JP4670323B2 - LIGHT EMITTING DEVICE, BACKLIGHT DEVICE FOR LIQUID CRYSTAL DISPLAY DEVICE USING THE SAME, AND LIGHTING DEVICE - Google Patents

LIGHT EMITTING DEVICE, BACKLIGHT DEVICE FOR LIQUID CRYSTAL DISPLAY DEVICE USING THE SAME, AND LIGHTING DEVICE Download PDF

Info

Publication number
JP4670323B2
JP4670323B2 JP2004335501A JP2004335501A JP4670323B2 JP 4670323 B2 JP4670323 B2 JP 4670323B2 JP 2004335501 A JP2004335501 A JP 2004335501A JP 2004335501 A JP2004335501 A JP 2004335501A JP 4670323 B2 JP4670323 B2 JP 4670323B2
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting element
heat sink
algainp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004335501A
Other languages
Japanese (ja)
Other versions
JP2006147820A (en
Inventor
剛志 琵琶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004335501A priority Critical patent/JP4670323B2/en
Publication of JP2006147820A publication Critical patent/JP2006147820A/en
Application granted granted Critical
Publication of JP4670323B2 publication Critical patent/JP4670323B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Planar Illumination Modules (AREA)

Description

本発明は、AlGaInP系化合物半導体発光素子とAlGaInN系化合物半導体発光素子とを備える発光装置及びこれを用いた液晶表示装置用バックライト装置、照明装置に関する。   The present invention relates to a light-emitting device including an AlGaInP-based compound semiconductor light-emitting element and an AlGaInN-based compound semiconductor light-emitting element, a backlight device for a liquid crystal display device using the same, and an illumination device.

液晶表示装置用バックライト装置の光源としては冷陰極管が現在広く普及しているが、液晶表示装置の用途の拡大に伴って色再現性や応答性等に対する要求が非常に厳しくなりつつある状況を考えると、将来的には対応が難しくなることが予想される。そこで近年では、発光素子として赤(R)、緑(G)、青(B)の3原色の発光ダイオード(light emitting diode:LED)を利用した光源が注目されている。LEDは、活性層の混晶組成により発光波長の制御が可能な、いわゆる波長選択性を有するとともに、色純度及び高速応答性においても優れているため、3原色を混色して白色光とし、これを液晶表示装置用バックライト装置の光源として利用することで、液晶表示装置の色再現性や応答性の大幅な改善が可能となる。また、LEDは、液晶表示装置用バックライト装置用途に止まらず、例えば表示装置や各種照明装置への応用も期待されている(例えば、特許文献1等参照)。   Currently, cold cathode fluorescent lamps are widely used as the light source of backlight devices for liquid crystal display devices, but the demands for color reproducibility and responsiveness are becoming very severe as the applications of liquid crystal display devices expand. Given this, it is expected that it will be difficult to deal with in the future. Therefore, in recent years, attention has been focused on light sources using light emitting diodes (LEDs) of three primary colors of red (R), green (G), and blue (B) as light emitting elements. The LED has so-called wavelength selectivity that enables control of the emission wavelength by the mixed crystal composition of the active layer, and is excellent in color purity and high-speed response. Therefore, the three primary colors are mixed into white light. Is used as a light source of a backlight device for a liquid crystal display device, the color reproducibility and responsiveness of the liquid crystal display device can be greatly improved. Further, the LED is not limited to the use as a backlight device for a liquid crystal display device, and is expected to be applied to, for example, a display device and various illumination devices (see, for example, Patent Document 1).

ところでLED光源は、従来使用されている冷陰極管に比較して温度変化による波長及び発光効率の変化が大きいことが問題となる。例えばLEDを液晶表示装置用バックライト装置の光源として用いた場合、電源投入直後から発熱により温度上昇し、その結果、液晶表示装置の色合いや輝度が変化して所望の特性が得られないという不都合が生じる。また、色合いの変化を抑制するためにLEDの各色の光出力をリアルタイムでモニタし、白色光を維持しようとすると、消費電力が大幅に増大するという問題もある。この問題は、多数のLEDが必要となる大型のシステム、例えば大画面液晶表示装置等では特に顕著となる。   By the way, the LED light source has a problem in that the wavelength and the light emission efficiency are largely changed due to the temperature change as compared with the conventionally used cold cathode tubes. For example, when an LED is used as a light source of a backlight device for a liquid crystal display device, the temperature rises due to heat generation immediately after the power is turned on, and as a result, the color and brightness of the liquid crystal display device change and desired characteristics cannot be obtained. Occurs. In addition, if the light output of each color of the LED is monitored in real time in order to suppress the change in hue and the white light is maintained, there is a problem that the power consumption is greatly increased. This problem is particularly noticeable in a large system that requires a large number of LEDs, such as a large-screen liquid crystal display device.

上述の問題を回避するために様々な放熱対策が提案されている。例えば、LEDが埋設されたチップ自体に放熱機構を設けることによりLEDの発熱を基板等に放散させるようにしている(例えば特許文献2、特許文献3等参照)。しかしながら、基板に蓄熱すると結局はLED温度が上昇し、上述と同様の問題が発生するため、実際にはLEDが実装される基板側の放熱対策が重要となる。そこで、例えばLEDが実装される基板の裏面にヒートシンクを設け、素子での発熱を回路基板を介して効率よくヒートシンクより逃がすようにしている(例えば特許文献4、特許文献5等参照)。
特開平11−340515公報 特開2003−188424号公報 特開2002−359403号公報 特開2002−33011号公報 特開2003−92011号公報
Various heat dissipation measures have been proposed to avoid the above-described problems. For example, a heat dissipation mechanism is provided on the chip itself in which the LED is embedded to dissipate the heat generated by the LED onto a substrate or the like (see, for example, Patent Document 2 and Patent Document 3). However, when the heat is stored in the substrate, the temperature of the LED eventually increases, and the same problem as described above occurs. Therefore, in practice, a heat dissipation measure on the substrate side on which the LED is mounted is important. Therefore, for example, a heat sink is provided on the back surface of the substrate on which the LED is mounted, and heat generated by the element is efficiently released from the heat sink via the circuit board (see, for example, Patent Document 4 and Patent Document 5).
JP 11-340515 A JP 2003-188424 A JP 2002-359403 A JP 2002-33011 A JP 2003-92011 A

しかしながら、上述の特許文献4及び特許文献5に記載されるヒートシンクを用いた場合であっても、例えば発光装置、液晶表示装置用バックライト装置、照明装置等、RGBの3原色のLEDを基板等に実装した場合、やはり上述のような色合いの変化や輝度変化といった不具合を生じ、有効な解決策は現状では見つかっていない。   However, even when the heat sinks described in Patent Document 4 and Patent Document 5 described above are used, for example, LEDs of three primary colors of RGB, such as a light emitting device, a backlight device for a liquid crystal display device, and a lighting device, are used as a substrate. However, the above-described problems such as a change in hue and a change in luminance are caused, and no effective solution has been found at present.

そこで本発明はこのような従来の実情に鑑みて提案されたものであり、温度上昇に伴う色合いの変化及び輝度変化を抑制し、消費電力の低減を図ることが可能な発光装置、及びこれを用いた液晶表示装置用バックライト装置、照明装置を提供することを目的とする。   Therefore, the present invention has been proposed in view of such a conventional situation, and a light-emitting device capable of suppressing a change in color and a luminance due to a temperature rise and reducing power consumption, and a It is an object of the present invention to provide a backlight device for a liquid crystal display device and an illumination device used.

前述の問題を解決するために本発明者らが長期にわたり検討した結果、温度上昇による影響を受けやすいAlGaInP系化合物半導体発光素子をAlGaInN系化合物半導体発光素子等の発熱量の大きい他の発光素子とは異なるヒートシンクで放熱させることが特性の安定化に極めて有効であるとの知見を得、本発明を完成させるに至った。   As a result of a long-term study conducted by the present inventors in order to solve the above-described problem, an AlGaInP-based compound semiconductor light-emitting device that is easily affected by a temperature rise is compared with another light-emitting device having a large calorific value such as an AlGaInN-based compound semiconductor light-emitting device. Has obtained the knowledge that heat radiation by different heat sinks is extremely effective in stabilizing the characteristics, and has completed the present invention.

すなわち、本発明に係る発光装置は、少なくともAlGaInP系化合物半導体発光素子を含む複数種類の発光素子と、上記発光素子の発熱を放散させるヒートシンクとを備え、上記AlGaInP系化合物半導体発光素子に対応するヒートシンクを、上記AlGaInP系化合物半導体発光素子より発熱量の大きい他の発光素子に対応するヒートシンクから熱的に独立させることを特徴とする。また、本発明に係る液晶表示装置用バックライト装置は、上記発光装置を光源として備えることを特徴とする。さらに、本発明に係る照明装置は、上記発光装置を備えることを特徴とする。   That is, a light-emitting device according to the present invention includes a plurality of types of light-emitting elements including at least an AlGaInP-based compound semiconductor light-emitting element, and a heat sink that dissipates heat generated from the light-emitting element, and corresponds to the AlGaInP-based compound semiconductor light-emitting element. Is thermally independent from a heat sink corresponding to another light emitting element having a larger calorific value than the AlGaInP-based compound semiconductor light emitting element. In addition, a backlight device for a liquid crystal display device according to the present invention includes the light emitting device as a light source. Furthermore, an illumination device according to the present invention includes the light emitting device.

例えば赤色(R)LEDとして一般的に使用されるAlGaInP系化合物半導体発光素子は、青色(B)及び緑色(G)LEDとして一般的に使用されるAlGaInN系化合物半導体発光素子(B,G)に比べて発熱量が小さく、且つピーク波長及び発光効率が温度上昇の影響を受けやすいという特徴がある。従来はAlGaInP系化合物半導体発光素子とAlGaInN系化合物半導体発光素子を全て同一のヒートシンクで放熱していたため、ヒートシンクを介してAlGaInP系化合物半導体発光素子が加熱され、その結果、AlGaInP系化合物半導体発光素子の大幅な波長シフトや発光効率の変化を引き起こすという不具合を生じていた。   For example, an AlGaInP-based compound semiconductor light-emitting device generally used as a red (R) LED is an AlGaInN-based compound semiconductor light-emitting device (B, G) generally used as a blue (B) and green (G) LED. Compared with this, the heat generation amount is small, and the peak wavelength and the light emission efficiency are easily affected by the temperature rise. Conventionally, since the AlGaInP-based compound semiconductor light-emitting device and the AlGaInN-based compound semiconductor light-emitting device are all dissipated by the same heat sink, the AlGaInP-based compound semiconductor light-emitting device is heated via the heat sink. There has been a problem of causing a large wavelength shift and a change in luminous efficiency.

本発明ではAlGaInP系化合物半導体発光素子のヒートシンクをAlGaInN系化合物半導体発光素子等、AlGaInP系化合物半導体発光素子より発熱量の大きい他の発光素子から熱的に独立させることによって、他の発光素子の発熱によるAlGaInP系化合物半導体発光素子への悪影響を抑制し、その結果、AlGaInP系化合物半導体発光素子の波長シフトや発光効率低下が抑制される。AlGaInN系化合物半導体発光素子は比較的温度上昇の影響を受けにくいため、AlGaInN系化合物半導体発光素子自身の発熱によるAlGaInN系化合物半導体発光素子の特性変化はほとんど問題とならない。したがって、AlGaInP系化合物半導体発光素子とAlGaInN系化合物半導体発光素子等の他の発光素子とが混在する発光装置全体として、色合いや輝度の安定化が実現される。   In the present invention, the heat sink of the AlGaInP-based compound semiconductor light-emitting element is thermally independent from other light-emitting elements that generate a larger amount of heat than the AlGaInP-based compound semiconductor light-emitting element, such as an AlGaInN-based compound semiconductor light-emitting element. The adverse effect on the AlGaInP-based compound semiconductor light-emitting device due to is suppressed, and as a result, the wavelength shift and the decrease in light emission efficiency of the AlGaInP-based compound semiconductor light-emitting device are suppressed. Since the AlGaInN-based compound semiconductor light-emitting element is relatively insensitive to temperature rise, changes in characteristics of the AlGaInN-based compound semiconductor light-emitting element due to the heat generated by the AlGaInN-based compound semiconductor light-emitting element itself hardly cause a problem. Therefore, as a whole light-emitting device in which other light-emitting elements such as an AlGaInP-based compound semiconductor light-emitting element and an AlGaInN-based compound semiconductor light-emitting element coexist, color and luminance are stabilized.

本発明によれば、AlGaInP系化合物半導体発光素子のヒートシンクを発熱量の大きい他の発光素子から熱的に独立させることによって、AlGaInP系化合物半導体発光素子の波長シフトや発光効率の変化を低減し、その結果、色合い及び輝度の安定化を実現した発光装置を提供することができる。また、本発明に係る発光装置は、使用中の色合い変化が抑制されるので、例えば白色点を保つ制御に要する消費電力の低減を図ることができる。また、本発明によれば、上述の発光装置を利用することにより、色合い及び輝度の安定化を図り、省電力を実現した液晶表示装置用バックライト装置及び照明装置を実現することができる。   According to the present invention, by making the heat sink of the AlGaInP-based compound semiconductor light-emitting device thermally independent from other light-emitting devices having a large calorific value, the wavelength shift and the change in light emission efficiency of the AlGaInP-based compound semiconductor light-emitting device are reduced. As a result, it is possible to provide a light emitting device that realizes stabilization of hue and luminance. Moreover, since the light-emitting device which concerns on this invention suppresses the hue change in use, it can aim at reduction of the power consumption required for the control which maintains a white point, for example. In addition, according to the present invention, by using the above-described light emitting device, it is possible to realize a backlight device and a lighting device for a liquid crystal display device that achieves power saving while achieving stabilization of color and luminance.

以下、本発明を適用した発光装置及びこれを用いた液晶表示装置用バックライト装置及び照明装置について、図面を参照しながら詳細に説明する。   Hereinafter, a light-emitting device to which the present invention is applied and a backlight device and a lighting device for a liquid crystal display device using the same will be described in detail with reference to the drawings.

図1に、液晶表示装置のバックライト装置に適用した概略断面図を示す。バックライト装置は、光源となる発光装置1と、発光装置1からの発光を反射及び拡散させて面状光源とする反射ユニット2とを備えるものである。   FIG. 1 is a schematic cross-sectional view applied to a backlight device of a liquid crystal display device. The backlight device includes a light emitting device 1 serving as a light source and a reflection unit 2 that reflects and diffuses light emitted from the light emitting device 1 to form a planar light source.

先ず、バックライト装置を構成する発光装置1について説明する。発光装置1は、基本的には、複数個の発光素子11と、発光素子11の放熱を放散させるヒートシンク12とで構成される。   First, the light emitting device 1 constituting the backlight device will be described. The light emitting device 1 basically includes a plurality of light emitting elements 11 and a heat sink 12 that dissipates heat released from the light emitting elements 11.

発光素子11は、任意の基板(ここでは反射ユニットの底面)やヒートシンク12上に実装可能なチップ状であり、化合物半導体を発光層として有する発光ダイオード(light emitting diode:LED)が樹脂等によって封止されてなる。発光素子11は、AlGaInP系化合物半導体を発光層として有し、発光色が赤色であるLEDを有する発光素子11R(以下、AlGaInP系発光素子11Rと称する。)と、AlGaInN系化合物半導体を発光層として有し、発光色が緑色である発光素子11G(以下、AlGaInN系発光素子11Gと称する。)と、AlGaInN系化合物半導体を発光層として有し、発光色が青色である発光素子11B(以下、AlGaInN系発光素子11Bと称する。)とで構成される。各発光素子11の発色は混色されて、例えば白色光となる。なお、図1においては、AlGaInN系発光素子11GとAlGaInN系発光素子11BとをAlGaInP系発光素子11B、2Gとしてまとめて図示するが、実際にはAlGaInN系発光素子11GとAlGaInN系発光素子11Bとは別々の発光素子として実装される。発光素子11の配列状態は、例えば図1中紙面に対し垂直方向に延びる色別のライン状とすることができるが、これに制限されるものではない。   The light emitting element 11 has a chip shape that can be mounted on an arbitrary substrate (here, the bottom surface of the reflection unit) or the heat sink 12, and a light emitting diode (LED) having a compound semiconductor as a light emitting layer is sealed with a resin or the like. Stopped. The light-emitting element 11 includes an AlGaInP-based compound semiconductor as a light-emitting layer, a light-emitting element 11R including an LED whose emission color is red (hereinafter referred to as an AlGaInP-based light-emitting element 11R), and an AlGaInN-based compound semiconductor as a light-emitting layer. A light emitting element 11G (hereinafter referred to as an AlGaInN light emitting element 11G) having a green emission color and a light emitting element 11B (hereinafter referred to as AlGaInN) having an AlGaInN compound semiconductor as a light emitting layer and having a blue emission color. System light emitting element 11B). The color of each light emitting element 11 is mixed and becomes, for example, white light. In FIG. 1, the AlGaInN light emitting element 11G and the AlGaInN light emitting element 11B are collectively shown as AlGaInP light emitting elements 11B and 2G. Actually, however, the AlGaInN light emitting element 11G and the AlGaInN light emitting element 11B are different from each other. It is mounted as a separate light emitting element. The arrangement state of the light emitting elements 11 can be, for example, a line for each color extending in a direction perpendicular to the paper surface in FIG. 1, but is not limited thereto.

ヒートシンク12としては、発光素子11の発熱を放散可能であれば特に制限なく使用でき、例えば金属、セラミック、シリコン等を構成材料とするヒートシンクを使用でき、例えば一対の絶縁層で金属層を挟み込むとともに発光素子11に対応する配線パターンを有し、回路基板とヒートシンクとしての機能を兼ねるヒートシンクを用いることが好ましい。また、図1に示すように、ヒートシンク12の発光素子11の実装面と反対側の面(裏面)にフィン13を設け、ヒートシンク12の放熱性をさらに高めてもよい。   The heat sink 12 can be used without particular limitation as long as it can dissipate the heat generated by the light emitting element 11. For example, a heat sink composed of metal, ceramic, silicon, or the like can be used. For example, a metal layer is sandwiched between a pair of insulating layers. It is preferable to use a heat sink having a wiring pattern corresponding to the light emitting element 11 and serving as a circuit board and a heat sink. Further, as shown in FIG. 1, fins 13 may be provided on the surface (back surface) opposite to the mounting surface of the light emitting element 11 of the heat sink 12 to further enhance the heat dissipation of the heat sink 12.

本発明では、ヒートシンク12のAlGaInP系発光素子11Rの放熱に関与する領域と、AlGaInP系発光素子2Rより発熱量の大きい他の発光素子(AlGaInN系発光素子11G及びAlGaInN系発光素子11B)の放熱に関与する領域とが互いに熱的に独立した状態となるようにする。例えば、ヒートシンク12が分離され、互いに熱的に独立したヒートシンク12aとヒートシンク12bとから構成されるとともに、AlGaInP系発光素子11Rに一方のヒートシンク12aが熱的に接触し、他の発光素子(AlGaInN系発光素子11G及びAlGaInN系発光素子11B)に他方のヒートシンク12bが熱的に接触することが好ましい。他の発光素子であるAlGaInN系発光素子11GとAlGaInN系発光素子11Bとは、例えば共通のヒートシンク12bを対応させてもよく、異なるヒートシンクを対応させて別々に放熱させてもよい。   In the present invention, heat dissipation from the region of the heat sink 12 related to heat dissipation of the AlGaInP light emitting element 11R and other light emitting elements (AlGaInN light emitting element 11G and AlGaInN light emitting element 11B) having a larger calorific value than the AlGaInP light emitting element 2R. Ensure that the regions involved are thermally independent of each other. For example, the heat sink 12 is separated and is composed of a heat sink 12a and a heat sink 12b that are thermally independent from each other, and one of the heat sinks 12a is in thermal contact with the AlGaInP light emitting element 11R, and the other light emitting element (AlGaInN based) The other heat sink 12b is preferably in thermal contact with the light emitting element 11G and the AlGaInN light emitting element 11B). The AlGaInN light emitting element 11G and the AlGaInN light emitting element 11B, which are other light emitting elements, may correspond to, for example, a common heat sink 12b or may dissipate heat separately by corresponding different heat sinks.

なお、AlGaInP系発光素子11Rが他の発光素子から熱的に独立した状態とは、AlGaInP系発光素子11Rに対応するヒートシンク12aと他の発光素子に対応するヒートシンク12bとで、これら発光素子11を発光させたとき、各ヒートシンクの温度が異なる状態のことを指す。ここでいうヒートシンク温度は、発光素子11の発光直後のヒートシンク温度ではなく、発光素子11の発光を適当な時間維持し、発光素子11の発熱によってヒートシンクが加熱され平衡に到達した後の温度のことをいう。   Note that the state in which the AlGaInP light emitting element 11R is thermally independent from the other light emitting elements is the heat sink 12a corresponding to the AlGaInP light emitting element 11R and the heat sink 12b corresponding to the other light emitting elements. When light is emitted, it means that the temperature of each heat sink is different. The heat sink temperature here is not the heat sink temperature immediately after the light emitting element 11 emits light, but the temperature after the light emitting element 11 maintains light emission for an appropriate time and the heat sink is heated to reach equilibrium by the heat generated by the light emitting element 11. Say.

発光素子11の実装面を水平面から傾けて使用する場合、図1に示すように、AlGaInP系発光素子11R及びこれが実装されるヒートシンク12aは、他の発光素子(AlGaInN系発光素子11G及びAlGaInN系発光素子11B)又は他の発光素子が実装されるヒートシンク12bより下方に配置されることが好ましい。AlGaInP系発光素子11R及びヒートシンク12aを下方に配置することにより、他の発光素子又はヒートシンク12bによって暖められた空気の対流による、AlGaInP系発光素子11R及びヒートシンク12aの温度上昇を抑制することができる。   When the mounting surface of the light emitting element 11 is tilted from the horizontal plane, as shown in FIG. 1, the AlGaInP light emitting element 11R and the heat sink 12a on which the light emitting element 11 is mounted have other light emitting elements (AlGaInN light emitting element 11G and AlGaInN light emitting). The element 11B) or another light emitting element is preferably disposed below the heat sink 12b on which the element is mounted. By disposing the AlGaInP light emitting element 11R and the heat sink 12a below, the temperature rise of the AlGaInP light emitting element 11R and the heat sink 12a due to convection of air heated by another light emitting element or the heat sink 12b can be suppressed.

次に、バックライト装置を構成する反射ユニット2について説明する。反射ユニット2は、発光装置1の発光を遮光、混色及び拡散する機能を有し、バックライト装置を用いた液晶ディスプレイの色むらや輝度むら等を低減する目的で配置されるものである。反射ユニット2は、例えば、発光素子11の発光を遮光し反射させる遮光反射板21と、遮光反射板21で反射した光を前面に反射させる反射板22と、導光反射板21のさらに前面に配置され各色を混色及び導光する導光混色板23と、導光混色板23の前面に配置された拡散板24と、これらを支持する筐体25とを備えて構成され、筐体25の底面25aの内側に発光素子11が実装されている。反射ユニット2の底面25aとヒートシンク12とは熱的に接触し、発光素子11の発熱がヒートシンク12に伝達される。なお、反射ユニット2が図1に示す構成に限定されないことは言うまでもない。   Next, the reflection unit 2 constituting the backlight device will be described. The reflection unit 2 has a function of shielding, mixing, and diffusing the light emitted from the light emitting device 1 and is arranged for the purpose of reducing color unevenness, luminance unevenness, and the like of a liquid crystal display using the backlight device. The reflection unit 2 includes, for example, a light-shielding reflection plate 21 that shields and reflects light emitted from the light-emitting element 11, a reflection plate 22 that reflects light reflected by the light-shielding reflection plate 21 to the front surface, and a light guide reflection plate 21 on the front surface. A light guide color mixing plate 23 that mixes and guides each color, a diffusion plate 24 disposed on the front surface of the light guide color mixing plate 23, and a housing 25 that supports them are configured. The light emitting element 11 is mounted inside the bottom surface 25a. The bottom surface 25 a of the reflection unit 2 and the heat sink 12 are in thermal contact with each other, and heat generated by the light emitting element 11 is transmitted to the heat sink 12. Needless to say, the reflection unit 2 is not limited to the configuration shown in FIG.

本発明の発光装置1においては、AlGaInP系発光素子11Rの放熱に関与するヒートシンク12aと、他の発光素子であるAlGaInN系発光素子11G及びAlGaInN系発光素子11Bの放熱に関与するヒートシンク12bとが分離して熱的に独立している。ここで、AlGaInP系発光素子2RはAlGaInN系発光素子11G及びAlGaInN系発光素子11Bより発熱量が小さいため、発光素子11を発光させたときに最終的に到達するヒートシンク12の温度は、AlGaInP系発光素子2Rに対応するヒートシンク12aの方がヒートシンク12bより低くなる。ヒートシンク12aとヒートシンク12bとの温度差は、例えば10℃以上、より好ましくは20℃以上である。したがって、AlGaInP系発光素子2Rに対応するヒートシンク12aをAlGaInN系発光素子11G及びAlGaInN系発光素子11Bに対応するヒートシンク12bから熱的に独立した状態とすることによって、AlGaInP系発光素子2Rの温度上昇を抑制し、AlGaInP系発光素子11Rの波長シフトや発光効率の大幅な低下を抑制することができる。したがって、発光装置1全体としての色合いや輝度変化を防止し、温度特性の安定化を図ることができる。   In the light emitting device 1 of the present invention, the heat sink 12a involved in heat dissipation of the AlGaInP light emitting element 11R is separated from the heat sink 12b involved in heat dissipation of the AlGaInN light emitting element 11G and the AlGaInN light emitting element 11B, which are other light emitting elements. And is thermally independent. Here, since the AlGaInP light emitting element 2R has a smaller amount of heat generation than the AlGaInN light emitting element 11G and the AlGaInN light emitting element 11B, the temperature of the heat sink 12 that finally reaches when the light emitting element 11 emits light is the AlGaInP light emitting element. The heat sink 12a corresponding to the element 2R is lower than the heat sink 12b. The temperature difference between the heat sink 12a and the heat sink 12b is, for example, 10 ° C. or higher, more preferably 20 ° C. or higher. Therefore, by making the heat sink 12a corresponding to the AlGaInP light emitting element 2R thermally independent from the heat sink 12b corresponding to the AlGaInN light emitting element 11G and the AlGaInN light emitting element 11B, the temperature rise of the AlGaInP light emitting element 2R is increased. It is possible to suppress the wavelength shift of the AlGaInP-based light emitting element 11R and a significant decrease in light emission efficiency. Therefore, it is possible to prevent a change in color and luminance of the light emitting device 1 as a whole and stabilize temperature characteristics.

また、発光装置1を反射ユニット2等と組み合わせて液晶ディスプレイ用バックライト装置を構成した場合、液晶ディスプレイの使用中の色合いの変化や輝度変化等の不具合の発生が防止され、液晶ディスプレイの表示特性の向上を図ることができる。また、バックライト装置の色合いの変化が低減されているため、所望の白色度を保つ制御の必要性が薄くなり、制御に要する消費電力を低減することができる。したがって、本発明を適用したバックライト装置は、バックライトとして多数の発光素子1を必要とする大型のシステム、例えば30インチクラスの大画面液晶表示装置用バックライトとして好適である。   In addition, when a backlight device for a liquid crystal display is configured by combining the light emitting device 1 with the reflection unit 2 or the like, occurrence of problems such as a change in hue and a change in luminance during use of the liquid crystal display is prevented, and the display characteristics of the liquid crystal display are displayed. Can be improved. Further, since the change in the hue of the backlight device is reduced, the need for control to maintain the desired whiteness is reduced, and the power consumption required for control can be reduced. Therefore, the backlight device to which the present invention is applied is suitable for a large system that requires a large number of light emitting elements 1 as a backlight, for example, a backlight for a 30-inch class large-screen liquid crystal display device.

なお、上述の説明では、ヒートシンク12がヒートシンク12aとヒートシンク12bとに構造的に分離され、それぞれにAlGaInP系発光素子11R、その他の発光素子を対応させた例を挙げたが、本発明は、ヒートシンク12においてAlGaInP系発光素子11Rの放熱に関与する領域と、AlGaInN系発光素子2G、2Bの放熱に関与する領域とが熱的に独立した状態とされれば、ヒートシンク12の構造については限定されるものではない。例えば、互いに熱的に独立した状態とされれば、ヒートシンク12aとヒートシンク12bとが構造的に連結しても、共通であってもよい。   In the above description, the heat sink 12 is structurally separated into the heat sink 12a and the heat sink 12b, and the AlGaInP light emitting element 11R and other light emitting elements are associated with each other. 12, the structure of the heat sink 12 is limited if the region involved in heat dissipation of the AlGaInP-based light emitting element 11R and the region involved in heat dissipation of the AlGaInN-based light emitting elements 2G, 2B are thermally independent. It is not a thing. For example, the heat sink 12a and the heat sink 12b may be structurally connected or common as long as they are thermally independent from each other.

次に、発光装置及びこれを用いたバックライト装置の変形例について、図2を参照しながら説明する。以下では、図1に示す発光装置及びバックライト装置と同様の部材については、同じ符号を付し、詳細な説明を省略する。   Next, a modification of the light emitting device and the backlight device using the light emitting device will be described with reference to FIG. In the following, members similar to those of the light emitting device and the backlight device shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

変形例の発光装置1においては、AlGaInP系発光素子11Rに対応するヒートシンク12aに空冷ファン14が近接して配置され、ヒートシンク12aを強制冷却する構造とされる。空冷ファン14は、ヒートシンク12aに取り付けられた温度センサ(図示せず。)から出力されるヒートシンク温度を監視しながらヒートシンク12aの温度制御を行う構成とされることが好ましい。
また、反射ユニット2においては、筐体25の一部が開口して発光素子11の実装面側に通気路26が設けられる。例えばAlGaInP系発光素子2Rの下方の側壁25bが開口して吸気口27aとされ、AlGaInP系発光素子2Rの上方の底面25aが開口して排気口28aとされる。AlGaInN系発光素子2G、2Bにも吸気口27b及び排気口28bが設けられる。AlGaInP系発光素子2Rの通気路26aとAlGaInN系発光素子2G、2Bの通気路26bとの間は断熱材29で隔てられる。
In the light emitting device 1 of the modified example, the air cooling fan 14 is disposed close to the heat sink 12a corresponding to the AlGaInP-based light emitting element 11R, and the heat sink 12a is forcibly cooled. The air cooling fan 14 is preferably configured to control the temperature of the heat sink 12a while monitoring the heat sink temperature output from a temperature sensor (not shown) attached to the heat sink 12a.
Further, in the reflection unit 2, a part of the housing 25 is opened and a ventilation path 26 is provided on the mounting surface side of the light emitting element 11. For example, the lower side wall 25b of the AlGaInP-based light emitting element 2R is opened to serve as an intake port 27a, and the bottom surface 25a above the AlGaInP-based light emitting device 2R is opened to serve as an exhaust port 28a. The AlGaInN light emitting elements 2G and 2B are also provided with an intake port 27b and an exhaust port 28b. A heat insulating material 29 separates the air passage 26a of the AlGaInP light emitting element 2R and the air passage 26b of the AlGaInN light emitting elements 2G and 2B.

変形例の発光装置1においては、空冷ファン14の設置や、空冷ファン14でヒートシンク12aを温度制御するため、AlGaInP系発光素子2Rの放熱性がさらに向上し、AlGaInP系発光素子11Rの波長シフトや発光効率の低下をより確実に抑制することができる。   In the light emitting device 1 of the modified example, since the air cooling fan 14 is installed and the temperature of the heat sink 12a is controlled by the air cooling fan 14, the heat dissipation of the AlGaInP light emitting element 2R is further improved, the wavelength shift of the AlGaInP light emitting element 11R, A decrease in luminous efficiency can be more reliably suppressed.

以上、本発明の発光装置で液晶ディスプレイのバックライト装置を構成した例について説明したが、本発明はこれに限定されるものではなく、AlGaInP系発光素子を含む複数種類の発光素子とヒートシンクとを備える構成であれば、例えば反射ユニット等を持たない発光装置や、各種の照明装置に適用可能であることは言うまでもない。また、消費電力が10W以上、好ましく20W以上の照明装置に適用する場合、本発明の効果を有効に得ることができる。   As described above, the example in which the backlight device of the liquid crystal display is configured by the light emitting device of the present invention has been described, but the present invention is not limited to this, and a plurality of types of light emitting elements including an AlGaInP light emitting element and a heat sink are provided. Needless to say, the present invention can be applied to, for example, a light-emitting device that does not have a reflection unit or the like, and various illumination devices. In addition, when applied to a lighting device with power consumption of 10 W or more, preferably 20 W or more, the effect of the present invention can be obtained effectively.

本発明を適用した具体的な実施例について、実験結果に基づいて説明する。なお、本発明は以下の実施例の記載に限定されるものではない。   Specific examples to which the present invention is applied will be described based on experimental results. In addition, this invention is not limited to description of a following example.

以下では、最初に、R、G、BのLEDを光源として用いた従来の発光装置(従来例)における問題点について説明し、その後で本発明のバックライト装置(実施例)について説明する。   Below, the problem in the conventional light-emitting device (conventional example) which used R, G, B LED as a light source is demonstrated first, and the backlight apparatus (Example) of this invention is demonstrated after that.

先ず、R、G、Bの各発光色のLEDを用意した。例えば、赤色LEDとしては波長630nmのAlGaInP系LED、緑色LEDとしては波長525nmのAlGaInN系LED、青色LEDとしては波長460nmのAlGaInN系LEDを選択した。これらは、ほぼNTSC比100%に相当するような波長の選択の一例である。これらLEDの室温におけるピーク波長及びエネルギー効率は、例えば以下の表1のようになる。   First, LEDs of each emission color of R, G, and B were prepared. For example, an AlGaInP LED having a wavelength of 630 nm was selected as the red LED, an AlGaInN LED having a wavelength of 525 nm was selected as the green LED, and an AlGaInN LED having a wavelength of 460 nm was selected as the blue LED. These are examples of selecting a wavelength that substantially corresponds to an NTSC ratio of 100%. The peak wavelength and energy efficiency of these LEDs at room temperature are as shown in Table 1 below, for example.

また、これらLEDの60℃の環境下における波長及びエネルギー効率は、例えば以下の表2のようになる。また、各LEDの温度とエネルギー効率との関係を図3に、各LEDの温度と発光波長との関係を図4に示す。   Further, the wavelength and energy efficiency of these LEDs in an environment of 60 ° C. are as shown in Table 2 below, for example. FIG. 3 shows the relationship between the temperature of each LED and energy efficiency, and FIG. 4 shows the relationship between the temperature of each LED and the emission wavelength.

表1と表2との比較から、温度上昇によってLEDのエネルギー効率は低減し、また、発光波長もシフトすることがわかる。このような温度上昇に伴う変化は、主にLEDを構成する活性層やクラッド層の材料に起因している。また、表1、表2、図3及び図4から、温度上昇による波長シフト及びエネルギー効率低下は、特にAlGaInP系LEDにおいて著しいことがわかる。   From the comparison between Table 1 and Table 2, it can be seen that the energy efficiency of the LED decreases and the emission wavelength also shifts as the temperature rises. Such a change accompanying the temperature rise is mainly caused by the material of the active layer and the cladding layer constituting the LED. Further, from Table 1, Table 2, FIG. 3 and FIG. 4, it can be seen that the wavelength shift and the energy efficiency decrease due to the temperature increase are particularly remarkable in the AlGaInP-based LED.

<従来例>
次に、市販のLED(1個あたりの消費電力:1W以下)を使用して図1に示すバックライト装置と類似の構造を持つバックライト装置を作製した。LEDとしては、上記AlGaInP系赤色LEDを35個、上記AlGaInN系緑色LEDを70個、上記AlGaInN系青色LEDを35個使用した。ただし、ここで作製したバックライト装置は、全てのLEDを1つのヒートシンクに対応させ放熱させる点で図1のバックライト装置と異なり、従来例に相当するものである。このバックライト装置における各LEDの駆動電流は350mAに固定し、PWM変調で輝度を調整した。このようなバックライト装置において、室温で5000lmの光束を実現する場合に必要な消費電力は、おおよそ以下の表3のように見積もられる。なお、5000lmは、30インチクラスの液晶テレビに必要となるバックライトの光量に相当する。
<Conventional example>
Next, a backlight device having a structure similar to that of the backlight device shown in FIG. 1 was manufactured using commercially available LEDs (power consumption per unit: 1 W or less). As the LEDs, 35 AlGaInP red LEDs, 70 AlGaInN green LEDs, and 35 AlGaInN blue LEDs were used. However, the backlight device produced here is different from the backlight device of FIG. 1 in that all LEDs correspond to one heat sink and dissipate heat, and corresponds to the conventional example. The drive current of each LED in this backlight device was fixed at 350 mA, and the luminance was adjusted by PWM modulation. In such a backlight device, the power consumption required for realizing a luminous flux of 5000 lm at room temperature is roughly estimated as shown in Table 3 below. Note that 5000 lm corresponds to the amount of backlight light necessary for a 30-inch class liquid crystal television.

次に、上述の従来例に相当するバックライト装置を実際に動作させた。動作直後、すなわちLEDの点灯直後からヒートシンク温度は徐々に上昇し、最終的には60℃を超えた。また、動作直後(室温)のバックライト装置の色合いは白色であったが、時間経過に伴って次第に青緑色に変化した。このように、従来例のバックライト装置は、使用中に発光の色合いが変化し、安定性に欠けるものであった。   Next, the backlight device corresponding to the conventional example described above was actually operated. Immediately after the operation, that is, immediately after the lighting of the LED, the heat sink temperature gradually increased and finally exceeded 60 ° C. Further, the color of the backlight device immediately after the operation (room temperature) was white, but gradually changed to blue-green as time passed. As described above, the backlight device of the conventional example changes in light emission color during use and lacks stability.

また、従来例のバックライト装置においてR、G、B各色のLEDの光出力をリアルタイムでモニタするシステムを使用し、所望の白色点を維持した。その結果、ヒートシンク温度は徐々に上昇し、最終的には60℃を超えた。このときのバックライト装置における光出力及び消費電力を下記表4に示す。   Further, in the conventional backlight device, a system that monitors the light output of each of the R, G, and B LEDs in real time was used to maintain a desired white point. As a result, the heat sink temperature gradually increased and eventually exceeded 60 ° C. The light output and power consumption of the backlight device at this time are shown in Table 4 below.

表3と表4との比較から明らかなように、従来例のバックライト装置では、R、G、B各色のLEDの光出力をリアルタイムでモニタするシステムを使用して白色を保った結果、赤色LEDの消費電力が他の色のLEDに比べて大幅に増加した。赤色LEDの消費電力が大幅に増加した原因は、最も温度の影響を受けやすい赤色LEDを消費電力及び発熱量の大きいAlGaInN系LED(緑色LED及び青色LED)と同一のヒートシンクに実装することにより赤色LEDが加熱され、赤色LEDの効率が低下したためである。   As is apparent from the comparison between Table 3 and Table 4, in the conventional backlight device, as a result of maintaining the white color by using a system that monitors the light output of the R, G, and B color LEDs in real time, the red color is obtained. The power consumption of the LED is greatly increased compared to the other colors of LEDs. The reason why the power consumption of the red LED has greatly increased is that the red LED, which is most susceptible to temperature, is mounted on the same heat sink as the AlGaInN-based LED (green LED and blue LED) with the highest power consumption and heat generation. This is because the LED is heated and the efficiency of the red LED is reduced.

<実施例1>
次に、本発明の実施例について説明する。実施例1では、従来例と同じ種類及び個数のLEDを使用して、図1と同じ構造のバックライト装置を作製した。実施例1のバックライト装置は、緑色LED及び青色LEDを同一のヒートシンクで放熱させ、赤色LEDのみを緑色LED及び青色LEDとは異なるヒートシンクで放熱させる点で、従来例のバックライト装置と異なるものである。
<Example 1>
Next, examples of the present invention will be described. In Example 1, a backlight device having the same structure as that of FIG. 1 was manufactured using the same kind and number of LEDs as in the conventional example. The backlight device of Example 1 is different from the conventional backlight device in that the green LED and the blue LED are radiated by the same heat sink and only the red LED is radiated by a heat sink different from the green LED and the blue LED. It is.

実施例1のバックライト装置を、上記従来例と同様の条件で実際に動作させた。実施例1のバックライト装置の動作直後(室温)の特性を、下記表5に示す。   The backlight device of Example 1 was actually operated under the same conditions as in the conventional example. The characteristics immediately after operation (room temperature) of the backlight device of Example 1 are shown in Table 5 below.

また、実施例1のバックライト装置の動作を維持したところ、緑色LED及び青色LEDに対応するヒートシンクの温度は時間の経過につれて上昇して60℃を超えたのに対し、赤色LEDに対応するヒートシンクの温度は40℃程度にしか上昇しなかった。   Further, when the operation of the backlight device of Example 1 was maintained, the temperature of the heat sink corresponding to the green LED and the blue LED increased with time and exceeded 60 ° C., whereas the heat sink corresponding to the red LED. The temperature increased only to about 40 ° C.

また、従来例の場合と同様に、実施例1のバックライト装置において、光出力をモニタして白色点を保つ制御を行った。このときの実施例1のバックライト装置の特性を、下記表6に示す。   As in the case of the conventional example, in the backlight device of Example 1, control was performed to monitor the light output and maintain the white point. The characteristics of the backlight device of Example 1 at this time are shown in Table 6 below.

従来例のバックライト装置では、白色点を保つ制御を行ったところ、動作直後(室温)に比べて赤色LEDの消費電力が倍以上に増加したのに対して、実施例1のバックライト装置では赤色LEDの消費電力の増加は4割程度に抑えられた。   In the backlight device of the conventional example, when the control to maintain the white point was performed, the power consumption of the red LED increased more than double compared to immediately after the operation (room temperature), whereas in the backlight device of Example 1, The increase in power consumption of the red LED was suppressed to about 40%.

以上の実施例1から、室温付近での消費電力の少ない赤色LEDのみを他のLEDとは異なるヒートシンクに実装することで、赤色LEDの温度上昇を抑制し、消費電力の低減が可能であることが確認された。   From Example 1 above, by mounting only red LEDs with low power consumption near room temperature on a heat sink different from other LEDs, it is possible to suppress the temperature rise of the red LEDs and reduce power consumption. Was confirmed.

<実施例2>
実施例2では、従来例及び実施例1と同じ種類及び個数のLEDを使用して、図2と同じ構造のバックライト装置を作製した。実施例2のバックライト装置は、赤色LEDを実装したヒートシンクに放熱板を取り付け、さらに空冷ファンを取り付けたものである。実施例2のバックライト装置を、空冷ファンを動作させて赤色LEDを実装したヒートシンクを冷却しながら、上記従来例及び実施例1と同様の条件で実際に動作させた。実施例2のバックライト装置の動作を維持したところ、赤色LEDを実装したヒートシンクの温度は30℃程度であり、温度上昇がさらに抑制された。また、従来例及び実施例1の場合と同様に、実施例2のバックライト装置において白色点を保つ制御を行った。このときの実施例2のバックライト装置の特性を、下記表7に示す。
<Example 2>
In Example 2, a backlight device having the same structure as that in FIG. 2 was manufactured using the same kind and number of LEDs as in the conventional example and Example 1. In the backlight device of Example 2, a heat sink is attached to a heat sink on which a red LED is mounted, and an air cooling fan is further attached. The backlight device of Example 2 was actually operated under the same conditions as in the conventional example and Example 1 while operating the air cooling fan to cool the heat sink on which the red LED was mounted. When the operation of the backlight device of Example 2 was maintained, the temperature of the heat sink on which the red LED was mounted was about 30 ° C., and the temperature increase was further suppressed. Further, as in the case of the conventional example and the first embodiment, the white point is controlled in the backlight device of the second embodiment. The characteristics of the backlight device of Example 2 at this time are shown in Table 7 below.

表7から明らかなように、実施例2のバックライト装置では、動作直後と比較した赤色LEDの消費電力の増加は2割程度であり、さらに効率的に赤色LEDの特性変化を抑制していることがわかる。また、実施例2のバックライト装置において、光出力をモニタして白色点を維持する制御を行わずに動作させ、このときのバックライト装置の発光の色合いを観察した。その結果、従来例のバックライト装置で同様の検討を行った場合と比較して、白色点の変化量の減少が見られた。したがって、本発明のバックライト装置は、色合いの安定性にも優れることが確認された。   As is clear from Table 7, in the backlight device of Example 2, the increase in power consumption of the red LED compared with immediately after the operation is about 20%, and the characteristic change of the red LED is further effectively suppressed. I understand that. Further, the backlight device of Example 2 was operated without monitoring the light output and maintaining the white point, and the light emission color of the backlight device at this time was observed. As a result, a decrease in the amount of change in the white point was observed as compared with the case where the same study was performed with the conventional backlight device. Therefore, it was confirmed that the backlight device of the present invention is excellent in hue stability.

本発明を適用したバックライト装置の一例を示す要部概略断面図である。It is a principal part schematic sectional drawing which shows an example of the backlight apparatus to which this invention is applied. 本発明を適用したバックライト装置の他の例を示す要部概略断面図である。It is a principal part schematic sectional drawing which shows the other example of the backlight apparatus to which this invention is applied. LEDの温度と外部エネルギー効率との関係を示す特性図である。It is a characteristic view which shows the relationship between the temperature of LED, and external energy efficiency. LEDの温度とLEDのピーク波長との関係を示す特性図である。It is a characteristic view which shows the relationship between the temperature of LED, and the peak wavelength of LED.

符号の説明Explanation of symbols

1 発光装置、2 反射ユニット、11 発光素子、11R AlGaInP系発光素子、11G・11B AlGaInN系発光素子、12 ヒートシンク、13 フィン、14 空冷ファン、21 遮光反射板、22 反射板、23 導光混色板、24 拡散板、25 筐体、26 通気路、27 吸気口、28 排気口、29 断熱材 DESCRIPTION OF SYMBOLS 1 Light emitting device, 2 Reflection unit, 11 Light emitting element, 11R AlGaInP type light emitting element, 11G * 11B AlGaInN type light emitting element, 12 Heat sink, 13 Fin, 14 Air-cooling fan, 21 Light-shielding reflecting plate, 22 Reflecting plate, 23 Light guide color mixing plate , 24 Diffusion plate, 25 Housing, 26 Air passage, 27 Air inlet, 28 Air outlet, 29 Heat insulating material

Claims (7)

少なくともAlGaInP系化合物半導体発光素子を含む複数種類の発光素子と、上記発光素子に対応して設けられた上記発光素子の発熱を放散させるヒートシンクとを備え、上記発光素子の実装面を水平面から傾けた発光装置であって、
上記AlGaInP系化合物半導体発光素子及び上記AlGaInP系化合物半導体発光素子に対応するヒートシンクは、上記AlGaInP系化合物半導体発光素子より発熱量の大きい他の発光素子及び上記AlGaInP系化合物半導体発光素子より発熱量の大きい他の発光素子に対応するヒートシンクから熱的に独立するとともに下方に配置されることを特徴とする発光装置。
A plurality of types of light-emitting elements including at least an AlGaInP-based compound semiconductor light-emitting element, and a heat sink for dissipating heat generated from the light-emitting element provided corresponding to the light-emitting element, wherein the mounting surface of the light-emitting element is inclined from a horizontal plane A light emitting device,
The heat sink corresponding to the AlGaInP-based compound semiconductor light-emitting device and the AlGaInP-based compound semiconductor light-emitting device have a larger amount of heat generation than the other light-emitting devices that generate a larger amount of heat than the AlGaInP-based compound semiconductor light-emitting device and the AlGaInP-based compound semiconductor light-emitting device. A light emitting device characterized by being thermally independent from a heat sink corresponding to another light emitting element and disposed below.
上記他の発光素子がAlGaInN系化合物半導体発光素子であることを特徴とする請求項1記載の発光装置。   2. The light emitting device according to claim 1, wherein the other light emitting element is an AlGaInN-based compound semiconductor light emitting element. 上記AlGaInP系化合物半導体発光素子に対応するヒートシンクと上記他の発光素子に対応するヒートシンクとが分離していること特徴とする請求項1記載の発光装置。   2. The light emitting device according to claim 1, wherein a heat sink corresponding to the AlGaInP-based compound semiconductor light emitting element is separated from a heat sink corresponding to the other light emitting element. 上記AlGaInP系化合物半導体発光素子に対応するヒートシンクを強制冷却する冷却装置を有することを特徴とする請求項3記載の発光装置。   4. The light emitting device according to claim 3, further comprising a cooling device for forcibly cooling a heat sink corresponding to the AlGaInP-based compound semiconductor light emitting element. 上記冷却装置は、上記ヒートシンクの温度を監視しながら上記ヒートシンクの温度制御を行うことを特徴とする請求項4記載の発光装置。   The light-emitting device according to claim 4, wherein the cooling device controls the temperature of the heat sink while monitoring the temperature of the heat sink. 請求項1〜請求項5のいずれか1項記載の発光装置を光源として備えることを特徴とする液晶表示装置用バックライト装置。   6. A backlight device for a liquid crystal display device, comprising the light emitting device according to claim 1 as a light source. 請求項1〜請求項5のいずれか1項記載の発光装置を備えることを特徴とする照明装置。   An illumination device comprising the light-emitting device according to claim 1.
JP2004335501A 2004-11-19 2004-11-19 LIGHT EMITTING DEVICE, BACKLIGHT DEVICE FOR LIQUID CRYSTAL DISPLAY DEVICE USING THE SAME, AND LIGHTING DEVICE Expired - Fee Related JP4670323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004335501A JP4670323B2 (en) 2004-11-19 2004-11-19 LIGHT EMITTING DEVICE, BACKLIGHT DEVICE FOR LIQUID CRYSTAL DISPLAY DEVICE USING THE SAME, AND LIGHTING DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004335501A JP4670323B2 (en) 2004-11-19 2004-11-19 LIGHT EMITTING DEVICE, BACKLIGHT DEVICE FOR LIQUID CRYSTAL DISPLAY DEVICE USING THE SAME, AND LIGHTING DEVICE

Publications (2)

Publication Number Publication Date
JP2006147820A JP2006147820A (en) 2006-06-08
JP4670323B2 true JP4670323B2 (en) 2011-04-13

Family

ID=36627161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004335501A Expired - Fee Related JP4670323B2 (en) 2004-11-19 2004-11-19 LIGHT EMITTING DEVICE, BACKLIGHT DEVICE FOR LIQUID CRYSTAL DISPLAY DEVICE USING THE SAME, AND LIGHTING DEVICE

Country Status (1)

Country Link
JP (1) JP4670323B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009129800A (en) * 2007-11-27 2009-06-11 Nippo Electric Co Ltd Illumination system
JP5036634B2 (en) * 2008-06-10 2012-09-26 株式会社リコー Light source device, optical scanning device, and image forming apparatus
KR20130036227A (en) * 2010-03-31 2013-04-11 인텍스 가부시키가이샤 Light-source device
RU2607531C2 (en) * 2011-01-11 2017-01-10 Конинклейке Филипс Н.В. Lighting fixture
JP2012227249A (en) * 2011-04-18 2012-11-15 Citizen Electronics Co Ltd Led package
KR101752447B1 (en) * 2011-06-01 2017-07-05 서울반도체 주식회사 Light emitting diode assembly
JP2014164057A (en) * 2013-02-25 2014-09-08 Mitsubishi Electric Corp Video display device
JP6037904B2 (en) * 2013-03-19 2016-12-07 三菱電機株式会社 Liquid crystal display
JP2015059995A (en) * 2013-09-17 2015-03-30 株式会社Jvcケンウッド Image display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321909A (en) * 1997-05-19 1998-12-04 Nichia Chem Ind Ltd Semiconductor device
JP2004259841A (en) * 2003-02-25 2004-09-16 Noritsu Koki Co Ltd Led light source equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321909A (en) * 1997-05-19 1998-12-04 Nichia Chem Ind Ltd Semiconductor device
JP2004259841A (en) * 2003-02-25 2004-09-16 Noritsu Koki Co Ltd Led light source equipment

Also Published As

Publication number Publication date
JP2006147820A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
JP5391847B2 (en) Backlight device and image display device
JP5451629B2 (en) Light source and illumination system having a predetermined appearance
JP5026798B2 (en) LED lighting device and liquid crystal display device using the same
JP4968666B2 (en) Backlight device and liquid crystal display device
US8142042B2 (en) Light-emitting-diode backlight device
JP5556256B2 (en) Illumination device and projection-type image display device
JPWO2008032460A1 (en) Backlight device and display device using the same
JPWO2009016913A1 (en) Illumination device and liquid crystal display device
JP2007318050A (en) Light-emitting device, and display apparatus method for controlling the same
JP2008053691A (en) White led module
JP2007335371A (en) Surface lighting device
KR20060099365A (en) Edge light type back light unit having heat sink system
JP2008010361A (en) Backlight device
JP2008117879A (en) Surface light-emitting device
JP4670323B2 (en) LIGHT EMITTING DEVICE, BACKLIGHT DEVICE FOR LIQUID CRYSTAL DISPLAY DEVICE USING THE SAME, AND LIGHTING DEVICE
JP2008543041A (en) Lighting system with LED
WO2014020870A1 (en) Liquid crystal display
US20200285136A1 (en) Illumination system and projection apparatus
JP2007207595A (en) Illumination device and image display apparatus
JP2007052950A (en) Light emitting diode lighting system and image display device
JP2007052994A (en) Lighting apparatus using white led
JP2005353650A (en) Led optical source and liquid crystal display device
JP3738768B2 (en) Light source device and projection display device using the same
JP2010129359A (en) Backlight unit and liquid crystal display device
CA2979520C (en) Semiconductor laser light source device, semiconductor laser light source system, and image display aparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110103

R151 Written notification of patent or utility model registration

Ref document number: 4670323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees