JP4670228B2 - 燃料電池プラント - Google Patents

燃料電池プラント Download PDF

Info

Publication number
JP4670228B2
JP4670228B2 JP2003144350A JP2003144350A JP4670228B2 JP 4670228 B2 JP4670228 B2 JP 4670228B2 JP 2003144350 A JP2003144350 A JP 2003144350A JP 2003144350 A JP2003144350 A JP 2003144350A JP 4670228 B2 JP4670228 B2 JP 4670228B2
Authority
JP
Japan
Prior art keywords
fuel
exhaust gas
battery unit
fuel cell
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003144350A
Other languages
English (en)
Other versions
JP2004349093A (ja
Inventor
明房 萩原
日出夫 道畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2003144350A priority Critical patent/JP4670228B2/ja
Publication of JP2004349093A publication Critical patent/JP2004349093A/ja
Application granted granted Critical
Publication of JP4670228B2 publication Critical patent/JP4670228B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電池セルの電解質がイオン導電性セラミックスや溶融炭酸塩で形成された燃料電池プラントに関する。
【0002】
【従来の技術】
例えば、固体酸化物形燃料電池は、電解質としてイオン導電性セラミックスが使用されており、電解質が固体で安定していることから、高温での運転が可能で発電効率も高効率であり、事業用発電プラントとして期待されている。
【0003】
固体酸化物形燃料電池の電解質は、例えばイットリア安定化ジルコニアYSZのような酸素イオンを通すイオン導電性セラミックスで形成され、空気極と燃料極との間に配置される(例えば非特許文献1参照)。空気極は、酸素と電子とを反応させ酸素イオンを発生させるものであり、ランタンマンガナイト系酸化物が一般的に用いられている。一方、燃料極は、空気極からの酸素イオンと燃料ガスとを反応させ燃料ガスを電気化学的に酸化させるものであり、金属ニッケルとイットリア安定化ジルコニアとの混合物であるサーメットが使用されている。金属ニッケルを用いているのはメタン等の燃料ガスの水蒸気改質に優れているからである。
【0004】
このような固体酸化物形燃料電池を用いて事業用発電プラントを構成する場合には、複数台の固体酸化物形燃料電池をそれぞれ電池ユニットとして配置して固体酸化物形燃料電池プラントを構成している。図6はそのような固体酸化物形燃料電池プラントの構成図である。図6では5台の電池ユニット11A〜11Eを配置した場合を示している。
【0005】
電池ユニットは11A〜11Eは、それぞれ燃料を改質する燃料処理器12A〜12Eと、燃料処理器12A〜12Eで改質された燃料を電気化学的に酸化させ直流電力を発生する電池セル13A〜13Eとから構成されている。電池セル13A〜13Eは、燃料極と空気極との間に電解質を挟んで構成され、電解質は固体のイオン導電性セラミックスで形成されている。また、燃料極は金属ニッケルとイットリア安定化ジルコニアとの混合物であるサーメットで形成され、空気極はランタンマンガナイト系酸化物で形成されている。
【0006】
電池セル13A〜13Eで発生した直流電力は、図示省略のインバータ装置により交流電力に変換されて電力系統に送電される。このように各々の電池ユニット11A〜11Eは、燃料改質をその内部で行え、電解質が固体で構成されるので電解質の蒸発による電池性能の低下がなく、作動温度が800℃〜1000℃であり、その排ガス温度が高いという特徴を有する。
【0007】
電池ユニット11A〜11Eの燃料極には、燃料供給設備14から燃料供給系統15を介して、通常、天然ガスNGが供給される。燃料供給系統15には燃料供給主弁16および各々の電池ユニット11A〜11Eの燃料極の入口に燃料供給制御弁17A〜17Eが設けられている。一方、電池ユニット11A〜11Eの空気極には、酸素供給設備18から酸素供給系統19を介して、通常、圧縮された高温の空気が供給される。空気供給系統19には各々の電池ユニット11A〜11Eの空気極の入口に空気供給制御弁20A〜20Eが設けられている。
【0008】
また、燃料供給系統15にはパージガス供給主弁23を介してパージガス供給設備24が接続されており、電池ユニット11A〜11Eの停止時には、燃料極が酸化しないように、停止電池ユニットの燃料極にパージガス(例えば窒素)を供給するようにしている。これは、電池ユニット11A〜11Eの燃料極は金属ニッケルNiで形成されており、この金属ニッケルが酸化して体積が膨張し電解質であるイオン導電性セラミックスや燃料極が破損することを防止するためである。
【0009】
固体酸化物形燃料電池プラントの運転時には、パージガス供給設備14のパージガス供給主弁23は閉じられており、燃料供給設備14から燃料供給主弁16および燃料供給制御弁17A〜17Eを介して各々の電池ユニット11A〜11Eに燃料を供給し、また、酸素供給設備18から酸素供給弁20A〜20Eを介して各々の電池ユニット11A〜11Eに酸素を供給して電池ユニット11A〜11Eを稼働させる。電池ユニット11A〜11Eでの排ガスは排ガス弁21A〜21Eを介して排ガス系統に排出される。
【0010】
一方、溶融炭酸塩形燃料電池は電解質として炭酸リチウムや炭酸カリウムなどの混合アルカリ炭酸塩を溶融した溶融炭酸塩が使用され、空気極には酸化ニッケル(リチウムドープ)、燃料極にはニッケル(クロムドープ)が用いられ、高温(例えば650℃)での運転が可能で発電効率も高効率である。また、溶融炭酸塩形燃料電池の電池ユニットは、固体酸化物形燃料電池と同様に、それぞれ燃料を改質する燃料処理器と、燃料処理器で改質された燃料を電気化学的に酸化させ直流電力を発生する電池セルとから構成され、複数台の溶融炭酸塩形燃料電池をそれぞれ電池ユニットとして配置して溶融炭酸塩形燃料電池プラントが構成される。
【0011】
【特許文献1】
社団法人 火力原子力発電技術協会 火力原子力発電 2001−10 No.541 Vol.52 平成13年10月15日 P128〜P129
【0012】
【発明が解決しようとする課題】
ところが、固体酸化物形燃料電池プラントにおいては、夜間など電力負荷需要が低下する場合には、固体酸化物形燃料電池プラントを停止することが電力系統運用上必要となる場合がある。この場合、固体酸化物形燃料電池プラントは、通常、高温で運転されていることから、一旦停止するとその停止に伴い電池ユニットの温度が低下してしまう。
【0013】
電池ユニットの温度が低下した状態から起動するには、電解質であるイオン導電性セラミックスに熱ストレスを与えないようにしなければならないので、急激に温度を上昇させることができない。従って、起動時の昇温時間が長くなり、電力需要の増減に迅速に応答できない。また、電池ユニットの停止時には燃料極の酸化防止のためにパージガスの供給が必要となることから、別途、パージガスを供給しなければならない。このように、一旦、電池ユニットを停止すると、その起動に時間がかかるだけでなく、停止電池ユニットの燃料極にパージガスの供給をしなければならないので、そのユーティリティー消費が増えることになり、経済的な運用に支障をきたすことになる。
【0014】
一方、溶融炭酸塩形燃料電池プラントの場合は、運転時の高温から停止時の常温になると、電解質である溶融炭酸塩の体積が例えば11%程度も減少し、電解質を支える電解質板が破損する。従って、電力負荷需要が低下する場合に溶融炭酸塩形燃料電池プラントを停止するには、電解質である溶融炭酸塩を高温に保つための熱が必要となり、そのような保温装置を別に設置しなければならない。
【0015】
本発明の目的は、電力需要の増減に迅速に応答でき経済的な運用ができる燃料電池プラントを提供することである。
【0016】
【課題を解決するための手段】
請求項1の発明に係わる燃料電池プラントは、燃料供給設備から燃料極に供給される燃料を改質して酸素供給設備から空気極に供給される酸素との電気化学反応により直流電力を発生する複数台の電池ユニットと、前記燃料供給設備から複数台の電池ユニットの燃料極に並列的に燃料を供給するための燃料供給系統と、複数台の前記電池ユニットのうちの稼働電池ユニットからの排ガスを停止電池ユニットの燃料極に供給するための暖機系統とを備え、前記稼働電池ユニットからの排ガスに還元性ガスを添加する還元性ガス添加器を前記暖機系統に設けたことを特徴とする。
【0018】
請求項2の発明に係わる燃料電池プラントは、請求項1の発明において、前記稼働電池ユニットからの排ガス中の未燃焼ガスを燃焼させ排ガス中の残存酸素や未燃焼ガスを低減させる触媒燃焼器を前記暖機系統に設けたことを特徴とする。
【0019】
請求項3の発明に係わる燃料電池プラントは、請求項2の発明において、前記稼働電池ユニットからの排ガスを所定温度に調整する温度調整器を設けたことを特徴とする。
【0020】
請求項4の発明に係わる燃料電池プラントは、請求項1乃至請求項3のいずれか1項の発明において、複数台の前記電池ユニットのうちの少なくともいずれか1台を常に稼働電池ユニットとし、停止電池ユニットがあるときは、その停止電池ユニットの燃料極に前記稼働電池ユニットからの排ガスを暖機系統を介して供給することを特徴とする。
【0021】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。図1は本発明の第1の実施の形態に係わる燃料電池プラントの構成図である。この第1の実施の形態は燃料電池プラントが固体酸化物形燃料電池プラントである場合を示し、図6に示した従来の固体酸化物形燃料電池プラントに対し、複数台の電池ユニット11A〜11Eのうちの稼働電池ユニットからの排ガスを停止電池ユニットの燃料極に供給するための暖機系統25を追加して設け、パージガス供給設備24を必要としない構成としたものである。図6と同一要素には同一符号を付し重複する説明は省略する。
【0022】
暖気系統25は、固体酸化物形燃料電池プラントの電池ユニット11A〜11Eのいずれかが停止したとき、その停止した停止電池ユニットの燃料極に稼働中の稼働電池ユニットからの排ガスを供給するものである。これにより、停止電池ユニットの燃料処理器12A〜12Eおよび電池セル13A〜13Eの温度低下を防止する。
【0023】
すなわち、暖気系統25には、各々の電池ユニット11A〜11Eの排ガスを電池ユニット11A〜11Eのうちの少なくともいずれか1台の電池ユニットの燃料極に戻すための排ガス戻し弁26A〜26Eと、排ガス戻し弁26A〜26Eで戻された排ガスを電池ユニット11A〜11Eの燃料極に供給するための排ガス供給弁27A〜27Eとが設けられている。
【0024】
図2は、電池ユニット11の電池セル13周囲の発電動作時の説明図である。図示省略の燃料処理器12で改質された燃料(水素リッチガスH)は、燃料配管28を通り電池セル13の燃料極に供給され、空気極には空気配管29を通り酸素Oが供給される。これにより、電池セル13において空気極からの酸素イオンO2−と燃料極の水素Hとを反応させて燃料極から水(水蒸気)HOが発生する。そして、燃料極の排ガスと空気極の排ガスとが排ガス管30で合流して電池ユニット13の排ガスとして排ガス系統22に供給される。停止発電ユニットに対して、この排ガス管27の排ガスを停止電池ユニットの燃料極に供給することになる。
【0025】
図3は、停止指令を受けた固体酸化物形燃料電池プラントの各々の電池ユニット11A〜11Eの稼働停止状態を示す構成図である。固体酸化物形燃料電池プラントが停止指令を受けた場合には、固体酸化物形燃料電池プラントから電力系統に電力を供給することができないので、通常はすべての電池ユニットを停止させることになるが、本発明では、例えば、電池ユニット11Aを稼働状態に保持したまま、その他の電池ユニット11B〜11Eを停止させる。
【0026】
すなわち、電池ユニット11B〜11Eの燃料供給制御弁17B〜17Eおよび空気供給弁20B〜20Eを閉じ運転を停止させ、燃料供給制御弁17Aおよび空気供給弁20Aは開いたままで電池ユニット11Aは稼働を継続させる。この場合、暖気系統25の排ガス戻し弁26Aおよび排ガス供給弁27B〜27Eを開くと共に、排ガス供給弁27Aおよび排ガス戻し弁26B〜26Eを閉じる。また、排ガス弁21Aは閉じ排ガス弁21B〜21Eは開いておく。
【0027】
これにより、電池ユニット11Aは稼働を継続し、その排ガスは、排ガス戻し弁26A、暖気系統25、排ガス供給弁27B〜27Eを通って、停止電池ユニット11B〜11Eの燃料極に供給される。停止電池ユニット11B〜11Eの燃料極に供給された排ガスは、それぞれ停止電池ユニット11B〜11Eの燃料処理器12B〜12Eおよび電池セル13B〜13Eを暖機し、その排ガスは排ガス弁21B〜21Eを通って排ガス系統22に供給される。従って、停止電池ユニット11B〜11Eは、停止中であっても高温に保持され、起動指令があった場合にも迅速に起動できる。
【0028】
ここで、稼働電池ユニット11Aで発電した直流電力は図示省略の電力変換器で交流に変換され固体酸化物形燃料電池プラントの所内負荷に電源を供給する。例えば、稼働電池ユニット11Aに燃料や酸素を供給するために必要な動力や所内の照明電力等に使用される。
【0029】
以上の説明では、固体酸化物形燃料電池プラントが停止指令を受け、電力系統に電力を供給しない場合について説明したが、電力系統に供給する電力を減少させた部分負荷運転を行う場合にも適用できることは言うまでもない。例えば、2台の電池ユニット11A、11Bを稼働状態として3台の電池ユニット11C、11D、11Eを停止する場合には、稼働電池ユニット11A、11Bの排ガスを停止電池ユニット11C、11D、11Eの燃料極に供給する。稼働電池ユニット11A、11Bの排ガスが余剰になる場合には、稼働電池ユニット11A、11Bの排ガス弁21A、21Bを開き、排ガス系統22に排ガスを排出することになる。
【0030】
また、停止指令を受けたときや部分負荷運転の際に稼働を継続する電池ユニットは、順番に選択するようにしても良いし、各々の電池ユニットの運転時間を考慮し運転時間が平均化するように選択してもよい。これにより、電池ユニットの全体としての長寿命化が図れる。
【0031】
第1の実施の形態によれば、固体酸化物形燃料電池プラントが停止状態にあるときあるいは部分負荷運転になったときに、少なくとも1台の電池ユニット13は稼働させ、稼働電池ユニットからの排ガスを停止電池ユニットの燃料極に供給し暖機しているので、停止電池ユニットの電池セルの温度が低下することがなく、起動指令があったときに即座に起動できる。例えば、停止し電池セルの温度が常温まで下がっている状態から定格出力を得るまでに24時間程度かかっていたものが1時間程度で定格出力を得ることができる。また、停止電池ユニットを起動する際の熱供給源が不要となり、熱ストレスが少なくなるので寿命が延びる。さらに、稼働電池ユニットからの排ガスには未燃焼分の還元性ガス(水素ガス)が微量ながら含まれているので、停止電池ユニットに供給される排ガスがパージガスの役目をするのでパージガス供給設備が不要となる。
【0032】
次に本発明の第2の実施の形態を説明する。図4は本発明の第2の実施の形態に係わる燃料電池プラントの構成図である。この第2の実施の形態は、燃料電池プラントが固体酸化物形燃料電池プラントである場合を示し、図1に示した第1の実施の形態に対し、暖気系統25に、稼働電池ユニットからの排ガスを所定温度に調整するための温度調整器31、稼働電池ユニットからの排ガス中の未燃焼ガスを燃焼させ排ガス中の残存酸素や未燃焼ガスを低減させる触媒燃焼器32、排ガスに還元性ガスを添加する還元性ガス添加器33を追加して設け、また、還元性ガス添加器33に還元性ガス(水素リッチガス)を供給する還元性ガス供給系統34および還元性ガス供給弁35A〜35Eを追加して設けたものである。
図1と同一要素には同一符号を付し重複する説明は省略する。
【0033】
暖気系統25には、温度調整器31、触媒燃焼器32、還元性ガス添加器33が直列的に接続され、また、電池ユニット11A〜11Eの燃料処理器12A〜12Eからの還元性ガス(水素リッチガス)は、還元性ガス供給系統34の還元性ガス供給弁35A〜35Eを介して還元性ガス添加器33に供給されるように構成されている。
【0034】
温度調整器31は稼働電池ユニットからの排ガスを排ガス戻し弁26A〜26Eを通して受け入れ、所定の温度に調節して触媒燃焼器32に供給する。通常、稼働電池ユニットの運転温度は800℃〜1000℃であり、停止電池ユニットを暖機するために必要な温度は500℃〜800℃程度であるので、所定温度としてはこの範囲のいずれかの温度に設定する。所定温度を設定するのは、停止電池ユニットに供給する排ガス温度のばらつきをなくすと共に、温度調整器31の後段の触媒燃焼器32の触媒に悪影響を与えないようにするためである。なお、停止電池ユニットの暖機温度が500℃程度であれば、電池セルに熱ストレスを与えることなく起動を開始し運転温度800℃〜1000℃まで上昇できる。
【0035】
触媒燃焼器32は温度調整器31で温度調整された排ガスを受け入れ、排ガス中の残存酸素や未燃分の燃料ガスを還元性ガスに変換するものであり、触媒により排ガス組成を調整する。例えば、排ガス中に微量に含まれる一酸化炭素を二酸化炭素に変換したり未燃分の燃料ガス(水素)を水(水蒸気)に変換したりする。これにより、排ガス中に含まれる酸素量を減らし停止電池ユニットの燃料極に供給される排ガス中の酸素濃度を低下させ、燃料極が酸化するのを防止する。
【0036】
還元性ガス添加器33は触媒燃焼器32で組成調整された排ガスに還元性ガスを添加するものであり、この第2の実施の形態では稼働電池ユニットの燃料処理器12で改質された水素リッチガスを還元性ガスとして添加するようにしているが、別に設けた水素供給設備から添加するようにしても良い。これにより、停止中電池ユニットの燃料極が酸化するのを防止するようにしている。
【0037】
ここで、添加する還元性ガス(水素リッチガス)は、燃料極の酸化防止の点からは多い方が好ましいが、安全性を考慮して水素の爆発下限界を超えない程度添加することが望ましい。大気中での水素の爆発下限界は5%程度であり、一方、触媒燃焼器32で組成調整された排ガスに含まれる酸素量は大気中の酸素量より少ないので、大気中での水素の爆発下限界よりは緩和される。これらの事情を考慮に入れて添加する還元性ガス(水素リッチガス)量を決めることになる。
【0038】
このように、排ガスに還元性ガスを添加するので、排ガス中に酸素が残存していても燃料極における酸素による酸化反応が抑制され燃料極の酸化を防止できる。なお、還元性ガスは水素に限らず、例えば、一酸化炭素等であっても良い。
【0039】
図5は、停止指令を受けた固体酸化物形燃料電池プラントの各々の電池ユニット11A〜11Eの稼働停止状態を示す構成図である。図5では、第3図に示した第1の実施の形態の場合と同様に、電池ユニット11Aを稼働電池ユニットして稼働させ、その他の電池ユニット11B〜11Eを停止電池ユニットとした場合を示している。
【0040】
すなわち、電池ユニット11B〜11Eの燃料供給制御弁17B〜17Eおよび空気供給弁20B〜20Eを閉じ運転を停止させ、燃料供給制御弁17Aおよび空気供給弁20Aは開いたままで電池ユニット11Aは稼働を継続させる。また、暖気系統25の排ガス戻し弁26Aおよび排ガス供給弁27B〜27Eを開くと共に、排ガス供給弁27Aおよび排ガス戻し弁26B〜26Eを閉じる。さらに、排ガス弁21Aは閉じ排ガス弁21B〜21Eは開いておき、還元性ガス供給弁35Aを開き還元性ガス供給弁35B〜35Eを閉じる。
【0041】
これにより、電池ユニット11Aは稼働を継続し、その排ガスは、排ガス戻し弁26A、暖気系統25の温度調整器31、触媒燃焼器32、還元性ガス添加器33、排ガス供給弁27B〜27Eを通って、停止電池ユニット11B〜11Eの燃料極に供給される。温度調整器31により所定温度に調整され、触媒燃焼器32により排ガス組成調整されて特に残存酸素が低減され、還元性ガス添加器33で還元性ガスが添加されて、パージガスおよび暖機ガスとして停止電池ユニット11B〜11Eの燃料極に供給される。
【0042】
停止電池ユニット11B〜11Eの燃料極に供給された排ガスは、それぞれ停止電池ユニット11B〜11Eの燃料処理器12B〜12Eおよび電池セル13B〜13Eを暖機し、その排ガスは排ガス弁21B〜21Eを通って排ガス系統22に供給される。従って、停止電池ユニット11B〜11Eは、停止中であっても高温に保持され、起動指令があった場合にも迅速に起動できると共に、停止電池ユニットに対して別系統からパージガスを供給する必要がなくなる。
【0043】
ここで、暖気系統25に対して、温度調整器31、触媒燃焼器32、還元性ガス添加器33の順序でこれらを配置したが、これは以下の理由による。すなわち、まず、温度調整器31で排ガスの温度調整をして触媒燃焼器32の触媒に熱ストレスを与えないようにし、触媒燃焼器32で排ガス組成を調整してから還元ガス添加器33で適切な量の還元性ガスを添加することが望ましいからである。しかし、触媒への熱ストレスを考慮しなくて良い場合や還元性ガスの添加量に精度を要求されない場合には、必ずしも、温度調整器31、触媒燃焼器32、還元性ガス添加器33の順序に配置する必要はなく、これに限る必要はない。
【0044】
また、暖気系統25に対して、温度調整器31、触媒燃焼器32、還元性ガス添加器33を設けたものを示したが、これらすべてを設ける必要はなく、これらのうちのいずれか一つ、またはいずれか二つを選択して設けるようにしても良い。固体酸化物形燃料電池プラントの電池ユニットの特性に応じて適宜選択して使用する。
【0045】
第2の実施の形態によれば、請求項1の発明の効果に加え、暖気系統に、温度調整器31、触媒燃焼器32、還元性ガス添加器33を設けたので、停止電池ユニットの燃料極の暖機に適した適切な温度および適切なパージガス組成の排ガスを供給できるので、電池ユニットは停止中であっても常に起動に適した温度に保持され起動指令があった場合に迅速に起動できる。また、別系統からパージガスを供給しなくても燃料極の酸化を適正に防止できる。すなわち、暖機のための排ガスはパージガスの役目をするので燃料極の酸化が防止されパージガス供給設備が不要となり、ユーティリティー消費を抑制できるので経済性が向上する。
【0046】
以上述べた第1の実施の形態及び第2の実施の形態では、燃料電池プラントとして固体酸化物形燃料電池プラントである場合について説明したが、溶融炭酸塩形燃料電池プラントの場合にも適用できることは言うまでもない。すなわち、電力負荷需要が低下する場合に溶融炭酸塩形燃料電池プラントを構成する複数台の電池ユニットのうち少なくとも1台を稼働電池ユニットとし、残りの電池ユニットを停止させ、稼働電池ユニットからの排ガスを停止電池ユニットの燃料極に供給して停止電池ユニットが冷却するのを防止する。従って、電力負荷需要が低下する場合に溶融炭酸塩形燃料電池プラントを停止する運用が採用できるようになり運用性が向上する。
【0047】
【発明の効果】
以上述べたように、本発明によれば、燃料電池プラントを構成する電池ユニットの少なくともいずれか1台は常に稼働状態としておき、停止電池ユニットを稼働電池ユニットの排ガスで暖機しているので、燃料電池プラントの頻繁な起動停止にも迅速に対応でき運用性が向上する。また、暖機のための排ガスはパージガスの役目をするので燃料極の酸化が防止される。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係わる燃料電池プラントの構成図。
【図2】本発明の第1の実施の形態における電池ユニットの電池セル周囲の発電動作時の説明図。
【図3】本発明の第1の実施の形態の燃料電池プラントが停止指令を受けた場合の各々の電池ユニットの稼働停止状態を示す構成図。
【図4】本発明の第2の実施の形態に係わる燃料電池プラントの構成図。
【図5】本発明の第2の実施の形態の燃料電池プラントが停止指令を受けた場合の各々の電池ユニットの稼働停止状態を示す構成図。
【図6】従来の固体酸化物形燃料電池プラントの構成図。
【符号の説明】
11…電池ユニット、12…燃料処理器、13…電池セル、14…燃料供給設備、15…燃料供給系統、16…燃料供給主弁、17…燃料供給制御弁、18…酸素供給設備、19…酸素供給系統、20…酸素供給弁、21…排ガス弁、22…排ガス系統、23…パージガス供給主弁、24…パージガス供給設備、25…暖機系統、26…排ガス戻し弁、27…排ガス供給弁、28…燃料配管、29…空気配管、30…排ガス管、31…温度調整器、32…触媒燃焼器、33…還元性ガス添加器、34…還元性ガス供給系統、35…還元性ガス供給弁

Claims (4)

  1. 燃料供給設備から燃料極に供給される燃料を改質して酸素供給設備から空気極に供給される酸素との電気化学反応により直流電力を発生する複数台の電池ユニットと、前記燃料供給設備から複数台の電池ユニットの燃料極に並列的に燃料を供給するための燃料供給系統と、複数台の前記電池ユニットのうちの稼働電池ユニットからの排ガスを停止電池ユニットの燃料極に供給するための暖機系統とを備え、前記稼働電池ユニットからの排ガスに還元性ガスを添加する還元性ガス添加器を前記暖機系統に設けたことを特徴とする燃料電池プラント。
  2. 前記稼働電池ユニットからの排ガス中の未燃焼ガスを燃焼させ排ガス中の残存酸素や未燃焼ガスを低減させる触媒燃焼器を前記暖機系統に設けたことを特徴とする請求項1記載の燃料電池プラント。
  3. 前記稼働電池ユニットからの排ガスを所定温度に調整する温度調整器を設けたことを特徴とする請求項2記載の燃料電池プラント。
  4. 複数台の前記電池ユニットのうちの少なくともいずれか1台を常に稼働電池ユニットとし、停止電池ユニットがあるときは、その停止電池ユニットの燃料極に前記稼働電池ユニットからの排ガスを暖機系統を介して供給することを特徴とする請求項1乃至請求項3のいずれか1項記載の燃料電池プラント。
JP2003144350A 2003-05-22 2003-05-22 燃料電池プラント Expired - Fee Related JP4670228B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003144350A JP4670228B2 (ja) 2003-05-22 2003-05-22 燃料電池プラント

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003144350A JP4670228B2 (ja) 2003-05-22 2003-05-22 燃料電池プラント

Publications (2)

Publication Number Publication Date
JP2004349093A JP2004349093A (ja) 2004-12-09
JP4670228B2 true JP4670228B2 (ja) 2011-04-13

Family

ID=33531813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003144350A Expired - Fee Related JP4670228B2 (ja) 2003-05-22 2003-05-22 燃料電池プラント

Country Status (1)

Country Link
JP (1) JP4670228B2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4742585B2 (ja) * 2004-12-27 2011-08-10 トヨタ自動車株式会社 ハイブリッドシステム
KR101004446B1 (ko) * 2008-10-06 2010-12-28 삼성전기주식회사 연료전지용 전극막조립체 제조방법
JP5321183B2 (ja) * 2009-03-25 2013-10-23 富士電機株式会社 発電システム
JP5283571B2 (ja) * 2009-06-03 2013-09-04 本田技研工業株式会社 燃料電池システムの制御プログラム
JP5389167B2 (ja) * 2009-06-11 2014-01-15 パナソニック株式会社 水素生成装置及びその運転方法
JP5482108B2 (ja) * 2009-11-02 2014-04-23 株式会社Gsユアサ 燃料電池システムおよびその運転方法
JP5916122B2 (ja) * 2012-06-29 2016-05-11 一般財団法人電力中央研究所 熱電併給型調整用電源
JP6103624B2 (ja) * 2012-10-29 2017-03-29 一般財団法人電力中央研究所 熱電併給型調整用電源及び熱電併給システム
JP2016031841A (ja) * 2014-07-29 2016-03-07 住友精密工業株式会社 発電装置
JP6503060B2 (ja) * 2015-05-26 2019-04-17 京セラ株式会社 発電装置、発電システム、および発電システムの制御方法
EP3396762B1 (en) 2015-12-25 2020-02-26 Nissan Motor Co., Ltd. Fuel cell system and method for controlling same
JP7341054B2 (ja) 2019-12-27 2023-09-08 東京瓦斯株式会社 発電システム、情報処理装置、および、プログラム

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62140376A (ja) * 1985-12-13 1987-06-23 Toshiba Corp 溶融炭酸塩型燃料電池発電システムの起動方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62140376A (ja) * 1985-12-13 1987-06-23 Toshiba Corp 溶融炭酸塩型燃料電池発電システムの起動方法

Also Published As

Publication number Publication date
JP2004349093A (ja) 2004-12-09

Similar Documents

Publication Publication Date Title
Lanzini et al. Experimental investigation of direct internal reforming of biogas in solid oxide fuel cells
US10991963B2 (en) Fuel cell system and control method thereof
US6939633B2 (en) Fuel cell shutdown and startup using a cathode recycle loop
EP2044644B1 (en) Steam reforming method for fuel cells
EP1571727B1 (en) Apparatus and method for operation of a high temperature fuel cell system using recycled anode exhaust
JP4670228B2 (ja) 燃料電池プラント
JP5122083B2 (ja) 燃料電池発電装置及び制御プログラム並びに燃料電池発電装置の制御方法
JP2007128717A (ja) 燃料電池の運転方法
WO2005069420A1 (ja) 燃料電池システム
JP2003115315A (ja) 固体電解質型燃料電池の運転方法
EP2559089B1 (en) Method and arrangement for controlling the fuel feed in a fuel cell system
US11335930B2 (en) Fuel cell system and method for operating the same
US7666537B2 (en) Fuel cell system for preventing hydrogen permeable metal layer degradation
JP6304430B1 (ja) 燃料電池システム及びその運転方法
JP2013243060A (ja) 固体酸化物形燃料電池システムおよび固体酸化物形燃料電池の停止方法
JP2014110226A (ja) 燃料電池システムおよび燃料電池運転方法
JPS6010566A (ja) 燃料電池の運転方法
JP5134309B2 (ja) 燃料電池発電装置およびその制御方法
JP3830842B2 (ja) 固体酸化物形燃料電池およびそれを用いた発電方法
JP4467929B2 (ja) 燃料電池発電システム
JPH0654674B2 (ja) 燃料電池発電装置
KR102216464B1 (ko) 연료전지 시스템 및 그 구동 방법
WO2022113397A1 (ja) 燃料電池システム
KR101342528B1 (ko) 직접 내부 개질형 고체산화물 연료전지의 운전 방법
JP6695263B2 (ja) 燃料電池システム、制御装置、及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110103

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees