WO2014020870A1 - Liquid crystal display - Google Patents

Liquid crystal display Download PDF

Info

Publication number
WO2014020870A1
WO2014020870A1 PCT/JP2013/004521 JP2013004521W WO2014020870A1 WO 2014020870 A1 WO2014020870 A1 WO 2014020870A1 JP 2013004521 W JP2013004521 W JP 2013004521W WO 2014020870 A1 WO2014020870 A1 WO 2014020870A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
heat
liquid crystal
laser light
crystal display
Prior art date
Application number
PCT/JP2013/004521
Other languages
French (fr)
Japanese (ja)
Inventor
長瀬 章裕
哲也 永安
栄二 新倉
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201380039640.7A priority Critical patent/CN104487763B/en
Priority to JP2014527974A priority patent/JP5931199B2/en
Priority to TW102127045A priority patent/TWI612361B/en
Publication of WO2014020870A1 publication Critical patent/WO2014020870A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133621Illuminating devices providing coloured light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133628Illuminating devices with cooling means

Definitions

  • the present invention relates to a cooling structure for a liquid crystal display device having two types of light sources.
  • the liquid crystal display element included in the liquid crystal display device does not emit light by itself.
  • the liquid crystal display device includes a backlight device on the back surface of the liquid crystal display element as a light source for illuminating the liquid crystal display element.
  • the liquid crystal display element receives light emitted from the backlight device and emits image light.
  • LEDs Light Emitting Diodes
  • the light source using the blue LED has, as constituent elements, a blue LED element and a phosphor that absorbs light emitted from the blue LED element and emits light having a blue complementary color.
  • a blue LED element and a phosphor that absorbs light emitted from the blue LED element and emits light having a blue complementary color.
  • Such an LED is called a white LED.
  • the blue complementary color is a yellow color including green and red.
  • White LEDs have high electro-optical conversion efficiency and are effective in reducing power consumption. “Electric-optical conversion” means conversion from electricity to light. However, on the other hand, white LEDs have the problem that their wavelength bandwidth is wide and the color reproduction range is narrow.
  • the liquid crystal display device includes a color filter inside the liquid crystal display element. The liquid crystal display device uses this color filter to extract only the red, green, and blue spectral ranges and perform color expression.
  • a light source having a continuous spectrum with a wide wavelength bandwidth such as a white LED needs to increase the color purity of the display color of the color filter in order to widen the color reproduction range. That is, the wavelength band that transmits the color filter is set narrow. However, if the wavelength band that passes through the color filter is set narrow, the light utilization efficiency decreases. This is because the amount of unnecessary light that is not used for image display of the liquid crystal display element increases. Further, there arises a problem that the brightness of the display surface of the liquid crystal display element is lowered and further the power consumption of the liquid crystal display device
  • a backlight device that employs a single color LED with higher color purity instead of a white LED has been proposed.
  • the colors of the single color LED are red, green and blue.
  • a backlight device using a laser having higher color purity than a single color LED has been proposed.
  • the laser colors are red, green and blue. “High color purity” means a narrow wavelength width and excellent monochromaticity.
  • the electro-optical conversion efficiency decreases significantly as the element temperature increases.
  • the deterioration is accelerated and the lifetime of the element is shortened. Therefore, in order to obtain a desired light amount even when the environmental temperature is high, a heat dissipation mechanism is generally required.
  • the “ambient temperature” includes the ambient temperature where the liquid crystal display device is placed and the ambient temperature of the backlight device in the liquid crystal display device where the backlight device is placed.
  • Patent Document 1 shows a liquid crystal display device 1 in which LED modules 9 as light sources are arranged along two long sides of a liquid crystal display panel 3.
  • the two long sides are the long sides of the upper side and the lower side of the liquid crystal display panel 3.
  • the LED module 9 is attached to the rising portion 8 of the back frame 7 (paragraph 0009, FIG. 2).
  • the heat sink 27 is attached in thermal contact with almost the entire back side of the back frame 7 (FIG. 1).
  • the heat sink 27 is not attached to the LED drive power supply 31 and the control board 29.
  • the liquid crystal display panel is a liquid crystal display element.
  • JP 2006-267936 (paragraph 0009, paragraph 0012, FIGS. 1 and 2)
  • a “direct type” is a backlight device in which light sources are arranged side by side on the back side of a liquid crystal panel.
  • the “edge light type” is a backlight device in which light sources are arranged in a line on the end surface of the liquid crystal panel and light is spread over the entire back side of the panel using a light guide plate. For this reason, when a light source that is easily affected by heat is employed, the temperature of the light source that is easily affected by heat rises depending on the arrangement of the two types of light sources.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a liquid crystal display device configured to suppress the heat of a light source that is not easily affected by heat from being transmitted to the light source that is easily affected by heat.
  • the liquid crystal display device includes a laser light source that emits laser light, an LED light source that emits LED light, and the laser light source while holding the laser light source. And a heat radiator that transmits heat to be released into the air, and the laser light source is disposed below the LED light source.
  • Suppresses the transfer of heat from a light source that is less susceptible to heat to a light source that is more susceptible to heat.
  • FIG. 1 is a perspective view illustrating a configuration of a liquid crystal display device according to a first embodiment.
  • 3 is a partial perspective view illustrating a configuration of a liquid crystal display device according to Embodiment 1.
  • FIG. FIG. 3 is a perspective view illustrating a configuration of a radiator according to the first embodiment.
  • 1 is a configuration diagram illustrating a configuration of a liquid crystal display device according to a first embodiment. It is a perspective view which shows the structure of the surface light source device of Embodiment 1.
  • FIG. 1 is a configuration diagram illustrating a configuration of a liquid crystal display device according to a first embodiment.
  • FIG. 6 is a perspective view illustrating a configuration of a liquid crystal display device according to a second embodiment.
  • FIG. 6 is a configuration diagram illustrating a configuration of a liquid crystal display device according to a second embodiment.
  • Embodiment 1 FIG.
  • the short side direction of the liquid crystal display device 100 is defined as the Y-axis direction
  • the long side direction is defined as the X-axis direction
  • the direction perpendicular to the XY plane is defined as the Z-axis direction.
  • the display surface side of the liquid crystal display device 100 is defined as the + Z-axis direction.
  • the upward direction of the liquid crystal display device is defined as the + Y axis direction.
  • the left side when viewing the display surface of the liquid crystal display device 100 is defined as the + X-axis direction. “Look at the display surface” means to face the display surface.
  • FIG. 1 is a rear perspective view of the liquid crystal display device 100 according to the first embodiment of the present invention.
  • the back surface portion 1 is a holding member disposed on the back side of the liquid crystal display device 100.
  • the back surface portion 1 is a plate material.
  • the back surface portion 1 is formed by pressing iron.
  • the back part is described as a back sheet metal. Therefore, the back portion is a member having a heat dissipation effect.
  • the radiators 2a, 2b, 2c, 2d, and 2e are disposed on the back side ( ⁇ Z-axis direction side) of the back surface portion 1.
  • the radiators 2a, 2b, 2c, 2d, and 2e are disposed at the lower end portion in the Y-axis direction of the back surface portion 1.
  • the heat radiator 2 a and the heat radiator 2 e are disposed symmetrically on the back surface of the back surface portion 1.
  • the heat radiator 2 a and the heat radiator 2 e are disposed at both ends in the X direction on the back surface of the back surface portion 1.
  • the radiator 2b and the radiator 2d are arranged symmetrically on the back surface of the back surface portion 1.
  • the heat radiator 2 c is disposed at the center in the X-axis direction on the back surface of the back surface portion 1.
  • the radiator 2b is disposed between the radiator 2a and the radiator 2c.
  • the radiator 2d is disposed between the radiator 2e and the radiator 2c.
  • the air paths of the radiators 2a, 2b, 2c, 2d, and 2e are provided in the vertical direction (+ Y-axis direction).
  • An “airway” is one that creates a path for the wind and releases heat.
  • FIG. 2 is a perspective view of the internal structure of the liquid crystal display device 100 as viewed from the liquid crystal display surface side.
  • the liquid crystal display element 13, the optical sheet 12, the diffusion plate 11, the light guide bar 10, and the first reflection unit 8 are removed.
  • the positions where the radiators 2 a, 2 b, 2 c, 2 d, and 2 e arranged on the back side ( ⁇ Z axis direction side) of the back part 1 are shown by broken lines.
  • the liquid crystal display device 100 of the first embodiment has a surface light source device 200 in which an LED light source 4 and a laser light source 5 are combined.
  • the surface light source device 200 includes a back surface portion 1, a radiator 2, an LED light source array 3, and a laser light source 5.
  • the surface light source device 200 can include the reflecting portion 8, the light guide rod 10, and the diffusion plate 11. Note that an optical sheet 12 and a liquid crystal display element 13 are also housed inside the back surface portion 1.
  • the LED light source arrays 3a, 3b, 3c, 3d, 3e, and 3f are obtained by arranging a plurality of LED light sources 4 in a line on a substrate.
  • the substrate on which the LED light sources 4 are arranged has an elongated rectangular shape.
  • the LED light sources 4 of the LED light source array 3 are arranged in the X-axis direction.
  • the LED light source arrays 3a, 3b, 3c, 3d, 3e, and 3f are arranged on the surface in the + Z-axis direction of the back surface portion 1.
  • the LED light source arrays 3a, 3b, 3c, 3d, 3e, and 3f are arranged in the Y-axis direction.
  • the LED light source 4 has a “directly-type” configuration arranged two-dimensionally on the back side of the liquid crystal display element 13.
  • the LED light source arrays 3a, 3b, 3c, 3d, 3e, and 3f may be arranged in the horizontal direction (+ X axis direction).
  • the substrates of the LED light source array 3 are arranged in a rectangular shape elongated in the Y-axis direction. That is, the LED light sources 4 of the LED light source array 3 may be arranged in the Y-axis direction.
  • One LED light source array 3 may be divided into a plurality of pieces.
  • the LED light source array 3a may be divided into two at the central portion in the X-axis direction.
  • the number of LED light source arrays 3a, 3b, 3c, 3d, 3e, 3f is not limited to six.
  • the number of LED light source arrays 3a, 3b, 3c, 3d, 3e, and 3f can be set to other numbers according to the size of the liquid crystal display element 13, for example.
  • the number of radiators 2a, 2b, 2c, 2d, and 2e is not limited to six.
  • the number of radiators 2 a, 2 b, 2 c, 2 d, 2 e can be set to other numbers depending on the size of the liquid crystal display element 13, for example.
  • FIG. 3 is a perspective view showing the shape of the radiator 2.
  • the radiator 2 is made of a material having high thermal conductivity.
  • the radiator 2 is made of aluminum.
  • the radiator 2 has a radiation fin 21.
  • the heat radiating fins 21 are arranged such that the air path is directed in the vertical direction (+ Y-axis direction).
  • the heat radiating fins 21 are formed on the surface of the base plate portion 24 in the ⁇ Z axis direction.
  • the base plate portion 24 has a plate shape parallel to the XY plane.
  • the heat radiating fins 21 are formed perpendicular to the base plate portion 24. That is, the radiating fin 21 is a plate-like member parallel to the YZ plane.
  • a plurality of the radiation fins 21 are arranged in the X-axis direction.
  • a mounting portion 22 is formed at the lower end ( ⁇ Y-axis direction) of the radiator 2.
  • the attachment portion 22 has a plate shape protruding in the + Z-axis direction.
  • the attachment portion 22 has a plate shape parallel to the ZX plane.
  • the attachment portion 22 is a portion to which the laser light source 5 is attached.
  • a hole 23 is formed in the attachment portion 22.
  • the hole 23 penetrates the attachment portion 22 and is opened in the Y-axis direction.
  • the laser light source 5 is attached to the hole 23 so that the light beam is emitted in the + Y-axis direction. That is, the laser light source 5 is installed in the hole 23.
  • the light emission direction of the laser light source 5 is directed to the + Y axis direction.
  • the attachment portion 22 has a rectangular shape, but is not limited thereto.
  • the attachment portion 22 may have another shape such as an arc shape.
  • the laser light source 5 may be attached to the hole 23 so that the light beam is emitted in the ⁇ Y axis direction.
  • the radiation fins 21 are disposed outside the liquid crystal display element 13.
  • the “bezel” is a part of a frame-shaped cabinet that surrounds the display screen. In recent years, a design in which a portion of a frame-like cabinet surrounding the display screen is narrowed is preferred. This thin bezel is called a “narrow bezel”.
  • the heat generated by the laser light source 5 is transmitted from the back side ( ⁇ Y axis direction side) of the laser light source 5 to the back surface portion 1.
  • the heat of the laser light source 5 transmitted to the back surface portion 1 is transmitted to the lower end surface 25 (the surface on the ⁇ Y axis direction side) of the radiator 2.
  • the heat transmitted to the lower end surface 25 ( ⁇ Y axis direction) of the radiator 2 is transmitted to the mounting portion 22.
  • the heat transmitted to the attachment portion 22 is transmitted to the heat radiating fins 21 and released to the outside air.
  • the radiator 2 is attached to the back surface portion 1 such that the lower end surface 25 is in contact with the back surface portion 1.
  • the mounting portion 22 is formed integrally with the heat radiation fin 21.
  • the attachment part 22 may be comprised by another component.
  • the heat radiation performance of the attachment portion 22 is slightly lowered.
  • the mounting portion 22 is configured as a separate part, the radiator 2 can be easily manufactured, and the manufacturing cost may be reduced.
  • one laser light source 5 is attached to one radiator 2.
  • a plurality of laser light sources 5 may be attached to one radiator 2.
  • the LED light source 4 has a blue LED element and a phosphor as a light source. Specifically, in the LED light source 4, a package including a blue LED element that emits blue light is filled with a phosphor that absorbs the blue light and mainly emits green light.
  • a white LED used as a light source in a liquid crystal display device has a small amount of energy of a red spectrum particularly in a wavelength band from 600 nm to 700 nm. That is, if the color purity is increased in the wavelength region from 630 nm to 640 nm which is preferable as red having high purity by using a color filter having a narrow wavelength band width, the amount of transmitted light is extremely reduced and the light use efficiency is lowered. Therefore, there arises a problem that the luminance is remarkably lowered. This high purity red is called “pure red”.
  • the laser light-emitting element 5 has a narrow wavelength bandwidth, and light of high color purity can be obtained while suppressing light loss.
  • the laser light source 5 employs a light source that emits red light.
  • the red laser light source 5 of 630 nm to 640 nm which is preferable as pure red
  • the electro-optical conversion efficiency decreases remarkably as the temperature of the element increases. That is, the red laser light source is a light source that is easily affected by heat.
  • “Pure red” is a high-purity red with a narrow wavelength width and a deep red color. As the deep red color, a wavelength from 630 nm to 640 nm is preferable. Further, if the laser light source 5 continues to emit high output light in a high temperature state, the deterioration of the element is accelerated and the life is shortened. For this reason, it is necessary to introduce an efficient cooling system.
  • the change in the electro-optical conversion efficiency with respect to the temperature of the LED light source 4 is very small compared to the laser light source 5. That is, the LED light source is a light source that is not easily affected by heat. However, it is necessary to efficiently dissipate heat so that heat generation is not transmitted to the laser light source 5 side.
  • the light emitted from the laser light source 5 has high directivity. For this reason, in order to obtain the uniformity of light as the surface light source device, the laser light source 5 is required to have high positioning accuracy.
  • the laser light source 5 generally used has a cylindrical package shape with a diameter of about 6 mm.
  • the laser light source 5 is fixed by press-fitting a package into a hole 23 provided in the mounting portion 22 of the radiator 2.
  • the laser light source 5 is press-fitted into a hole 23 provided in the attachment portion 22 of the radiator 2 from the light emitting side from which the laser light 51 is emitted.
  • the radiator 2 in which the laser light source 5 is press-fitted into the attachment portion 22 is attached to the back portion 1.
  • the radiating fins 21 and the base plate portion 24 need to protrude to the outer side surface ( ⁇ Z axis direction) of the back surface portion 1.
  • the mounting portion 22 is fixed by being inserted into the mounting hole 14 formed in the back surface portion 1 from the back surface side ( ⁇ Z-axis direction side) of the back surface portion 1.
  • a heat insulating portion 15 is interposed between the base plate portion 24 and the back surface portion 1.
  • the "thermal insulation part” here needs only to be significantly lower in thermal conductivity than the thermal conductivity of the back surface part 1 and the radiator 2.
  • the heat insulating part 15 is a resin material or a rubber material.
  • the heat insulating part may be an air layer.
  • the air layer is preferably about several mm.
  • the heat insulating portion 15 may be additionally disposed between the mounting portion 22 and the back surface portion 1 in addition to the space between the base plate portion 24 and the back surface portion 1, for example.
  • the heat generated by the laser light source 5 is transmitted from the mounting portion 22 to the base plate portion 24 and is radiated from the radiation fins 21.
  • FIG. 4 is a configuration diagram of the liquid crystal display device 100 as viewed from the ⁇ X axis direction.
  • FIG. 4 is a configuration diagram in which the liquid crystal display device 100 is cut along the YZ plane at the position of the laser light source 5.
  • the liquid crystal display element 13, the optical sheet 12, the diffusion plate 11, and the light guide bar 10 are arranged in parallel to the XY plane.
  • These components 10, 11, 12, and 13 are arranged in the order of the liquid crystal display element 13, the optical sheet 12, the diffusion plate 11, and the light guide bar 10 from the + Z-axis direction to the -Z-axis direction.
  • LED light source arrays 3a, 3b, 3c, 3d, 3e, and 3f are arranged on the ⁇ Z-axis side of the light guide bar 10.
  • the LED light source arrays 3a, 3b, 3c, 3d, 3e, and 3f are arranged on the surface on the + Z-axis direction side of the back surface portion 1.
  • the reflecting portion 8 has a box shape having an opening in the + Z-axis direction.
  • the LED light source array 3 and the light guide bar 10 are arranged inside the box shape of the reflecting portion 8.
  • a number of holes are formed in the bottom plate portion 82 of the reflecting portion 8 in accordance with the shape of the LED light source 4.
  • the LED light source 4 is inserted into the hole of the reflecting portion 8 from the ⁇ Z axis direction.
  • the reflecting portion 8 is a thin sheet
  • the LED light source 4 is arranged in a state of protruding from the hole to the surface in the + Z-axis direction.
  • the reflection part 8 can also be produced with a plate-shaped member. Therefore, the side plate portions 81a, 81b, 81c, 81d and the bottom plate portion 82 include a thin sheet shape to a plate shape.
  • FIG. 5 is a perspective view showing the configuration of the surface light source device 200.
  • FIG. 5 is a perspective view of the liquid crystal display element 13 as viewed from the display surface side.
  • the reflection portion 8 is in the form of a sheet and has a box shape with four sides raised 90 degrees as shown in FIG. That is, the reflecting portion 8 has side plate portions 81a, 81b, 81c, 81d that rise in the + Z-axis direction from the four sides of the bottom plate portion 82.
  • the box-shaped inner surface of the reflecting portion 8 is a reflecting surface.
  • the light emitting point of the LED light source 4 is disposed on the surface of the reflecting portion 8 in the + Z-axis direction. Then, the LED light 41 of the LED light source 4 is emitted toward the liquid crystal display element 13.
  • the incident surface 101 of the laser beam 51 is provided on the ⁇ Y axis direction side of the light guide rod 10.
  • the light guide bar 10 has a bar shape.
  • the incident surface 101 is one end surface having a bar shape.
  • a reflection sheet 9 is attached to the end face of the light guide bar 10 on the + Y axis direction side.
  • the surface on which the reflection sheet 9 is affixed is the other end surface of the bar shape facing the incident surface 101.
  • Both end portions of the light guide rod 10 are passed through holes provided in the side plate portions 81a and 81b.
  • the light guide bar 10 is held by the reflecting portion 8.
  • the reflection part 8 is produced with the thin sheet-like member, the light guide bar 10 may be hold
  • the reflection portion 8 may be made of a plate-like member that can hold the light guide rod 10.
  • a laser light source 5 is disposed on the ⁇ Y axis direction side of the light guide rod 10.
  • the laser light source 5 is disposed to face the incident surface 101.
  • the laser light 51 emitted from the laser light source 5 enters the light guide rod 10 from the incident surface 101 on the ⁇ Y axis direction side of the light guide rod 10.
  • the laser beam 51 emitted from the laser light source 5 enters the light guide rod 10 from the incident surface 101.
  • the incident laser beam 51 is repeatedly reflected inside the light guide rod 10 and proceeds in the + Y-axis direction.
  • a part of the reflected laser beam 51 is emitted from the side surface of the light guide rod 10 to the outside.
  • the laser beam 51 immediately after being emitted from the laser light source 5 was a point light.
  • the laser light 51 is changed from point light to linear light by emitting a part of the laser light 51 from the side surface while the laser light 51 travels inside the light guide rod 10. Further, when the thickness of the bar is thick, the light becomes a bar-like light.
  • “Point light source” is a light source that emits light from a single point.
  • “one point” means that the area of a light source is treated as a point in the optical calculation in consideration of the performance of the product and has no problem. For this reason, a backlight device using a laser as a light source requires an optical system for converting the laser light of a point light source into a surface light source.
  • This surface light source is a light source that illuminates the liquid crystal display element 13 with uniform intensity.
  • the laser light 51 that has become a rod-like light is emitted into the reflecting portion 8 together with the LED light 41 emitted from the LED light sources 4 arranged in an array.
  • the “array form” is a state in which a large number of elements are arranged in parallel.
  • LED light source 4 arranged in an array indicates LED light source array 3 in which LED light sources 4 are arranged.
  • the LED light 41 and the laser light 51 that are repeatedly reflected inside the reflecting portion 8 enter the diffusion plate 11.
  • the laser beam 51 emitted from the light guide rod 10 is emitted in all directions with the Y axis as the central axis.
  • the omnidirectional direction is a direction of 360 degrees. For this reason, the light emitted in the + Z-axis direction enters the diffusion plate 11.
  • the light emitted in the ⁇ Z-axis direction is incident on the diffusion plate 11 after being reflected by the bottom plate portion 82 of the reflecting portion 8.
  • the laser beam 51 emitted in the direction on the XY plane is incident on the diffusion plate 11 after being reflected by the side plate portions 81a, 81b, 81c, and 81d raised from the four sides of the reflection portion 8.
  • the laser light 51 and the LED light 41 are incident on the diffusion plate 11 as planar light.
  • the diffusion plate 11 further uniformizes the laser light 51 and the LED light 41.
  • the laser light 51 and the LED light 41 are emitted from the diffusion plate 11 toward the optical sheet 12 and the liquid crystal display element 13 as a uniform white surface light.
  • the reflection portion 8 and the light guide rod 10 are light guide portions 30 that convert the laser light 51, which is spot-like light, into planar light when emitted from the laser light source 5.
  • the light guide rod 10 converts the laser light 51 from dot-like light to linear light (rod-like light).
  • the reflection unit 8 converts the laser light 51 from linear light (bar-shaped light) to planar light. Therefore, a light guide plate used in an edge light type can be adopted as a method for making the laser light 51 into planar light.
  • the laser beam 51 is converted into planar light by the edge light type light guide plate.
  • the LED light 41 is converted into planar light by the LED light source 4 arranged in a direct type.
  • the edge light type light guide plate is disposed on the light emitting surface side of the surface light source device with respect to the LED light source 4.
  • the edge-light type light guide plate is a silk printing method in which reflective dots are printed with white ink on an acrylic plate, a molding method with irregularities on the acrylic surface, and adhesive dots in which the acrylic plate and the reflective plate are attached with a dot-like adhesive material
  • the light emitted from the light source enters from the side portion of the light guide plate.
  • the light incident on the light guide plate repeats surface reflection and spreads over a wide surface of the light guide plate. At this time, if there are reflection dots or the like, the light is scattered there and goes out from the surface of the light guide plate.
  • the light guide plate reduces the area of the reflective dots in the vicinity of the light source, and increases the area of the reflective dots as the distance from the light source increases. Thereby, the light-guide plate can form uniform planar light.
  • the laser light 51 and the LED light 41 are mixed inside the box shape of the reflector 8.
  • planar light with high uniformity can be generated with a simple configuration.
  • FIG. 6 is a configuration diagram of the liquid crystal display device 100 as viewed from the ⁇ X axis direction as in FIG. In FIG. 6, the liquid crystal display element 13, the optical sheet 12, and the diffusion plate 11 are removed. That is, FIG. 6 shows a portion of the surface light source device 200 of the liquid crystal display device 100.
  • FIG. 6 is a configuration diagram in which the liquid crystal display device is cut along the YZ plane at the position of 100 laser light sources 5.
  • FIG. 6 is a diagram for explaining the flow of heat emitted from the LED light source 4 and the flow of heat emitted from the laser light source 5.
  • the liquid crystal display element 13 is mainly composed of glass. Further, the diffusion plate 11, the optical sheet 12, and the reflection portion 8 are mainly made of resin. These materials made of resin or glass have low thermal conductivity.
  • the reflective part 8 with low thermal conductivity is arranged in the + Z-axis direction of the LED light source 4. For this reason, the heat emitted from the LED light source 4 is hardly transmitted in the + Z-axis direction.
  • a back surface portion 1 having a high thermal conductivity is disposed in the ⁇ Z-axis direction of the LED light source 4. For this reason, the heat emitted from the LED light source 4 is easily transmitted in the ⁇ Z-axis direction. From the above, it is considered that the heat emitted from the LED light source 4 is less likely to flow to the + Z axis direction side than the reflecting portion 8. This is the reason why the liquid crystal display element 13, the optical sheet 12, the diffusion plate 11, and the reflection portion 8 are excluded from FIG. 6.
  • the point at which the light turns white is determined by optimizing the output ratio of the lights 41 and 51 of the respective light sources 4 and 5.
  • the total radiant flux of the laser light 51 emitted from the laser light source 5 is 1 W
  • the total radiant flux of the LED light 41 emitted from the LED light source 4 needs to be about 3 W.
  • the light in which the laser light 51 and the LED light 41 are mixed becomes white.
  • the calorific value is about 3 W. .
  • the amount of heat generated by the light sources 4 and 5 increases accordingly.
  • the heat generation amount of the light sources 4 and 5 increases, if the heat sources 4 and 5 are sufficiently radiated, the temperature of the elements of the light sources 4 and 5 is small and the heat generation amount does not change greatly. That is, the heat generation amount of the laser light source 5 and the heat generation amount of the LED light source 4 are approximately the same 3W.
  • the heat radiation of the light sources 4 and 5 is insufficient, the temperature of the elements of the light sources 4 and 5 increases, and the electro-optical conversion efficiency decreases.
  • each light source 4, 5 increases, and the temperature of each light source 4, 5 rises further.
  • the heat 18 generated by the laser light source 5 is transmitted from the mounting portion 22 of the radiator 2 to the base plate portion 24 and then to the radiation fins 21 and is released to the surrounding air 16.
  • the radiator 2 is disposed on the most bottom side ( ⁇ Y axis direction) of the liquid crystal display device 100.
  • the heat 18 released from the radiating fins 21 to the surrounding air 16 moves in the + Y axis direction. This is because the air 16 that has received the heat 18 from the radiation fins 21 rises because it is lighter than the surrounding air. For this reason, fresh air flows into the radiating fin 21 from the ⁇ Y axis direction or the ⁇ Z axis direction.
  • “Fresh air” is air that has not received the heat 18 from the radiation fins 21 or the heat 17 from the back surface portion 1.
  • the amount of heat transfer from the solid surface to the air increases as the difference between the temperature of the solid surface and the temperature of the air increases. That is, the cooler 2 can efficiently release the heat 18 as the temperature of the air flowing into the radiator 2 is lower. The heat 18 generated by the laser light source 5 can be efficiently released to the surrounding air 16.
  • each LED light source array 3a, 3b, 3c, 3d, 3e, 3f is attached to the back surface portion 1.
  • the heat 17 generated by the LED light source 4 is transmitted to the respective substrates of the LED light source arrays 3a, 3b, 3c, 3d, 3e, and 3f, and then is transmitted to the back surface portion 1.
  • the thickness of the back part 1 is about 2 mm. Since the cross-sectional area of the back surface portion 1 is small, the heat 17 transmitted to the back surface portion 1 is difficult to be transmitted in the direction on the XY plane.
  • the LED light source arrays 3b, 3c, 3d, 3e, and 3f are arranged away from the radiator 2. For this reason, most of the heat 17 of the LED light source arrays 3b, 3c, 3d, 3e, and 3f is released into the air from the surface on the back surface side (the ⁇ Z axis direction side) of the back surface portion 1.
  • the heat 17 emitted from the LED light source array 3a close to the radiator 2 will be considered.
  • the LED light source array 3a is arranged in the + Y-axis direction with respect to the radiator 2. For this reason, the heat 17 emitted from the LED light source array 3 a is difficult to be transmitted to the radiator 2.
  • the first reason is that since the cross-sectional area of the back surface portion 1 is small, the heat 17 transmitted to the back surface portion 1 is difficult to be transmitted in the direction on the XY plane.
  • the second reason is that the heat 17 released from the back surface portion 1 into the air rises as described above, and thus moves in the + Y-axis direction.
  • the third reason is that the heat insulating portion 15 is interposed between the base plate portion 24 and the back surface portion 1 of the radiator 2.
  • the radiator 2 is arranged on the lower side ( ⁇ Y axis direction side) than the LED light source array 3a. That is, the back surface (the surface on the ⁇ Z-axis direction side) of the back surface portion 1 of the portion to which the LED light source array 3a is attached directly touches the air 16 that has risen by receiving the heat 18 from the radiator 2. For this reason, the heat 17 released into the air from the LED light source arrays 3 a, 3 b, 3 c, 3 d, 3 e, 3 f is released from the back surface portion 1 into the air 16.
  • the air 16 is air that has risen by receiving heat 18 from the radiator 2.
  • the LED light source 4 is superior to the laser light source 5 in heat characteristics (thermal characteristics). For this reason, the tolerance with respect to the temperature of LED light source 4 is large, and it is possible to design in the range which does not become a problem in quality.
  • the laser light source 5 has inferior thermal characteristics as compared with the LED light source 4. “Inferior thermal properties” means that the tolerance to temperature is small.
  • the radiator 2 is disposed on the most bottom side ( ⁇ Y axis direction side) of the liquid crystal display device 100. For this reason, fresh air flows into the radiation fins 21.
  • “Fresh air” is air that has not received the heat 18 from the heat radiating fins 21 or the heat 17 from the back surface portion 1. The amount of heat transfer from the solid surface to the air increases as the difference between the temperature of the solid surface and the temperature of the air increases. That is, the cooler 2 can release heat more efficiently as the temperature of the air flowing into the radiator 2 is lower. That is, the heat 18 generated by the laser light source 5 can be efficiently released to the air 16.
  • the liquid crystal display device 100 includes a laser light source 5, an LED light source 4, and a radiator 2.
  • the laser light source 5 emits laser light 51.
  • the LED light source 4 emits LED light 41.
  • the radiator 2 holds the laser light source 5 and transmits heat generated by the laser light source 5 to be released into the air.
  • the laser light source 5 is disposed below the LED light source 4.
  • the liquid crystal display device 100 includes a light guide unit 30.
  • the light guide unit 30 receives the laser beam 51 from the incident end, converts it into planar light, and emits it.
  • Laser light 51 and LED light 41 emitted from the light guide 30 are emitted from the opening 83.
  • a plurality of LED light sources 4 are provided and are arranged two-dimensionally facing the opening 83.
  • the opening 83 has a function as a light emitting surface. That is, the light emission surface is a virtual surface provided in the opening 30f.
  • the incident end is the incident surface 101 in the first embodiment.
  • an edge light type light guide plate is employed as described above, it is a side surface on which light is incident.
  • the light guide unit 30 includes a light guide rod 10 and a reflection unit 8.
  • the light guide rod 10 has an incident surface 101 and converts the laser light 51 into linear light and emits it.
  • the reflection unit 8 converts the laser beam 51 emitted from the light guide rod 10 into light in a planar shape.
  • the LED light source 4 is disposed on a surface facing the opening 83 of the reflection unit 8.
  • the light guide unit 30 mixes and emits the laser light 51 and the LED light 41 converted into planar light.
  • the incident surface 101 is an incident end.
  • the opening 83 has a function as a light emitting surface.
  • the invention described in Embodiment 1 can realize a wide color reproduction range by using a red laser light emitting element as a light source. Further, the invention described in Embodiment 1 can provide a backlight device having a configuration in which the heat of the LED light source that is not easily affected by heat is not easily transmitted to the laser light source that is easily affected by heat.
  • FIG. FIG. 7 is a rear perspective view of the liquid crystal display device 101 according to the second embodiment of the present invention.
  • the difference from the liquid crystal display device 100 according to the first embodiment shown in FIG. 1 is that, among the radiators 2a, 2b, 2c, 2d, and 2e, the radiator 2b disposed inside the horizontal direction (X-axis direction), The heat dissipation area of 2c, 2d is larger than the heat dissipation area of the radiators 2a, 2e arranged outside in the horizontal direction.
  • the second embodiment is the same as the first embodiment. That is, the back surface portion 1, the heat insulating portion 15, the LED light source array 3, the LED light source 4, the laser light source 5, the reflecting portion 8, the reflecting sheet 9, the light guide rod 10, the diffusion plate 11, the optical sheet 12, the liquid crystal display element 13, and the heat dissipation.
  • the configuration other than the heat radiation area of the vessel 2 is the same as that of the first embodiment.
  • the radiators 2 a and 2 e on the outer side in the horizontal direction have 14 radiation fins 21.
  • the radiation fins 21 of the radiators 2b and 2d disposed inside the radiators 2a and 2e are fifteen.
  • the innermost radiator 2c has 18 radiation fins 21.
  • the number of the radiation fins 21 increases as the radiator 2 disposed inside increases the radiation area.
  • peripheral devices such as a timing controller circuit board for driving liquid crystal, a driving power supply board, and a video signal processing circuit board are arranged at the arrangement position 19 of the peripheral parts on the back surface portion 1. 7 and 8, the peripheral device arrangement position 19 is indicated by a broken line.
  • the arrangement positions 19 of these peripheral components are determined by the wiring length of the signal lines, the design of the liquid crystal display device 101, the position of the center of gravity of each component, and the like. However, normally, the peripheral parts are collected at the center of the back part 1. Many of the peripheral parts generate heat. In addition, peripheral components are mounted with relatively tall components such as electrolytic capacitors, LSIs that generate a large amount of heat, and radiators for switching elements. That is, heat is generated on the arrangement position 19 of the peripheral parts, and a relatively high part is mounted.
  • FIG. 8 is a configuration diagram of the liquid crystal display device 101 viewed from the ⁇ X axis direction.
  • FIG. 8 is a configuration diagram in which the liquid crystal display device 101 is cut along the YZ plane at the position of the laser light source 5 including the arrangement position 19 of the peripheral parts.
  • the difference from the configuration of the liquid crystal display device 100 shown in FIG. 6 is that an arrangement position 19 of peripheral parts is added. Further, the difference from the configuration of the liquid crystal display device 100 shown in FIG. 6 is that a turbulence 20 of the airflow is generated in the lower part of the peripheral component arrangement position 19 (in the ⁇ Y axis direction).
  • Heat 18 is received from the radiation fins 21 of the radiator 2, and the warmed outside air 16 rises in the + Y-axis direction.
  • peripheral parts are arranged in the upper part of the radiator 2 (in the + Y-axis direction) so as to obstruct the flow path, the upward airflow is obstructed, and the turbulence of the airflow 20 such as a vortex is generated.
  • the pressure loss of the flow path increases, and the flow velocity of the air 16 flowing through the radiator 2 decreases.
  • the amount of heat radiation from the radiation fins 21 to the air 16 is reduced. That is, when peripheral parts are arranged in the upper part (+ Y axis direction) of the radiator 2 so as to block the flow path, the radiators 2b, 2c, 2d arranged at the lower part ( ⁇ Y axis direction) of the peripheral parts.
  • the heat dissipating capacity per unit heat dissipating area is lower than the heat dissipating capacity of the heat dissipators 2a and 2e in which no peripheral parts are arranged in the upper part (+ Y-axis direction).
  • the peripheral components arranged at the peripheral component arrangement position 19 have many components that generate heat.
  • the liquid crystal display device 101 is usually housed in a resinous housing or the like when used as a product. For this reason, the temperature of the air 16 in the horizontal center where the heat sources are concentrated and the heat flux density is increased, and the back surface 1 in the center in the horizontal direction are higher than those in the peripheral part. “Heat flux density” is simply the amount of heat flux per volume.
  • a heat insulating part 15 is interposed between the heat radiator 2 and the back surface part 1.
  • the heat insulating portion 15 can prevent heat conduction from the back surface portion 1 to the radiator 2.
  • heat radiation from the back portion 1 cannot be avoided.
  • the radiators 2b, 2c, and 2d receive radiant heat from the peripheral components and the temperature rises. For this reason, the temperature of the radiation fins 21 of the radiators 2b, 2c, and 2d arranged in the center portion in the horizontal direction is higher than the temperature of the radiation fins 21 of the radiators 2a and 2e arranged in the peripheral portion in the horizontal direction. Get higher.
  • the amount of heat transfer from the solid surface to the air increases as the difference between the temperature of the solid surface and the temperature of the air increases.
  • the heat radiating ability of the radiators 2b, 2c, and 2d is arranged at the peripheral portion in the horizontal direction. It is inferior to the heat dissipation capability of the radiators 2a and 2e.
  • the radiators 2a, 2b, 2c, 2d, and 2e are arranged near the lower end in the Y-axis direction of the back surface portion 1, the radiators 2b that are arranged inside the horizontal direction (X-axis direction), the radiators 2b that are arranged inside the horizontal direction (X-axis direction), The heat dissipating areas of 2c and 2d are made larger than the heat dissipating areas of the radiators 2a and 2e arranged outside in the horizontal direction. This improves the heat dissipating ability of the heat dissipators 2b, 2c, 2d arranged inside in the horizontal direction. That is, regardless of the position where the laser light source 5 is disposed, the radiator 2 can efficiently release the heat 18 generated by the laser light source 5 to the air 16.
  • the heat radiation area can be increased by increasing the size of the heat radiation fins 21.
  • the heat radiation area of the innermost radiator 2c is maximized.
  • the size of the heat dissipation area of the radiators 2b and 2d and the size of the heat dissipation area of the radiator 2c may be the same depending on the arrangement of peripheral components.
  • a plurality of laser light sources 5 are provided and arranged along the incident end. Of the arranged laser light sources 5, the heat radiation capability of the radiator 2 of the laser light source 5 located at both ends is smaller than the heat radiation capability of the radiator 2 of the laser light source 5 located between both ends.
  • the incident end portions are the incident surfaces 101 of the light guide rods 10 arranged in the X-axis direction.
  • a plurality of incident surfaces 101 are arranged in the X-axis direction, and the laser light source 5 is arranged to face the incident surface 101.
  • an edge light type light guide plate is employed as described above, it is a side surface on which light is incident.

Abstract

A liquid crystal display (100) is provided with a laser light source (5), an LED light source (4), and a radiator (2). The laser light source (5) emits laser light (51). The LED light source (4) emits LED light (41). The radiator (2) holds the laser light source (5), and transmits heat produced by the laser light source (5) and releases said heat in the air. The laser light source (5) is positioned lower than the LED light source (4). The liquid crystal display (100) prevents heat from the LED light source (4), which is not easily affected by heat, from being transferred to the laser light source (5), which is easily affected by heat.

Description

液晶表示装置Liquid crystal display
 本発明は、2種類の光源を有する液晶表示装置の冷却構造に関するものである。 The present invention relates to a cooling structure for a liquid crystal display device having two types of light sources.
 液晶表示装置が備える液晶表示素子は、自ら発光しない。このため、液晶表示装置は液晶表示素子を照明する光源として、液晶表示素子の背面にバックライト装置を備えている。液晶表示素子は、バックライト装置の発する光を入射して画像光を出射する。近年では、青色の発光ダイオード(以下、LED(Light Emitting Diode)という。)の性能が飛躍的に向上したことに伴い、光源に青色LEDを利用したバックライト装置が広く採用されている。 The liquid crystal display element included in the liquid crystal display device does not emit light by itself. For this reason, the liquid crystal display device includes a backlight device on the back surface of the liquid crystal display element as a light source for illuminating the liquid crystal display element. The liquid crystal display element receives light emitted from the backlight device and emits image light. In recent years, as the performance of blue light-emitting diodes (hereinafter referred to as LEDs (Light Emitting Diodes)) has dramatically improved, backlight devices using blue LEDs as light sources have been widely adopted.
 この青色LEDを利用した光源は、青色のLED素子及び青色のLED素子から発せられる光を吸収し青色の補色となる光を発光する蛍光体とを構成要素として有している。このようなLEDを白色LEDと呼ぶ。青色の補色とは、すなわち、緑色と赤色とを含む色の黄色である。 The light source using the blue LED has, as constituent elements, a blue LED element and a phosphor that absorbs light emitted from the blue LED element and emits light having a blue complementary color. Such an LED is called a white LED. The blue complementary color is a yellow color including green and red.
 白色LEDは、電気-光変換効率が高く、低消費電力化に有効である。「電気-光変換」とは、電気から光に変換することである。しかしながら一方で、白色LEDはその波長帯域幅が広く、色再現範囲が狭いという問題を有する。液晶表示装置は、その液晶表示素子の内部にカラーフィルタを備えている。液晶表示装置は、このカラーフィルタによって赤色、緑色および青色のスペクトル範囲だけを取り出して、色表現を行っている。白色LEDのように波長帯域幅の広い連続スペクトルを有する光源は、色再現範囲を広げるために、カラーフィルタの表示色の色純度を高める必要がある。つまり、カラーフィルタを透過する波長帯域は狭く設定される。しかし、カラーフィルタを透過する波長帯域を狭く設定すると、光の利用効率が低下する。なぜなら、液晶表示素子の画像表示に用いられない不要な光の量が多くなるからである。また、液晶表示素子の表示面の輝度の低下、さらには液晶表示装置の消費電力の増大につながるという問題が発生する。 White LEDs have high electro-optical conversion efficiency and are effective in reducing power consumption. “Electric-optical conversion” means conversion from electricity to light. However, on the other hand, white LEDs have the problem that their wavelength bandwidth is wide and the color reproduction range is narrow. The liquid crystal display device includes a color filter inside the liquid crystal display element. The liquid crystal display device uses this color filter to extract only the red, green, and blue spectral ranges and perform color expression. A light source having a continuous spectrum with a wide wavelength bandwidth such as a white LED needs to increase the color purity of the display color of the color filter in order to widen the color reproduction range. That is, the wavelength band that transmits the color filter is set narrow. However, if the wavelength band that passes through the color filter is set narrow, the light utilization efficiency decreases. This is because the amount of unnecessary light that is not used for image display of the liquid crystal display element increases. Further, there arises a problem that the brightness of the display surface of the liquid crystal display element is lowered and further the power consumption of the liquid crystal display device is increased.
 このような問題点の改善策として、白色LEDに代えて、より色純度の高い単色LEDを採用したバックライト装置が提案されている。単色LEDの色は、赤色、緑色および青色である。また、単色LEDよりもさらに色純度の高いレーザーを用いたバックライト装置が提案されている。レーザーの色は、赤色、緑色および青色である。「色純度が高い」とは、波長幅が狭く単色性に優れていることである。これらの光源をバックライト装置に採用することで、液晶表示装置の色再現範囲を広げることが可能となる。 As a measure for improving such a problem, a backlight device that employs a single color LED with higher color purity instead of a white LED has been proposed. The colors of the single color LED are red, green and blue. In addition, a backlight device using a laser having higher color purity than a single color LED has been proposed. The laser colors are red, green and blue. “High color purity” means a narrow wavelength width and excellent monochromaticity. By adopting these light sources in the backlight device, the color reproduction range of the liquid crystal display device can be expanded.
 しかし、3原色の単色LED又は3原色のレーザーで構成される光源には、素子の温度が上昇するに従い電気-光変換効率が著しく低下するものがある。特に、赤色レーザーは高温状態で高出力の光を出射し続けると劣化が加速されて、素子の寿命が短くなってしまう。その為、環境温度が高温の時にも所望の光量を得るためには、一般的には放熱機構が必要となる。なお、「環境温度」には、液晶表示装置の置かれた環境温度及びバックライト装置の置かれた、液晶表示装置の中のバックライト装置の周囲温度が含まれる。 However, in some light sources composed of three primary color single-color LEDs or three primary color lasers, the electro-optical conversion efficiency decreases significantly as the element temperature increases. In particular, when a red laser continues to emit high-power light at a high temperature, the deterioration is accelerated and the lifetime of the element is shortened. Therefore, in order to obtain a desired light amount even when the environmental temperature is high, a heat dissipation mechanism is generally required. The “ambient temperature” includes the ambient temperature where the liquid crystal display device is placed and the ambient temperature of the backlight device in the liquid crystal display device where the backlight device is placed.
 特許文献1には、液晶表示パネル3の2つの長辺に沿って、光源であるLEDモジュール9が配置された液晶表示装置1が示されている。2つの長辺とは、液晶表示パネル3の上側と下側との長辺である。LEDモジュール9は、背面フレーム7の立ち上がり部8に取り付けられている(段落0009、図2)。ヒートシンク27は、背面フレーム7の背面側のほぼ全体に熱的に接触して取り付けられている(図1)。なお、ヒートシンク27は、LED駆動電源31および制御基板29の部分には取り付けられていない。また、液晶表示パネルは、液晶表示素子である。 Patent Document 1 shows a liquid crystal display device 1 in which LED modules 9 as light sources are arranged along two long sides of a liquid crystal display panel 3. The two long sides are the long sides of the upper side and the lower side of the liquid crystal display panel 3. The LED module 9 is attached to the rising portion 8 of the back frame 7 (paragraph 0009, FIG. 2). The heat sink 27 is attached in thermal contact with almost the entire back side of the back frame 7 (FIG. 1). The heat sink 27 is not attached to the LED drive power supply 31 and the control board 29. The liquid crystal display panel is a liquid crystal display element.
特開2006-267936(段落0009、段落0012、図1、図2)JP 2006-267936 (paragraph 0009, paragraph 0012, FIGS. 1 and 2)
 しかしながら、例えば、直下型とエッジライト型とを併用して2種類の光源を採用するバックライト装置の場合には、互いの光源の熱が相手側の光源に伝わることが考えられる。「直下型」とは、液晶パネルの裏側に光源を並べて配置するバックライト装置である。「エッジライト型」とは、液晶パネルの端面部に光源を一列に並べて、導光板を使ってパネルの裏側全体に光を広げるバックライト装置である。このため、熱の影響を受けやすい光源を採用した場合には、2種類の光源の配置の仕方によっては、かえって、熱の影響を受けやすい光源の温度が上昇するという問題があった。 However, for example, in the case of a backlight device that employs two types of light sources in combination with a direct type and an edge light type, it is conceivable that the heat of each light source is transmitted to the light source on the other side. A “direct type” is a backlight device in which light sources are arranged side by side on the back side of a liquid crystal panel. The “edge light type” is a backlight device in which light sources are arranged in a line on the end surface of the liquid crystal panel and light is spread over the entire back side of the panel using a light guide plate. For this reason, when a light source that is easily affected by heat is employed, the temperature of the light source that is easily affected by heat rises depending on the arrangement of the two types of light sources.
 本発明は、上記に鑑みて成されたものであって、熱の影響を受けにくい光源の熱が、熱の影響を受けやすい光源に伝わることを抑制する構成の液晶表示装置を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a liquid crystal display device configured to suppress the heat of a light source that is not easily affected by heat from being transmitted to the light source that is easily affected by heat. And
 本発明は、上記に鑑みて成されたものであって、液晶表示装置は、レーザー光を出射するレーザー光源と、LED光を出射するLED光源と、前記レーザー光源を保持するとともに前記レーザー光源が出す熱を伝達して空気中に放出する放熱器とを備え、前記レーザー光源は、前記LED光源よりも下側に配置される。 The present invention has been made in view of the above, and the liquid crystal display device includes a laser light source that emits laser light, an LED light source that emits LED light, and the laser light source while holding the laser light source. And a heat radiator that transmits heat to be released into the air, and the laser light source is disposed below the LED light source.
 熱の影響を受けにくい光源の熱が、熱の影響を受けやすい光源に伝わることを抑制する。 ∙ Suppresses the transfer of heat from a light source that is less susceptible to heat to a light source that is more susceptible to heat.
実施の形態1の液晶表示装置の構成を示す斜視図である。1 is a perspective view illustrating a configuration of a liquid crystal display device according to a first embodiment. 実施の形態1の液晶表示装置の構成を示す部分斜視図である。3 is a partial perspective view illustrating a configuration of a liquid crystal display device according to Embodiment 1. FIG. 実施の形態1の放熱器の構成を示す斜視図である。FIG. 3 is a perspective view illustrating a configuration of a radiator according to the first embodiment. 実施の形態1の液晶表示装置の構成を示す構成図である。1 is a configuration diagram illustrating a configuration of a liquid crystal display device according to a first embodiment. 実施の形態1の面光源装置の構成を示す斜視図である。It is a perspective view which shows the structure of the surface light source device of Embodiment 1. FIG. 実施の形態1の液晶表示装置の構成を示す構成図である。1 is a configuration diagram illustrating a configuration of a liquid crystal display device according to a first embodiment. 実施の形態2の液晶表示装置の構成を示す斜視図である。FIG. 6 is a perspective view illustrating a configuration of a liquid crystal display device according to a second embodiment. 実施の形態2の液晶表示装置の構成を示す構成図である。FIG. 6 is a configuration diagram illustrating a configuration of a liquid crystal display device according to a second embodiment.
実施の形態1.
 以下、図の説明を容易にするために、各図中にXYZ直交座標系の座標軸を示す。液晶表示装置100の短辺方向をY軸方向とし、長辺方向をX軸方向とし、X-Y平面に垂直な方向をZ軸方向とする。液晶表示装置100の表示面側を+Z軸方向とする。また、液晶表示装置の上方向を+Y軸方向とする。液晶表示装置100の表示面を見て左側を+X軸方向とする。「表示面を見て」とは、表示面に対向することである。
Embodiment 1 FIG.
Hereinafter, in order to facilitate the explanation of the drawings, the coordinate axes of the XYZ orthogonal coordinate system are shown in the respective drawings. The short side direction of the liquid crystal display device 100 is defined as the Y-axis direction, the long side direction is defined as the X-axis direction, and the direction perpendicular to the XY plane is defined as the Z-axis direction. The display surface side of the liquid crystal display device 100 is defined as the + Z-axis direction. The upward direction of the liquid crystal display device is defined as the + Y axis direction. The left side when viewing the display surface of the liquid crystal display device 100 is defined as the + X-axis direction. “Look at the display surface” means to face the display surface.
 図1は、本発明に係る実施の形態1の液晶表示装置100の背面斜視図である。背面部1は、液晶表示装置100の背面側に配置された保持部材である。例えば、背面部1は、板材である。背面部1は、例えば、鉄をプレス加工によって成形している。実施の形態1では、背面部は、背面板金として記載している。そのため、背面部は、放熱効果を有する部材である。放熱器2a,2b,2c,2d,2eは、背面部1の背面側(-Z軸方向側)に配置されている。放熱器2a,2b,2c,2d,2eは、背面部1のY軸方向の下端部に配置されている。放熱器2aと放熱器2eとは、背面部1の背面に左右対称に配置されている。放熱器2aと放熱器2eとは、背面部1の背面のX方向の両端部に配置されている。また、放熱器2bと放熱器2dとは、背面部1の背面に左右対称に配置されている。放熱器2cは、背面部1の背面のX軸方向の中心に配置されている。放熱器2bは、放熱器2aと放熱器2cとの間に配置されている。放熱器2dは、放熱器2eと放熱器2cとの間に配置されている。放熱器2a,2b,2c,2d,2eの風路は、鉛直方向(+Y軸方向)に設けられている。「風路」とは、風の通り道を作り、熱を逃がすものである。 FIG. 1 is a rear perspective view of the liquid crystal display device 100 according to the first embodiment of the present invention. The back surface portion 1 is a holding member disposed on the back side of the liquid crystal display device 100. For example, the back surface portion 1 is a plate material. For example, the back surface portion 1 is formed by pressing iron. In Embodiment 1, the back part is described as a back sheet metal. Therefore, the back portion is a member having a heat dissipation effect. The radiators 2a, 2b, 2c, 2d, and 2e are disposed on the back side (−Z-axis direction side) of the back surface portion 1. The radiators 2a, 2b, 2c, 2d, and 2e are disposed at the lower end portion in the Y-axis direction of the back surface portion 1. The heat radiator 2 a and the heat radiator 2 e are disposed symmetrically on the back surface of the back surface portion 1. The heat radiator 2 a and the heat radiator 2 e are disposed at both ends in the X direction on the back surface of the back surface portion 1. The radiator 2b and the radiator 2d are arranged symmetrically on the back surface of the back surface portion 1. The heat radiator 2 c is disposed at the center in the X-axis direction on the back surface of the back surface portion 1. The radiator 2b is disposed between the radiator 2a and the radiator 2c. The radiator 2d is disposed between the radiator 2e and the radiator 2c. The air paths of the radiators 2a, 2b, 2c, 2d, and 2e are provided in the vertical direction (+ Y-axis direction). An “airway” is one that creates a path for the wind and releases heat.
 図2は、液晶表示装置100の内部構造を液晶表示面側から見た斜視図である。図2では、液晶表示素子13、光学シート12,拡散板11、導光棒10および第1の反射部8を外した状態の図である。図2では、背面部1の背面側(-Z軸方向側)に配置されている放熱器2a,2b,2c,2d,2eの配置されている位置を破線で示している。 FIG. 2 is a perspective view of the internal structure of the liquid crystal display device 100 as viewed from the liquid crystal display surface side. In FIG. 2, the liquid crystal display element 13, the optical sheet 12, the diffusion plate 11, the light guide bar 10, and the first reflection unit 8 are removed. In FIG. 2, the positions where the radiators 2 a, 2 b, 2 c, 2 d, and 2 e arranged on the back side (−Z axis direction side) of the back part 1 are shown by broken lines.
 本実施の形態1の液晶表示装置100は、LED光源4とレーザー光源5とを組み合わせた面光源装置200を有している。面光源装置200は、図4に示すように、背面部1、放熱器2、LED光源アレイ3及びレーザー光源5を有する。また、面光源装置200は、反射部8、導光棒10及び拡散板11を有することができる。なお、背面部1の内部には、光学シート12及び液晶表示素子13も納められている。 The liquid crystal display device 100 of the first embodiment has a surface light source device 200 in which an LED light source 4 and a laser light source 5 are combined. As shown in FIG. 4, the surface light source device 200 includes a back surface portion 1, a radiator 2, an LED light source array 3, and a laser light source 5. Further, the surface light source device 200 can include the reflecting portion 8, the light guide rod 10, and the diffusion plate 11. Note that an optical sheet 12 and a liquid crystal display element 13 are also housed inside the back surface portion 1.
 LED光源アレイ3a,3b,3c,3d,3e、3fは、複数のLED光源4を基板上に一列に並べたものである。LED光源4を並べた基板は、細長い矩形形状をしている。実施の形態1では、LED光源アレイ3のLED光源4は、X軸方向に並んでいる。LED光源アレイ3a,3b,3c,3d,3e、3fは、背面部1の+Z軸方向の面上に配置されている。LED光源アレイ3a,3b,3c,3d,3e、3fは、Y軸方向に並んでいる。つまり、LED光源アレイ3a,3b,3c,3d,3e、3fは、鉛直方向(+Y軸方向)に等間隔で複数並べられている。これにより、LED光源4は、液晶表示素子13の背面側に二次元的に並べられた「直下型」の構成をしている。 The LED light source arrays 3a, 3b, 3c, 3d, 3e, and 3f are obtained by arranging a plurality of LED light sources 4 in a line on a substrate. The substrate on which the LED light sources 4 are arranged has an elongated rectangular shape. In the first embodiment, the LED light sources 4 of the LED light source array 3 are arranged in the X-axis direction. The LED light source arrays 3a, 3b, 3c, 3d, 3e, and 3f are arranged on the surface in the + Z-axis direction of the back surface portion 1. The LED light source arrays 3a, 3b, 3c, 3d, 3e, and 3f are arranged in the Y-axis direction. That is, a plurality of LED light source arrays 3a, 3b, 3c, 3d, 3e, and 3f are arranged at equal intervals in the vertical direction (+ Y-axis direction). Thus, the LED light source 4 has a “directly-type” configuration arranged two-dimensionally on the back side of the liquid crystal display element 13.
 なお、LED光源アレイ3a,3b,3c,3d,3e、3fは、水平方向(+X軸方向)に並べても良い。この場合には、LED光源アレイ3の基板は、Y軸方向に細長い矩形形状の状態で並べられている。つまり、LED光源アレイ3のLED光源4は、Y軸方向に並んでいても良い。また、1つのLED光源アレイ3は、複数に分割されていても良い。例えば、LED光源アレイ3aがX軸方向の中央部分で2つに分割されていても良い。更に、LED光源アレイ3a,3b,3c,3d,3e、3fの数は、6個に限ったものでもない。LED光源アレイ3a,3b,3c,3d,3e、3fの数は、例えば液晶表示素子13の大きさに応じて他の個数に設定できる。また、放熱器2a,2b,2c,2d,2eの数は、6個に限ったものでもない。放熱器2a,2b,2c,2d,2eの数は、例えば液晶表示素子13の大きさに応じて他の個数に設定できる。 The LED light source arrays 3a, 3b, 3c, 3d, 3e, and 3f may be arranged in the horizontal direction (+ X axis direction). In this case, the substrates of the LED light source array 3 are arranged in a rectangular shape elongated in the Y-axis direction. That is, the LED light sources 4 of the LED light source array 3 may be arranged in the Y-axis direction. One LED light source array 3 may be divided into a plurality of pieces. For example, the LED light source array 3a may be divided into two at the central portion in the X-axis direction. Furthermore, the number of LED light source arrays 3a, 3b, 3c, 3d, 3e, 3f is not limited to six. The number of LED light source arrays 3a, 3b, 3c, 3d, 3e, and 3f can be set to other numbers according to the size of the liquid crystal display element 13, for example. Further, the number of radiators 2a, 2b, 2c, 2d, and 2e is not limited to six. The number of radiators 2 a, 2 b, 2 c, 2 d, 2 e can be set to other numbers depending on the size of the liquid crystal display element 13, for example.
 図3は、放熱器2の形状を示す斜視図である。放熱器2は、熱伝導率の高い材料で作られている。例えば、放熱器2は、アルミニウムで作られている。放熱器2は、放熱フィン21を有している。放熱フィン21は、風路が鉛直方向(+Y軸方向)に向くように配置されている。放熱フィン21は、ベース板部24の-Z軸方向の面に形成されている。ベース板部24は、X-Y平面に平行は板形状をしている。放熱フィン21は、ベース板部24に対して垂直に形成されている。つまり、放熱フィン21は、Y-Z平面に平行な板状の部材である。そして、放熱フィン21は、X軸方向に複数並べられている。 FIG. 3 is a perspective view showing the shape of the radiator 2. The radiator 2 is made of a material having high thermal conductivity. For example, the radiator 2 is made of aluminum. The radiator 2 has a radiation fin 21. The heat radiating fins 21 are arranged such that the air path is directed in the vertical direction (+ Y-axis direction). The heat radiating fins 21 are formed on the surface of the base plate portion 24 in the −Z axis direction. The base plate portion 24 has a plate shape parallel to the XY plane. The heat radiating fins 21 are formed perpendicular to the base plate portion 24. That is, the radiating fin 21 is a plate-like member parallel to the YZ plane. A plurality of the radiation fins 21 are arranged in the X-axis direction.
 また、放熱器2の下端(-Y軸方向)には、取付部22が形成されている。取付部22は、+Z軸方向に突き出た板形状をしている。取付部22は、Z-X平面に平行な板形状をしている。取付部22は、レーザー光源5を取り付ける部分である。取付部22には、穴23が形成されている。穴23は、取付部22を貫通してY軸方向に開けられている。レーザー光源5は、光線が+Y軸方向に出射されるように穴23に取り付けられる。つまり、レーザー光源5は、穴23の中に取り付けられる。そして、レーザー光源5の光線の出射方向は+Y軸方向を向いている。 Further, a mounting portion 22 is formed at the lower end (−Y-axis direction) of the radiator 2. The attachment portion 22 has a plate shape protruding in the + Z-axis direction. The attachment portion 22 has a plate shape parallel to the ZX plane. The attachment portion 22 is a portion to which the laser light source 5 is attached. A hole 23 is formed in the attachment portion 22. The hole 23 penetrates the attachment portion 22 and is opened in the Y-axis direction. The laser light source 5 is attached to the hole 23 so that the light beam is emitted in the + Y-axis direction. That is, the laser light source 5 is installed in the hole 23. The light emission direction of the laser light source 5 is directed to the + Y axis direction.
 図3では、取付部22が矩形形状をしているが、これに限られない。取付部22は、円弧形状など、他の形状でも良い。また、レーザー光源5は、光線が-Y軸方向に出射されるように穴23に取り付けられても良い。ただし、その場合は、放熱フィン21が液晶表示素子13の外側に配置される。このため、液晶表示装置100のベゼル部(額縁部)を細くすることが出来ないという欠点がある。「ベゼル」とは、表示画面のまわりを囲う枠状のキャビネットの部分である。近年、表示画面のまわりを囲う枠状のキャビネットの部分を細くするデザインが好まれている。この細いベゼルを「狭ベゼル」という。 In FIG. 3, the attachment portion 22 has a rectangular shape, but is not limited thereto. The attachment portion 22 may have another shape such as an arc shape. Further, the laser light source 5 may be attached to the hole 23 so that the light beam is emitted in the −Y axis direction. However, in that case, the radiation fins 21 are disposed outside the liquid crystal display element 13. For this reason, there exists a fault that the bezel part (frame part) of the liquid crystal display device 100 cannot be made thin. The “bezel” is a part of a frame-shaped cabinet that surrounds the display screen. In recent years, a design in which a portion of a frame-like cabinet surrounding the display screen is narrowed is preferred. This thin bezel is called a “narrow bezel”.
 レーザー光源5で発生した熱は、レーザー光源5の背面側(-Y軸方向側)から背面部1に伝わる。背面部1に伝わったレーザー光源5の熱は、放熱器2の下端面25(-Y軸方向側の面)に伝わる。放熱器2の下端面25(-Y軸方向)に伝わった熱は、取付部22に伝わる。取付部22に伝わった熱は、放熱フィン21に伝わり、外気へと放出される。放熱器2は、下端面25が背面部1に接するようにして背面部1に取り付けられている。 The heat generated by the laser light source 5 is transmitted from the back side (−Y axis direction side) of the laser light source 5 to the back surface portion 1. The heat of the laser light source 5 transmitted to the back surface portion 1 is transmitted to the lower end surface 25 (the surface on the −Y axis direction side) of the radiator 2. The heat transmitted to the lower end surface 25 (−Y axis direction) of the radiator 2 is transmitted to the mounting portion 22. The heat transmitted to the attachment portion 22 is transmitted to the heat radiating fins 21 and released to the outside air. The radiator 2 is attached to the back surface portion 1 such that the lower end surface 25 is in contact with the back surface portion 1.
 図3では取付部22は、放熱フィン21と一体に成形されている。しかし、取付部22は別部品で構成されていてもよい。しかし、この場合には、取付部22の放熱性能は若干低下する。しかし、取付部22を別部品で構成すると、放熱器2の製造容易にでき、製造コストを抑えられる可能性がある。また、図3では1つの放熱器2に1つのレーザー光源5を取り付けている。しかし、1つの放熱器2に複数のレーザー光源5を取り付けても良い。 In FIG. 3, the mounting portion 22 is formed integrally with the heat radiation fin 21. However, the attachment part 22 may be comprised by another component. However, in this case, the heat radiation performance of the attachment portion 22 is slightly lowered. However, if the mounting portion 22 is configured as a separate part, the radiator 2 can be easily manufactured, and the manufacturing cost may be reduced. In FIG. 3, one laser light source 5 is attached to one radiator 2. However, a plurality of laser light sources 5 may be attached to one radiator 2.
 LED光源4は、光源に青色LED素子および蛍光体を有している。具体的には、LED光源4は、青色の光を発する青色LED素子を備えたパッケージに、この青色の光を吸収して主に緑色の光を発する蛍光体が充填されている。 The LED light source 4 has a blue LED element and a phosphor as a light source. Specifically, in the LED light source 4, a package including a blue LED element that emits blue light is filled with a phosphor that absorbs the blue light and mainly emits green light.
 人間は赤色の色差に対する感度が高い。そのため、赤色における波長帯域幅の差は、人間の視覚にはより顕著な差となって感じられる。ここで、波長帯域幅の差は色純度の差である。従来、液晶表示装置に光源として使用されている白色LEDは、特に600nmから700nmまでの波長帯の赤色のスペクトルのエネルギー量が少ない。つまり、波長域幅の狭いカラーフィルタを用いて純度の高い赤として好ましい630nmから640nmまでの波長領域で色純度を高めようとすると、極めて透過光量が減少し、光の利用効率が低下する。従って、著しく輝度が低下するという問題が発生する。この純度の高い赤を「純赤」という。 Humans are highly sensitive to red color differences. Therefore, the difference in wavelength bandwidth in red is felt as a more prominent difference in human vision. Here, the difference in wavelength bandwidth is the difference in color purity. Conventionally, a white LED used as a light source in a liquid crystal display device has a small amount of energy of a red spectrum particularly in a wavelength band from 600 nm to 700 nm. That is, if the color purity is increased in the wavelength region from 630 nm to 640 nm which is preferable as red having high purity by using a color filter having a narrow wavelength band width, the amount of transmitted light is extremely reduced and the light use efficiency is lowered. Therefore, there arises a problem that the luminance is remarkably lowered. This high purity red is called “pure red”.
 一方で、レーザー発光素子5は波長帯域幅が狭く、光の損失を抑えて高い色純度の光が得られる。3原色の色の中でも特に、非常に単色性の高い赤色のレーザー発光素子5を採用することで、低消費電力化及び色純度向上に対して高い効果が得られる。そこで、本実施の形態1の液晶表示装置100においては、レーザー光源5は赤色の光を発する光源を採用する。 On the other hand, the laser light-emitting element 5 has a narrow wavelength bandwidth, and light of high color purity can be obtained while suppressing light loss. In particular, among the three primary colors, by adopting the red laser light emitting element 5 having very high monochromaticity, a high effect can be obtained for reducing power consumption and improving color purity. Therefore, in the liquid crystal display device 100 of the first embodiment, the laser light source 5 employs a light source that emits red light.
 純赤色として好ましい630nmから640nmまでの赤色のレーザー光源5は、素子の温度が上昇するに従い、電気-光変換効率が著しく低下する。つまり、赤色のレーザー光源は、熱の影響を受けやすい光源である。「純赤色」とは、波長幅の狭い純度の高い赤色で、深い色の赤色のことである。深い赤色としては、630nmから640nmまでの波長が好ましい。また、レーザー光源5が高温の状態で高出力の光を出射し続けると、素子の劣化が加速し寿命が短くなってしまう。このため、効率よい冷却システムの導入が必要となる。 In the red laser light source 5 of 630 nm to 640 nm, which is preferable as pure red, the electro-optical conversion efficiency decreases remarkably as the temperature of the element increases. That is, the red laser light source is a light source that is easily affected by heat. “Pure red” is a high-purity red with a narrow wavelength width and a deep red color. As the deep red color, a wavelength from 630 nm to 640 nm is preferable. Further, if the laser light source 5 continues to emit high output light in a high temperature state, the deterioration of the element is accelerated and the life is shortened. For this reason, it is necessary to introduce an efficient cooling system.
 一方、LED光源4の温度に対する電気-光変換効率の変化は、レーザー光源5と比較すると極めて少ない。つまり、LED光源は熱の影響を受けにくい光源である。しかし、発熱をレーザー光源5側に伝えないように効率よく放熱させる必要がある。 On the other hand, the change in the electro-optical conversion efficiency with respect to the temperature of the LED light source 4 is very small compared to the laser light source 5. That is, the LED light source is a light source that is not easily affected by heat. However, it is necessary to efficiently dissipate heat so that heat generation is not transmitted to the laser light source 5 side.
 レーザー光源5から出射される光は指向性が高い。このため、面光源装置としての光の均一性を得るためには、レーザー光源5には高い位置決め精度が求められる。一般的に使われているレーザー光源5は、直径が約6mmの円筒形状のパッケージ形状をしている。レーザー光源5は、パッケージを放熱器2の取付部22に設けられた穴23に圧入されて固定される。レーザー光源5は、レーザー光51が出射する発光側から放熱器2の取付部22に設けられた穴23に圧入される。 The light emitted from the laser light source 5 has high directivity. For this reason, in order to obtain the uniformity of light as the surface light source device, the laser light source 5 is required to have high positioning accuracy. The laser light source 5 generally used has a cylindrical package shape with a diameter of about 6 mm. The laser light source 5 is fixed by press-fitting a package into a hole 23 provided in the mounting portion 22 of the radiator 2. The laser light source 5 is press-fitted into a hole 23 provided in the attachment portion 22 of the radiator 2 from the light emitting side from which the laser light 51 is emitted.
 取付部22にレーザー光源5が圧入された放熱器2は、背面部1に取り付けられる。このとき、放熱フィン21およびベース板部24は背面部1の外側面(-Z軸方向)に出ている必要がある。取付部22は、背面部1の背面側(-Z軸方向側)から背面部1に開けられた取り付け孔14に差し込まれて固定される。 The radiator 2 in which the laser light source 5 is press-fitted into the attachment portion 22 is attached to the back portion 1. At this time, the radiating fins 21 and the base plate portion 24 need to protrude to the outer side surface (−Z axis direction) of the back surface portion 1. The mounting portion 22 is fixed by being inserted into the mounting hole 14 formed in the back surface portion 1 from the back surface side (−Z-axis direction side) of the back surface portion 1.
 また、ベース板部24と背面部1の間には断熱部15が介在している。ここでいう「断熱部」は、その熱伝導率が、背面部1及び放熱器2の熱伝導率よりも著しく低ければよい。例えば、断熱部15は樹脂材又はゴム材である。また、断熱部は空気層でも良い。空気層は、数mm程度が望ましい。また、断熱部15が空気層の場合には、空気層の空気が暖められて上昇できるように、上側(+Y軸側)に開口部を設けることが望ましい。また、下側(-Y軸側)から低温の空気が断熱部15に流入するように、下側(-Y軸側)にも開口部を設けることが望ましい。図4に示す断熱部15では、X軸方向から低温の空気が流入して、+Y軸方向に暖められた空気が上昇する構成となっている。 Further, a heat insulating portion 15 is interposed between the base plate portion 24 and the back surface portion 1. The "thermal insulation part" here needs only to be significantly lower in thermal conductivity than the thermal conductivity of the back surface part 1 and the radiator 2. For example, the heat insulating part 15 is a resin material or a rubber material. The heat insulating part may be an air layer. The air layer is preferably about several mm. Moreover, when the heat insulation part 15 is an air layer, it is desirable to provide an opening on the upper side (+ Y-axis side) so that the air in the air layer can be warmed and raised. Also, it is desirable to provide an opening on the lower side (−Y axis side) so that low-temperature air flows into the heat insulating portion 15 from the lower side (−Y axis side). In the heat insulation part 15 shown in FIG. 4, low-temperature air flows in from the X-axis direction, and the air heated in the + Y-axis direction rises.
 また、断熱部15をベース板部24と背面部1との間以外に、例えば、取付部22と背面部1との間に追加して配置しても良い。取付部22とLED光源アレイ3aとの距離が近い場合などには、熱の影響を受けにくい光源のLED光源の熱が、熱の影響を受けやすいレーザー光源に伝わり難くできる。この場合には、レーザー光源5の発した熱は、取付部22からベース板部24に伝わって、放熱フィン21から放熱される。 Further, the heat insulating portion 15 may be additionally disposed between the mounting portion 22 and the back surface portion 1 in addition to the space between the base plate portion 24 and the back surface portion 1, for example. When the distance between the mounting portion 22 and the LED light source array 3a is short, the heat of the LED light source that is not easily affected by heat can be hardly transmitted to the laser light source that is easily affected by heat. In this case, the heat generated by the laser light source 5 is transmitted from the mounting portion 22 to the base plate portion 24 and is radiated from the radiation fins 21.
 図4は、液晶表示装置100を-X軸方向から見た構成図である。図4は、液晶表示装置100を、レーザー光源5の位置でY-Z平面で切断した構成図である。液晶表示素子13、光学シート12、拡散板11および導光棒10は、X-Y平面に平行に配置されている。これらの構成要素10,11,12,13は、+Z軸方向から-Z軸方向に向けて、液晶表示素子13、光学シート12、拡散板11および導光棒10の順に配置されている。 FIG. 4 is a configuration diagram of the liquid crystal display device 100 as viewed from the −X axis direction. FIG. 4 is a configuration diagram in which the liquid crystal display device 100 is cut along the YZ plane at the position of the laser light source 5. The liquid crystal display element 13, the optical sheet 12, the diffusion plate 11, and the light guide bar 10 are arranged in parallel to the XY plane. These components 10, 11, 12, and 13 are arranged in the order of the liquid crystal display element 13, the optical sheet 12, the diffusion plate 11, and the light guide bar 10 from the + Z-axis direction to the -Z-axis direction.
 導光棒10の-Z軸側には、LED光源アレイ3a,3b,3c,3d,3e、3fが配置されている。LED光源アレイ3a,3b,3c,3d,3e、3fは、背面部1の+Z軸方向側の面上に配置されている。反射部8は、+Z軸方向に開口部を持つ箱形状をしている。反射部8の箱形状の内側には、LED光源アレイ3及び導光棒10が配置されている。反射部8の底板部82には、LED光源4の形状に合わせて多数の穴が開いている。LED光源4は、反射部8の穴に-Z軸方向から挿入される。反射部8は、薄いシート状なので、LED光源4は、穴から+Z軸方向の面に飛び出た状態で配置される。なお、反射部8は、板状の部材で作製されることも可能である。そのため、側板部81a,81b,81c,81d及び底板部82は、薄いシート状から板状の形状を含むものである。 LED light source arrays 3a, 3b, 3c, 3d, 3e, and 3f are arranged on the −Z-axis side of the light guide bar 10. The LED light source arrays 3a, 3b, 3c, 3d, 3e, and 3f are arranged on the surface on the + Z-axis direction side of the back surface portion 1. The reflecting portion 8 has a box shape having an opening in the + Z-axis direction. The LED light source array 3 and the light guide bar 10 are arranged inside the box shape of the reflecting portion 8. A number of holes are formed in the bottom plate portion 82 of the reflecting portion 8 in accordance with the shape of the LED light source 4. The LED light source 4 is inserted into the hole of the reflecting portion 8 from the −Z axis direction. Since the reflecting portion 8 is a thin sheet, the LED light source 4 is arranged in a state of protruding from the hole to the surface in the + Z-axis direction. In addition, the reflection part 8 can also be produced with a plate-shaped member. Therefore, the side plate portions 81a, 81b, 81c, 81d and the bottom plate portion 82 include a thin sheet shape to a plate shape.
 図5は、面光源装置200の構成を示す斜視図である。図5は、液晶表示素子13の表示面側から見た斜視図である。図5では、液晶表示装置100の液晶表示素子13、光学シート12および拡散板11を外した状態の図である。反射部8は、シート状で、図5に示すように四辺を90度立ち上げた箱形状をしている。つまり、反射部8は、底板部82の四辺から+Z軸方向に立ち上がった側板部81a,81b,81c,81dを有する。反射部8の箱形状の内側の面は、反射面になっている。LED光源4の発光点は、反射部8の+Z軸方向の面に配置される。そして、LED光源4のLED光41は、液晶表示素子13に向けて出射される。 FIG. 5 is a perspective view showing the configuration of the surface light source device 200. FIG. 5 is a perspective view of the liquid crystal display element 13 as viewed from the display surface side. In FIG. 5, the liquid crystal display element 13, the optical sheet 12, and the diffusion plate 11 of the liquid crystal display device 100 are removed. The reflection portion 8 is in the form of a sheet and has a box shape with four sides raised 90 degrees as shown in FIG. That is, the reflecting portion 8 has side plate portions 81a, 81b, 81c, 81d that rise in the + Z-axis direction from the four sides of the bottom plate portion 82. The box-shaped inner surface of the reflecting portion 8 is a reflecting surface. The light emitting point of the LED light source 4 is disposed on the surface of the reflecting portion 8 in the + Z-axis direction. Then, the LED light 41 of the LED light source 4 is emitted toward the liquid crystal display element 13.
 導光棒10の-Y軸方向側には、レーザー光51の入射面101が設けられている。導光棒10は、棒形状をしている。入射面101は、棒形状の1つの端面である。導光棒10の+Y軸方向側の端面には、反射シート9が貼り付けられている。反射シート9が貼り付けられている面は、入射面101と対向する棒形状の他の端面である。導光棒10の両端部は、側板部81a,81bに設けられた穴に通されている。導光棒10は、反射部8に保持されている。また、反射部8は、薄いシート状の部材で作製されているので、導光棒10は、他の部品に保持されても構わない。なお、上述のように、反射部8は、導光棒10を保持できる程度の板状の部材で作製されても構わない。 The incident surface 101 of the laser beam 51 is provided on the −Y axis direction side of the light guide rod 10. The light guide bar 10 has a bar shape. The incident surface 101 is one end surface having a bar shape. A reflection sheet 9 is attached to the end face of the light guide bar 10 on the + Y axis direction side. The surface on which the reflection sheet 9 is affixed is the other end surface of the bar shape facing the incident surface 101. Both end portions of the light guide rod 10 are passed through holes provided in the side plate portions 81a and 81b. The light guide bar 10 is held by the reflecting portion 8. Moreover, since the reflection part 8 is produced with the thin sheet-like member, the light guide bar 10 may be hold | maintained at another component. As described above, the reflection portion 8 may be made of a plate-like member that can hold the light guide rod 10.
 導光棒10の-Y軸方向側には、レーザー光源5が配置されている。レーザー光源5は、入射面101に対向して配置されている。レーザー光源5から出射されたレーザー光51は、導光棒10の-Y軸方向側の入射面101から導光棒10の中に入射される。 A laser light source 5 is disposed on the −Y axis direction side of the light guide rod 10. The laser light source 5 is disposed to face the incident surface 101. The laser light 51 emitted from the laser light source 5 enters the light guide rod 10 from the incident surface 101 on the −Y axis direction side of the light guide rod 10.
 レーザー光源5から出射したレーザー光51は、入射面101から導光棒10の内部に入射する。入射したレーザー光51は、導光棒10の内部で反射を繰り返して+Y軸方向に進む。反射したレーザー光51の一部は、導光棒10の側面から外部に出射する。レーザー光源5から出射した直後のレーザー光51は点状の光であった。しかし、レーザー光51が導光棒10の内部を進みながら、一部のレーザー光51を側面から出射することにより、レーザー光51は、点状の光から線状の光に変わる。また、棒の太さが太い場合には、棒状の光となる。 The laser beam 51 emitted from the laser light source 5 enters the light guide rod 10 from the incident surface 101. The incident laser beam 51 is repeatedly reflected inside the light guide rod 10 and proceeds in the + Y-axis direction. A part of the reflected laser beam 51 is emitted from the side surface of the light guide rod 10 to the outside. The laser beam 51 immediately after being emitted from the laser light source 5 was a point light. However, the laser light 51 is changed from point light to linear light by emitting a part of the laser light 51 from the side surface while the laser light 51 travels inside the light guide rod 10. Further, when the thickness of the bar is thick, the light becomes a bar-like light.
 「点光源」とは、一つの点より光が放射される光源である。ここで、「一つの点」とは、製品の性能を考慮すると光学的な計算では光源を点として扱って問題無い程度の面積を有することである。このため、レーザーを光源に用いたバックライト装置は、点光源のレーザー光を面光源に変換するための光学系が必要となる。この面光源は、液晶表示素子13を均一な強度で照明する光源である。 “Point light source” is a light source that emits light from a single point. Here, “one point” means that the area of a light source is treated as a point in the optical calculation in consideration of the performance of the product and has no problem. For this reason, a backlight device using a laser as a light source requires an optical system for converting the laser light of a point light source into a surface light source. This surface light source is a light source that illuminates the liquid crystal display element 13 with uniform intensity.
 棒状の光となったレーザー光51は、アレイ状に配置されたLED光源4から出射されたLED光41とともに、反射部8の内部に出射される。「アレイ状」とは、多数の要素を並列的に配列する状態である。ここで「アレイ状に配置されたLED光源4」は、LED光源4を並べたLED光源アレイ3を示す。反射部8の内部で反射を繰り返したLED光41及びレーザー光51は、拡散板11に入射する。 The laser light 51 that has become a rod-like light is emitted into the reflecting portion 8 together with the LED light 41 emitted from the LED light sources 4 arranged in an array. The “array form” is a state in which a large number of elements are arranged in parallel. Here, “LED light source 4 arranged in an array” indicates LED light source array 3 in which LED light sources 4 are arranged. The LED light 41 and the laser light 51 that are repeatedly reflected inside the reflecting portion 8 enter the diffusion plate 11.
 導光棒10から出射するレーザー光51は、Y軸を中心軸とする全方位方向に出射される。全方位方向とは360度の方向のことである。このため、+Z軸方向に出射された光は、拡散板11に入射する。一方、-Z軸方向に出射された光は、反射部8の底板部82で反射した後に拡散板11に入射する。X-Y平面上の方向に出射されたレーザー光51は、反射部8の四辺を立ち上げた側板部81a,81b,81c,81dで反射した後に拡散板11に入射する。 The laser beam 51 emitted from the light guide rod 10 is emitted in all directions with the Y axis as the central axis. The omnidirectional direction is a direction of 360 degrees. For this reason, the light emitted in the + Z-axis direction enters the diffusion plate 11. On the other hand, the light emitted in the −Z-axis direction is incident on the diffusion plate 11 after being reflected by the bottom plate portion 82 of the reflecting portion 8. The laser beam 51 emitted in the direction on the XY plane is incident on the diffusion plate 11 after being reflected by the side plate portions 81a, 81b, 81c, and 81d raised from the four sides of the reflection portion 8.
 レーザー光51とLED光41とは、面状の光となって拡散板11に入射する。拡散板11は、レーザー光51とLED光41とをさらに均一化する。レーザー光51とLED光41とは、拡散板11から均一化された白色の面状の光として光学シート12及び液晶表示素子13に向けて出射される。 The laser light 51 and the LED light 41 are incident on the diffusion plate 11 as planar light. The diffusion plate 11 further uniformizes the laser light 51 and the LED light 41. The laser light 51 and the LED light 41 are emitted from the diffusion plate 11 toward the optical sheet 12 and the liquid crystal display element 13 as a uniform white surface light.
 反射部8及び導光棒10は、レーザー光源5から出射される際には点状の光であるレーザー光51を面状の光にする導光部30である。導光棒10は、レーザー光51を点状の光から線状の光(棒状の光)に変換する。そして、反射部8は、レーザー光51を線状の光(棒状の光)から面状の光に変換する。そのため、レーザー光51を面状の光にする方法として、エッジライト型で用いられている導光板を採用することもできる。この場合には、レーザー光51は、エッジライト型の導光板で面状の光に変換される。また、LED光41は、直下型に配列されたLED光源4により面状の光に変換される。エッジライト型の導光板は、LED光源4に対して面光源装置の光出射面側に配置されている。 The reflection portion 8 and the light guide rod 10 are light guide portions 30 that convert the laser light 51, which is spot-like light, into planar light when emitted from the laser light source 5. The light guide rod 10 converts the laser light 51 from dot-like light to linear light (rod-like light). Then, the reflection unit 8 converts the laser light 51 from linear light (bar-shaped light) to planar light. Therefore, a light guide plate used in an edge light type can be adopted as a method for making the laser light 51 into planar light. In this case, the laser beam 51 is converted into planar light by the edge light type light guide plate. The LED light 41 is converted into planar light by the LED light source 4 arranged in a direct type. The edge light type light guide plate is disposed on the light emitting surface side of the surface light source device with respect to the LED light source 4.
 エッジライト型の導光板は、アクリル板に白色インクで反射ドットを印刷したシルク印刷方式、アクリル面に凹凸をつけた成型方式、アクリル板と反射板をドット状の粘着材で貼り付けた粘着ドット方式及び溝加工による方式などがある。光源から出射された光は、導光板の側部から入射する。導光板に入射した光は、表面反射を繰り返して導光板の広い面に広がる。この際に反射ドット等があると、そこで光は散乱されて導光板の表面から外に出て行く。導光板は、光源の近傍の反射ドットの面積を小さく、光源から遠く離れるほど反射ドットの面積を大きい。これにより、導光板は、均一な面状の光を形成できる。 The edge-light type light guide plate is a silk printing method in which reflective dots are printed with white ink on an acrylic plate, a molding method with irregularities on the acrylic surface, and adhesive dots in which the acrylic plate and the reflective plate are attached with a dot-like adhesive material There are a method and a method by groove processing. The light emitted from the light source enters from the side portion of the light guide plate. The light incident on the light guide plate repeats surface reflection and spreads over a wide surface of the light guide plate. At this time, if there are reflection dots or the like, the light is scattered there and goes out from the surface of the light guide plate. The light guide plate reduces the area of the reflective dots in the vicinity of the light source, and increases the area of the reflective dots as the distance from the light source increases. Thereby, the light-guide plate can form uniform planar light.
 しかし、本実施の形態1で説明した反射部8及び導光棒10を用いた面光源装置200は、反射部8の箱形状の内部で、レーザー光51とLED光41とが混合するという点で、簡易な構成で均一性の高い面状の光を生成することができる。 However, in the surface light source device 200 using the reflector 8 and the light guide rod 10 described in the first embodiment, the laser light 51 and the LED light 41 are mixed inside the box shape of the reflector 8. Thus, planar light with high uniformity can be generated with a simple configuration.
 図6は図4と同様に液晶表示装置100を-X軸方向から見た構成図である。図6は、液晶表示素子13、光学シート12および拡散板11が除かれている。つまり、図6は、液晶表示装置100の面光源装置200の部分を表している。図6は、液晶表示装置を100レーザー光源5の位置でY-Z平面で切断した構成図である。 FIG. 6 is a configuration diagram of the liquid crystal display device 100 as viewed from the −X axis direction as in FIG. In FIG. 6, the liquid crystal display element 13, the optical sheet 12, and the diffusion plate 11 are removed. That is, FIG. 6 shows a portion of the surface light source device 200 of the liquid crystal display device 100. FIG. 6 is a configuration diagram in which the liquid crystal display device is cut along the YZ plane at the position of 100 laser light sources 5.
 図6は、LED光源4から出た熱の流れおよびレーザー光源5から出た熱の流れを説明する図である。液晶表示素子13は、主にガラスで構成されている。また、拡散板11、光学シート12および反射部8は主に樹脂で構成されている。樹脂やガラスで構成されるこれら材料は、熱伝導率が低い。 FIG. 6 is a diagram for explaining the flow of heat emitted from the LED light source 4 and the flow of heat emitted from the laser light source 5. The liquid crystal display element 13 is mainly composed of glass. Further, the diffusion plate 11, the optical sheet 12, and the reflection portion 8 are mainly made of resin. These materials made of resin or glass have low thermal conductivity.
 LED光源4の+Z軸方向には熱伝導率の低い反射部8が配置されている。このため、LED光源4から出た熱は、+Z軸方向には伝わり難い。一方、LED光源4の-Z軸方向には熱伝導率の高い背面部1が配置されている。このため、LED光源4から出た熱は、-Z軸方向には伝わりやすい。以上から、LED光源4から出た熱は、反射部8よりも+Z軸方向側に流れ難いと考える。これが、図6から液晶表示素子13、光学シート12、拡散板11および反射部8を除いた理由である。 The reflective part 8 with low thermal conductivity is arranged in the + Z-axis direction of the LED light source 4. For this reason, the heat emitted from the LED light source 4 is hardly transmitted in the + Z-axis direction. On the other hand, a back surface portion 1 having a high thermal conductivity is disposed in the −Z-axis direction of the LED light source 4. For this reason, the heat emitted from the LED light source 4 is easily transmitted in the −Z-axis direction. From the above, it is considered that the heat emitted from the LED light source 4 is less likely to flow to the + Z axis direction side than the reflecting portion 8. This is the reason why the liquid crystal display element 13, the optical sheet 12, the diffusion plate 11, and the reflection portion 8 are excluded from FIG. 6.
 2種の光源を用いた液晶表示装置100では、それぞれの光源4,5の光41,51の出力の割合を最適化させることで、光が白色となる点を決める。例えば、レーザー光源5から出射されるレーザー光51の総放射束が1Wで有った場合には、LED光源4から出射されるLED光41の総放射束は、3W程度が必要である。これにより、レーザー光51とLED光41とが混合された光は、白色となる。このとき、レーザー光源5とLED光源4とのそれぞれの電気-光変換効率から、各光源4,5の温度が室温程度(30度程度)ならば、発熱量は、ともに3Wと同程度になる。表示画面の輝度を高めるため、光源4,5から出射される放射束を増やせば、それに伴い、光源4,5の発熱量は多くなる。しかし、光源4,5の発熱量が多くなっても、光源4,5の放熱を十分に行えば、各光源4,5の素子の温度が変化は小さく、発熱量は大きく変化しない。つまり、レーザー光源5の発熱量及びLED光源4の発熱量は、概ね同程度の3Wとなる。一方、光源4,5の放熱が不十分であった場合には、各光源4,5の素子の温度は高くなり、電気-光変換効率が低下する。その結果、各光源4,5の発熱量は増加し、ますます各光源4,5の温度は上昇するという悪循環に陥る。つまり、熱的な不具合を発生させないためには、装置を使用する環境温度と、その環境温度における発熱量とを正しく推定し、それに見合った効率のよい放熱機能を備えておく必要がある。 In the liquid crystal display device 100 using two types of light sources, the point at which the light turns white is determined by optimizing the output ratio of the lights 41 and 51 of the respective light sources 4 and 5. For example, when the total radiant flux of the laser light 51 emitted from the laser light source 5 is 1 W, the total radiant flux of the LED light 41 emitted from the LED light source 4 needs to be about 3 W. Thereby, the light in which the laser light 51 and the LED light 41 are mixed becomes white. At this time, if the temperature of each of the light sources 4 and 5 is about room temperature (about 30 degrees) from the respective electro-optical conversion efficiencies of the laser light source 5 and the LED light source 4, the calorific value is about 3 W. . If the radiant flux emitted from the light sources 4 and 5 is increased in order to increase the luminance of the display screen, the amount of heat generated by the light sources 4 and 5 increases accordingly. However, even if the heat generation amount of the light sources 4 and 5 increases, if the heat sources 4 and 5 are sufficiently radiated, the temperature of the elements of the light sources 4 and 5 is small and the heat generation amount does not change greatly. That is, the heat generation amount of the laser light source 5 and the heat generation amount of the LED light source 4 are approximately the same 3W. On the other hand, when the heat radiation of the light sources 4 and 5 is insufficient, the temperature of the elements of the light sources 4 and 5 increases, and the electro-optical conversion efficiency decreases. As a result, the calorific value of each light source 4, 5 increases, and the temperature of each light source 4, 5 rises further. In other words, in order not to cause a thermal problem, it is necessary to correctly estimate the environmental temperature at which the apparatus is used and the amount of heat generated at the environmental temperature, and to provide an efficient heat dissipation function commensurate with it.
 レーザー光源5で発生した熱18は、放熱器2の取付部22からベース板部24に伝わった後に放熱フィン21に伝わり、周囲の空気16に放出される。放熱器2は、液晶表示装置100の最も底面側(-Y軸方向)に配置されている。放熱フィン21から周囲の空気16に放出された熱18は、+Y軸方向に移動する。なぜなら、放熱フィン21から熱18を受け取った空気16は、周りの空気より軽いため上昇するからである。このため、放熱フィン21には、-Y軸方向または-Z軸方向から新鮮な空気が流れ込む。「新鮮な空気」とは、放熱フィン21からの熱18や背面部1からの熱17を受け取っていない空気である。固体表面から空気への熱伝達量は、固体表面の温度と空気の温度との差が大きいほど多くなる。つまり、放熱器2に流れ込む空気の温度が低いほど、冷却器2は効率よく熱18を放出できる。そして、レーザー光源5で発生した熱18を効率よく周囲の空気16に放出することが可能となる。 The heat 18 generated by the laser light source 5 is transmitted from the mounting portion 22 of the radiator 2 to the base plate portion 24 and then to the radiation fins 21 and is released to the surrounding air 16. The radiator 2 is disposed on the most bottom side (−Y axis direction) of the liquid crystal display device 100. The heat 18 released from the radiating fins 21 to the surrounding air 16 moves in the + Y axis direction. This is because the air 16 that has received the heat 18 from the radiation fins 21 rises because it is lighter than the surrounding air. For this reason, fresh air flows into the radiating fin 21 from the −Y axis direction or the −Z axis direction. “Fresh air” is air that has not received the heat 18 from the radiation fins 21 or the heat 17 from the back surface portion 1. The amount of heat transfer from the solid surface to the air increases as the difference between the temperature of the solid surface and the temperature of the air increases. That is, the cooler 2 can efficiently release the heat 18 as the temperature of the air flowing into the radiator 2 is lower. The heat 18 generated by the laser light source 5 can be efficiently released to the surrounding air 16.
 一方、各々のLED光源アレイ3a,3b,3c,3d,3e、3fは、背面部1に取り付けられている。LED光源4で発生した熱17は、LED光源アレイ3a,3b,3c,3d,3e、3fの各々の基板に伝わった後に背面部1へ伝わる。背面部1の厚みは2mm程度である。背面部1の断面積が小さいため、背面部1に伝わった熱17は、X-Y面上の方向には伝わり難い。 On the other hand, each LED light source array 3a, 3b, 3c, 3d, 3e, 3f is attached to the back surface portion 1. The heat 17 generated by the LED light source 4 is transmitted to the respective substrates of the LED light source arrays 3a, 3b, 3c, 3d, 3e, and 3f, and then is transmitted to the back surface portion 1. The thickness of the back part 1 is about 2 mm. Since the cross-sectional area of the back surface portion 1 is small, the heat 17 transmitted to the back surface portion 1 is difficult to be transmitted in the direction on the XY plane.
 LED光源アレイ3b,3c,3d,3e、3fは、放熱器2から離れて配置されている。このため、LED光源アレイ3b,3c,3d,3e、3fの熱17の多くは、背面部1の背面側(-Z軸方向側)の面から空気中に放出される。 The LED light source arrays 3b, 3c, 3d, 3e, and 3f are arranged away from the radiator 2. For this reason, most of the heat 17 of the LED light source arrays 3b, 3c, 3d, 3e, and 3f is released into the air from the surface on the back surface side (the −Z axis direction side) of the back surface portion 1.
 ここで、放熱器2に近いLED光源アレイ3aから放出される熱17について検討する。LED光源アレイ3aは、放熱器2よりも+Y軸方向に配置されている。このため、LED光源アレイ3aから放出された熱17は、放熱器2には伝わり難い。第1の理由は、背面部1の断面積が小さいため、背面部1に伝わった熱17は、X-Y面上の方向には伝わり難いからである。第2の理由は、背面部1から空気中に放出された熱17は、上述のように上昇するため、+Y軸方向に移動するからである。第3の理由は、放熱器2のベース板部24と背面部1との間には、断熱部15が介在しているからである。 Here, the heat 17 emitted from the LED light source array 3a close to the radiator 2 will be considered. The LED light source array 3a is arranged in the + Y-axis direction with respect to the radiator 2. For this reason, the heat 17 emitted from the LED light source array 3 a is difficult to be transmitted to the radiator 2. The first reason is that since the cross-sectional area of the back surface portion 1 is small, the heat 17 transmitted to the back surface portion 1 is difficult to be transmitted in the direction on the XY plane. The second reason is that the heat 17 released from the back surface portion 1 into the air rises as described above, and thus moves in the + Y-axis direction. The third reason is that the heat insulating portion 15 is interposed between the base plate portion 24 and the back surface portion 1 of the radiator 2.
 また、放熱器2は、LED光源アレイ3aよりも下側(-Y軸方向側)に配置されている。つまり、LED光源アレイ3aの取り付けられた部分の背面部1の背面(-Z軸方向側の面)は、放熱器2から熱18を受け取って上昇してきた空気16に直接触れる。このため、LED光源アレイ3a,3b,3c,3d,3e、3fから空気中に放出された熱17は、背面部1から空気16に放出される。ここで、空気16は、放熱器2から熱18を受け取って上昇してきた空気である。 Further, the radiator 2 is arranged on the lower side (−Y axis direction side) than the LED light source array 3a. That is, the back surface (the surface on the −Z-axis direction side) of the back surface portion 1 of the portion to which the LED light source array 3a is attached directly touches the air 16 that has risen by receiving the heat 18 from the radiator 2. For this reason, the heat 17 released into the air from the LED light source arrays 3 a, 3 b, 3 c, 3 d, 3 e, 3 f is released from the back surface portion 1 into the air 16. Here, the air 16 is air that has risen by receiving heat 18 from the radiator 2.
 放熱器2の放熱フィン21から熱18を受け取り暖められた空気16は上昇する。また、LED光源4は、放熱器2よりも上方(+Y軸方向)に配置されている。このため、LED光源4から放出された熱17は、背面部1から放熱フィン21で暖められた空気16に対して放出される。つまり、上方(+Y軸方向)ほどLED光源4の冷却性能は低下する。 The air 16 heated by receiving heat 18 from the radiation fins 21 of the radiator 2 rises. Further, the LED light source 4 is disposed above (+ Y axis direction) the radiator 2. For this reason, the heat 17 emitted from the LED light source 4 is emitted from the back surface 1 to the air 16 warmed by the radiation fins 21. That is, the cooling performance of the LED light source 4 decreases as it goes upward (in the + Y-axis direction).
 しかし、LED光源4は、レーザー光源5と比べて熱に対する特性(熱特性)に優れている。このため、LED光源4の温度に対する裕度は大きく、品質的に問題にならない範囲で設計することは可能である。 However, the LED light source 4 is superior to the laser light source 5 in heat characteristics (thermal characteristics). For this reason, the tolerance with respect to the temperature of LED light source 4 is large, and it is possible to design in the range which does not become a problem in quality.
 一方、レーザー光源5は、LED光源4と比較すると熱特性が劣っている。「熱特性に劣る」とは、温度に対する裕度が小さいことである。放熱器2は、液晶表示装置100の最も底面側(-Y軸方向側)に配置されている。このため、放熱フィン21には新鮮な空気が流れ込む。「新鮮な空気」とは、放熱フィン21からの熱18又は背面部1からの熱17を受け取っていない空気である。固体表面から空気への熱伝達量は、固体表面の温度と空気の温度との差が大きいほど多くなる。つまり、放熱器2に流れ込む空気の温度が低いほど、冷却器2は効率良く熱を放出できる。つまり、レーザー光源5で発生した熱18を効率良く空気16に放出することが可能となる。 On the other hand, the laser light source 5 has inferior thermal characteristics as compared with the LED light source 4. “Inferior thermal properties” means that the tolerance to temperature is small. The radiator 2 is disposed on the most bottom side (−Y axis direction side) of the liquid crystal display device 100. For this reason, fresh air flows into the radiation fins 21. “Fresh air” is air that has not received the heat 18 from the heat radiating fins 21 or the heat 17 from the back surface portion 1. The amount of heat transfer from the solid surface to the air increases as the difference between the temperature of the solid surface and the temperature of the air increases. That is, the cooler 2 can release heat more efficiently as the temperature of the air flowing into the radiator 2 is lower. That is, the heat 18 generated by the laser light source 5 can be efficiently released to the air 16.
 液晶表示装置100は、レーザー光源5、LED光源4及び放熱器2を備える。レーザー光源5は、レーザー光51を出射する。LED光源4は、LED光41を出射する。放熱器2は、レーザー光源5を保持するとともにレーザー光源5が出す熱を伝達して空気中に放出する。レーザー光源5は、LED光源4よりも下側に配置される。 The liquid crystal display device 100 includes a laser light source 5, an LED light source 4, and a radiator 2. The laser light source 5 emits laser light 51. The LED light source 4 emits LED light 41. The radiator 2 holds the laser light source 5 and transmits heat generated by the laser light source 5 to be released into the air. The laser light source 5 is disposed below the LED light source 4.
 液晶表示装置100は、導光部30を備える。導光部30は、レーザー光51を入射端部から入射して、面状の光に変換して出射する。導光部30から出射されたレーザー光51及びLED光41は、開口部83から出射される。LED光源4は、複数備えられ、開口部83に対向して二次元的に配列されている。開口部83は、光出射面としての機能を有する。つまり、光出射面は、開口部30fに設けた仮想の面である。入射端部は、実施の形態1では、入射面101である。また、上述のようにエッジライト型の導光板を採用した場合には、光を入射する側面である。 The liquid crystal display device 100 includes a light guide unit 30. The light guide unit 30 receives the laser beam 51 from the incident end, converts it into planar light, and emits it. Laser light 51 and LED light 41 emitted from the light guide 30 are emitted from the opening 83. A plurality of LED light sources 4 are provided and are arranged two-dimensionally facing the opening 83. The opening 83 has a function as a light emitting surface. That is, the light emission surface is a virtual surface provided in the opening 30f. The incident end is the incident surface 101 in the first embodiment. In addition, when an edge light type light guide plate is employed as described above, it is a side surface on which light is incident.
 導光部30は、導光棒10及び反射部8を備える。導光棒10は、入射面101を有し前記レーザー光51を線状の光に変換して出射する。反射部8は、導光棒10から出射されたレーザー光51を面状に光に変換する。LED光源4は、反射部8の開口部83に対向する面上に配置されている。導光部30は、面状の光に変換されたレーザー光51及びLED光41を混合して、出射する。入射面101は、入射端部である。開口部83は、光出射面としての機能を有する。 The light guide unit 30 includes a light guide rod 10 and a reflection unit 8. The light guide rod 10 has an incident surface 101 and converts the laser light 51 into linear light and emits it. The reflection unit 8 converts the laser beam 51 emitted from the light guide rod 10 into light in a planar shape. The LED light source 4 is disposed on a surface facing the opening 83 of the reflection unit 8. The light guide unit 30 mixes and emits the laser light 51 and the LED light 41 converted into planar light. The incident surface 101 is an incident end. The opening 83 has a function as a light emitting surface.
 以上のように、実施の形態1に記載した発明は、赤色のレーザー発光素子を光源とすることで広い色再現範囲を実現できる。また、実施の形態1に記載した発明は、熱の影響を受けにくいLED光源の熱が、熱の影響を受けやすいレーザー光源に伝わり難い構成のバックライト装置を得ることができる。 As described above, the invention described in Embodiment 1 can realize a wide color reproduction range by using a red laser light emitting element as a light source. Further, the invention described in Embodiment 1 can provide a backlight device having a configuration in which the heat of the LED light source that is not easily affected by heat is not easily transmitted to the laser light source that is easily affected by heat.
実施の形態2.
 図7は、本発明に係る実施の形態2の液晶表示装置101の背面斜視図である。図1に示す実施の形態1の液晶表示装置100と異なる点は、放熱器2a,2b,2c,2d,2eのうち、水平方向(X軸方向)の内側に配置されている放熱器2b,2c,2dの放熱面積が、水平方向の外側に配置されている放熱器2a,2eの放熱面積よりも大きくなっている点である。
Embodiment 2. FIG.
FIG. 7 is a rear perspective view of the liquid crystal display device 101 according to the second embodiment of the present invention. The difference from the liquid crystal display device 100 according to the first embodiment shown in FIG. 1 is that, among the radiators 2a, 2b, 2c, 2d, and 2e, the radiator 2b disposed inside the horizontal direction (X-axis direction), The heat dissipation area of 2c, 2d is larger than the heat dissipation area of the radiators 2a, 2e arranged outside in the horizontal direction.
 上記の点以外は、実施の形態1と同じである。つまり、背面部1、断熱部15、LED光源アレイ3、LED光源4、レーザー光源5、反射部8、反射シート9、導光棒10、拡散板11、光学シート12、液晶表示素子13および放熱器2の放熱面積以外の構成は、実施の形態1と同様である。 Other than the above points, the second embodiment is the same as the first embodiment. That is, the back surface portion 1, the heat insulating portion 15, the LED light source array 3, the LED light source 4, the laser light source 5, the reflecting portion 8, the reflecting sheet 9, the light guide rod 10, the diffusion plate 11, the optical sheet 12, the liquid crystal display element 13, and the heat dissipation. The configuration other than the heat radiation area of the vessel 2 is the same as that of the first embodiment.
 例えば、図7の例では水平方向の外側にある放熱器2a,2eは、放熱フィン21が14枚である。一方、放熱器2a,2eの内側に配置されている放熱器2b,2dの放熱フィン21は15枚である。また、最も内側にある放熱器2cの放熱フィン21は18枚である。このように、内側に配置される放熱器2ほど放熱フィン21の枚数が多くなり、放熱面積が大きくなっている。 For example, in the example of FIG. 7, the radiators 2 a and 2 e on the outer side in the horizontal direction have 14 radiation fins 21. On the other hand, the radiation fins 21 of the radiators 2b and 2d disposed inside the radiators 2a and 2e are fifteen. The innermost radiator 2c has 18 radiation fins 21. Thus, the number of the radiation fins 21 increases as the radiator 2 disposed inside increases the radiation area.
 液晶表示装置101には、液晶駆動用のタイミングコントローラ回路基板、駆動電源基板および映像信号処理回路基板などの周辺機器が背面部1上の周辺部品の配置位置19に配置される。図7及び図8では、周辺機器配置位置19を破線で示している。 In the liquid crystal display device 101, peripheral devices such as a timing controller circuit board for driving liquid crystal, a driving power supply board, and a video signal processing circuit board are arranged at the arrangement position 19 of the peripheral parts on the back surface portion 1. 7 and 8, the peripheral device arrangement position 19 is indicated by a broken line.
 これら周辺部品の配置位置19は、信号線の配線長や液晶表示装置101のデザイン、各部品の重心位置などで決まる。しかし、通常、周辺部品は背面部1の中心部に集められる。周辺部品の多くは熱を発生する。また、周辺部品は、電解コンデンサー、発熱量の多いLSIおよびスイッチング素子用の放熱器など、比較的背の高い部品を実装されている。つまり、周辺部品の配置位置19上には熱を発生し、比較的高さのある部品が装着されることになる。 The arrangement positions 19 of these peripheral components are determined by the wiring length of the signal lines, the design of the liquid crystal display device 101, the position of the center of gravity of each component, and the like. However, normally, the peripheral parts are collected at the center of the back part 1. Many of the peripheral parts generate heat. In addition, peripheral components are mounted with relatively tall components such as electrolytic capacitors, LSIs that generate a large amount of heat, and radiators for switching elements. That is, heat is generated on the arrangement position 19 of the peripheral parts, and a relatively high part is mounted.
 図8は液晶表示装置101を-X軸方向から見た構成図である。図8は、液晶表示装置101を、周辺部品の配置位置19を含む、レーザー光源5の位置でY-Z平面で切断した構成図である。図6に示す液晶表示装置100の構成と異なる点は、周辺部品の配置位置19が追加された点である。また、図6に示す液晶表示装置100の構成と異なる点は、周辺部品の配置位置19の下部(-Y軸方向)において、空気の気流の乱れ20が生じている点である。 FIG. 8 is a configuration diagram of the liquid crystal display device 101 viewed from the −X axis direction. FIG. 8 is a configuration diagram in which the liquid crystal display device 101 is cut along the YZ plane at the position of the laser light source 5 including the arrangement position 19 of the peripheral parts. The difference from the configuration of the liquid crystal display device 100 shown in FIG. 6 is that an arrangement position 19 of peripheral parts is added. Further, the difference from the configuration of the liquid crystal display device 100 shown in FIG. 6 is that a turbulence 20 of the airflow is generated in the lower part of the peripheral component arrangement position 19 (in the −Y axis direction).
 放熱器2の放熱フィン21から熱18を受け取り、暖められた外気16は+Y軸方向に上昇する。しかし、放熱器2の上部(+Y軸方向)に流路を妨げるかたちで周辺部品が配置されている場合には、上昇気流が妨げられ、渦などの空気の気流の乱れ20が発生する。 Heat 18 is received from the radiation fins 21 of the radiator 2, and the warmed outside air 16 rises in the + Y-axis direction. However, when peripheral parts are arranged in the upper part of the radiator 2 (in the + Y-axis direction) so as to obstruct the flow path, the upward airflow is obstructed, and the turbulence of the airflow 20 such as a vortex is generated.
 空気の気流の乱れ20が発生すると、流路の圧力損失が増して、放熱器2を流れる空気16の流速が低下する。その結果、放熱フィン21から空気16への放熱量が減少する。つまり、放熱器2の上部(+Y軸方向)に流路を妨げるかたちで周辺部品が配置される場合には、周辺部品の下部(-Y軸方向)に配置される放熱器2b,2c,2dの放熱能力は、上部(+Y軸方向)に周辺部品が配置されない放熱器2a,2eの放熱能力と比べて、単位放熱面積あたりの放熱能力が低下する。 When the air flow turbulence 20 occurs, the pressure loss of the flow path increases, and the flow velocity of the air 16 flowing through the radiator 2 decreases. As a result, the amount of heat radiation from the radiation fins 21 to the air 16 is reduced. That is, when peripheral parts are arranged in the upper part (+ Y axis direction) of the radiator 2 so as to block the flow path, the radiators 2b, 2c, 2d arranged at the lower part (−Y axis direction) of the peripheral parts. The heat dissipating capacity per unit heat dissipating area is lower than the heat dissipating capacity of the heat dissipators 2a and 2e in which no peripheral parts are arranged in the upper part (+ Y-axis direction).
 また、周辺部品の配置位置19に配置される周辺部品の多くは、熱を発生する部品も多い。液晶表示装置101は、通常、製品として使用する際には樹脂性の筐体等の中に収められる。このため、熱源が集中し熱流束密度が増した水平方向の中央部の空気16及び水平方向の中央部の背面部1は、周辺部と比較して温度が上昇する。「熱流束密度」とは、単に体積当たりの熱流束量のことである。 Further, many of the peripheral components arranged at the peripheral component arrangement position 19 have many components that generate heat. The liquid crystal display device 101 is usually housed in a resinous housing or the like when used as a product. For this reason, the temperature of the air 16 in the horizontal center where the heat sources are concentrated and the heat flux density is increased, and the back surface 1 in the center in the horizontal direction are higher than those in the peripheral part. “Heat flux density” is simply the amount of heat flux per volume.
 放熱器2と背面部1との間には、断熱部15が介在している。断熱部15は、背面部1から放熱器2への熱の伝導を妨げることができる。しかし、背面部1からの熱輻射などは避けることができない。放熱器2b,2c,2dは、周辺部品から輻射熱を受けて温度が上昇する。このため、水平方向の中央部に配置されている放熱器2b,2c,2dの放熱フィン21の温度は、水平方向の周辺部に配置されている放熱器2a,2eの放熱フィン21温度よりも高くなる。固体表面から空気への熱伝達量は、固体表面の温度と空気の温度との差が大きいほど多くなる。このため、同じ温度の外気16が放熱器2の放熱フィン21に流れ込んだとしても、水平方向の中央部に配置されて放熱器2b,2c,2dの放熱能力は、水平方向の周辺部に配置された放熱器2a,2eの放熱能力に劣る。 A heat insulating part 15 is interposed between the heat radiator 2 and the back surface part 1. The heat insulating portion 15 can prevent heat conduction from the back surface portion 1 to the radiator 2. However, heat radiation from the back portion 1 cannot be avoided. The radiators 2b, 2c, and 2d receive radiant heat from the peripheral components and the temperature rises. For this reason, the temperature of the radiation fins 21 of the radiators 2b, 2c, and 2d arranged in the center portion in the horizontal direction is higher than the temperature of the radiation fins 21 of the radiators 2a and 2e arranged in the peripheral portion in the horizontal direction. Get higher. The amount of heat transfer from the solid surface to the air increases as the difference between the temperature of the solid surface and the temperature of the air increases. For this reason, even if the outside air 16 having the same temperature flows into the heat radiating fins 21 of the radiator 2, the heat radiating ability of the radiators 2b, 2c, and 2d is arranged at the peripheral portion in the horizontal direction. It is inferior to the heat dissipation capability of the radiators 2a and 2e.
 そこで、放熱器2a,2b,2c,2d,2eを、背面部1のY軸方向の下端付近に配置する場合には、水平方向(X軸方向)の内側に配置されている放熱器2b,2c,2dの放熱面積を、水平方向の外側に配置されている放熱器2a,2eの放熱面積よりも大きくする。このことで、水平方向の内側に配置された放熱器2b,2c,2dの放熱能力を改善する。つまり、レーザー光源5が配置される位置に寄らず、放熱器2は、レーザー光源5で発生した熱18を効率よく空気16に放出することが可能となる。 Therefore, when the radiators 2a, 2b, 2c, 2d, and 2e are arranged near the lower end in the Y-axis direction of the back surface portion 1, the radiators 2b that are arranged inside the horizontal direction (X-axis direction), The heat dissipating areas of 2c and 2d are made larger than the heat dissipating areas of the radiators 2a and 2e arranged outside in the horizontal direction. This improves the heat dissipating ability of the heat dissipators 2b, 2c, 2d arranged inside in the horizontal direction. That is, regardless of the position where the laser light source 5 is disposed, the radiator 2 can efficiently release the heat 18 generated by the laser light source 5 to the air 16.
 なお、ここでは放熱面積を大きくする方法として、放熱フィン21の枚数を増やす場合の例を示した。しかし、放熱フィン21の大きさを大きくすることでも放熱面積を大きくできる。また、今回は周辺部品の配置位置19の下部(-Y軸方向)に配置される放熱器2b,2c,2dの中でも、最も内側にある放熱器2cの放熱面積を最も大きくした。しかし、周辺部品の配置状況によっては、放熱器2b,2dの放熱面積の大きさと放熱器2cの放熱面積の大きさとが同じであっても良い。 Here, as an example of increasing the heat radiation area, an example in which the number of heat radiation fins 21 is increased is shown. However, the heat radiation area can be increased by increasing the size of the heat radiation fins 21. In addition, this time, among the radiators 2b, 2c, and 2d arranged below the peripheral component arrangement position 19 (−Y-axis direction), the heat radiation area of the innermost radiator 2c is maximized. However, the size of the heat dissipation area of the radiators 2b and 2d and the size of the heat dissipation area of the radiator 2c may be the same depending on the arrangement of peripheral components.
 レーザー光源5は、複数備えられ、前記入射端部に沿って配列されている。配列されたレーザー光源5のうち、両端部に位置するレーザー光源5の放熱器2の放熱能力は、両端部に挟まれて位置するレーザー光源5の放熱器2の放熱能力よりも小さい。入射端部は、実施の形態1では、X軸方向に複数並べられた導光棒10の入射面101である。入射面101は、X軸方向に複数配置されており、レーザー光源5は、入射面101に対向して配置されている。また、上述のようにエッジライト型の導光板を採用した場合には、光を入射する側面である。 A plurality of laser light sources 5 are provided and arranged along the incident end. Of the arranged laser light sources 5, the heat radiation capability of the radiator 2 of the laser light source 5 located at both ends is smaller than the heat radiation capability of the radiator 2 of the laser light source 5 located between both ends. In the first embodiment, the incident end portions are the incident surfaces 101 of the light guide rods 10 arranged in the X-axis direction. A plurality of incident surfaces 101 are arranged in the X-axis direction, and the laser light source 5 is arranged to face the incident surface 101. In addition, when an edge light type light guide plate is employed as described above, it is a side surface on which light is incident.
 なお、上述の各実施の形態においては、「中心」、「水平」又は「垂直」などの部品の位置関係もしくは部品の形状を示す用語を用いている場合がある。これらは、製造上の公差や組立て上のばらつきなどを考慮した範囲を含んでいる。 In each of the above-described embodiments, there are cases where terms indicating the positional relationship of parts or the shape of the parts such as “center”, “horizontal”, or “vertical” are used. These include ranges that take into account manufacturing tolerances and assembly variations.
 なお、以上のように本発明の実施の形態について説明したが、本発明はこれらの実施の形態に限るものではない。 In addition, although embodiment of this invention was described as mentioned above, this invention is not limited to these embodiment.
 1 背面部、 15 断熱部、 2 放熱器、 21 放熱フィン、 22 取付部、 23 穴、 24 ベース板部、 25 下端面、 3 LED光源アレイ、 4 LED光源、 5 レーザー光源、 51 レーザー光、 8 反射部 、 81a,81b,81c,81d 側板部、 82 底板部、 9 反射シート、 10 導光棒、 101 入射面、 11 拡散板、 12 光学シート、 13 液晶表示素子、 15 断熱部、 16 空気、 17,18 熱、 19 周辺部品の配置位置、 20 空気の気流の乱れ、 30 導光部 100 液晶表示装置、 200 面光源装置。 DESCRIPTION OF SYMBOLS 1 Back part, 15 Thermal insulation part, 2 Radiator, 21 Radiation fin, 22 Mounting part, 23 Hole, 24 Base board part, 25 Lower end surface, 3 LED light source array, 4 LED light source, 5 Laser light source, 51 Laser light, 8 Reflector, 81a, 81b, 81c, 81d side plate, 82 bottom plate, 9 reflector sheet, 10 light guide rod, 101 entrance surface, 11 diffuser plate, 12 optical sheet, 13 liquid crystal display element, 15 heat insulation unit, 16 air, 17, 18 heat, 19 peripheral component placement position, 20 air turbulence, 30 light guide, 100 liquid crystal display, 200 surface light source device.

Claims (7)

  1.  レーザー光を出射するレーザー光源と、
     LED光を出射するLED光源と、
     前記レーザー光源を保持するとともに前記レーザー光源が出す熱を伝達して空気中に放出する放熱器と
    を備え、
     前記レーザー光源は、前記LED光源よりも下側に配置される液晶表示装置。
    A laser light source that emits laser light;
    An LED light source that emits LED light;
    A radiator that holds the laser light source and transmits heat emitted from the laser light source to be released into the air,
    The laser light source is a liquid crystal display device disposed below the LED light source.
  2.  前記レーザー光を入射端部から入射して、面状の光に変換して出射する導光部をさらに備え、
     前記導光部から出射されたレーザー光及び前記LED光は、光出射面から出射され、
     前記LED光源は、複数備えられ、前記光出射面に対向して二次元的に配列される請求項1に記載の液晶表示装置。
    The laser light is incident from the incident end, further comprising a light guide unit that converts the light into a planar light and emits it,
    The laser light and the LED light emitted from the light guide unit are emitted from a light emitting surface,
    The liquid crystal display device according to claim 1, wherein a plurality of the LED light sources are provided and are two-dimensionally arranged to face the light emitting surface.
  3.  前記レーザー光源は、複数備えられ、前記入射端部に沿って配列され、
     前記配列された前記レーザー光源のうち、両端部に位置する前記レーザー光源の前記放熱器の放熱能力は、前記両端部に挟まれて位置する前記レーザー光源の前記放熱器の放熱能力よりも小さい請求項2に記載の液晶表示装置。
    A plurality of the laser light sources are provided, arranged along the incident end,
    The heat radiation capability of the radiator of the laser light source located at both ends of the arranged laser light sources is smaller than the heat radiation capability of the radiator of the laser light source located between the both ends. Item 3. A liquid crystal display device according to Item 2.
  4.  前記導光部は、前記入射端部を有し前記レーザー光を線状の光に変換して出射する導光棒及び前記導光棒から出射されたレーザー光を面状に光に変換する反射部を備え、
     前記LED光源は、前記反射部の前記光出射面に対向する面上に配置され、
     前記導光部は、面状の光に変換された前記レーザー光及び前記LED光を混合して、出射する請求項2又は3のいずれか1項に記載の液晶表示装置。
    The light guide unit has the incident end, converts the laser light into linear light and emits the light, and a reflection that converts the laser light emitted from the light guide rod into light in a planar shape. Part
    The LED light source is disposed on a surface facing the light emitting surface of the reflecting unit,
    The liquid crystal display device according to claim 2, wherein the light guide unit mixes and emits the laser light and the LED light converted into planar light.
  5.  前記放熱器と前記LED光源との間に設けられた断熱部をさらに備える請求項1から4のいずれか1項に記載の液晶表示装置。 The liquid crystal display device according to any one of claims 1 to 4, further comprising a heat insulating portion provided between the radiator and the LED light source.
  6.  前記断熱部は空気層であることを特徴とする請求項5に記載の液晶表示装置。 The liquid crystal display device according to claim 5, wherein the heat insulating portion is an air layer.
  7.  前記断熱部は樹脂材又はゴム材であることを特徴とする請求項5に記載の液晶表示装置。 The liquid crystal display device according to claim 5, wherein the heat insulating portion is a resin material or a rubber material.
PCT/JP2013/004521 2012-07-31 2013-07-25 Liquid crystal display WO2014020870A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380039640.7A CN104487763B (en) 2012-07-31 2013-07-25 Planar light source device and liquid crystal indicator
JP2014527974A JP5931199B2 (en) 2012-07-31 2013-07-25 Surface light source device and liquid crystal display device
TW102127045A TWI612361B (en) 2012-07-31 2013-07-29 Surface light source device and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-169278 2012-07-31
JP2012169278 2012-07-31

Publications (1)

Publication Number Publication Date
WO2014020870A1 true WO2014020870A1 (en) 2014-02-06

Family

ID=50027578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004521 WO2014020870A1 (en) 2012-07-31 2013-07-25 Liquid crystal display

Country Status (4)

Country Link
JP (1) JP5931199B2 (en)
CN (1) CN104487763B (en)
TW (1) TWI612361B (en)
WO (1) WO2014020870A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016075872A (en) * 2014-10-09 2016-05-12 三菱電機株式会社 Liquid crystal display device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102377116B1 (en) * 2015-06-29 2022-03-22 엘지디스플레이 주식회사 Circuit Device Emitting Heat and Backlight Unit Comprising Thereof
CN105425467A (en) * 2016-01-04 2016-03-23 京东方科技集团股份有限公司 Light source, backlight, and display device
CN109343275B (en) * 2018-11-28 2021-07-09 厦门天马微电子有限公司 Backlight module and display device
CN112083598B (en) * 2019-06-13 2022-10-11 海信视像科技股份有限公司 Backlight module, driving method thereof and display device
CN111405090A (en) * 2020-03-18 2020-07-10 Oppo广东移动通信有限公司 Camera calling method of mobile equipment and mobile equipment
CN112599509A (en) * 2020-11-09 2021-04-02 新沂市锡沂高新材料产业技术研究院有限公司 Solid-state illumination light source with high brightness and adjustable color temperature
WO2022095005A1 (en) * 2020-11-09 2022-05-12 新沂市锡沂高新材料产业技术研究院有限公司 Solid-state illumination light source with high brightness and adjustable color temperature

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042640A (en) * 2005-08-04 2007-02-15 Avago Technologies Ecbu Ip (Singapore) Pte Ltd Laser light source adapted for lcd backlight display
WO2007091611A1 (en) * 2006-02-09 2007-08-16 Matsushita Electric Industrial Co., Ltd. Liquid crystal display device
WO2011067911A1 (en) * 2009-12-02 2011-06-09 三菱電機株式会社 Liquid crystal display device
WO2011129117A1 (en) * 2010-04-15 2011-10-20 三菱電機株式会社 Backlight device and liquid crystal display apparatus
WO2012017613A1 (en) * 2010-08-03 2012-02-09 三菱電機株式会社 Surface light-source apparatus and liquid crystal display apparatus
WO2012099099A1 (en) * 2011-01-21 2012-07-26 三菱電機株式会社 Surface light source device and liquid crystal display device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102160461A (en) * 2008-09-17 2011-08-17 皇家飞利浦电子股份有限公司 Lighting devices and method of lighting a room

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042640A (en) * 2005-08-04 2007-02-15 Avago Technologies Ecbu Ip (Singapore) Pte Ltd Laser light source adapted for lcd backlight display
WO2007091611A1 (en) * 2006-02-09 2007-08-16 Matsushita Electric Industrial Co., Ltd. Liquid crystal display device
WO2011067911A1 (en) * 2009-12-02 2011-06-09 三菱電機株式会社 Liquid crystal display device
WO2011129117A1 (en) * 2010-04-15 2011-10-20 三菱電機株式会社 Backlight device and liquid crystal display apparatus
WO2012017613A1 (en) * 2010-08-03 2012-02-09 三菱電機株式会社 Surface light-source apparatus and liquid crystal display apparatus
WO2012099099A1 (en) * 2011-01-21 2012-07-26 三菱電機株式会社 Surface light source device and liquid crystal display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016075872A (en) * 2014-10-09 2016-05-12 三菱電機株式会社 Liquid crystal display device

Also Published As

Publication number Publication date
JPWO2014020870A1 (en) 2016-07-21
CN104487763A (en) 2015-04-01
JP5931199B2 (en) 2016-06-08
TW201426129A (en) 2014-07-01
TWI612361B (en) 2018-01-21
CN104487763B (en) 2016-10-12

Similar Documents

Publication Publication Date Title
JP5931199B2 (en) Surface light source device and liquid crystal display device
JP4830436B2 (en) Display device
JP4706206B2 (en) Heat dissipation device and display device
JP5092408B2 (en) Backlight device and display device
JP5391847B2 (en) Backlight device and image display device
JP4650075B2 (en) Light emitting unit heat dissipation device, backlight device, and image display device
JP2006310221A (en) Edge input type backlight and liquid crystal display device
JP2007286467A (en) Back-light device and liquid crystal display device
JP4656418B2 (en) Lighting device and image display device
JP2010097924A (en) Liquid crystal display unit
JP2011060619A (en) Liquid crystal display device
JP4777469B1 (en) Illumination device and image display device including the same
JP2006059607A (en) Heat radiation device and display device
TWI410717B (en) Liquid crystal display device
JP2007052950A (en) Light emitting diode lighting system and image display device
JP5949259B2 (en) Liquid crystal display
JP2006058486A (en) Heatsink and display device
JP4862251B2 (en) Heat dissipation device and display device
JP6037904B2 (en) Liquid crystal display
WO2011077692A1 (en) Planar light-source device, display device, and method for manufacturing a planar light-source device
JP6373153B2 (en) Liquid crystal display
JP2012084455A (en) Liquid crystal display device
JP6079409B2 (en) Liquid crystal display
JP2017138353A (en) Backlight light source and liquid crystal display device
JP2014164057A (en) Video display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825569

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014527974

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13825569

Country of ref document: EP

Kind code of ref document: A1