharge occurs. When the voltage change rate or the secondary change rate of the current of the minute discharge that is smaller than the corresponding value and does not lead to abnormal discharge is equal to or greater than the set value , the reverse polarity pulse generation circuit is connected to the vacuum load. A vacuum apparatus characterized by preventing occurrence of abnormal discharge such as arc discharge by applying a reverse polarity pulse.
請求項において、
前記真空負荷あるいは前記インダクタの電圧の前記変化率を検出する前記変化率検出回路は、前記真空負荷又は前記インダクタに並列接続されたコンデンサと該コンデンサに直列接続された電流検出手段とからなることを特徴とする真空装置。
In claim 2 ,
The rate-of-change detection circuit for detecting the rate of change of the voltage of the vacuum load or the inductor comprises a capacitor connected in parallel to the vacuum load or the inductor and a current detecting means connected in series to the capacitor. Features vacuum equipment.
請求項2又は請求項3において、
前記判定回路は、
前記電圧の変化率を示す検出量を充電するコンデンサと、
前記設定値に対応する基準電圧を与える基準電圧源と、
前記コンデンサの電圧と前記基準電圧源の前記基準電圧とを比較して、前記コンデンサの電圧が前記基準電圧以上になるときに変化する出力信号を出力する比較回路と、
からなることを特徴とする真空装置。
In claim 2 or claim 3 ,
The determination circuit includes:
A capacitor for charging a detection amount indicating the rate of change of the voltage ;
A reference voltage source for providing a reference voltage corresponding to the set value;
A comparison circuit that compares the voltage of the capacitor with the reference voltage of the reference voltage source and outputs an output signal that changes when the voltage of the capacitor becomes equal to or higher than the reference voltage;
A vacuum apparatus comprising:
請求項2から請求項4のいずれか1項において、
前記電圧判定回路は、
前記電圧の変化率を示す検出量を充電するコンデンサと、
第1の基準電圧を有する第1の基準電圧源と、
前記第1の基準電圧と前記コンデンサの充電電圧とを比較して、後者が前者を超えるときに出力信号を生ずる第1の比較回路と、
前記第1の基準電圧よりも大きな値の第2の基準電圧を有する第2の基準電圧源と、
前記第2の基準電圧と前記コンデンサの充電電圧とを比較して、後者が前者を超えるときに出力信号を生ずる第2の比較回路と、
からなることを特徴とする真空装置。
In any one of Claims 2-4 ,
The voltage determination circuit includes:
A capacitor for charging a detection amount indicating the rate of change of the voltage ;
A first reference voltage source having a first reference voltage;
A first comparison circuit that compares the first reference voltage with the charging voltage of the capacitor and produces an output signal when the latter exceeds the former;
A second reference voltage source having a second reference voltage having a value greater than the first reference voltage;
A second comparison circuit that compares the second reference voltage with the charging voltage of the capacitor and produces an output signal when the latter exceeds the former;
A vacuum apparatus comprising:
請求項2から請求項5のいずれか1項において、
前記異常放電に至らない微小放電の発生時に比べて、前記異常放電の発生時にはパルス幅の広い前記逆電圧パルスを前記真空負荷に印加することを特徴とする真空装置。
In any one of Claims 2-5,
A vacuum apparatus, wherein the reverse voltage pulse having a wider pulse width is applied to the vacuum load when the abnormal discharge occurs than when the minute discharge that does not lead to the abnormal discharge occurs.
JP2005097848A 2005-03-30 2005-03-30 Abnormal discharge prevention method and vacuum apparatus in vacuum apparatus Expired - Fee Related JP4673653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005097848A JP4673653B2 (en) 2005-03-30 2005-03-30 Abnormal discharge prevention method and vacuum apparatus in vacuum apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005097848A JP4673653B2 (en) 2005-03-30 2005-03-30 Abnormal discharge prevention method and vacuum apparatus in vacuum apparatus

Publications (2)

Publication Number Publication Date
JP2006274393A JP2006274393A (en) 2006-10-12
JP4673653B2 true JP4673653B2 (en) 2011-04-20

Family

ID=37209425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005097848A Expired - Fee Related JP4673653B2 (en) 2005-03-30 2005-03-30 Abnormal discharge prevention method and vacuum apparatus in vacuum apparatus

Country Status (1)

Country Link
JP (1) JP4673653B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311338A (en) * 2007-06-13 2008-12-25 Harada Sangyo Kk Vacuum treatment apparatus and abnormal discharge precognition device used therefor, and control method of vacuum treatment apparatus
DE102010031568B4 (en) 2010-07-20 2014-12-11 TRUMPF Hüttinger GmbH + Co. KG Arclöschanordnung and method for erasing arcs
JP2012033409A (en) 2010-07-30 2012-02-16 Origin Electric Co Ltd Reversed-polarity pulse generating circuit for dc plasma, and dc plasma power supply device
CN117630727B (en) * 2023-12-06 2024-08-20 北京市中环博业环境工程技术有限公司 Method, device, equipment and medium for monitoring spark-free discharge of electrostatic dust collection power supply

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08311647A (en) * 1995-05-17 1996-11-26 Ulvac Japan Ltd Abnormal discharge quenching device for vacuum equipment
JPH0971863A (en) * 1995-09-05 1997-03-18 Shindengen Electric Mfg Co Ltd Power source for sputtering device
JP2002235170A (en) * 2001-02-05 2002-08-23 Shibaura Mechatronics Corp Power source device for sputtering
JP2004048903A (en) * 2002-07-11 2004-02-12 Shibaura Mechatronics Corp Power source, power source for sputter and sputtering device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08311647A (en) * 1995-05-17 1996-11-26 Ulvac Japan Ltd Abnormal discharge quenching device for vacuum equipment
JPH0971863A (en) * 1995-09-05 1997-03-18 Shindengen Electric Mfg Co Ltd Power source for sputtering device
JP2002235170A (en) * 2001-02-05 2002-08-23 Shibaura Mechatronics Corp Power source device for sputtering
JP2004048903A (en) * 2002-07-11 2004-02-12 Shibaura Mechatronics Corp Power source, power source for sputter and sputtering device

Also Published As

Publication number Publication date
JP2006274393A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
KR101421483B1 (en) Direct current power supply device
KR101190138B1 (en) Bipolar pulse power source and power source device formed by a plurality of bipolar pulse power sources
JP4589264B2 (en) Arc suppression device and AC voltage gas discharge excitation device
US8471484B2 (en) Reversed-polarity pulse generating circuit for direct current plasma and direct current plasma power supply unit
EP2999106B1 (en) Voltage-type dc power supply and control method of voltage-type dc power supply
WO2018092855A1 (en) Drive circuit and impedance matching device
EP2431119B1 (en) Alternating-current welding method and alternating-current welding device
JP4673653B2 (en) Abnormal discharge prevention method and vacuum apparatus in vacuum apparatus
WO2003103348A1 (en) Discharging power source, sputtering power source, and sputtering device
KR101373268B1 (en) Power-supply device
JP4841949B2 (en) Vacuum device and power supply method for vacuum device
JP4805205B2 (en) Power supply for discharge load
US8968535B2 (en) Ion beam source
JP4468078B2 (en) Abnormal discharge suppression device for vacuum equipment
JP2005318714A (en) Power supply device
JP6880436B2 (en) Welding power supply
JP5788669B2 (en) Apparatus for sputtering ion beam source and non-conductive material
JP4218864B2 (en) Discharge power supply, sputtering power supply, and sputtering apparatus
JP3660016B2 (en) Abnormal discharge suppression / extinguishing device for vacuum equipment
KR20180015367A (en) Switching Control circuit of pulse power supply
JP2764355B2 (en) EDM control device
WO2012042754A1 (en) Welding control method for welding device provided with inverter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070607

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees