JP4468078B2 - Abnormal discharge suppression device for vacuum equipment - Google Patents

Abnormal discharge suppression device for vacuum equipment Download PDF

Info

Publication number
JP4468078B2
JP4468078B2 JP2004168809A JP2004168809A JP4468078B2 JP 4468078 B2 JP4468078 B2 JP 4468078B2 JP 2004168809 A JP2004168809 A JP 2004168809A JP 2004168809 A JP2004168809 A JP 2004168809A JP 4468078 B2 JP4468078 B2 JP 4468078B2
Authority
JP
Japan
Prior art keywords
semiconductor switch
short
circuit
resonance
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004168809A
Other languages
Japanese (ja)
Other versions
JP2005347212A (en
Inventor
清美 渡辺
照夫 戸巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
Original Assignee
Origin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd filed Critical Origin Electric Co Ltd
Priority to JP2004168809A priority Critical patent/JP4468078B2/en
Publication of JP2005347212A publication Critical patent/JP2005347212A/en
Application granted granted Critical
Publication of JP4468078B2 publication Critical patent/JP4468078B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Physical Vapour Deposition (AREA)
  • Control Of Voltage And Current In General (AREA)

Description

この発明は、真空中で発生させたプラズマを利用するスパッタ装置又はエッチング装置、あるいは電子ビーム蒸着装置などにおける真空装置で発生する異常放電を抑制するのに有効な異常放電抑制装置に関する。   The present invention relates to an abnormal discharge suppressing device effective in suppressing abnormal discharge generated in a vacuum apparatus in a sputtering apparatus or etching apparatus using plasma generated in vacuum, or an electron beam evaporation apparatus.

従来、インバータ回路と、その出力を整流する整流器と、その出力を平滑するフィルタとを備えた直流電源に接続されるスパッタリング装置、あるいはエッチング装置、又は電子ビーム蒸着装置などのような真空を利用した真空装置においては、その真空装置の電極のインピーダンスが低下したり、あるいは導電性のごみなどが電極間を短絡することがあり、これら現象によって、プラズマの一時的な異常放電が発生したり、あるいは電子ビーム蒸着装置では高電位にあるフィラメントとその周囲に位置する電極との間で異常放電が生じる場合がある。
特に、スパッタリング装置においては、異常放電が発生すると、スパッタリング中の液晶などの基板材料に欠陥を与え、製品の歩留まりが大幅に低下するという問題が生ずる。また、電子ビーム蒸着装置では、異常放電による放電エネルギーによって、フィラメントが断線するといった問題が発生する。
Conventionally, a sputtering device connected to a DC power source provided with an inverter circuit, a rectifier that rectifies the output, and a filter that smoothes the output, or a vacuum such as an etching device or an electron beam evaporation device is used. In a vacuum device, the impedance of the electrode of the vacuum device may decrease, or conductive dust may short-circuit between the electrodes, and these phenomena may cause a temporary abnormal discharge of plasma, or In an electron beam evaporation apparatus, abnormal discharge may occur between a filament at a high potential and an electrode positioned around the filament.
In particular, in the sputtering apparatus, when an abnormal discharge occurs, there arises a problem that a substrate material such as a liquid crystal during sputtering is given a defect and the yield of the product is greatly reduced. In addition, the electron beam evaporation apparatus has a problem that the filament breaks due to discharge energy due to abnormal discharge.

これら異常放電を抑制するために、直流電源の主回路に共振用インダクタと共振用コンデンサとからなる共振回路を接続すると共に、真空装置と並列に短絡用半導体スイッチを接続し、異常放電の発生していない定常時にもある周期で前記短絡用スイッチをオンさせて共振させることによって、電極間に共振による正極性、逆極性パルス電圧を印加して、異常放電の発生を抑制し、また、異常放電が発生したときにはこれを検出して即座に共振回路を共振させ、逆極性パルス電圧を電極間に印加して、異常放電を消滅させる異常放電抑制装置が既に提案されている(例えば、特許文献1参照)。また、回路構成が異なるものの原理的にはほぼ同様な真空装置用の異常放電抑制装置も既に提案されている(例えば、特許文献2参照)。
特開平08−222398号公報 WO99−47727公報
In order to suppress these abnormal discharges, a resonance circuit consisting of a resonance inductor and a resonance capacitor is connected to the main circuit of the DC power supply, and a short-circuit semiconductor switch is connected in parallel with the vacuum device to cause abnormal discharge. By turning on the short-circuiting switch at a certain period even during steady state and resonating, the positive polarity due to resonance and reverse polarity pulse voltage are applied between the electrodes to suppress the occurrence of abnormal discharge, and abnormal discharge An abnormal discharge suppression device has already been proposed in which an abnormal discharge is extinguished by detecting this and immediately resonating the resonance circuit and applying a reverse polarity pulse voltage between the electrodes (see, for example, Patent Document 1). reference). In addition, an abnormal discharge suppression device for a vacuum apparatus that is substantially the same in principle although the circuit configuration is different has already been proposed (see, for example, Patent Document 2).
JP 08-222398 A WO99-47727

しかし、特許文献1、2に記載された異常放電抑制装置は、負荷の両端を短絡すると同時に、共振電圧を負荷の電極間に印加する方式であり、電極間に印加される正極性、逆極性パルス電圧の波高値が共振用コンデンサの充電電圧に比例し、正極性パルス電圧の波高値は定常のスパッタリング電圧から決定されるので、逆極性パルス電圧の波高値だけを制御することは不可能である。しかし、用途によっては、逆極性パルス電圧の波高値を任意の値に制御したい場合もあるが、かかる従来の異常放電抑制方法ではそのような制御をすることはできない。
また、逆極性パルス電圧のパルス幅は、当然に共振電流の半周期となり、確実に異常放電を抑制するためには逆極性パルス電圧のパルス幅を広くしたい場合もあるが、そのためには共振回路を構成する共振用インダクタ、共振用コンデンサの値を大きくしなければならない。
However, the abnormal discharge suppression device described in Patent Documents 1 and 2 is a method in which both ends of the load are short-circuited and at the same time a resonance voltage is applied between the electrodes of the load. Since the peak value of the pulse voltage is proportional to the charging voltage of the resonance capacitor, and the peak value of the positive pulse voltage is determined from the steady sputtering voltage, it is impossible to control only the peak value of the reverse polarity pulse voltage. is there. However, depending on the application, it may be desired to control the peak value of the reverse polarity pulse voltage to an arbitrary value, but such a conventional abnormal discharge suppression method cannot perform such control.
In addition, the pulse width of the reverse polarity pulse voltage is naturally a half period of the resonance current. In order to reliably suppress abnormal discharge, it may be desired to increase the pulse width of the reverse polarity pulse voltage. It is necessary to increase the values of the resonance inductor and the resonance capacitor constituting the circuit.

さらに、異常放電が発生してから逆極性パルス電圧のピーク値が電極間に印加されるまでに、共振周期の正極性の半周期が終了した後、負極性の半周期の1/2の時点でピーク値に達するので、当然に共振周期の3/4の時間がかかることもあり、即座に異常放電を消滅させることは難しい。また、正、負の共振波形はほぼ同じであるので、所望のスパッタリング電圧など定常の電圧値にあわせれば、逆極性パルス電圧が大き過ぎることもあり、この場合には逆極性の放電が発生する可能性もある。   Furthermore, after the half-cycle of the positive polarity of the resonance cycle is completed until the peak value of the reverse polarity pulse voltage is applied between the electrodes after the occurrence of the abnormal discharge, the time half of the half-cycle of the negative polarity Since the peak value is reached, of course, it may take 3/4 of the resonance period, and it is difficult to extinguish the abnormal discharge immediately. In addition, since the positive and negative resonance waveforms are almost the same, the reverse polarity pulse voltage may be too large if it is adjusted to a steady voltage value such as a desired sputtering voltage. In this case, a reverse polarity discharge occurs. There is a possibility.

本発明は、真空装置などにおける異常放電の発生を抑制、又は発生した異常放電を消滅するために、真空装置に逆極性電圧を与えることのできる機能を有した真空装置用異常放電抑制装置において、従来のように共振電圧を真空装置に印加するのではなく、負荷の両端を短絡するときに逆極性電圧回路から所望の値の逆電圧を真空装置に与えることを第1の課題とし、逆極性電圧回路から所望の値の逆電圧を真空装置に与えるときにオンさせる前記短絡用半導体スイッチのターンオフ損失を共振によって低減することを第2の課題としている。
The present invention relates to an abnormal discharge suppression device for a vacuum device having a function capable of applying a reverse polarity voltage to the vacuum device in order to suppress the occurrence of abnormal discharge in the vacuum device or the like, or to extinguish the generated abnormal discharge. Instead of applying a resonant voltage to the vacuum device as in the prior art, the first problem is to apply a reverse voltage of a desired value from the reverse polarity voltage circuit to the vacuum device when both ends of the load are short-circuited. A second problem is to reduce the turn-off loss of the short-circuiting semiconductor switch, which is turned on when a reverse voltage having a desired value is applied from the voltage circuit to the vacuum apparatus, by resonance.

前述のような問題を解決するために、第1の発明は、真空装置と、該真空装置に給電を行う直流電源と、前記直流電源と前記真空装置とに並列に接続されている短絡用半導体スイッチと、前記短絡用半導体スイッチの極性とは逆の極性になるよう、前記短絡用半導体スイッチと並列に接続されている逆並列ダイオードと、前記真空装置に異常放電が発生するとき、前記短絡用半導体スイッチをオンさせる制御回路と、前記短絡用半導体スイッチと直列に接続されていて、前記短絡用半導体スイッチがオンするとき前記真空装置に逆極性電圧を印加する逆極性電圧回路と、を備えた真空装置用異常放電抑制装置において、前記短絡用半導体スイッチ及び前記逆並列ダイオードと並列に接続されている互いに直列接続の共振用インダクタと共振用コンデンサとからなる共振回路を備え、前記共振回路の前記共振用インダクタと前記共振用コンデンサは、前記短絡用半導体スイッチを流れるバイパス電流Ibとは逆極性の共振電流の値が前記短絡用半導体スイッチを流れる前記バイパス電流Ibの値を越える期間が存在するように、それぞれの値が設定されており、前記短絡用半導体スイッチがオンするとき、前記共振回路は共振を行い、前記短絡用半導体スイッチには前記バイパス電流Ibと前記共振電流とが流れ、前記バイパス電流Ibの極性とは逆極性の前記共振電流の値前記バイパス電流Ibの値と等しくなって前記短絡用半導体スイッチを流れる電流がゼロとなる時点から前記バイパス電流Ibの値を越えるのに伴い、前記逆極性の共振電流が前記逆並列ダイオードを流れる期間に等しい前記短絡用半導体スイッチに電流が流れない期間に、前記短絡用半導体スイッチをターンオフさせることを特徴とする真空装置用異常放電抑制装置を提供する。 In order to solve the above-described problems, the first invention is a vacuum device, a DC power source for supplying power to the vacuum device, and a short-circuit semiconductor connected in parallel to the DC power source and the vacuum device. A switch, an anti-parallel diode connected in parallel with the short-circuiting semiconductor switch so as to have a polarity opposite to the polarity of the short-circuiting semiconductor switch, and when the abnormal discharge occurs in the vacuum device, the short-circuiting A control circuit that turns on the semiconductor switch; and a reverse polarity voltage circuit that is connected in series with the shorting semiconductor switch and applies a reverse polarity voltage to the vacuum device when the shorting semiconductor switch is turned on. In the abnormal discharge suppression device for a vacuum device, the resonance inductor and the resonance device connected in series with each other and connected in parallel with the short-circuiting semiconductor switch and the antiparallel diode Comprising a resonant circuit consisting of a capacitor, the resonant inductor and the resonant capacitor of the resonant circuit, the value is a semiconductor switch the short circuit resonance current of opposite polarity to the bypass current Ib flowing through the semiconductor switch the short wherein such period that exceeds the value of the bypass current Ib is present which flows are set each value, when the short-circuit semiconductor switch is turned on, the resonant circuit performs resonant, the short-circuit semiconductor switch is The bypass current Ib and the resonance current flow, the value of the resonance current having a polarity opposite to the polarity of the bypass current Ib is equal to the value of the bypass current Ib, and the current flowing through the short-circuit semiconductor switch is zero. with the point made to exceed the value of the bypass current Ib, the resonance current of the opposite polarity flows through the antiparallel diode The period in which the current short-circuit semiconductor switch does not flow equal between, to provide an abnormal discharge suppressing device for a vacuum device, characterized in that turning off the semiconductor switch the short.

前記第2の発明は、前記第1の発明において、前記共振用コンデンサの充電電荷が前記共振用インダクタを通して前記真空負荷に直接放電されるのを阻止するダイオードを、前記短絡用半導体スイッチと直列かつ同一方向にして接続したことを特徴とする真空装置用異常放電抑制装置を提供する。   In the first aspect of the invention, in the first aspect of the invention, a diode that prevents the charged charge of the resonance capacitor from being discharged directly to the vacuum load through the resonance inductor is connected in series with the short-circuit semiconductor switch and Provided is an abnormal discharge suppressing device for a vacuum device, which is connected in the same direction.

前記第1の発明によれば、異常放電の発生の抑止を図り、異常放電が発生したときには速やかに消滅させ、また、短絡用半導体スイッチのターンオフ損失を低減できる。
前記第2の発明によれば、真空装置で異常放電が発生した場合、異常放電の検出遅れや、短絡用半導体スイッチの遅れの期間に、共振用コンデンサの充電電荷が真空装置に放電されるのを阻止することができる。
According to the first aspect of the present invention, it is possible to suppress the occurrence of abnormal discharge, quickly extinguish it when abnormal discharge occurs, and reduce the turn-off loss of the short-circuiting semiconductor switch.
According to the second aspect of the invention, when an abnormal discharge occurs in the vacuum device, the charging charge of the resonance capacitor is discharged to the vacuum device during the delay of detection of the abnormal discharge or the delay of the short-circuiting semiconductor switch. Can be prevented.

[実施形態1]
図1によって、本発明の第1の実施形態に係る真空装置用異常放電抑制装置100について説明する。図1において、商用電源のような交流電源からの交流電力を所望の直流電力に変換するDC−DCコンバータなどからなる直流電源1と前述のような真空を利用している装置である真空装置2との間には大きなインダクタンスを有する定電流用インダクタ3が接続されている。真空装置2の一端と直流電源1の正極性端子とが接地されている。IGBT又はMOSFETのような短絡用半導体スイッチ4と逆極性電圧回路5とを直列接続した回路が、真空装置2に跨って接続されている。なお、ここで真空装置2に真空装置2に跨ってとは、必ずしも真空装置全体を指すのではなく、その最小単位としては真空装置2の電極と電極とに跨ってということを意味する。異常放電が発生したか否かを検出する異常放電検出回路6からの異常放電検出信号を受けて、制御回路7は短絡用半導体スイッチ4をオンさせる。短絡用半導体スイッチ4には、その極性とは逆極性にされた逆並列ダイオード8が並列に接続されている。逆並列ダイオード8は短絡用半導体スイッチ4に形成されている内部ダイオードで代替することもできる。また、互いに直列に接続された共振用インダクタ9と共振用コンデンサ10とからなる共振回路11が短絡用半導体スイッチ4に跨って接続されている。
[Embodiment 1]
With reference to FIG. 1, an abnormal discharge suppressing device 100 for a vacuum apparatus according to a first embodiment of the present invention will be described. In FIG. 1, a DC power source 1 composed of a DC-DC converter or the like that converts AC power from an AC power source such as a commercial power source into desired DC power, and a vacuum device 2 that is a device using a vacuum as described above. A constant current inductor 3 having a large inductance is connected between the two. One end of the vacuum device 2 and the positive terminal of the DC power source 1 are grounded. A circuit in which a short-circuiting semiconductor switch 4 such as an IGBT or a MOSFET and a reverse polarity voltage circuit 5 are connected in series is connected across the vacuum device 2. Note that the term “stretching the vacuum device 2 over the vacuum device 2” does not necessarily indicate the entire vacuum device, but means that the minimum unit is straddling the electrodes of the vacuum device 2. In response to the abnormal discharge detection signal from the abnormal discharge detection circuit 6 that detects whether or not abnormal discharge has occurred, the control circuit 7 turns on the short-circuiting semiconductor switch 4. The short-circuit semiconductor switch 4 is connected in parallel with an antiparallel diode 8 having a polarity opposite to the polarity. The antiparallel diode 8 can be replaced with an internal diode formed in the shorting semiconductor switch 4. A resonance circuit 11 including a resonance inductor 9 and a resonance capacitor 10 connected in series with each other is connected across the short-circuit semiconductor switch 4.

異常放電検出回路6は、負荷電圧が設定値以下に低下した現象、真空装置2を流れる電流が所定値以上に増大した現象、負荷電圧の低下率(負荷電圧の検出電圧を1次微分した値)、負荷電圧の低下速度(負荷電圧の検出電圧を2次微分した値)、更には負荷電流の増加率(負荷電流を1次微分した値)、負荷電流の増加速度(負荷電流を2次微分した値)が設定した値以上になる現象のいずれか、又は組み合わせを検出して、異常放電の検出信号を出力するものである。   The abnormal discharge detection circuit 6 includes a phenomenon in which the load voltage drops below a set value, a phenomenon in which the current flowing through the vacuum apparatus 2 increases to a predetermined value or more, and a load voltage drop rate (a value obtained by first-derivatizing the load voltage detection voltage). ), Load voltage decrease rate (secondary derivative of load voltage detection voltage), load current increase rate (value of load current first derivative), load current increase rate (load current secondary) Any one or a combination of phenomena in which the differentiated value) becomes equal to or greater than a set value is detected, and an abnormal discharge detection signal is output.

制御回路7は、異常放電は発生していない定常時にはオン信号を出力せずに、異常放電検出回路6から異常放電検出信号を受けたときだけ即座に短絡用半導体スイッチ4にオン信号を印加するものであっても良いし、あるいは定常時には予め決められた周期で所定のパルス幅のオン信号を短絡用半導体スイッチ4に与えて、周期的に短絡用半導体スイッチ4をオンさせ、かつ異常放電検出回路6から異常放電検出信号を受けたときには即座に短絡用半導体スイッチ4にオン信号を印加するものであってもよい。
制御回路7が短絡用半導体スイッチ4に与えるオン信号のパルス幅Tonは、共振用インダクタ9と共振用コンデンサ10との直列共振周期をTとした場合に、直列共振周期Tのほぼ50%〜100%の範囲内の時間である。ここでは、T=10μsとし、Ton=7μsとする。この理由については、後で説明する。
The control circuit 7 does not output an ON signal in a steady state where no abnormal discharge occurs, and immediately applies an ON signal to the short-circuiting semiconductor switch 4 only when receiving an abnormal discharge detection signal from the abnormal discharge detection circuit 6. It is also possible to apply a turn-on signal having a predetermined pulse width to the short-circuiting semiconductor switch 4 at a predetermined cycle in a steady state, thereby periodically turning on the short-circuiting semiconductor switch 4 and detecting abnormal discharge. When an abnormal discharge detection signal is received from the circuit 6, an on signal may be immediately applied to the shorting semiconductor switch 4.
The pulse width Ton of the ON signal given to the short-circuit semiconductor switch 4 by the control circuit 7 is approximately 50% to 100% of the series resonance period T, where T is the series resonance period of the resonance inductor 9 and the resonance capacitor 10. The time is in the range of%. Here, T = 10 μs and Ton = 7 μs. The reason for this will be described later.

逆極性電圧回路5は、異常放電を消滅させるのに適した図示の極性の所定電圧を呈し、短絡用半導体スイッチ4がオンするとき、真空装置2に定常の電圧とは逆の極性の電圧を与えるものである。一般的に短絡用半導体スイッチ4は数V以上の順方向ドロップを有するので、短絡用半導体スイッチ4がオンした状態でも、真空装置2の両端の電圧は短絡用半導体スイッチ4の順方向ドロップなどに等しい電圧値以下には低下しない。そして、短絡用半導体スイッチ4のオンによって通常の異常放電が消滅するとはいえ、その直後には異常放電によって生成されたイオンが残留しているので、負荷は未だ比較的低インピーダンス状態にあり、低電圧異常放電を消滅できず、微小な電流が引き続き流れようとするが、この実施形態では、逆極性電圧回路5がこの異常放電電圧を速やかに反転して異常放電、更には低電圧異常放電を消滅させる。したがって、逆極性電圧回路5は、微小な電流が引き続き流れるのを抑止する幅を持つ逆極性電圧を与えることが好ましい。   The reverse polarity voltage circuit 5 exhibits a predetermined voltage having the polarity shown in the figure suitable for extinguishing the abnormal discharge. When the short-circuit semiconductor switch 4 is turned on, the vacuum device 2 is supplied with a voltage having a polarity opposite to the normal voltage. Give. In general, since the shorting semiconductor switch 4 has a forward drop of several volts or more, even when the shorting semiconductor switch 4 is turned on, the voltage across the vacuum device 2 is applied to the forward drop of the shorting semiconductor switch 4 or the like. It does not drop below equal voltage values. Although the normal abnormal discharge disappears when the short-circuit semiconductor switch 4 is turned on, ions generated by the abnormal discharge remain immediately after that, so the load is still in a relatively low impedance state, and the low In this embodiment, the reverse polarity voltage circuit 5 quickly reverses the abnormal discharge voltage to cause abnormal discharge and further low voltage abnormal discharge. Extinguish. Therefore, it is preferable that the reverse polarity voltage circuit 5 provides a reverse polarity voltage having a width that prevents a minute current from continuing to flow.

なお、定電流用インダクタ3は直流電源1に含まれていてもよい。また、図示していないが、異常放電検出回路6が異常放電を検出するときに、異常放電検出信号を直流電源1に与えて直流電源1の不図示のインバータ回路を停止させてもよい。さらに、別途不図示の過電流検出手段を直流電源1に備えて、過電流が生じたときにはその過電流検出手段からの信号で直流電源1の不図示のインバータ回路を停止させてもよい。この場合には、短絡用半導体スイッチ4側の回路と直流電源1との間で信号のやりとりをすることなく、異常放電を消滅できるので、直流電源1のオプションとして後から追加できる利点がある。また、異常放電しやすい真空装置の場合、あるいは液晶用のスパッタリング装置などのように異常放電を極力避けなければならない用途など、必要に応じて直流電源1に後付けできる利点がある。   The constant current inductor 3 may be included in the DC power supply 1. Although not shown, when the abnormal discharge detection circuit 6 detects abnormal discharge, an abnormal discharge detection signal may be given to the DC power supply 1 to stop an inverter circuit (not shown) of the DC power supply 1. Further, a separate overcurrent detection means (not shown) may be provided in the DC power supply 1, and when an overcurrent occurs, an inverter circuit (not shown) of the DC power supply 1 may be stopped by a signal from the overcurrent detection means. In this case, since abnormal discharge can be eliminated without exchanging signals between the circuit on the short-circuiting semiconductor switch 4 side and the DC power supply 1, there is an advantage that it can be added later as an option of the DC power supply 1. In addition, there is an advantage that it can be retrofitted to the DC power source 1 as necessary in the case of a vacuum apparatus that easily causes abnormal discharge, or an application in which abnormal discharge should be avoided as much as possible, such as a sputtering apparatus for liquid crystal.

次に、実施形態1の真空装置用異常放電抑制装置100の動作について、図2も用いて説明する。図2は各部の電圧波形、電流波形を示し、図2(A)は逆極性電圧回路5から真空装置2に印加される逆極性電圧Vbの波形を示し、図2(B)は配線Lを流れるバイパス電流Ibを示し、図2(C)は共振回路11による共振電流を示し、図2(D)は短絡用半導体スイッチ4と逆並列ダイオード8とを流れる合成電流を示す。斜線で示す負極性の電流波形が逆並列ダイオード8を流れる電流部分である。   Next, operation | movement of the abnormal discharge suppression apparatus 100 for vacuum devices of Embodiment 1 is demonstrated using FIG. 2 shows the voltage waveform and current waveform of each part, FIG. 2A shows the waveform of the reverse polarity voltage Vb applied to the vacuum device 2 from the reverse polarity voltage circuit 5, and FIG. 2C shows the bypass current Ib flowing, FIG. 2C shows the resonance current by the resonance circuit 11, and FIG. 2D shows the combined current flowing through the short-circuiting semiconductor switch 4 and the antiparallel diode 8. A negative current waveform indicated by diagonal lines is a current portion flowing through the antiparallel diode 8.

真空装置2に正常なプラズマ放電が発生していれば、直流電源1から定電流用インダクタ3を通して真空装置2に、負極性の直流電圧、例えば600Vの電圧と直流電流Ioとが供給される。このとき、共振用コンデンサ10は図示極性で600Vに充電されている。この状態で、真空装置2に異常放電が発生すると、その異常放電現象を異常放電検出回路6が検出し、制御回路7に異常放電検出信号を送出する。これに伴い、制御回路7は短絡用半導体スイッチ4にオン信号を与え、これをオンさせる。短絡用半導体スイッチ4がオンすると、直流電源1から定電流用インダクタ3を通して真空装置2に供給されていた直流電流をバイパスすると共に、真空装置2を短絡し、同時に逆極性電圧回路5から図2(A)に示す逆極性電圧Vbを真空装置2に印加する。この逆極性電圧Vbの印加によって、真空装置2に発生していた異常放電は即座に消滅する。逆極性電圧Vbは予め最適な値に設定されており、微小電流が流れる低電圧異常放電状態も消滅させる。   If normal plasma discharge is generated in the vacuum device 2, a negative DC voltage, for example, a voltage of 600 V and a direct current Io are supplied from the DC power source 1 to the vacuum device 2 through the constant current inductor 3. At this time, the resonance capacitor 10 is charged to 600 V with the illustrated polarity. When an abnormal discharge occurs in the vacuum device 2 in this state, the abnormal discharge phenomenon is detected by the abnormal discharge detection circuit 6 and an abnormal discharge detection signal is sent to the control circuit 7. Along with this, the control circuit 7 gives an on signal to the shorting semiconductor switch 4 to turn it on. When the short-circuit semiconductor switch 4 is turned on, the direct current supplied from the direct current power source 1 to the vacuum device 2 through the constant current inductor 3 is bypassed and the vacuum device 2 is short-circuited, and at the same time from the reverse polarity voltage circuit 5 to FIG. A reverse polarity voltage Vb shown in (A) is applied to the vacuum apparatus 2. By applying the reverse polarity voltage Vb, the abnormal discharge generated in the vacuum apparatus 2 immediately disappears. The reverse polarity voltage Vb is set to an optimal value in advance, and the low voltage abnormal discharge state in which a minute current flows is also extinguished.

他方、短絡用半導体スイッチ4がオンすると、図示極性に充電されていた共振用コンデンサ10は、短絡用半導体スイッチ4と共振用インダクタ9とからなる閉回路を通して図2(C)に示す正極性の直列共振電流Irを矢印X方向に流す。直列共振電流Irは半周期で反転し、今度は逆並列ダイオード8と共振用インダクタ9とからなる閉回路を通して負極性の直列共振電流Irを矢印Y方向に流す。そして、共振用コンデンサ10は最初の図示極性の電圧に戻る。この点についてもう少し詳しく説明する。等価的に短絡用半導体スイッチ4と逆並列ダイオード8とが単一の半導体素子を構成しているものと考えれば、短絡用半導体スイッチ4がオンすると、先ず、短絡用半導体スイッチ4にはバイパス電流Ibに共振周期の正の半周期の共振電流Ir(矢印X方向)を加えた合成電流が流れる。次に共振が反転して負の周期になると、負方向の共振電流Ir(矢印Y方向)に正のバイパス電流Ibを和した電流が流れるものと考えられる。そして、バイパス電流Ibの値と共振周期における負の半周期の共振電流Irの値とが等しくなった時点で、短絡用半導体スイッチ4を流れる電流はゼロになり、共振周期における負の半周期の共振電流Irの値がバイパス電流Ibの値を超えると、図2(D)の斜線で示すような電流が逆並列ダイオード8に流れる。   On the other hand, when the shorting semiconductor switch 4 is turned on, the resonance capacitor 10 charged to the polarity shown in the figure passes through a closed circuit composed of the shorting semiconductor switch 4 and the resonance inductor 9 and has the positive polarity shown in FIG. A series resonance current Ir is passed in the direction of the arrow X. The series resonance current Ir is inverted in a half cycle, and this time, the negative series resonance current Ir is caused to flow in the arrow Y direction through a closed circuit including the antiparallel diode 8 and the resonance inductor 9. Then, the resonance capacitor 10 returns to the initial voltage of the illustrated polarity. This point will be explained in more detail. Considering that the short-circuit semiconductor switch 4 and the antiparallel diode 8 equivalently constitute a single semiconductor element, when the short-circuit semiconductor switch 4 is turned on, first, the short-circuit semiconductor switch 4 has a bypass current. A combined current is generated by adding a resonance current Ir (in the direction of the arrow X) having a positive half cycle of the resonance cycle to Ib. Next, when the resonance is reversed and becomes a negative cycle, it is considered that a current obtained by adding the positive bypass current Ib to the resonance current Ir in the negative direction (arrow Y direction) flows. When the value of the bypass current Ib becomes equal to the value of the negative half cycle resonance current Ir in the resonance cycle, the current flowing through the short-circuiting semiconductor switch 4 becomes zero, and the negative half cycle in the resonance cycle When the value of the resonance current Ir exceeds the value of the bypass current Ib, a current as shown by the oblique lines in FIG.

したがって、短絡用半導体スイッチ4を流れる電流がゼロとなる時点から、逆並列ダイオード8に電流が流れている期間、つまり短絡用半導体スイッチ4に電流が流れない期間で、制御回路7によって短絡用半導体スイッチ4をターンオフさせれば、ソフトスイッチングターンオフ(ゼロ電流ターンオフ)できるので、ターンオフ損失を小さくすることができる。さらに、図2(D)の斜線で示すように逆並列ダイオード8の電流も共振波形に従ってゼロとなる。共振電流Irの負方向電流が共振波形から多少変形しているが、短絡用半導体スイッチ4のオン時間は、短絡用半導体スイッチ4が図2(D)で示す正方向電流を遮断せず、かつ2度目の共振電流を流さないようにするため、オン信号のパルス幅は、概ね、共振周期Tの1/2の時間以上で、1周期T以下にすることが望ましい。共振用インダクタ9と共振用コンデンサ10との直列共振周波数が100kHzであるとすると、共振周期Tは10μsであるから、前述した短絡用半導体スイッチ4へのオン信号のパルス幅Tonの一例が7μsであることは妥当である。上述からも明らかなように、共振電流Irの値がバイパス電流Ibを越える期間があるように、共振用インダクタ9と共振用コンデンサ10との値を選定することは大切である。
逆並列ダイオード8を流れる電流がゼロになって逆並列ダイオード8が非導通になるとき、定電流インダクタ3のインダクタンス作用によって過電圧が逆極性電圧回路5を通して短絡用半導体スイッチ4の両端に加わるが、この電圧は同時に共振用インダクタ9と共振用コンデンサ10とからなる共振回路11にも加わり、共振用コンデンサ10を充電してその電圧を図示極性で上昇させることにより、短絡用半導体スイッチ4の両端に印加される過電圧を制限する。つまり、このとき共振用コンデンサ10がスナバコンデンサの働きも行う。
Therefore, the short-circuit semiconductor is controlled by the control circuit 7 during the period when the current flows through the antiparallel diode 8 from the time when the current flowing through the short-circuit semiconductor switch 4 becomes zero, that is, during the period when no current flows through the short-circuit semiconductor switch 4 If the switch 4 is turned off, the soft switching turn-off (zero current turn-off) can be performed, so that the turn-off loss can be reduced. Furthermore, as indicated by the oblique lines in FIG. 2D, the current of the antiparallel diode 8 also becomes zero according to the resonance waveform. Although the negative direction current of the resonance current Ir is slightly deformed from the resonance waveform, the short-circuiting semiconductor switch 4 does not cut off the positive-direction current shown in FIG. In order to prevent the second resonance current from flowing, it is desirable that the pulse width of the ON signal is approximately not less than half the resonance period T and not more than one period T. Assuming that the series resonance frequency of the resonance inductor 9 and the resonance capacitor 10 is 100 kHz, the resonance period T is 10 μs. Therefore, an example of the pulse width Ton of the ON signal to the shorting semiconductor switch 4 is 7 μs. It is reasonable to be. As is clear from the above, it is important to select values for the resonance inductor 9 and the resonance capacitor 10 so that there is a period in which the value of the resonance current Ir exceeds the bypass current Ib.
When the current flowing through the antiparallel diode 8 becomes zero and the antiparallel diode 8 becomes non-conductive, an overvoltage is applied to both ends of the short-circuiting semiconductor switch 4 through the reverse polarity voltage circuit 5 by the inductance action of the constant current inductor 3. This voltage is also applied to the resonance circuit 11 including the resonance inductor 9 and the resonance capacitor 10 at the same time. The resonance capacitor 10 is charged and the voltage is increased with the polarity shown in FIG. Limit the applied overvoltage. That is, at this time, the resonance capacitor 10 also functions as a snubber capacitor.

短絡用半導体スイッチ4としてIGBTを選定した場合、ターンオンはオーバードライブなど駆動回路の工夫で高速化できるが、ターンオフ特性は、用いる半導体素子の特性に大きく依存し、駆動回路により高速化することが困難である。実施形態1によれば、IGBTなどの半導体素子が不得意とするターンオフ時の低損失化を達成できるので、繰り返し周波数を数10kHzにすることも可能である。   When an IGBT is selected as the short-circuiting semiconductor switch 4, turn-on can be speeded up by devising a drive circuit such as overdrive, but the turn-off characteristic depends greatly on the characteristics of the semiconductor element used, and it is difficult to speed up by the drive circuit. It is. According to the first embodiment, it is possible to achieve a reduction in loss at turn-off, which is not good for semiconductor elements such as IGBTs, so that the repetition frequency can be set to several tens of kHz.

次に、実施形態1の変更例について説明する。回路構成は図1に示したとおりであるが、制御回路7は、予め決めた周期と所定のオンパルス幅とを有するオン信号を発生する機能を有すると共に、そのオン信号と前述した異常放電検出回路6からの異常放電検出信号とをOR論理する機能とを別途備えている。したがって、異常放電が発生していない状態では、制御回路7は周期的にオン信号を短絡用半導体スイッチ4に加えてオンさせ、逆極性電圧回路5からの逆極性電圧を周期的に真空装置2に印加することによって、異常放電の発生を抑止する。この場合、共振用インダクタ9と共振用コンデンサ10との直列共振周波数(100kHz)より低い任意の周波数で、例えば20kHzの繰り返し周波数で逆極性電圧回路5からの逆極性電圧を周期的に真空装置2に印加してもよい。   Next, a modified example of the first embodiment will be described. Although the circuit configuration is as shown in FIG. 1, the control circuit 7 has a function of generating an ON signal having a predetermined cycle and a predetermined ON pulse width, and the ON signal and the abnormal discharge detection circuit described above. 6 has a function of ORing the abnormal discharge detection signal from 6 separately. Therefore, in a state where no abnormal discharge has occurred, the control circuit 7 periodically turns on the ON signal by adding it to the shorting semiconductor switch 4 and periodically applies the reverse polarity voltage from the reverse polarity voltage circuit 5 to the vacuum device 2. The occurrence of abnormal discharge is suppressed by applying the voltage to. In this case, the vacuum device 2 periodically applies the reverse polarity voltage from the reverse polarity voltage circuit 5 at an arbitrary frequency lower than the series resonance frequency (100 kHz) of the resonance inductor 9 and the resonance capacitor 10, for example, at a repetition frequency of 20 kHz. You may apply to.

また、途中で、異常放電が発生した場合には、前述のように次の周期的な逆極性電圧の印加を待つことなく、異常放電の発生を検出した時点で短絡用半導体スイッチ4を即座にオンさせ、逆極性電圧を真空装置2に印加して速やかに異常放電を消滅させる。なお、周期的に逆極性電圧を真空装置2に印加する繰り返し周波数がある程度高ければ(例えば20kHz以上とすると)、途中で異常放電が発生したとしても、50μ秒以下の時間が経過すれば、次の周期的な逆極性電圧が真空装置2に印加され、その逆極性電圧で異常放電を消滅させることができるから、異常放電検出回路6を備えていた方が好ましいが、必ずしも必要でない。   If an abnormal discharge occurs on the way, the short-circuit semiconductor switch 4 is immediately turned on when the occurrence of the abnormal discharge is detected without waiting for the application of the next periodic reverse polarity voltage as described above. Turn on and apply reverse polarity voltage to the vacuum device 2 to quickly extinguish the abnormal discharge. If the repetition frequency at which the reverse polarity voltage is periodically applied to the vacuum apparatus 2 is high to some extent (for example, 20 kHz or more), even if abnormal discharge occurs in the middle, if the time of 50 μsec or less passes, The periodic reverse polarity voltage is applied to the vacuum device 2, and the abnormal discharge can be extinguished by the reverse polarity voltage.

図示しないが、図1において、不図示のダイオードを短絡用半導体スイッチ4と直列かつ同一方向にして導線Lに接続することによって、異常放電時の動作を改善できる。そのダイオードは、真空装置2で異常放電が発生した場合に、異常放電検出回路6の遅れ時間や、短絡用半導体スイッチ4の遅れ時間の間、共振用コンデンサ10の充電電荷が共振用インダクタ9を通して真空装置2に直接放電されるのを阻止するように働くものであるが、必ずしも必要なダイオードではない。この場合には、真空装置2を流れる電流を検出しないオープンループで動作し、制御回路7は所定の周波数で短絡用スイッチ4をオンオフさせて、その度毎に逆極性電圧を真空装置2に与え、共振回路11はその所定の周波数よりも高い共振周波数で共振を行って、短絡用半導体スイッチ4をソフトスイッチングターンオフさせる。   Although not shown in FIG. 1, the operation at the time of abnormal discharge can be improved by connecting a diode (not shown) in series and in the same direction with the shorting semiconductor switch 4 to the conductor L. In the diode, when an abnormal discharge occurs in the vacuum device 2, the charging charge of the resonance capacitor 10 passes through the resonance inductor 9 during the delay time of the abnormal discharge detection circuit 6 and the delay time of the short-circuit semiconductor switch 4. It serves to prevent direct discharge to the vacuum device 2, but is not necessarily a necessary diode. In this case, it operates in an open loop that does not detect the current flowing through the vacuum device 2, and the control circuit 7 turns on and off the shorting switch 4 at a predetermined frequency, and applies a reverse polarity voltage to the vacuum device 2 each time. The resonance circuit 11 resonates at a resonance frequency higher than the predetermined frequency to turn off the short-circuiting semiconductor switch 4 in a soft switching manner.

[実施形態2]
図3によって、本発明の他の実施形態2に係る第2の真空装置用異常放電抑制装置200について説明する。図3において、図1で用いた記号と同一の記号は同じ名称の部材を示すものとする。この実施形態2では、逆極性電圧回路5が短絡用半導体スイッチ4のアノード側に直列に接続された逆電圧用コンデンサ5Aと、短絡用半導体スイッチ4の導通方向と同方向に向けられて、逆電圧用コンデンサ5Aに並列接続されたダイオード5Bと、逆電圧用コンデンサ5Aを充電する充電器5Cとからなる。充電器5Cは逆電圧用コンデンサ5Aを図示極性に所定電圧まで充電し、ダイオード5Bは逆電圧用コンデンサ5Aの逆方向充電を防止する働きを行う。その所定電圧は、これに制限されるものでないが、例えば、真空装置2の定常放電電圧の20%以下である。通常、真空装置にあっては真空装置2のプラズマ放電電圧は200〜800Vであるから、充電器5Cの出力電圧は、プラズマ放電電圧に応じて40〜160Vに設定され、短絡用半導体スイッチ4のスイッチング周期よりも短い周期で40〜160Vに充電される。充電器5Cの出力電圧は、固定の値であっても良いし、真空装置2のプラズマ放電電圧に応じて自動的に変更される電圧であっても良い。
[Embodiment 2]
With reference to FIG. 3, a second abnormal discharge suppressing device 200 for vacuum apparatus according to another embodiment 2 of the present invention will be described. 3, the same symbols as those used in FIG. 1 indicate members having the same names. In the second embodiment, the reverse polarity voltage circuit 5 is directed in the same direction as the conduction direction of the reverse voltage capacitor 5 </ b> A connected in series to the anode side of the short circuit semiconductor switch 4 and the short circuit semiconductor switch 4. It consists of a diode 5B connected in parallel to the voltage capacitor 5A and a charger 5C that charges the reverse voltage capacitor 5A. The charger 5C charges the reverse voltage capacitor 5A to a predetermined voltage in the illustrated polarity, and the diode 5B functions to prevent reverse charging of the reverse voltage capacitor 5A. The predetermined voltage is not limited to this, but is, for example, 20% or less of the steady discharge voltage of the vacuum apparatus 2. Usually, in the vacuum device, the plasma discharge voltage of the vacuum device 2 is 200 to 800V, so the output voltage of the charger 5C is set to 40 to 160V according to the plasma discharge voltage, and the short-circuit semiconductor switch 4 It is charged to 40 to 160 V with a cycle shorter than the switching cycle. The output voltage of the charger 5C may be a fixed value or may be a voltage that is automatically changed according to the plasma discharge voltage of the vacuum device 2.

この真空装置用異常放電抑制装置200では、逆電圧用コンデンサ5Aの充電電力を、サージ電圧吸収回路12からも供給する。サージ電圧吸収回路12は、短絡用半導体スイッチ4と真空装置2間の配線インダクタンスによるサージ電圧を吸収して制限し、さらに、逆極性電圧回路5の逆電圧用コンデンサ5Aの充電電圧を補充するものである。サージ電圧吸収回路12は、真空装置2と並列に接続されており、互いに直列に接続されている逆流防止用ダイオード12A、サージ吸収用コンデンサ12B、電源電圧保持用コンデンサ12Cから構成されている。サージ吸収用コンデンサ12Bの両端にはインバータ回路13の直流入力端子が接続されている。インバータ回路13の交流出力端子は絶縁トランス14と整流器15を通して、逆電圧用コンデンサ5Aの両端に接続されている。サージ吸収用コンデンサ12Aは、逆並列ダイオード8が非導通になるときに発生する過電圧サージを吸収する。通常は、このサージ吸収用コンデンサ12Aに不図示の抵抗が並列接続されて、サージ電圧上昇分を消費させるのであるが、この実施形態2では、そのサージ電圧上昇分に相当する電力をインバータ回路13によって高周波電力に変換し、さらに整流器14で直流に変換して、逆電圧用コンデンサ5Aに充電電力として供給する。電源電圧保持用コンデンサ12Cはその両端が直流電源1の出力端子に直接接続され、電源電圧に充電される。サージ吸収用コンデンサ12Bは、電源電圧よりも高いサージ電圧分だけ充電される。サージ電圧吸収回路12は、サージ吸収作用を行うばかりでなく、インバータ回路13と絶縁トランス14と整流器15と一緒に、逆電圧用コンデンサ5Aの補助的な充電を行う補助充電回路を構成する。   In the abnormal discharge suppressing device 200 for vacuum device, the charging power for the reverse voltage capacitor 5 </ b> A is also supplied from the surge voltage absorption circuit 12. The surge voltage absorption circuit 12 absorbs and limits the surge voltage due to the wiring inductance between the short-circuiting semiconductor switch 4 and the vacuum device 2, and further supplements the charging voltage of the reverse voltage capacitor 5A of the reverse polarity voltage circuit 5. It is. The surge voltage absorption circuit 12 is connected in parallel with the vacuum device 2 and is composed of a backflow prevention diode 12A, a surge absorption capacitor 12B, and a power supply voltage holding capacitor 12C connected in series with each other. A DC input terminal of the inverter circuit 13 is connected to both ends of the surge absorbing capacitor 12B. The AC output terminal of the inverter circuit 13 is connected to both ends of the reverse voltage capacitor 5 </ b> A through the insulating transformer 14 and the rectifier 15. The surge absorbing capacitor 12A absorbs an overvoltage surge that occurs when the antiparallel diode 8 is turned off. Normally, a resistor (not shown) is connected in parallel to the surge absorbing capacitor 12A to consume the surge voltage rise. In the second embodiment, power corresponding to the surge voltage rise is supplied to the inverter circuit 13. Is converted into high frequency power by the rectifier 14 and further converted into direct current by the rectifier 14 and supplied to the reverse voltage capacitor 5A as charging power. Both ends of the power supply voltage holding capacitor 12C are directly connected to the output terminal of the DC power supply 1, and are charged to the power supply voltage. The surge absorbing capacitor 12B is charged by a surge voltage higher than the power supply voltage. The surge voltage absorbing circuit 12 not only performs a surge absorbing function, but also constitutes an auxiliary charging circuit that performs auxiliary charging of the reverse voltage capacitor 5A together with the inverter circuit 13, the insulating transformer 14, and the rectifier 15.

この実施形態2の真空装置用異常放電抑制装置200の主な動作は、真空装置用異常放電抑制装置100の動作とほぼ等しいので説明を省略するが、制御回路7からの周期的なオン信号又は異常放電の発生によるオン信号を受けて、短絡用半導体スイッチ4がオンするとき、逆極性電圧回路5の逆電圧用コンデンサ5Aの充電電圧が短絡用半導体スイッチ4を通して真空装置2に放電されて、真空装置2の不図示の電極間を逆バイアスして瞬時に異常放電を消滅させる。
前述したように、逆並列ダイオード8を流れる電流がゼロになって逆並列ダイオード8が非導通になるとき、定電流インダクタ3のインダクタンス作用によって過電圧が発生するが、この電圧は共振回路11の共振用コンデンサ10を充電すると共に、サージ吸収用コンデンサ12Aを直流電源1の出力電圧よりも高いサージ電圧分だけ充電する。したがって、短絡用半導体スイッチ4の両端に印加される電圧は制限される。
Since the main operation of the abnormal discharge suppression device for vacuum device 200 according to the second embodiment is substantially the same as the operation of the abnormal discharge suppression device for vacuum device 100, a description thereof will be omitted, but a periodic on signal from the control circuit 7 or When the short circuit semiconductor switch 4 is turned on in response to the ON signal due to the occurrence of abnormal discharge, the charging voltage of the reverse voltage capacitor 5A of the reverse polarity voltage circuit 5 is discharged to the vacuum device 2 through the short circuit semiconductor switch 4, The abnormal discharge is instantaneously extinguished by reverse-biasing the electrodes (not shown) of the vacuum apparatus 2.
As described above, when the current flowing through the anti-parallel diode 8 becomes zero and the anti-parallel diode 8 becomes non-conductive, an overvoltage is generated by the inductance action of the constant current inductor 3, and this voltage is the resonance of the resonance circuit 11. The capacitor 10 for charging is charged, and the capacitor 12A for absorbing surge is charged by a surge voltage higher than the output voltage of the DC power supply 1. Therefore, the voltage applied to both ends of the shorting semiconductor switch 4 is limited.

[実施形態3]
図4によって本発明に係る実施形態3の真空装置用異常放電抑制装置300について説明する。図4において、図3で用いた記号と同一の記号は同じ名称の部材を示すものとする。真空装置用異常放電抑制装置300が真空装置用異常放電抑制装置200と異なる点は、真空装置用異常放電抑制装置200からサージ電圧吸収回路12、インバータ回路13、絶縁トランス14、整流器15からなる補助充電回路を削除し、これに代えて2個のダイオード16と17とからなるダイオード回路を接続したところにある。これらダイオード16と17を利用して、逆極性電圧回路5の逆電圧用コンデンサ5Aを共振電流の半波で充電するところが真空装置用異常放電抑制装置200と異なる。ダイオード16は、短絡用半導体スイッチ4と逆電圧用コンデンサ5Aとの接続点と、共振回路11の一端との間に、カソード側を短絡用半導体スイッチ4に向けて接続されており、ダイオード17は共振回路11とダイオード16との接続点と、直流電源1の正極との間に、直流電源1の正極にアノード側を向けて接続されている。この実施形態では、ダイオード16と17とからなるダイオード回路が逆並列ダイオード8と共振回路11と協働して、補助充電回路を構成する。
[Embodiment 3]
With reference to FIG. 4, an abnormal discharge suppression device 300 for a vacuum apparatus according to Embodiment 3 of the present invention will be described. In FIG. 4, the same symbols as those used in FIG. 3 indicate members having the same names. The vacuum device abnormal discharge suppression device 300 is different from the vacuum device abnormal discharge suppression device 200 in that the vacuum device abnormal discharge suppression device 200 includes the surge voltage absorption circuit 12, the inverter circuit 13, the insulation transformer 14, and the rectifier 15. The charging circuit is removed and a diode circuit composed of two diodes 16 and 17 is connected instead. Unlike the vacuum device abnormal discharge suppressing device 200, the diodes 16 and 17 are used to charge the reverse voltage capacitor 5A of the reverse polarity voltage circuit 5 with a half wave of the resonance current. The diode 16 is connected between the connection point between the short-circuit semiconductor switch 4 and the reverse voltage capacitor 5A and one end of the resonance circuit 11 with the cathode side facing the short-circuit semiconductor switch 4. Between the connection point of the resonant circuit 11 and the diode 16 and the positive electrode of the DC power source 1, the anode side is connected to the positive electrode of the DC power source 1. In this embodiment, a diode circuit composed of the diodes 16 and 17 cooperates with the antiparallel diode 8 and the resonance circuit 11 to constitute an auxiliary charging circuit.

制御回路7からのオン信号によって、短絡用半導体スイッチ4がオンしたとき、共振回路11の共振用コンデンサ10は追加されたダイオード16を通して矢印X方向に電荷を放電して共振電流Irを流す。そして、共振用コンデンサ10の電圧が反転して、矢印Y方向に共振電流Irが流れるとき、逆並列ダイオード8を流れる共振電流Irの半波の電流はダイオード16で阻止され、逆電圧用コンデンサ5Aとダイオード17を通して流れて、逆電圧用コンデンサ5Aを図示極性に充電する。実験では、この回路により、充電器5Cの所要電力を70%以上減少でき、非常に効果がある。他方では、短絡用半導体スイッチ4がオンしたときに、前記実施形態と同様に、逆電圧用コンデンサ5Aの充電電圧は短絡用半導体スイッチ4及び真空装置2を通して放電され、真空装置2を逆バイアスして異常放電を速やかに消滅させる。逆極性電圧回路5は、真空装置2を流れる電流が一旦ゼロになり、異常放電によって生じたイオンが消滅すると真空装置2のインピーダンスは大きくなって、再び微少な電流が流れることがない時点まで、逆極性電圧を真空装置2に印加するのが好ましい。   When the shorting semiconductor switch 4 is turned on by an ON signal from the control circuit 7, the resonance capacitor 10 of the resonance circuit 11 discharges electric charge in the direction of the arrow X through the added diode 16 and causes the resonance current Ir to flow. Then, when the voltage of the resonance capacitor 10 is inverted and the resonance current Ir flows in the direction of the arrow Y, the half-wave current of the resonance current Ir flowing through the antiparallel diode 8 is blocked by the diode 16, and the reverse voltage capacitor 5A. And flows through the diode 17 to charge the reverse voltage capacitor 5A to the polarity shown. In the experiment, this circuit can reduce the required power of the charger 5C by 70% or more, which is very effective. On the other hand, when the shorting semiconductor switch 4 is turned on, the charging voltage of the reverse voltage capacitor 5A is discharged through the shorting semiconductor switch 4 and the vacuum device 2 to reverse bias the vacuum device 2 as in the above embodiment. To eliminate the abnormal discharge promptly. In the reverse polarity voltage circuit 5, the current flowing through the vacuum device 2 once becomes zero, and when the ions generated by the abnormal discharge disappear, the impedance of the vacuum device 2 increases, until a minute current does not flow again. It is preferable to apply a reverse polarity voltage to the vacuum device 2.

この実施形態3でも、真空装置用異常放電抑制装置100と同様に、配線Lを流れるバイパス電流Ibと共振周期の負の半周期の共振電流Ir(矢印Y方向)とは方向が互いに逆になるので、実際には、バイパス電流Ibから共振周期の負の半周期の共振電流Irを差し引いた電流が短絡用半導体スイッチ4を流れる。したがって、バイパス電流Ibの値と共振周期の負の半周期の共振電流Irの値とが等しくなった時点で、短絡用半導体スイッチ4を流れる電流はゼロになり、共振周期の負の半周期の共振電流Irの値がバイパス電流Ibの値を超えると、図2(D)の斜線で示した電流が逆並列ダイオード8に流れる。したがって、短絡用半導体スイッチ4は電流が自然にゼロとなるソフトスイッチングターンオフとなり、ターンオフ負損失は最小となる。したがって、短絡用半導体スイッチ4を数10kHzの高周波でオンオフさせることも可能になる。   Also in the third embodiment, the direction of the bypass current Ib flowing through the wiring L and the resonance current Ir having the negative half cycle of the resonance cycle (in the arrow Y direction) is opposite to each other, as in the case of the abnormal discharge suppressing device 100 for vacuum device. Therefore, actually, a current obtained by subtracting the resonance current Ir having a negative half cycle of the resonance period from the bypass current Ib flows through the short-circuit semiconductor switch 4. Therefore, when the value of the bypass current Ib becomes equal to the value of the resonance current Ir in the negative half cycle of the resonance cycle, the current flowing through the short-circuiting semiconductor switch 4 becomes zero, and the negative half cycle of the resonance cycle. When the value of the resonance current Ir exceeds the value of the bypass current Ib, the current indicated by the diagonal lines in FIG. Therefore, the short-circuiting semiconductor switch 4 becomes a soft switching turn-off in which the current naturally becomes zero, and the turn-off negative loss is minimized. Therefore, the short-circuiting semiconductor switch 4 can be turned on / off at a high frequency of several tens of kHz.

以上、本発明では短絡用半導体スイッチ4を1個の半導体スイッチで説明してきたが、スパッタリング装置は数100Vであるため、短絡用半導体スイッチ4としてIGBT、MOSFETなどを使用する場合は、1200V程度の耐圧を1個使用すれば実現できるが、電子ビーム装置の場合には、10kV程度あるため、1200V程度の耐圧のIGBT、MOSFETを複数個直列接続することにより実現できる。この場合には、短絡用半導体スイッチ4の順方向ドロップが大きくなるので、逆極性電圧回路5の働きがより有効になる。
また、使用するIGBT、MOSFETの内部ダイオードを逆並列ダイオード8として使用する場合、内部ダイオードの逆回復特性が悪い、いわゆるリカバリー時間が長いと、内部ダイオードのオフ時にサージ電圧が発生する。この場合には、内部ダイオードが有効に働かないように、短絡用半導体スイッチ4と直列同方向に図示しない逆電流防止ダイオードを接続し、その直列回路に跨って逆回復特性の優れた外付けのダイオードを接続して、これを逆並列ダイオード8として用いることが望ましい。
As described above, the short-circuit semiconductor switch 4 has been described as a single semiconductor switch in the present invention. However, since the sputtering apparatus is several hundred volts, when an IGBT, a MOSFET, or the like is used as the short-circuit semiconductor switch 4, it is about 1200V. This can be realized by using one withstand voltage. However, in the case of an electron beam apparatus, since it is about 10 kV, it can be realized by connecting a plurality of IGBTs and MOSFETs having a withstand voltage of about 1200 V in series. In this case, the forward drop of the short-circuiting semiconductor switch 4 becomes large, so that the function of the reverse polarity voltage circuit 5 becomes more effective.
Further, when the internal diode of the IGBT or MOSFET to be used is used as the anti-parallel diode 8, if the reverse recovery characteristic of the internal diode is bad, so-called recovery time is long, a surge voltage is generated when the internal diode is turned off. In this case, a reverse current prevention diode (not shown) is connected in the same direction in series with the short-circuiting semiconductor switch 4 so that the internal diode does not work effectively, and the external switch having an excellent reverse recovery characteristic is connected across the series circuit. It is desirable to connect a diode and use it as the antiparallel diode 8.

さらにまた、必要に応じて、IGBT又はMOSFETに並列に抵抗、コンデンサなどからなるスナバ回路を接続したものを短絡用半導体スイッチとして用いても良い。
また、定電流用インダクタ3を直流電源1の出力端子に接続されたものとして説明したが、直流電源2のフィルタ用インダクタであってもよい。図示しないが、定電流用インダクタ3に2次巻線を設け、その2次巻線の交流電力を整流回路で整流して直流電力に変換し、その直流電力を逆極性電圧回路5の逆電圧用コンデンサ5Aの充電電力の一部分として供給しても良い。この場合には、不図示の2次巻線を備える定電流用インダクタ3が整流回路や抵抗と共に補助充電回路を構成する。
充電器5Cは、直流電源1にトランスが備えられている場合には、その図示しないトランスに付加的な巻線を設け、その付加的な巻線に整流器を接続して必要な直流電力を得る簡単な構成のものであってもよい。
真空装置2の電圧が予め決めた設定電圧を越えているときには、前記短絡用半導体スイッチのターンオン時の電力損失が大きくなるので、前記短絡用半導体スイッチをオンさせない電圧インターロック回路を必要に応じて備えていてもよい。
Furthermore, if necessary, a IGBT or MOSFET connected in parallel with a snubber circuit made up of a resistor, a capacitor or the like may be used as a short-circuiting semiconductor switch.
Further, although the constant current inductor 3 is described as being connected to the output terminal of the DC power supply 1, it may be a filter inductor of the DC power supply 2. Although not shown, a secondary winding is provided in the constant current inductor 3, the AC power of the secondary winding is rectified by a rectifier circuit and converted to DC power, and the DC power is converted to a reverse voltage of the reverse polarity voltage circuit 5. It may be supplied as a part of the charging power of the capacitor 5A. In this case, the constant current inductor 3 having a secondary winding (not shown) constitutes an auxiliary charging circuit together with the rectifier circuit and the resistor.
When the DC power supply 1 is equipped with a transformer, the charger 5C is provided with an additional winding in the transformer (not shown), and a rectifier is connected to the additional winding to obtain the necessary DC power. A simple configuration may be used.
When the voltage of the vacuum device 2 exceeds a predetermined set voltage, power loss at the time of turn-on of the short-circuiting semiconductor switch becomes large. Therefore, if necessary, a voltage interlock circuit that does not turn on the short-circuiting semiconductor switch is provided. You may have.

本発明に係る第1の実施形態である真空装置用異常放電抑制装置100を示す図である。It is a figure which shows the abnormal discharge suppression apparatus 100 for vacuum devices which is 1st Embodiment which concerns on this invention. 本発明に係る第1の実施形態である真空装置用異常放電抑制装置100を説明するための波形図である。It is a wave form diagram for explaining abnormal discharge suppression device 100 for vacuum devices which is a 1st embodiment concerning the present invention. 本発明に係る第2の実施形態である真空装置用異常放電抑制装置200を示す図である。It is a figure which shows the abnormal discharge suppression apparatus 200 for vacuum devices which is the 2nd Embodiment which concerns on this invention. 本発明の第3の実施形態である真空装置用異常放電抑制装置300を示す図である。It is a figure which shows the abnormal discharge suppression apparatus 300 for vacuum devices which is the 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1…直流電源
2…真空装置
3…定電流用インダクタ
4…短絡用半導体スイッチ
5…逆極性電圧回路
5A…逆電圧用コンデンサ
5B…ダイオード
5C…充電器
6…異常放電検出回路
7…制御回路
8…逆並列ダイオード
9…共振用インダクタ
10…共振用コンデンサ
11…共振回路
12…サージ電圧吸収回路
13…インバータ回路
DESCRIPTION OF SYMBOLS 1 ... DC power supply 2 ... Vacuum apparatus 3 ... Inductor for constant current 4 ... Semiconductor switch for short circuit 5 ... Reverse polarity voltage circuit 5A ... Reverse voltage capacitor 5B ... Diode 5C ... Charger 6 ... Abnormal discharge detection circuit 7 ... Control circuit 8 ... Antiparallel diode 9 ... Resonant inductor 10 ... Resonant capacitor 11 ... Resonant circuit 12 ... Surge voltage absorption circuit 13 ... Inverter circuit

Claims (2)

真空装置と、
該真空装置に給電を行う直流電源と、
前記直流電源と前記真空装置とに並列に接続されている短絡用半導体スイッチと、
前記短絡用半導体スイッチの極性とは逆の極性になるよう、前記短絡用半導体スイッチと並列に接続されている逆並列ダイオードと、
前記真空装置に異常放電が発生するとき、前記短絡用半導体スイッチをオンさせる制御回路と、
前記短絡用半導体スイッチと直列に接続されていて、前記短絡用半導体スイッチがオンするとき前記真空装置に逆極性電圧を印加する逆極性電圧回路と、
を備えた真空装置用異常放電抑制装置において、
前記短絡用半導体スイッチ及び前記逆並列ダイオードと並列に接続されている互いに直列接続の共振用インダクタと共振用コンデンサとからなる共振回路を備え、
前記共振回路の前記共振用インダクタと前記共振用コンデンサは、前記短絡用半導体スイッチを流れるバイパス電流Ibとは逆極性の共振電流の値が前記短絡用半導体スイッチを流れる前記バイパス電流Ibの値を越える期間が存在するように、それぞれの値が設定されており、
前記短絡用半導体スイッチがオンするとき、前記共振回路は共振を行い、前記短絡用半導体スイッチには前記バイパス電流Ibと前記共振電流とが流れ、前記バイパス電流Ibの極性とは逆極性の前記共振電流の値前記バイパス電流Ibの値と等しくなって前記短絡用半導体スイッチを流れる電流がゼロとなる時点から前記バイパス電流Ibの値を越えるのに伴い、前記逆極性の共振電流が前記逆並列ダイオードを流れる期間に等しい前記短絡用半導体スイッチに電流が流れない期間に、前記短絡用半導体スイッチをターンオフさせることを特徴とする真空装置用異常放電抑制装置。
A vacuum device;
A DC power source for supplying power to the vacuum device;
A short-circuiting semiconductor switch connected in parallel to the DC power source and the vacuum device;
An anti-parallel diode connected in parallel with the short-circuiting semiconductor switch so as to have a polarity opposite to the polarity of the short-circuiting semiconductor switch;
A control circuit for turning on the short-circuiting semiconductor switch when an abnormal discharge occurs in the vacuum device;
A reverse polarity voltage circuit connected in series with the shorting semiconductor switch and applying a reverse polarity voltage to the vacuum device when the shorting semiconductor switch is turned on;
In the abnormal discharge suppression device for a vacuum device comprising:
A resonance circuit comprising a resonance inductor and a resonance capacitor connected in series with each other and connected in parallel with the short-circuiting semiconductor switch and the antiparallel diode;
The resonant inductor and the resonant capacitor of the resonant circuit, exceeds the value of the bypass current Ib the value of the opposite polarity of the resonant current flows through the semiconductor switch the short and bypass current Ib flowing through the semiconductor switch the short Each value is set so that a period exists,
When the shorting semiconductor switch is turned on, the resonance circuit resonates, the bypass current Ib and the resonance current flow through the shorting semiconductor switch, and the resonance having a polarity opposite to the polarity of the bypass current Ib. As the value of the current becomes equal to the value of the bypass current Ib and the value of the current flowing through the shorting semiconductor switch becomes zero, the value of the bypass current Ib exceeds the value of the bypass current Ib. An abnormal discharge suppressing device for a vacuum apparatus, wherein the short-circuiting semiconductor switch is turned off during a period in which no current flows through the short-circuiting semiconductor switch, which is equal to a period in which the diode flows.
請求項1において、
前記共振用コンデンサの充電電荷が前記共振用インダクタを通して前記真空負荷に直接放電されるのを阻止するダイオードを、前記短絡用半導体スイッチと直列かつ同一方向にして接続したことを特徴とする真空装置用異常放電抑制装置。
In claim 1,
For a vacuum device, characterized in that a diode for preventing the charging charge of the resonance capacitor from being directly discharged to the vacuum load through the resonance inductor is connected in series and in the same direction as the short-circuit semiconductor switch . Abnormal discharge suppression device.
JP2004168809A 2004-06-07 2004-06-07 Abnormal discharge suppression device for vacuum equipment Expired - Fee Related JP4468078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004168809A JP4468078B2 (en) 2004-06-07 2004-06-07 Abnormal discharge suppression device for vacuum equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004168809A JP4468078B2 (en) 2004-06-07 2004-06-07 Abnormal discharge suppression device for vacuum equipment

Publications (2)

Publication Number Publication Date
JP2005347212A JP2005347212A (en) 2005-12-15
JP4468078B2 true JP4468078B2 (en) 2010-05-26

Family

ID=35499384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004168809A Expired - Fee Related JP4468078B2 (en) 2004-06-07 2004-06-07 Abnormal discharge suppression device for vacuum equipment

Country Status (1)

Country Link
JP (1) JP4468078B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5172135B2 (en) * 2006-11-10 2013-03-27 オリジン電気株式会社 Vacuum equipment
JP2012033409A (en) 2010-07-30 2012-02-16 Origin Electric Co Ltd Reversed-polarity pulse generating circuit for dc plasma, and dc plasma power supply device
CN103774111B (en) * 2014-02-25 2016-01-13 南华大学 A kind of circuit arrangement and control method realizing high power pulse and big current magnetron sputtering plating function

Also Published As

Publication number Publication date
JP2005347212A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
USRE39926E1 (en) Arc-machining power supply with switching loss reducing element
EP2999106B1 (en) Voltage-type dc power supply and control method of voltage-type dc power supply
JP2012033409A (en) Reversed-polarity pulse generating circuit for dc plasma, and dc plasma power supply device
JP2010004724A (en) Series resonant converter
JP2003123569A (en) Direct current vacuum circuit breaker
JP3623181B2 (en) High voltage semiconductor switch device and high voltage generator
JP4468078B2 (en) Abnormal discharge suppression device for vacuum equipment
JP4079561B2 (en) Power supply for sputtering
WO2013031717A1 (en) Capacitor type welding method and welding device
JP4498000B2 (en) Power supply
JPH11579A (en) Pulse electric power source device for electric dust collection and protection method thereof
JPH0821861A (en) Fault detecting circuit for power converting device
JP2018074619A (en) Gate pulse generating circuit and pulse power supply device
JP5172135B2 (en) Vacuum equipment
JPH11144860A (en) High frequency heating apparatus
JPS63309373A (en) Arc welding source
JP2005328653A (en) High voltage pulse generation circuit
CN216774633U (en) Half-bridge inverter circuit with active absorption loop and welding power supply
JP2001335928A (en) Sputtering apparatus
JPH084213Y2 (en) AC arc welder
JP4627696B2 (en) Vacuum equipment
KR100343983B1 (en) The output control and protection circuit for high voltage and large current pulse generator
JP6958785B2 (en) Shielded metal arc welding system and welding power supply for shielded metal arc welding
JP3463965B2 (en) Plasma arc processing equipment
JP2001295042A (en) Sputtering apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061116

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees