JP4673631B2 - Titanium alloy wire excellent in cold workability and having a tensile strength of more than 620 MPa and less than 700 MPa - Google Patents

Titanium alloy wire excellent in cold workability and having a tensile strength of more than 620 MPa and less than 700 MPa Download PDF

Info

Publication number
JP4673631B2
JP4673631B2 JP2005028684A JP2005028684A JP4673631B2 JP 4673631 B2 JP4673631 B2 JP 4673631B2 JP 2005028684 A JP2005028684 A JP 2005028684A JP 2005028684 A JP2005028684 A JP 2005028684A JP 4673631 B2 JP4673631 B2 JP 4673631B2
Authority
JP
Japan
Prior art keywords
mpa
tensile strength
less
wire
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005028684A
Other languages
Japanese (ja)
Other versions
JP2006213973A (en
Inventor
一浩 高橋
勇 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005028684A priority Critical patent/JP4673631B2/en
Publication of JP2006213973A publication Critical patent/JP2006213973A/en
Application granted granted Critical
Publication of JP4673631B2 publication Critical patent/JP4673631B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Extraction Processes (AREA)

Description

本発明は、チタン合金Ti−3Al−2.5Vを基本成分とした、冷間加工性に優れた引張強さ620MPa超700MPa未満のチタン合金線材に関する。   The present invention relates to a titanium alloy wire rod having a titanium alloy Ti-3Al-2.5V as a basic component and excellent in cold workability and having a tensile strength of more than 620 MPa and less than 700 MPa.

チタン合金Ti−3Al−2.5V(以降、Ti325と略記する。)は、JIS H 4650において61種として規格化されている。このTi325は、Ti−6Al−4V(以降、Ti64と略記する。)に対して金属元素であるAlとVの添加量を約半分にすることによって、Ti64よりは強度は低いものの冷間での変形能を有しており、工業用純チタンJIS1種、2種、3種と比べると強度が高く冷間変形能が低いことが知られている。   Titanium alloy Ti-3Al-2.5V (hereinafter abbreviated as Ti325) is standardized as 61 types in JIS H 4650. This Ti325 has a lower strength than Ti64, although it has a strength lower than that of Ti64 by halving the addition amounts of Al and V, which are metal elements, to Ti-6Al-4V (hereinafter abbreviated as Ti64). It has a deformability and is known to have a high strength and a low cold deformability compared to industrial pure titanium JIS type 1, type 2 and type 3.

Ti325の化学成分は、JIS H 4650の61種では、Alが2.5〜3.5質量%、Vが2〜3質量%、Feが0.25質量%以下、Oが0.15質量%以下、N(窒素)が0.03質量以下、C(炭素)が0.08質量%以下、H(水素)が0.015質量%以下である。Ti325の引張特性は、JIS H 4650の61種の線材では引張強さ700〜900MPa、伸び9%以上である。   As for the chemical composition of Ti325, in 61 types of JIS H 4650, Al is 2.5 to 3.5 mass%, V is 2 to 3 mass%, Fe is 0.25 mass% or less, and O is 0.15 mass%. Hereinafter, N (nitrogen) is 0.03 mass% or less, C (carbon) is 0.08 mass% or less, and H (hydrogen) is 0.015 mass% or less. The tensile properties of Ti325 are tensile strength 700 to 900 MPa and elongation 9% or more in 61 types of wire of JIS H 4650.

Ti325の線材は、眼鏡フレームなどに多く用いられており、2mm程度の細い直径まで冷間伸線される。さらには、へん平断面など眼鏡フレーム形状に冷間加工される。そのため、Ti325製の線材を使用する側からは、冷間加工性の向上が望まれている。   Ti325 wire is often used for spectacle frames and the like, and is cold drawn to a thin diameter of about 2 mm. Furthermore, it is cold worked into a spectacle frame shape such as a flat cross section. Therefore, the improvement of cold workability is desired from the side using the wire made of Ti325.

特許文献1には、冷間加工性の優れたチタン合金として、Alが2.5〜3.5質量%、Vが2〜3質量%、Oが0.05〜0.1質量%、Nbが2.0〜5.0質量%のチタン合金が開示されており、Nbの多量添加はβ相を安定化し冷間加工性を改善する作用があることが記載されている。   In Patent Document 1, as a titanium alloy having excellent cold workability, Al is 2.5 to 3.5% by mass, V is 2 to 3% by mass, O is 0.05 to 0.1% by mass, Nb Is disclosed in that a large amount of Nb has the effect of stabilizing the β phase and improving the cold workability.

特許文献2には、冷間加工性およびロウ付け後の疲労強度に優れたチタン合金として、Alが0.5〜2.3質量%でβ安定化元素を実質的に含有しないチタン合金、さらには左記合金にGaを4質量%以下またはSiを1質量%以下含有するチタン合金が開示されており、Alが2.3質量%以下の領域では75%の冷間圧延を行なっても耳割れが発生しないことから十分な冷間加工性を有し、結晶粒が粗大化する眼鏡フレーム・ロウ付け部の疲労特性も良好であることが記載されている。   In Patent Document 2, as a titanium alloy excellent in cold workability and fatigue strength after brazing, a titanium alloy containing 0.5 to 2.3% by mass of Al and substantially free of a β-stabilizing element, Discloses a titanium alloy containing 4% by mass or less of Ga or 1% by mass or less of Si in the left alloy. In the region where Al is 2.3% by mass or less, even if cold rolling of 75% is performed, an ear crack is disclosed. It has been described that since it does not occur, it has sufficient cold workability and the fatigue characteristics of the spectacle frame and brazed portion where the crystal grains become coarse are also good.

特開昭62−103330号公報JP 62-103330 A 特開2003−055725号公報JP 2003-055725 A

Ti325の線材は、JIS H 4650を満足する引張強さの材質にした場合、展伸材を所定の形状に伸線などによって冷間加工する際に必ずしも十分な冷間加工性を有しないことがある。そのため、冷間加工の途中段階で何回か焼鈍(中間焼鈍)を実施する場合があり、製造コストを高めてしまう。   When the wire material of Ti325 is made of a material having a tensile strength satisfying JIS H 4650, it does not necessarily have sufficient cold workability when the wrought material is cold worked into a predetermined shape by drawing or the like. is there. Therefore, annealing (intermediate annealing) may be performed several times in the middle of cold working, which increases the manufacturing cost.

これに対して、冷間加工性の良い工業用純チタンJIS1種、2種、3種を用いることによって、上記の中間焼鈍の回数は減じることができるが、Ti325よりも強度が低いために疲労特性などの観点から眼鏡フレームなどの断面積を減じることができず軽量化率が低くなってしまう。   On the other hand, by using industrial pure titanium JIS type 1, type 2 and type 3 with good cold workability, the number of intermediate annealings can be reduced, but fatigue is low because the strength is lower than Ti325. From the viewpoint of characteristics and the like, the cross-sectional area of the spectacle frame cannot be reduced, and the weight reduction rate becomes low.

一方、眼鏡用に用いられるTi基ロウ材であるTi−Zr−Ni−Cuの融点は850〜900℃、また、一般的なAg−Cu系やAg−Cu−Ni系のロウ材の融点も890〜900℃である。工業用純チタンの場合、β変態点は高くとも900℃であることから、ロウ付け部および熱影響部はβ変態点近傍あるいはそれ以上となり粒成長してしまうため疲労特性に課題がある。これに対して、Ti325のβ変態点は約935℃であり工業用純チタンよりも高くロウ付け部は粒成長しにくいことから、Ti325の合金成分は、工業用純チタンよりもロウ付け部の疲労特性の点で適している。   On the other hand, the melting point of Ti—Zr—Ni—Cu, which is a Ti-based brazing material used for spectacles, is 850 to 900 ° C., and the melting point of general Ag—Cu and Ag—Cu—Ni brazing materials 890-900 ° C. In the case of industrial pure titanium, since the β transformation point is 900 ° C. at the highest, the brazed portion and the heat affected zone are in the vicinity of the β transformation point or higher and grain growth occurs, so there is a problem in fatigue characteristics. On the other hand, since the β transformation point of Ti325 is about 935 ° C., which is higher than that of industrial pure titanium and the brazed part is less likely to grow, the alloy component of Ti325 is more brazed than that of industrial pure titanium. Suitable for fatigue characteristics.

特許文献1のチタン合金は、Nbを2.0〜5.0質量%と多量に添加しており、NbはTiよりも密度が高くチタン合金そのものの密度を高めてしまうために最終品での質量が増えてしまう。また、Nbは決して安価ではないことからチタン合金のコストを高めてしまう。   In the titanium alloy of Patent Document 1, Nb is added in a large amount of 2.0 to 5.0% by mass, and Nb has a higher density than Ti and increases the density of the titanium alloy itself. Mass will increase. Moreover, since Nb is never cheap, it increases the cost of the titanium alloy.

特許文献2のチタン合金(Alが0.5〜2.3質量%)は、Ti325(平均的にはAlが3質量%、Vが2.5質量%)と比較すると金属元素の総添加量が低いことからもわかるように、冷間加工性はTi325よりも良いと考えられる。しかしながら、引張強さは、Ti−1.5Al合金で446MPaと工業用純チタンJIS2種相当でありTi325には及ばないことから、眼鏡フレームで起こる曲げ、ねじりなどの疲労寿命を確保するためにフレームの断面積をTi325よりも減じることができず軽量化の観点から強度の高いTi325の方が望ましい。   The titanium alloy of Patent Document 2 (Al is 0.5 to 2.3 mass%) has a total added amount of metal elements as compared with Ti325 (average is 3 mass% of Al and V is 2.5 mass%). As can be seen from the fact that it is low, the cold workability is considered to be better than that of Ti325. However, because the tensile strength is 446 MPa for Ti-1.5Al alloy, which is equivalent to industrial pure titanium JIS type 2 and does not reach Ti325, the frame is used to ensure fatigue life such as bending and twisting that occurs in spectacle frames. In view of weight reduction, Ti325 having higher strength is more desirable than Ti325.

そこで、本発明は、Ti325のβ変態点を維持し、工業用純チタンJIS3種を超える引張強さを確保しながら冷間加工性を高めた、引張強さ620MPa超700MPa未満のTi−3Al−2.5V製チタン合金線材を提供することを目的とするものである。なお、JIS H 4650に規定されている工業用純チタンJIS3種線材の最大引張強さは620MPaである。   Therefore, the present invention maintains the β transformation point of Ti325, and has improved the cold workability while ensuring the tensile strength exceeding that of industrial pure titanium JIS3, Ti-3Al- having a tensile strength of more than 620 MPa and less than 700 MPa. The object is to provide a 2.5V titanium alloy wire. In addition, the maximum tensile strength of the industrial pure titanium JIS type 3 wire specified in JIS H 4650 is 620 MPa.

上記課題を解決するための本発明は、以下のとおりである。
(1) 質量%で、Alが2.5〜3.5%、Vが2.0〜3.0%、Oが0.09%以下、NとCの合計濃度が0.03%以下であり、残部Tiおよび不可避的不純物からなることを特徴とする、冷間加工性に優れた引張強さ620MPa超700MPa未満チタン合金線材。
(2) 質量%で、Feが0.1%未満であることを特徴とする、上記(1)記載の冷間加工性に優れた引張強さ620MPa超700MPa未満チタン合金展伸材。
The present invention for solving the above problems is as follows.
(1) In mass%, Al is 2.5 to 3.5%, V is 2.0 to 3.0%, O is 0.09% or less , and the total concentration of N and C is 0.03% or less . A titanium alloy wire having a tensile strength of more than 620 MPa and less than 700 MPa excellent in cold workability, characterized by comprising the balance Ti and inevitable impurities.
(2) mass% Fe is equal to or less than 0.1%, titanium alloy wrought cold less than excellent tensile strength 620MPa ultra 700MPa that workability according to (1).

ここで、線材とは、断面が円形でその直径が8mm未満のものである。   Here, the wire has a circular cross section and a diameter of less than 8 mm.

上記(1)及び(2)で化学成分を規定していない残部のうちの不純物とは、精練、溶解、展伸、熱処理、酸洗などの工程で除去できない、あるいはこれらの工程で混入する少量の元素のことであり、例えば、0.015質量%以下のHなどが相当する。 The remaining impurities that do not define chemical components in the above (1) and (2) are small amounts that cannot be removed by steps such as scouring, dissolving, spreading, heat treatment, pickling, or mixed in these steps. This corresponds to, for example, H of 0.015 mass% or less.

なお、700MPa未満の引張強さはJIS H 4650 61種に規定されている線材の引張強さ下限値から外れている。   In addition, the tensile strength of less than 700 MPa deviates from the lower limit value of the tensile strength of the wire defined in JIS H 4650 61 type.

本発明によって、JIS H 4650の61種に相当するTi325のβ変態点を維持し、工業用純チタンJIS3種を超える引張強さ(620MPa超)を確保しながら、冷間加工性を高めたチタン合金線材を提供することができる。   According to the present invention, titanium having improved cold workability while maintaining the β transformation point of Ti325 corresponding to 61 types of JIS H 4650 and ensuring the tensile strength (over 620 MPa) exceeding JIS 3 types of industrial pure titanium. An alloy wire can be provided.

JIS H 4650の61種に相当するTi325のβ変態点と工業用純チタンJIS3種(620MPa)を超える引張強さを確保しながら、冷間加工性を高めるために鋭意研究を重ねた結果、ベース添加元素であるAlとVの濃度を各々規格範囲である2.5〜3.5質量%と、2.0〜3.0質量%とすることによってTi325のβ変態点とベース強度を維持しながら、O、N、Cの濃度を低減し且つ引張強さを低くすること(引張強さをJIS H4650の61種の線材の下限値700MPaよりも低くすること)によって、冷間加工性を向上できることを見いだした。加えて、Fe濃度を低くすることによって、冷間加工性がさらに向上できること見いだした。   As a result of intensive research to improve cold workability while securing a β-transformation point of Ti325 equivalent to 61 types of JIS H 4650 and tensile strength exceeding JIS 3 types of industrial pure titanium (620 MPa). The β transformation point and base strength of Ti325 are maintained by adjusting the concentrations of the additive elements Al and V to the standard ranges of 2.5 to 3.5% by mass and 2.0 to 3.0% by mass, respectively. However, cold workability is improved by reducing the concentration of O, N and C and lowering the tensile strength (lowering the tensile strength below the lower limit of 700 MPa of 61 types of wire of JIS H4650). I found what I could do. In addition, it has been found that cold workability can be further improved by lowering the Fe concentration.

まず、本発明の(1)及び(2)では、β変態点をベース組成であるTi325よりも低下させないため、質量%で、Alが2.5〜3.5%、Vが2.0〜3.0%の範囲とした。また、Al、Vを上記のように規定することはベース強度を確保する効果もある。また、元々含有量が少ないFe、O、N、CあるいはHはβ変態点にほとんど影響しない。 First, in (1) and (2) of the present invention, the β transformation point is not lowered as compared with Ti325, which is the base composition. Therefore, in mass%, Al is 2.5 to 3.5%, and V is 2.0 to 2.0. The range was 3.0%. Further, defining Al and V as described above also has an effect of securing the base strength. Further, Fe, O, N, C, or H, which originally has a low content, has little effect on the β transformation point.

本発明の(1)及び(2)の引張強さの下限値は、工業用純チタンJIS3種の上限値である620MPaを超える範囲とすることから、620MPa超とした。 The lower limit value of the tensile strengths (1) and (2) of the present invention is set to exceed 620 MPa because it exceeds the upper limit value of 620 MPa, which is the upper limit value of industrial pure titanium JIS type 3.

線材の冷間加工性を、冷間伸線時の限界伸線率、および平圧延時の限界圧下率によって評価した。ここで、限界伸線率は、冷間伸線によって表面割れが生じない最大の断面積減少率であり、限界圧下率は、上下平ロールで線材を圧延したとき表面割れが生じない最大の圧下率(初期線材直径に対する圧下後の高さから求めた圧下率)である。平圧延は、線材から眼鏡フレームの断面形状(円ではなくへん平あるいは平たい形状)への加工を模擬した冷間加工方法として採用した。これらの冷間加工性指標と種々材料因子との関係を検討した結果、引張強さとO、N、Cの濃度が関連することがわかった。なお、NとCは、添加量が微量であるためこの両者の合計濃度で整理することができた。   The cold workability of the wire was evaluated based on the limit drawing rate during cold drawing and the limit reduction rate during flat rolling. Here, the limit drawing rate is the maximum reduction in the cross-sectional area where surface cracks do not occur due to cold drawing, and the limit reduction rate is the maximum reduction where surface cracks do not occur when rolling the wire with upper and lower flat rolls. It is a rate (a reduction rate obtained from the height after reduction with respect to the initial wire diameter). Flat rolling was adopted as a cold working method simulating the processing from a wire rod to a cross-sectional shape of a spectacle frame (a flat or flat shape instead of a circle). As a result of examining the relationship between these cold workability indexes and various material factors, it was found that the tensile strength and the concentrations of O, N, and C are related. Since N and C were added in a very small amount, they could be sorted by the total concentration of both.

Figure 0004673631
Figure 0004673631

表1に示す種々O、N、Cの濃度(O濃度、NとCの合計濃度)を有する試料ア〜キのTi325線材において、引張強さと限界伸線率、限界圧下率の関係を各々図1、図2に示す。限界伸線率と限界圧下率が大きいほど冷間加工性が良いことを意味する。表1の試料アと試料イは、O濃度が0.09質量%超かあるいはNとCの合計濃度が0.03質量%超でTi325の従来例である。表1の試料ウはO濃度が0.05〜0.09質量%でNとCの合計濃度が0.02〜0.03質量%の、試料エはO濃度が0.05〜0.09質量%でNとCの合計濃度が0.02質量%未満の、試料オはO濃度が0.05質量%未満でNとCの合計濃度が0.02〜0.03質量%の、試料カはO濃度が0.05質量%未満でNとCの合計濃度が0.02質量%未満の、試料キはO濃度が0.05〜0.09質量%でNとCの合計濃度が0.02〜0.03質量%で且つFe濃度が0.1質量%未の各々の例である。   Figure 1 shows the relationship between tensile strength, critical drawing rate, and critical reduction rate for Ti-325 wire samples with various concentrations of O, N, and C shown in Table 1 (O concentration, total concentration of N and C). 1 and FIG. It means that cold workability is so good that a limit drawing rate and a limit reduction rate are large. Sample A and Sample A in Table 1 are conventional examples of Ti325 with an O concentration exceeding 0.09 mass% or a combined concentration of N and C exceeding 0.03% by mass. Sample C in Table 1 has an O concentration of 0.05 to 0.09 mass% and a total concentration of N and C of 0.02 to 0.03 mass%. Sample D has an O concentration of 0.05 to 0.09 mass%. Sample in which the total concentration of N and C is less than 0.02% by mass, and the sample O is an O concentration of less than 0.05% by mass and the total concentration of N and C is 0.02 to 0.03% by mass. The mosquito has an O concentration of less than 0.05% by mass and a total concentration of N and C of less than 0.02% by mass, and the sample key has an O concentration of 0.05 to 0.09% by mass and the total concentration of N and C is Each example is 0.02 to 0.03% by mass and the Fe concentration is not 0.1% by mass.

ここで、冷間伸線試験は、初期直径6.5〜7mmの線材を用いて、孔型ダイスを通材した。なお、潤滑のため線材表面にはボンデライト処理を施した。種々伸線率にて加工された線材表面を目視にて観察して割れの有無を評価し、表面割れが生じない最大伸線率を限界伸線率と定義した。冷間での平圧延試験は、初期直径2mm前後の線材を上下平ロールで圧下した。種々圧下率(初期直径に対する平圧延後の高さから求めた圧下率)にて加工された線材表面を目視にて観察して割れの有無を評価し、表面割れが生じない最大圧下率を限界圧下率と定義した。図1、図2の引張強さは、線材を長手方向に引っ張った値である。線材の引張強さは、冷間伸線後の焼鈍条件あるいは焼鈍後の軽伸線によって調整した。なお、引張試験は、JIS Z 2201に規定された試験片形状にてJIS Z 2241に準拠した方法で実施した。   Here, in the cold wire drawing test, a hole die was passed using a wire having an initial diameter of 6.5 to 7 mm. For lubrication, the surface of the wire was subjected to bonderite treatment. The surface of the wire processed at various wire drawing rates was visually observed to evaluate the presence or absence of cracks, and the maximum wire drawing rate at which no surface cracks occurred was defined as the critical wire drawing rate. In the cold flat rolling test, a wire rod having an initial diameter of about 2 mm was reduced with upper and lower flat rolls. The surface of the wire processed at various rolling reductions (the rolling reduction obtained from the height after flat rolling with respect to the initial diameter) is visually observed to evaluate the presence or absence of cracks, and the maximum rolling reduction at which surface cracks do not occur is limited. It was defined as the rolling reduction. The tensile strength in FIGS. 1 and 2 is a value obtained by pulling the wire in the longitudinal direction. The tensile strength of the wire was adjusted by annealing conditions after cold drawing or light drawing after annealing. In addition, the tensile test was implemented by the method based on JISZ2241 in the test piece shape prescribed | regulated to JISZ2201.

これらの冷間加工性指標は、引張試験の延性とは相関がなく、引張強さとの間に良い相関が得られた。これは、Ti325は稠密六方晶であるα相が主であることから変形能の異方性が大きく、引張試験の延性(伸び、絞り値)は強度差ほどに大きく変化しないためと考えられる。例えば、引張強さが約650MPaと約720MPaの延性を比較すると、線では、いずれも伸びは約12%、絞り値は約65%であり、引張強さに70MPaもの差があるものの延性には差がない。   These cold workability indexes had no correlation with the ductility of the tensile test, and a good correlation was obtained with the tensile strength. This is presumably because Ti325 is mainly composed of a dense hexagonal α phase, so that the anisotropy of the deformability is large and the ductility (elongation, drawing value) of the tensile test does not change as much as the strength difference. For example, when comparing the ductility of tensile strengths of about 650 MPa and about 720 MPa, in the lines, the elongation is about 12% and the drawing value is about 65%. There is no difference.

図1、図2より、引張強さが低下すると限界伸線率と限界圧下率がともに向上している。また、O濃度、NとCの合計濃度が小さくなるほどに引張強さが小さい場合には、限界伸線率と限界圧縮率が向上する側にシフトしており、同等な引張強さであってもO濃度とNとCの合計濃度が小さい方がこれらの冷間加工性指標が高位になる傾向にある。材質因子である引張強さの他にO、N、Cの濃度が冷間加工性に影響していることがわかる。なお、O濃度が高い試料アとNとCの合計濃度が高い試料イは、焼鈍750℃1時間さらには850℃1時間実施しても引張強さは700MPa未満には低下しなかった。   From FIG. 1 and FIG. 2, when the tensile strength is reduced, both the critical drawing rate and the critical reduction rate are improved. In addition, when the tensile strength is small as the total concentration of O concentration and N and C is small, the critical drawing rate and the critical compression rate are shifted to an improved side, and the tensile strength is equivalent. However, when the O concentration and the total concentration of N and C are smaller, these cold workability indexes tend to be higher. It can be seen that the concentration of O, N and C in addition to the tensile strength which is a material factor influences cold workability. Note that the tensile strength of Sample A having a high O concentration and Sample A having a high total concentration of N and C did not decrease to less than 700 MPa even after annealing at 750 ° C. for 1 hour and further at 850 ° C. for 1 hour.

従来の引張強さ700MPa以上であるTi325の限界伸線率は70%、限界圧下率は35%であることから、これよりも高い値として限界伸線率は75%、限界圧下率は40%を本発明のしきい値として、冷間加工性指標がしきい値以上となる、O濃度、NとCの合計濃度、引張強さの範囲を本発明の範囲とした。   Ti325, which has a tensile strength of 700 MPa or more, has a limit drawing ratio of 70% and a limit reduction ratio of 35%. Therefore, the higher limit values are 75% and the limit reduction ratio is 40%. Was the threshold value of the present invention, and the range of the O concentration, the total concentration of N and C, and the tensile strength in which the cold workability index was equal to or greater than the threshold value was defined as the range of the present invention.

本発明(1)では、試料ウ〜カに代表されるように限界伸線率が75%以上、限界圧下率が40%以上になることから、O濃度を0.09質量%以下、NとCの合計濃度を0.03質量%以下、引張強さを700MPa未満とした。 In the present invention (1), limit drawing ratio as represented by the sample c ~ Ca 75% or more, since the limit rolling reduction is more than 40%, the O concentration 0.09 wt% or less, and N The total concentration of C was 0.03% by mass or less , and the tensile strength was less than 700 MPa.

た、引張強さは、本発明(1)おいて安定して冷間加工性指標が高まることから、620MPa超690MPa未満が好ましい。 Also, the tensile strength is stable since the increasing cold workability indicators Oite the present invention (1), less than 620MPa ultra 690MPa is preferable.

Fe濃度は、JIS H 4650の61種の規格では、0.25質量%以下となっているが、Fe濃度を0.1質量%未満に低下させることもO、N、C同様に冷間加工性指標を向上される作用があることから、本発明()は、本発明(1)おいてFe濃度を0.1質量%未満とした。表1の試料キは、Fe濃度が0.1質量%未満の例であり、Fe濃度以外の化学成分は試料ウとほぼ同等である。Fe濃度は、試料キと試料ウで各々0.089、0.198質量%であり、この両者を比較すると、図1、図2に示したように、限界伸線率と限界圧下率は、引張強さが低い側でFe濃度が0.1質量%未満である試料キの方が上位にある。Feは、β相を安定化する元素であるためα相安定化元素であるO、N、Cのα相への濃化を促すことからα相の変形能が抑制させることとなるが、逆に、Fe濃度の低下は、冷間加工性の向上に寄与したものと考えられる。 The Fe concentration is 0.25% by mass or less in 61 types of JIS H 4650, but it is possible to reduce the Fe concentration to less than 0.1% by mass as in the case of O, N and C. because of the action to improve the sexual index, the present invention (2) is a Oite Fe concentration was less than 0.1 mass% in the present invention (1). The sample key in Table 1 is an example in which the Fe concentration is less than 0.1% by mass, and chemical components other than the Fe concentration are almost the same as those of the sample C. The Fe concentration is 0.089% and 0.198% by mass for Sample K and Sample U, respectively. When both are compared, as shown in FIG. 1 and FIG. The sample key having the lower tensile strength and the Fe concentration of less than 0.1% by mass is higher. Since Fe is an element that stabilizes the β phase, it promotes the concentration of the α phase stabilizing elements O, N, and C into the α phase, so that the deformability of the α phase is suppressed. In addition, the decrease in Fe concentration is considered to have contributed to the improvement of cold workability.

なお、本発明において、冷間加工性の観点からは、O、N、C、Feの下限濃度を特に限定する理由はないものの、工業的な製造能力として、各下限濃度は、質量%で、Oが0.02%、Nが0.002%、Cが0.002%、Feが0.005%程度である。   In the present invention, from the viewpoint of cold workability, although there is no reason to particularly limit the lower limit concentration of O, N, C, Fe, as industrial production capacity, each lower limit concentration is mass%, O is 0.02%, N is 0.002%, C is 0.002%, and Fe is about 0.005%.

Figure 0004673631
Figure 0004673631

Figure 0004673631
Figure 0004673631

Figure 0004673631
Figure 0004673631

Figure 0004673631
Figure 0004673631

Figure 0004673631
Figure 0004673631

本発明を、以下の実施例1を用いて本発明(1)を更に詳細に説明する。   The present invention (1) will be described in further detail using the following Example 1.

まず、表2に用いた素材A〜Rの化学成分を、また、表2の最右欄には各素材成分が該当する本発明の請求項を示しており、素材記号D〜Rが該当する。表3−1、表3−2、表3−3に線材の冷間伸線後の履歴、限界伸線率を、表4には線材の冷間伸線後の履歴、引張強さ、平圧延時の限界圧下率を示す。なお、表3−1、表3−2、表3−3、表4の最右欄には該当する請求項を示す。   First, the chemical components of the materials A to R used in Table 2 are shown, and the rightmost column of Table 2 shows the claims of the present invention to which each material component corresponds, and the material symbols D to R correspond. . Tables 3-1, 3-2, and 3-3 show the history and limit drawing ratio of the wire after cold drawing, and Table 4 shows the history, tensile strength, and flatness of the wire after cold drawing. Indicates the critical rolling reduction during rolling. In addition, the corresponding claim is shown in the rightmost column of Table 3-1, Table 3-2, Table 3-3, and Table 4.

表3−1、表3−2、表3−3の限界伸線率を評価するための冷間伸線に用いた線材は、直径6.5〜7mmで、表3−1、表3−2、表3−3の「冷間伸線後の履歴」の欄に示した種々条件で真空焼鈍を施し、一部はその後に軽伸線を実施した。冷間伸線には孔型ダイスを用いて線材表面には潤滑のためボンデライト処理を施した。表4の限界圧下率を評価するための平圧延に用いた線材は、直径2mm前後で、表4の「冷間伸線後の履歴」の欄に示した種々条件で真空焼鈍を施し、一部はその後に軽伸線を実施した。なお、冷間伸線または平圧延にて加工された線材表面を目視にて観察して割れの有無を評価し、表面割れが生じない最大の伸線率または圧下率を各々限界伸線率、限界圧下率と定義した。また、引張強さは線材を長手方向に引っ張った値であり、JIS Z 2201に規定された試験片形状にて、JIS Z 2241に準拠した方法で引張試験を実施した。   The wire used for the cold wire drawing for evaluating the critical wire drawing ratios of Table 3-1, Table 3-2, and Table 3-3 has a diameter of 6.5 to 7 mm, and Tables 3-1 and 3- 2. Vacuum annealing was performed under various conditions shown in the column “History after cold drawing” in Table 3-3, and a part of the wire was lightly drawn after that. For cold drawing, a hole die was used, and the surface of the wire was subjected to bonderite treatment for lubrication. The wire rod used for flat rolling for evaluating the critical rolling reduction in Table 4 was about 2 mm in diameter, and was subjected to vacuum annealing under various conditions shown in the column of “History after cold drawing” in Table 4. The department then performed light wire drawing. In addition, by visually observing the surface of the wire processed by cold drawing or flat rolling, the presence or absence of cracks is evaluated, and the maximum drawing rate or rolling reduction at which surface cracks do not occur is the critical drawing rate, It was defined as the critical reduction rate. Further, the tensile strength is a value obtained by pulling the wire in the longitudinal direction, and a tensile test was performed by a method conforming to JIS Z 2241 with the shape of a test piece defined in JIS Z 2201.

表3−1より、従来成分である素材記号A、B、Cを用いた線材の従来例No.1−1、1−2、1−3、1−4の限界伸線率は70%で75%には及ばない。化学成分が本発明(1)に該当する素材記号D、E、Lを用いた線材のうち引張強さが620MPa超で700MPa未満である本発明(1)の実施例No.1−5、1−6、1−7、1−8、1−9、1−10、1−13は、限界伸線率が75%以上と従来例よりも値が上位にある。なお、これらの引張強さは620MPa超でJIS H4650の工業用純チタンJIS3種線材の規格上限値よりも高い。一方、上記と同じ素材記号E、Lを用いたものの引張強さが700MPa以上である比較例No.1−11、1−12、1−14は、従来例同様に限界伸線率が70%で75%には及ばない。   From Table 3-1, conventional example No. of wire rods using material symbols A, B, and C which are conventional components. 1-1, 1-2, 1-3, and 1-4 have a limit drawing ratio of 70%, which is less than 75%. Of the wires using the material symbols D, E, and L corresponding to the present invention (1), the tensile strength is more than 620 MPa and less than 700 MPa. 1-5, 1-6, 1-7, 1-8, 1-9, 1-10, 1-13 have a limit drawing ratio of 75% or more, which is higher than the conventional example. These tensile strengths exceed 620 MPa and are higher than the standard upper limit value of JIS H4650 industrial pure titanium JIS type 3 wire. On the other hand, the comparative example No. in which the tensile strength of those using the same material symbols E and L as above is 700 MPa or more. 1-11, 1-12, and 1-14 have a limit drawing ratio of 70% as in the conventional example, which is less than 75%.

次に、表4に示した本発明(1)の線材の実施例について説明する。表4より、従来成分である素材記号A、Bを用いた線材の従来例No.4−1、4−2、4−3の限界圧下率は35%で40%には及ばない。化学成分が本発明(1)に該当する素材記号Eを用いた線材のうち引張強さが620MPa超で700MPa未満である本発明(1)の実施例No.4−4、4−5、4−6は、限界圧下率が40%以上と従来例よりも値が上位にある。なお、これらの引張強さは、620MPa超で、JIS H4650の工業用純チタンJIS3種線材の規格上限値よりも高い。一方、上記と同じ素材記号Eを用いたものの引張強さが700MPa以上である比較例No.4−7、4−8は、従来例同様に限界圧下率が35%で40%には及ばない。   Next, examples of the wire rod of the present invention (1) shown in Table 4 will be described. From Table 4, the conventional example No. of the wire using the material symbols A and B which are the conventional components. The critical rolling reduction of 4-1, 4-2, and 4-3 is 35%, which is not as high as 40%. Of the wires using the material symbol E corresponding to the present invention (1), the tensile strength is more than 620 MPa and less than 700 MPa. As for 4-4, 4-5, and 4-6, the critical rolling reduction is 40% or more, which is higher than the conventional example. These tensile strengths are over 620 MPa, which is higher than the standard upper limit value of JIS H4650 industrial pure titanium JIS type 3 wire. On the other hand, Comparative Example No. 1 using the same material symbol E as described above and having a tensile strength of 700 MPa or more. 4-7 and 4-8 have a critical rolling reduction of 35% as in the conventional example, which is less than 40%.

本発明を、以下の実施例2を用いて本発明(1)を更に詳細に説明する。 The present invention ( 1) will be described in further detail using the following Example 2.

表3−2より線材の冷間加工性について説明する。   The cold workability of the wire will be described from Table 3-2.

本発明(1)において、NとCの合計濃度が低化学成分素材記号F、Gを用いた線材のうち引張強さが620MPa超で700MPa未満である実施例No.2−1、2−2、2−3、2−4は、限界伸線率が75%以上と従来例よりも値が上位にあり、引張強さが低い側限界伸線率が上位になっている。例えば、素材記号Gの実施例No.2−2、2−3は、同等な引張強さ実施例である素材記号Eを用いたNo.1−7、1−9と比較して限界伸線率が高いことがわかる。 In the present invention (1), Example yo Ri N and materials symbol F of total concentration is not low chemical components of C, and of which the tensile strength of the wire with G less than 700MPa at 620MPa than No. 2-1, 2-2, 2-3, 2-4 have a limit drawing ratio of 75% or more, which is higher than the conventional example, and the limit drawing ratio is higher on the side where the tensile strength is lower. It has become. For example, Example No. of material symbol G. 2-2 and 2-3, was used as an example of equivalent tensile strength material symbol E No. It can be seen that the limit drawing ratio is higher than those of 1-7 and 1-9.

本発明(1)において、O濃度が低化学成分素材記号H、Iを用いた線材のうち引張強さが620MPa超で700MPa未満である実施例No.2−7、2−8、2−9、2−12は、限界伸線率が75%以上と従来例よりも値が上位にあり、引張強さが低い側限界伸線率が上位になっている。例えば、素材記号Hの実施例No.2−7、2−8は、同等な引張強さ実施例である素材記号Eを用いたNo.1−7、1−8、1−9と比較して限界伸線率が高いことがわかる。 In the present invention (1), yo Ri O concentration low not material symbol H chemical components, are among the tensile strength of the wire using the I is less than 700MPa at 620MPa than Example No. 2-7,2-8,2-9,2-12 is in higher values than conventional limit drawing ratio of 75% or more examples, the limit drawing ratio in the tensile strength of the lower side is higher It has become. For example, in Example No. 2-7,2-8 used was an example of equivalent tensile strength material symbol E No. It can be seen that the limit drawing ratio is higher than those of 1-7, 1-8, and 1-9.

一方、同じ素材記号G、Hを用いても引張強さが700MPa以上である比較例No.2−5、2−6、2−10、2−11は、限界伸線率が70%で75%には及ばない。   On the other hand, even if the same material symbols G and H are used, Comparative Example No. 1 having a tensile strength of 700 MPa or more. In 2-5, 2-6, 2-10, and 2-11, the critical wire drawing ratio is 70%, which is less than 75%.

次に、表4に示した本発明()の線材の実施例について説明する。表4より、化学成分が本発明()に該当する素材記号Gを用いた線材のうち引張強さが620MPa超で700MPa未満である実施例No.4−9、4−10、4−11、4−12は、限界圧下率が40%以上でありNとCの合計濃度がより高い実施例である素材記号Eを用いたNo.4−4、4−5と比較して、引張強さが低い側では限界圧下率が高くなることがわかる。 Next, examples of the wire of the present invention ( 1 ) shown in Table 4 will be described. From Table 4, in the wire using the material symbol G corresponding to the present invention ( 1 ) in the chemical component, the tensile strength is more than 620 MPa and less than 700 MPa. Nos. 4-9, 4-10, 4-11, and 4-12 are Nos. Using the material symbol E which is an example in which the critical rolling reduction is 40% or more and the total concentration of N and C is higher . Compared to 4-4 and 4-5, it can be seen that the critical rolling reduction is higher on the side where the tensile strength is lower.

化学成分が本発明()に該当する素材記号Hを用いた線材のうち引張強さが620MPa超で700MPa未満である実施例No.4−14、4−15、4−16は、限界圧下率が40%以上であり、O濃度がより高い実施例である素材記号Eを用いたNo.4−4、4−5と比較して、引張強さが低い側では限界圧下率が高くなることがわかる。 Among the wires using the material symbol H corresponding to the present invention ( 1 ), the chemical strength of Example No. 1 having a tensile strength of more than 620 MPa and less than 700 MPa. Nos. 4-14, 4-15, and 4-16 are Nos. Using the material symbol E which is an example in which the critical rolling reduction is 40% or more and the O concentration is higher . Compared to 4-4 and 4-5, it can be seen that the critical rolling reduction is higher on the side where the tensile strength is lower.

一方、同じ素材記号G、Hを用いても引張強さが700MPa以上である比較例No.4−13、4−17は限界圧下率が35%と40%に及ばない。   On the other hand, even if the same material symbols G and H are used, Comparative Example No. 1 having a tensile strength of 700 MPa or more. 4-13 and 4-17 have a critical rolling reduction of 35% and 40%.

濃度及びNとCの合計濃度がともにより低い場合の本発明()について説明する。表3−2より、材記号K、Mを用いた線材のうち引張強さが620MPa超で700MPa未満である実施例No.2−15、2−16、2−17、2−18、2−21は、限界伸線率が75%以上と従来例よりも値が上位にあり、引張強さが低い側でO濃度またはNとCの合計濃度のどちらかがより高い素材記号F、G、H、Iを用いた実施例よりも限界伸線率が上位にある。また、表4より、材記号K、Mを用いた線材のうち引張強さが620MPa超で700MPa未満である実施例No.4−18、4−19、4−20、4−21及び4−23は、限界圧下率が45%以上であり、引張強度が低い側でO濃度またはNとCの合計濃度のどちらかがより高い素材記号E、G、Hを用いた実施例よりも高めにある。 The present invention in a total concentration of O concentration and N and C is lower than both (1) will be described. From Table 3-2, exemplary Material symbol K, is among the tensile strength of the wire with M less than 700MPa at 620MPa than Example No. 2-15, 2-16, 2-17, 2-18, and 2-21 have a limit drawing ratio of 75% or more, which is higher than that of the conventional example, and the O concentration or The limit drawing rate is higher than the embodiment using the material symbols F, G, H, and I in which either the total concentration of N or C is higher. From Table 4, exemplary Material symbol K, is among the tensile strength of the wire with M less than 700MPa at 620MPa than Example No. In 4-18, 4-19, 4-20, 4-21 and 4-23 , the critical rolling reduction is 45% or more, and either the O concentration or the total concentration of N and C is on the low tensile strength side. It is higher than the embodiment using higher material symbols E, G, H.

一方、同じ素材記号K、Mであっても引張強さが700MPa以上である比較例No.2−19、2−20とNo.4−22は、限界伸線率75%または限界圧下率40%に及ばない。   On the other hand, even in the same material symbols K and M, Comparative Example No. 1 having a tensile strength of 700 MPa or more. 2-19, 2-20 and No. 2-4. 4-22 does not reach the limit drawing rate of 75% or the limit reduction rate of 40%.

本発明を、以下の実施例3を用いて本発明()を更に詳細に説明する。 The present invention further illustrate the present invention (2) using the Example 3 below.

表3−3と表4より線材の冷間加工性について説明する。   The cold workability of the wire will be described from Table 3-3 and Table 4.

表3−3より、Fe濃度が0.1質量%未満である本発明()の化学成分に該当する素材記号N、O、P、Q、Rを用いた線材のうち引張強さが620MPa超で700MPa未満である実施例No.3−1、3−2、3−3、3−4、3−7、3−8、3−9、3−10は、表3−1〜3−3の素材記号D〜Nのうち、O濃度、NとCの合計濃度、引張強さが同等実施例どうしで比較すると、限界伸線率が上位になっている。例えば、本発明(1)の実施例である素材記号Eを用いたNo.1−7、1−8、1−9、1−10と本発明()の実施例である素材記号Nを用いたNo.3−1、3−2、3−3、3−4を比較すると、後者の方が、限界伸線率が上位にあることがわかる。 From Table 3-3, the tensile strength is 620 MPa among the wires using the material symbols N, O, P, Q, and R corresponding to the chemical component of the present invention ( 2 ) whose Fe concentration is less than 0.1 mass%. Example No. above 700 MPa in excess. 3-1, 3-2, 3-3 , 3-4 , 3-7 , 3-8 , 3-9 , 3-10 are the material symbols D to N in Tables 3-1 to 3-3, O concentrations, the total concentration of N and C, and the tensile strength is compared with and what equivalent embodiments, the limit drawing ratio is in the upper. For example, No. using the material symbol E which is an embodiment of the present invention (1). No. 1-7, 1-8, 1-9, 1-10 and No. using material symbol N which is an embodiment of the present invention ( 2 ). When 3-1, 3-2, 3-3 and 3-4 are compared, it can be seen that the latter has a higher limit drawing rate.

次に、表4に示した本発明()の線材の実施例について説明する。Fe濃度が0.1質量%未満である本発明()の化学成分に該当する素材記号N、O、P、Qを用いた線材のうち引張強さが620MPa超で700MPa未満である実施例No.4−24、4−25、4−26、4−28、4−29、4−30は、O濃度、NとCの合計濃度、引張強さが同等なFe量のより高いE、G、H、K、Mを用いた実施例と比較すると、限界圧下率が高めになっている。例えば、材記号Eを用いたNo.4−4、4−5、4−6と本発明()の実施例である素材記号Nを用いたNo.4−24、4−25、4−26を比較すると、後者の方が、限界圧下率が高いことがわかる。 Next, examples of the wire rod according to the present invention ( 2 ) shown in Table 4 will be described. Examples in which the tensile strength is more than 620 MPa and less than 700 MPa among the wires using the material symbols N, O, P and Q corresponding to the chemical component of the present invention ( 2 ) whose Fe concentration is less than 0.1 mass% No. 4-24, 4-25, 4-26, 4-28, 4-29, 4-30 are O concentration, the total concentration of N and C, and E, G having higher tensile strength and equivalent Fe content. Compared to the examples using H, K, and M , the critical rolling reduction is higher. For example, using the Material symbol E No. 4-4, 4-5, 4-6 and No. using the material symbol N which is an embodiment of the present invention ( 2 ). Comparing 4-24, 4-25, and 4-26, it can be seen that the latter has a higher critical rolling reduction.

一方、同じ素材記号Nであっても引張強さが700MPa以上である線材の比較例No.3−5、3−6とNo.4−27は、限界伸線率75%または限界圧下率40%に及ばない。   On the other hand, even though the same material symbol N is used, the comparative example No. of the wire having a tensile strength of 700 MPa or more. 3-5, 3-6 and no. 4-27 does not reach the limit drawing rate of 75% or the limit reduction rate of 40%.

なお、表2の各化学成分を素材とした線材を用いて、β変態点を示差熱分析法(DTA)にて測定した結果、920〜940℃の範囲にあり900℃を超える温度であった。   In addition, as a result of measuring a beta transformation point by the differential thermal analysis method (DTA) using the wire which made each chemical component of Table 2 a raw material, it was in the range of 920-940 degreeC, and was the temperature exceeding 900 degreeC. .

Ti−3Al−2.5V製線材におけるO濃度、NとCの合計濃度、引張強さと限界伸線率との関係を示す図である。It is a figure which shows the relationship between O density | concentration in Ti-3Al-2.5V wire manufacture, the total density | concentration of N and C, tensile strength, and a limit wire drawing rate. Ti−3Al−2.5V製線材におけるO濃度、NとCの合計濃度、引張強さと限界圧下率との関係を示す図である。It is a figure which shows the relationship between O density | concentration in Ti-3Al-2.5V wire manufacture, the total density | concentration of N and C, tensile strength, and a critical rolling reduction.

Claims (2)

質量%で、Alが2.5〜3.5%、Vが2.0〜3.0%、Oが0.09%以下、NとCの合計濃度が0.03%以下であり、残部Tiおよび不可避的不純物からなることを特徴とする、冷間加工性に優れた引張強さ620MPa超700MPa未満チタン合金線材。 In mass%, Al is 2.5 to 3.5%, V is 2.0 to 3.0%, O is 0.09% or less , the total concentration of N and C is 0.03% or less , and the balance A titanium alloy wire having a tensile strength of more than 620 MPa and less than 700 MPa excellent in cold workability, characterized by comprising Ti and inevitable impurities. 質量%で、Feが0.1%未満であることを特徴とする、請求項1記載の冷間加工性に優れた引張強さ620MPa超700MPa未満チタン合金線材。 By mass%, wherein the Fe is less than 0.1%, cold workability excellent tensile strength 620MPa ultra 700MPa than titanium alloy wire according to claim 1.
JP2005028684A 2005-02-04 2005-02-04 Titanium alloy wire excellent in cold workability and having a tensile strength of more than 620 MPa and less than 700 MPa Active JP4673631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005028684A JP4673631B2 (en) 2005-02-04 2005-02-04 Titanium alloy wire excellent in cold workability and having a tensile strength of more than 620 MPa and less than 700 MPa

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005028684A JP4673631B2 (en) 2005-02-04 2005-02-04 Titanium alloy wire excellent in cold workability and having a tensile strength of more than 620 MPa and less than 700 MPa

Publications (2)

Publication Number Publication Date
JP2006213973A JP2006213973A (en) 2006-08-17
JP4673631B2 true JP4673631B2 (en) 2011-04-20

Family

ID=36977438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005028684A Active JP4673631B2 (en) 2005-02-04 2005-02-04 Titanium alloy wire excellent in cold workability and having a tensile strength of more than 620 MPa and less than 700 MPa

Country Status (1)

Country Link
JP (1) JP4673631B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5061301B2 (en) * 2007-10-03 2012-10-31 福井県 Eyeglass frame using nickel / titanium alloy material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2606023B2 (en) * 1991-09-02 1997-04-30 日本鋼管株式会社 Method for producing high strength and high toughness α + β type titanium alloy

Also Published As

Publication number Publication date
JP2006213973A (en) 2006-08-17

Similar Documents

Publication Publication Date Title
JP5130850B2 (en) β-type titanium alloy
KR102539690B1 (en) Titanium alloy wire rod and manufacturing method of titanium alloy wire rod
KR102237789B1 (en) Expanded member comprising cu-al-mn alloy material and exhibiting superior anti-stress corrosion properties, and use therefor
JP4493028B2 (en) Α-β type titanium alloy with excellent machinability and hot workability
JP6014625B2 (en) High strength and high conductivity copper alloy thin wire, copper alloy spring, and method for producing copper alloy spring
EP2784167B1 (en) Cu-Ti based copper alloy sheet, method for producing the same, and electric current carrying component
EP3128019B1 (en) Copper alloy wire material and manufacturing method thereof
KR20190028649A (en) Aluminum alloy materials and conductive members, battery members, fastening parts, spring parts and structural parts using the same
WO2009104615A1 (en) Copper alloy material
JP2005298931A (en) Copper alloy and its production method
JP2009138218A (en) Titanium alloy member and method for manufacturing titanium alloy member
JPWO2005093108A1 (en) Brass
EP2397569A1 (en) Titanium plate
JP5589861B2 (en) Α + β type titanium alloy member having high strength and low Young's modulus and method for producing the same
JP4797305B2 (en) Invar alloy wire with excellent strength and twisting characteristics and manufacturing method thereof
JP4264411B2 (en) High strength α + β type titanium alloy
JP4673631B2 (en) Titanium alloy wire excellent in cold workability and having a tensile strength of more than 620 MPa and less than 700 MPa
KR102009702B1 (en) Cut Steel Strips
JP2021025085A (en) Al-Cu-Mg-BASED ALUMINUM ALLOY EXTRUSION MATERIAL EXCELLENT IN HIGH-TEMPERATURE FATIGUE CHARACTERISTICS
JP2669004B2 (en) Β-type titanium alloy with excellent cold workability
JP2006034414A (en) Spike for shoe
JPS6338543A (en) Copper alloy for electronic appliance and its manufacture
JP2006206955A (en) Titanium alloy malleable material made of ti-3al-2.5v having excellent cold formability and high temperature property and having tensile strength of <620 mpa
JPWO2020158682A1 (en) Aluminum alloy material and conductive members, battery members, fastener parts, spring parts, structural parts, cabtire cables using it
JP4332446B2 (en) High strength steel with excellent cold workability and delayed fracture resistance, and high strength steel parts with excellent delayed fracture resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110121

R151 Written notification of patent or utility model registration

Ref document number: 4673631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350