JP4672911B2 - Boiler multi-can installation system to prevent corrosion due to low load operation - Google Patents

Boiler multi-can installation system to prevent corrosion due to low load operation Download PDF

Info

Publication number
JP4672911B2
JP4672911B2 JP2001174279A JP2001174279A JP4672911B2 JP 4672911 B2 JP4672911 B2 JP 4672911B2 JP 2001174279 A JP2001174279 A JP 2001174279A JP 2001174279 A JP2001174279 A JP 2001174279A JP 4672911 B2 JP4672911 B2 JP 4672911B2
Authority
JP
Japan
Prior art keywords
boiler
water
value
load factor
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001174279A
Other languages
Japanese (ja)
Other versions
JP2002364803A (en
Inventor
茂 黒木
達也 久保
Original Assignee
株式会社サムソン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サムソン filed Critical 株式会社サムソン
Priority to JP2001174279A priority Critical patent/JP4672911B2/en
Publication of JP2002364803A publication Critical patent/JP2002364803A/en
Application granted granted Critical
Publication of JP4672911B2 publication Critical patent/JP4672911B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、低負荷運転を行うボイラがあるボイラの多缶設置システムであって、低負荷運転による腐食を防止するボイラ多缶設置システムに関するものである。
【0002】
【従来の技術】
大型のボイラに代えて貫流ボイラを複数台設置し、負荷に応じてボイラの燃焼台数を調節するボイラの多缶設置システムが知られている。多缶設置システムの場合、蒸気必要量に応じてボイラの燃焼台数を制御するので、蒸気必要量が少ない場合であっても高い効率を維持することができる。この場合、ボイラには稼働優先順位を定めておき、稼働優先順位の高いボイラから順に燃焼を行うようにしており、稼働優先順位は定期的に変更することで燃焼時間の偏りをなくし、特定のボイラが短期間で寿命を迎えることを防止している。
【0003】
鉄系材料を使用しているボイラでは、缶水のpH値を11.0〜11.8に保ったときに腐食が最も少なくなるため、缶水のpH値が該適正範囲となるように制御している。給水のpH値は前記値よりも低いが、蒸気を発生することで缶水の濃縮が進み、濃縮によってpH値を高めることができる。貫流ボイラは、下部から給水を行って上部から蒸気を取り出しており、蒸気とともに取り出された缶水は、蒸気から分離してボイラ下部へ還流させている。ボイラ下部では蒸発による濃縮は発生しないが、蒸気とともに取り出され、蒸気から分離した缶水をボイラ下部に回すことで、下部でもpH値を高め、缶水のpH値を適正範囲とすることで腐食の発生を防止している。
【0004】
ところが、缶水の循環量はボイラの負荷率によって異なり、負荷率によっては腐食が発生することがある。負荷率が高く燃焼量の多いボイラでは、缶水全体の温度が高まり缶水の沸き上がりによって缶水の循環が発生するため、ボイラ内下部のpH値も適正範囲に保つことができる。しかし、負荷率が低く燃焼量の少ないボイラであって、缶水全体の温度が高まるまでは加熱していない場合には缶水の循環量が少なくなる。缶水全体の温度が上昇しなくても、燃焼を行えば加熱部分の缶水温度は上昇して蒸気が発生し、蒸気の発生があればボイラ下部より給水を行うことになる。給水のpH値は低いため、缶水の循環量が少ない状態で給水を行うと、ボイラ下部のpH値は低下し、pH値が適正範囲から外れると腐食しやすい状態となる。
【0005】
ボイラの多缶設置システムの場合、稼働優先順位の高いボイラでは負荷率が高いため、ボイラ下部における缶水のpH値は上昇して安定するが、稼働優先順位が下位であり、蒸気必要量に応じて短時間だけ燃焼する低負荷順位のボイラでは、ボイラ下部における缶水のpH値は低下していく。図3は、ボイラA・ボイラB・ボイラCの3台のボイラを設置している場合の、燃焼実施状況とボイラ下部における缶水pH値の変化状況を示した説明図である。稼働優先順位のローテーションにより第3位から第2位となったボイラAは、短時間の燃焼を細切れに行っている負荷率の低いものであるため、缶水のpH値は低下している。缶水のpH値が低下し続けていると、いずれは適正範囲の下限未満となって腐食しやすい環境となり、その場合には腐食が進むことになる。多缶設置ボイラでは、負荷率の高いボイラと負荷率の低いボイラが存在し、負荷率の低い低負荷順位となったボイラで腐食が進むという問題があった。
【0006】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、ボイラ多缶設置システムにおいて、低負荷順位となるボイラの缶水pH値が低下して適正範囲を外れ、腐食が発生するということを防止することにある。
【0007】
【課題を解決するための手段】
複数台設置したボイラと、ボイラの燃焼台数を制御する台数制御装置を持ち、蒸気必要量分のボイラを燃焼させることで蒸気供給量を調節しているボイラの多缶設置システムであって、台数制御装置は、ボイラの負荷率を算出し缶水pH値が低下する負荷率の範囲内にある時間を計測しておき、該範囲内での時間が所定時間以上になると、該ボイラに対して、負荷率を高める制御を行い、pH値調整のための稼働優先順位変更を行ってからの経過時間が、缶水のpH値を回復させるために必要な時間として設定しておいた時間に達すると、稼働優先順位を本来の状態に戻す制御を行うことを特徴とする。
【0008】
負荷率の低いボイラは循環量が少ないために缶水pH値は低下するが、負荷率の高いボイラは循環量が多いために、低下していた缶水pH値を上昇させることができる。缶水pH値が低下する負荷率のボイラに対して、負荷率を高める制御を行うことで、缶水pH値が腐食しやすい値まで低下することを防止でき、ボイラの腐食を防止できる。
【0009】
【発明の実施の形態】
本発明の一実施例を図面を用いて説明する。図1は本発明の一実施例におけるボイラ燃焼状況とボイラ内下部缶水pH値の変化状況を示した説明図、図2は本発明を実施するボイラの多缶設置システムのフロー図である。本実施例ではボイラ1を3台設置しており、3台のボイラ1をそれぞれボイラA・ボイラB・ボイラCとする。各ボイラで発生させた蒸気を集合させるスチームヘッダ4を設け、各ボイラと蒸気配管5で接続する。ボイラ1で発生させた蒸気は、スチームヘッダ4に集合させた後で蒸気使用箇所2へ送っており、蒸気集合部に蒸気圧力を検出する圧力検出器6を設ける。圧力検出器6に接続して台数制御装置3を設け、台数制御装置3が各ボイラに燃焼の指示を行うことで各ボイラが燃焼する。
【0010】
各ボイラは上部管寄せと下部管寄せの間を多数の水管で接続し、下部管寄せに給水配管、上部管寄せに蒸気配管を接続しており、下部から給水を行って水管部で加熱し、上部から蒸気を取り出す貫流ボイラである。蒸気配管5の途中に気水分離器7を設け、蒸気とともに上部管寄せから取り出された缶水は、気水分離器7で分離して下部管寄せへ還流し、ボイラからは蒸気のみを取り出すようにしておく。
【0011】
台数制御装置3にて行うボイラの台数制御は、圧力検出器6で検出する蒸気圧力値と、台数制御装置3に蒸気圧力値ごとに設定している燃焼状態に基づいて行う。台数制御装置3は、圧力検出器6で検出した蒸気圧力値が低い場合には稼働優先順位の順に多くのボイラを燃焼させ、蒸気圧力値が高い場合には燃焼台数を少なくすることで、蒸気供給量を制御する。台数制御装置は各ボイラに対する稼働優先順位の設定も行う。3台のボイラを設置しているため、稼働優先順位は第1位から第3位となり、稼働優先順位は定期的にローテーションを行い、各ボイラの稼働優先順位を順番に変更することでボイラの燃焼時間に偏りが生じないようにする。また台数制御装置は、定格燃焼量に対する実際燃焼量の割合である負荷率を、個々のボイラごとに算出する。ボイラごとに一定時間内での燃焼量を算出しておき、各ボイラにおける負荷率を一定時間ごとに算出する。
【0012】
ボイラの燃焼台数は、蒸気使用箇所2による蒸気使用量から定まり、本実施例の場合は1台から2台のボイラが燃焼する必要がある程度の蒸気使用量であったとする。この場合、設置した3台のボイラの内、1台のボイラは燃焼し続け、1台のボイラは必要に応じて燃焼の発停を行い、1台のボイラは全く燃焼を行わないことになる。燃焼を行うボイラは稼働優先順位によって定まるため、稼働優先順位が第1位となったボイラは常時燃焼、第2位となったボイラは間欠燃焼、第3位となったボイラは常時停止となる。図1の場合、稼働優先順位は、ボイラCが第1位、ボイラBが第2位、ボイラAが第3位であって、稼働優先順位を変更するローテーション直前の状態から開始している。ローテーション前の状態では、第1位であるボイラCは連続燃焼を行っており、負荷率が高いため、ボイラ内では十分な循環が発生し、缶水のpH値は安定している。第2位であるボイラBは、短時間の燃焼を繰り返しており、負荷率が低いために缶水のpH値は低下傾向にある。第3位であるボイラCは、燃焼を行っていないために缶水のpH値は変化していない。
【0013】
この状態で稼働優先順位変更のローテーションを行うと、それまでの稼働優先順位が第1位であったボイラCは第3位となって燃焼を停止、第2位であったボイラBは第1位となって連続燃焼、第3位であったボイラAは第2位となって間欠燃焼を行う。ボイラBの場合、連続燃焼を行うことにより缶水全体の温度が上昇していく。そのためにボイラBでは、缶水の沸き上がりにより十分な循環量を確保することができ、低下していた缶水のpH値は上昇して安定する。ボイラAの場合、間欠燃焼であるため、水管部分の缶水は加熱されて蒸気を発生するが、缶水全体の温度が上昇して缶水が持ち上がるほどにはならない。この場合、ボイラ下部缶水のpH値は、濃縮水の循環による上昇よりも、低pHの水を供給することによる低下の方が大きいため、缶水のpH値は低下していく。
【0014】
台数制御装置3は、各ボイラの負荷率を算出し、負荷率が所定の範囲内で所定時間以上となったボイラがあれば、該ボイラの稼働優先順位を一時的に上位に変更することで該ボイラのpH値を調整する。負荷率の所定範囲とは、蒸気の発生はあるが缶水の循環は少ないために下部缶水のpH値が低下していくという負荷率であり、例えば10%〜30%とする。実際の負荷率が前記範囲よりも高ければ、缶水の循環量が多くなるために缶水のpH値は安定し、逆に負荷率が低ければ蒸発量が少なくなりpH値の変化は少ないため、pH値を調整するための制御を行う必要はない。また、負荷率が前記の範囲内となっても、pH値の低下量がpH値調整のための対応が必要な量となるまでには時間がかかるため、例えば負荷率が所定範囲内で3時間以上となった場合に、該当ボイラの稼働優先順位を上位に変更するように設定する。
【0015】
台数制御装置3は、ボイラごとに一定時間内におけるボイラの負荷率を算出し、負荷率が10%〜30%の範囲内にあった場合は、その時間を積算していく。台数制御装置3は、稼働優先順位が第2位であるボイラAの負荷率が10%〜30%の範囲内にあり、該範囲内となった積算時間が3時間以上となったことを検出すると、pH値調整のために一時的に稼働優先順位の変更を行う。台数制御装置3は、それまで第2位であったボイラAを、稼働優先順位の最上位である第1位とし、代わりにそれまで第1位であったボイラBを第2位とする。負荷率が低いためにボイラ下部における缶水のpH値が低下傾向にあったボイラAの稼働優先順位を、負荷率の高い第1位に変更すると、ボイラAは連続的に燃焼することになるために、缶水の循環量を確保することができ、ボイラAにおける缶水のpH値は上昇する。
【0016】
pH値調整のための稼働優先順位変更を行ってからの経過時間が、缶水のpH値を回復させるために必要な時間として設定しておいた時間に達すると、台数制御装置3は稼働優先順位を本来の状態に戻し、ボイラAを第2位、ボイラBを第1位とする。台数制御装置3はその後もボイラの負荷率を算出し、負荷率が10%〜30%の範囲内での時間が3時間以上となるごとに、缶水のpH値を回復させるための一時的な稼働優先順位変更を行う。またローテーションを行ってからの経過時間がローテーション実施間隔分経過すると、全ボイラの稼働優先順位を変更するローテーションを行う。
【0017】
負荷率が低いために缶水pH値が低下していても、該ボイラの負荷率を高めることでpH値を回復させることができ、pH値が適正範囲を外れるほど低下する前に負荷率を高めてpH値を高めることにより、低負荷順位のボイラが缶水pH値の低下によって腐食するということを防止できる。
【0018】
なお、本実施例では低負荷率のボイラと高負荷率のボイラで稼働優先順位を入れ替えることでpH値の調整を行っているが、低負荷率のボイラを稼働優先順位の対象から外し、稼働優先順位とは関係なく強制的に高負荷率で燃焼を行うようにしても同様の効果を得ることができる。
【0019】
【発明の効果】
本発明を実施することで、負荷率の小さな低負荷順位のボイラが、缶水の循環量低下による缶水pH値の低下によって腐食しやすい環境となることを防止でき、腐食の発生を防止することができる。
【図面の簡単な説明】
【図1】 本発明の一実施例におけるボイラ燃焼状況とボイラ内下部缶水pH値の変化状況を示した説明図
【図2】 本発明を実施するボイラの多缶設置システムのフロー図
【図3】 従来例におけるボイラ燃焼状況とボイラ内下部缶水pH値の変化状況を示した説明図
【符号の説明】
1 ボイラ
2 蒸気使用箇所
3 台数制御装置
4 スチームヘッダ
5 蒸気配管
6 圧力検出器
7 気水分離器
[0001]
[Industrial application fields]
The present invention relates to a boiler multi-can installation system having a boiler that performs low-load operation, and relates to a boiler multi-can installation system that prevents corrosion due to low-load operation.
[0002]
[Prior art]
A boiler multi-can installation system is known in which a plurality of once-through boilers are installed instead of a large boiler, and the number of boiler combustions is adjusted according to the load. In the case of a multi-can installation system, the number of boiler combustions is controlled in accordance with the steam requirement, so that high efficiency can be maintained even when the steam requirement is small. In this case, the operation priority is set for the boiler, and combustion is performed in order from the boiler with the highest operation priority. The operation priority is periodically changed to eliminate the bias of the combustion time, It prevents the boiler from reaching the end of its life in a short period of time.
[0003]
In boilers using iron-based materials, corrosion is minimized when the pH value of the can water is maintained at 11.0 to 11.8. Therefore, the pH value of the can water is controlled to be within the appropriate range. is doing. Although the pH value of feed water is lower than the above value, the concentration of can water proceeds by generating steam, and the pH value can be increased by concentration. The once-through boiler supplies water from the lower part and takes out steam from the upper part, and the can water taken out together with the steam is separated from the steam and returned to the lower part of the boiler. Concentration due to evaporation does not occur in the lower part of the boiler, but it is corroded by raising the pH value in the lower part of the boiler by bringing the can water taken out together with the steam and separated from the steam to the lower part of the boiler, and adjusting the pH value of the can water to an appropriate range. Is prevented.
[0004]
However, the circulation amount of can water differs depending on the load factor of the boiler, and corrosion may occur depending on the load factor. In a boiler with a high load factor and a large amount of combustion, the temperature of the entire can water rises and the can water circulates due to the boiling of the can water, so that the pH value in the lower part of the boiler can be kept in an appropriate range. However, if the boiler has a low load factor and a small amount of combustion and is not heated until the temperature of the entire can water is increased, the circulation amount of the can water decreases. Even if the temperature of the entire can water does not rise, if combustion is performed, the temperature of the can water in the heated portion rises to generate steam, and if steam is generated, water is supplied from the bottom of the boiler. Since the pH value of the feed water is low, when water is supplied in a state where the circulation amount of the can water is small, the pH value at the lower part of the boiler is lowered, and if the pH value is out of the proper range, the state becomes susceptible to corrosion.
[0005]
In the case of a boiler multi-can installation system, since the load factor is high in a boiler with a high operation priority, the pH value of the can water at the bottom of the boiler rises and stabilizes, but the operation priority is low and the required steam volume is reduced. Accordingly, in a low-load boiler that burns only for a short time, the pH value of the can water in the lower part of the boiler decreases. FIG. 3 is an explanatory diagram showing a combustion implementation state and a change state of the can water pH value in the lower part of the boiler when three boilers of boiler A, boiler B, and boiler C are installed. The boiler A, which has become the second place from the third place due to the rotation of the operation priority, has a low load factor for performing short-time combustion in small pieces, and thus the pH value of the can water is lowered. If the pH value of the can water continues to decrease, it eventually becomes less than the lower limit of the appropriate range and becomes an environment susceptible to corrosion, in which case the corrosion proceeds. In the multi-can installation boiler, there is a boiler with a high load factor and a boiler with a low load factor, and there is a problem that corrosion progresses with a boiler having a low load factor and a low load order.
[0006]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to prevent a boiler multi-can installation system from lowering the pH value of boiler water that falls in a low load order and deviating from an appropriate range and causing corrosion.
[0007]
[Means for Solving the Problems]
This is a multi-can installation system for boilers that has multiple boilers and a unit control device that controls the number of boilers that burn, and adjusts the steam supply by burning the required amount of steam. The control device calculates the load factor of each boiler, measures the time within the range of the load factor at which the can water pH value decreases , and when the time within the range reaches a predetermined time or more, On the other hand, the time that has been set as the time required to recover the pH value of the can water is controlled by increasing the load factor and changing the operation priority order for adjusting the pH value. When reaching the above, control is performed to return the operation priority to the original state .
[0008]
Since the boiler with a low load factor has a small circulation amount, the pH value of the can water decreases. However, since the boiler with a high load factor has a large circulation amount, the pH value of the can water can be increased. By performing control to increase the load factor with respect to the boiler having a load factor at which the can water pH value decreases, it is possible to prevent the can water pH value from decreasing to a value at which corrosion is likely to occur, and corrosion of the boiler can be prevented.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram showing a boiler combustion situation and a change situation of a boiler can water pH value in one embodiment of the present invention, and FIG. 2 is a flow chart of a boiler multi-can installation system embodying the present invention. In this embodiment, three boilers 1 are installed, and the three boilers 1 are boiler A, boiler B, and boiler C, respectively. A steam header 4 for collecting steam generated in each boiler is provided and connected to each boiler by a steam pipe 5. The steam generated in the boiler 1 is collected in the steam header 4 and then sent to the steam use location 2, and a pressure detector 6 for detecting the steam pressure is provided in the steam collecting portion. The number control device 3 is provided connected to the pressure detector 6, and each boiler combusts when the number control device 3 instructs each boiler to perform combustion.
[0010]
Each boiler has a large number of water pipes connected between the upper and lower headers, a water supply pipe connected to the lower header, and a steam pipe connected to the upper header. Water is supplied from below and heated in the water pipe section. This is a once-through boiler that extracts steam from the top. A steam separator 7 is provided in the middle of the steam pipe 5, and the canned water taken out from the upper header together with the steam is separated by the steam separator 7 and returned to the lower header, and only the steam is taken out from the boiler. Keep it like that.
[0011]
The number control of the boilers performed by the number control device 3 is performed based on the steam pressure value detected by the pressure detector 6 and the combustion state set for each steam pressure value in the number control device 3. When the steam pressure value detected by the pressure detector 6 is low, the number control device 3 burns many boilers in the order of operation priority, and when the steam pressure value is high, the number of combustion units 3 decreases the number of combustion. Control the supply amount. The number control device also sets operation priorities for each boiler. Since three boilers are installed, the operation priority is changed from the first to the third. The operation priority is periodically rotated, and the boiler operation is changed by changing the operation priority of each boiler in turn. Make sure that the burning time is not biased. The number control device calculates a load factor that is a ratio of the actual combustion amount to the rated combustion amount for each boiler. The amount of combustion within a certain time is calculated for each boiler, and the load factor in each boiler is calculated every certain time.
[0012]
The number of boilers to be burned is determined from the amount of steam used by the steam use point 2, and in this embodiment, it is assumed that one to two boilers have a certain amount of steam that needs to be burned. In this case, among the three installed boilers, one boiler will continue to burn, one boiler will start and stop combustion as needed, and one boiler will not burn at all. . Since the boiler that performs the combustion is determined by the operation priority, the boiler with the first operation priority is always combusted, the boiler that is second is intermittent combustion, and the boiler that is third is always stopped. . In the case of FIG. 1, the operation priority is first from the boiler C, the second from the boiler B, and the third from the boiler A, and starts from the state immediately before the rotation in which the operation priority is changed. In the state before the rotation, the boiler C which is the first place performs continuous combustion, and since the load factor is high, sufficient circulation occurs in the boiler, and the pH value of the can water is stable. Boiler B, which is the second place, repeats short-time combustion, and the pH value of the can water tends to decrease because the load factor is low. Since the boiler C which is the third place does not burn, the pH value of the can water does not change.
[0013]
When rotation of the operation priority change is performed in this state, the boiler C which has been the first operation priority until that time is third, stops combustion, and the boiler B which is second is first. Boiler A, which is the third place and the second place, performs the intermittent combustion. In the case of boiler B, the temperature of the whole can water rises by performing continuous combustion. Therefore, in the boiler B, a sufficient amount of circulation can be secured by boiling of the can water, and the pH value of the can water that has been lowered is increased and stabilized. In the case of boiler A, since it is intermittent combustion, the can water in the water pipe portion is heated to generate steam, but the temperature of the entire can water rises and the can water does not rise. In this case, the pH value of the can lowers because the pH value of the boiler lower can water is larger due to the supply of low pH water than the increase due to the circulation of the concentrated water.
[0014]
The number control device 3 calculates the load factor of each boiler, and if there is a boiler whose load factor is equal to or longer than a predetermined time within a predetermined range, the operation priority order of the boiler is temporarily changed to higher order. The pH value of the boiler is adjusted. The predetermined range of the load factor is a load factor in which the pH value of the lower can water decreases because steam is generated but the circulation of the can water is small. For example, the load factor is 10% to 30%. If the actual load factor is higher than the above range, the circulation amount of the can water will increase, so the pH value of the can water will be stable. Conversely, if the load factor is low, the evaporation amount will decrease and the change in pH value will be small. It is not necessary to perform control for adjusting the pH value. Even if the load factor falls within the above range, it takes time for the amount of decrease in the pH value to reach an amount that needs to be adjusted to adjust the pH value. If the time is over, set the operation priority of the relevant boiler to higher.
[0015]
The number control device 3 calculates the load factor of the boiler within a certain time for each boiler, and when the load factor is within the range of 10% to 30%, the time is accumulated. The number control device 3 detects that the load factor of the boiler A having the second highest operation priority is within a range of 10% to 30%, and the accumulated time within the range is 3 hours or more. Then, the operation priority order is temporarily changed for pH value adjustment. The number control device 3 sets the boiler A, which has been the second highest so far, as the first, which is the highest in the operation priority order, and instead sets the boiler B, which has been the first highest, as the second. If the operation priority of the boiler A whose pH value in the boiler water at the lower part of the boiler tended to decrease due to the low load factor is changed to the first highest load factor, the boiler A will burn continuously. Therefore, the circulation amount of the can water can be secured, and the pH value of the can water in the boiler A increases.
[0016]
When the elapsed time since the change of the operation priority order for adjusting the pH value reaches the time set as the time necessary for recovering the pH value of the can water, the unit control device 3 is given priority to the operation. The order is returned to the original state, and boiler A is second and boiler B is first. The number control device 3 calculates the boiler load factor after that, and temporarily restores the pH value of the can water every time the load factor is within a range of 10% to 30% for 3 hours or more. Change the priority of operation. In addition, when the elapsed time since the rotation has elapsed for the rotation execution interval, rotation is performed to change the operation priority of all the boilers.
[0017]
Even if the pH value of the can water is lowered because the load factor is low, the pH value can be recovered by increasing the load factor of the boiler, and the load factor is reduced before the pH value falls outside the proper range. By raising and raising the pH value, it is possible to prevent the low load boiler from being corroded due to a drop in the can water pH value.
[0018]
In this embodiment, the pH value is adjusted by switching the operation priority between the low load factor boiler and the high load factor boiler, but the low load factor boiler is excluded from the operation priority target and Even if the combustion is forcedly performed at a high load rate regardless of the priority order, the same effect can be obtained.
[0019]
【The invention's effect】
By implementing the present invention, it is possible to prevent a low load order boiler with a small load factor from becoming an environment that is susceptible to corrosion due to a decrease in the can water pH value due to a decrease in the amount of can water circulation, thereby preventing the occurrence of corrosion. be able to.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a boiler combustion state and a change in pH value of the lower can water in the boiler in one embodiment of the present invention. FIG. 2 is a flow diagram of a boiler multi-can installation system embodying the present invention. 3] Explanatory diagram showing changes in boiler combustion status and pH value in lower boiler water in boiler in conventional example [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Boiler 2 Steam use location 3 Unit control device 4 Steam header 5 Steam piping 6 Pressure detector 7 Steam-water separator

Claims (1)

複数台設置したボイラと、ボイラの燃焼台数を制御する台数制御装置を持ち、蒸気必要量分のボイラを燃焼させることで蒸気供給量を調節しているボイラの多缶設置システムであって、台数制御装置は、各ボイラの負荷率を算出し、缶水pH値が低下する負荷率の範囲内にある時間を計測しておき、該範囲内での時間が所定時間以上になると、該ボイラに対して、稼働優先順位を変更して負荷率を高める制御を行い、pH値調整のための稼働優先順位変更を行ってからの経過時間が、缶水のpH値を回復させるために必要な時間として設定しておいた時間に達すると、稼働優先順位を本来の状態に戻す制御を行うことを特徴とする低負荷運転による腐食を防止するボイラの多缶設置システム。This is a multi-can installation system for boilers that has multiple boilers and a unit control device that controls the number of boilers that burn, and adjusts the steam supply by burning the required amount of steam. The control device calculates the load factor of each boiler, measures the time within the range of the load factor at which the can water pH value decreases, and when the time within the range reaches a predetermined time or more, On the other hand, the operation priority is changed to increase the load factor, and the elapsed time after changing the operation priority for adjusting the pH value is the time required to recover the pH value of the can water A boiler multi-can installation system for preventing corrosion due to low-load operation, characterized in that when the set time is reached, the operation priority is controlled to return to the original state.
JP2001174279A 2001-06-08 2001-06-08 Boiler multi-can installation system to prevent corrosion due to low load operation Expired - Fee Related JP4672911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001174279A JP4672911B2 (en) 2001-06-08 2001-06-08 Boiler multi-can installation system to prevent corrosion due to low load operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001174279A JP4672911B2 (en) 2001-06-08 2001-06-08 Boiler multi-can installation system to prevent corrosion due to low load operation

Publications (2)

Publication Number Publication Date
JP2002364803A JP2002364803A (en) 2002-12-18
JP4672911B2 true JP4672911B2 (en) 2011-04-20

Family

ID=19015586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001174279A Expired - Fee Related JP4672911B2 (en) 2001-06-08 2001-06-08 Boiler multi-can installation system to prevent corrosion due to low load operation

Country Status (1)

Country Link
JP (1) JP4672911B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5938970B2 (en) * 2012-03-21 2016-06-22 三浦工業株式会社 Boiler system
JP2019138477A (en) * 2018-02-06 2019-08-22 株式会社サムソン Boiler including chemical feeder to water supply

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05233004A (en) * 1992-02-18 1993-09-10 Mitsubishi Electric Corp Equipment start selector
JPH0942604A (en) * 1995-08-02 1997-02-14 Miura Co Ltd Automatic control method for number of boilers
JPH11337004A (en) * 1998-05-28 1999-12-10 Samson Co Ltd Controlling method for operating number or multitubular boiler

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05233004A (en) * 1992-02-18 1993-09-10 Mitsubishi Electric Corp Equipment start selector
JPH0942604A (en) * 1995-08-02 1997-02-14 Miura Co Ltd Automatic control method for number of boilers
JPH11337004A (en) * 1998-05-28 1999-12-10 Samson Co Ltd Controlling method for operating number or multitubular boiler

Also Published As

Publication number Publication date
JP2002364803A (en) 2002-12-18

Similar Documents

Publication Publication Date Title
JP5630084B2 (en) Boiler water supply system
JP3883800B2 (en) Number control method of boiler
JP4672911B2 (en) Boiler multi-can installation system to prevent corrosion due to low load operation
JP2020085397A (en) Hot water supply device, hot water supply program and hot water supply method
JP4847213B2 (en) Once-through exhaust heat recovery boiler
JP4148514B2 (en) Number control device in boiler multi-can installation system
JP4529731B2 (en) Boiler control method
JP5302078B2 (en) Boiler multi-can installation system
JP6220255B2 (en) Multi-can boiler
JP5370918B2 (en) Boiler control system
JP2019124436A (en) Water feed method of exhaust heat recovery boiler and exhaust heat recovery boiler
JP3998812B2 (en) How to control the number of boilers with multiple cans
JP2005055014A (en) Method of controlling number of boilers
JP6433203B2 (en) Multi-can boiler
JP2005049008A (en) Controller for number of boiler in multiple boiler installation system
JP3975127B2 (en) Multi-can installation boiler with unit control
JP2004069086A (en) Multi-boiler installation boiler
JP2010236719A (en) Multi-can installed boiler
JP2016148460A (en) Multi-can installed boiler
JP5410921B2 (en) Multi-can boiler
JP3975134B2 (en) Boiler multi-can installation system that excludes all blow boilers from unit control
JP6551005B2 (en) Boiler system
JP3943457B2 (en) System with exhaust heat boiler and backup boiler
JP2006071166A (en) Steam temperature control device for once-through boiler
JP2013204942A (en) Boiler system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110120

R150 Certificate of patent or registration of utility model

Ref document number: 4672911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees