JP4670129B2 - Culture medium - Google Patents

Culture medium Download PDF

Info

Publication number
JP4670129B2
JP4670129B2 JP2000199160A JP2000199160A JP4670129B2 JP 4670129 B2 JP4670129 B2 JP 4670129B2 JP 2000199160 A JP2000199160 A JP 2000199160A JP 2000199160 A JP2000199160 A JP 2000199160A JP 4670129 B2 JP4670129 B2 JP 4670129B2
Authority
JP
Japan
Prior art keywords
medium
seedling
compression
compression molding
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000199160A
Other languages
Japanese (ja)
Other versions
JP2002017159A (en
Inventor
内田  哲也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Original Assignee
Iseki and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd filed Critical Iseki and Co Ltd
Priority to JP2000199160A priority Critical patent/JP4670129B2/en
Publication of JP2002017159A publication Critical patent/JP2002017159A/en
Application granted granted Critical
Publication of JP4670129B2 publication Critical patent/JP4670129B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)
  • Cultivation Of Plants (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、野菜や水稲や花卉等の播種・育苗の際に、多数の育苗ポットを連設した育苗トレイや箱状の育苗容器に装填される培地に関する。
【0002】
【従来技術と発明が解決しようとする課題】
この種の従来例としては、育苗トレイにピートモス等を圧縮成形した人口培地を装填した後に灌水して復元し、野菜や水稲や花卉等を播種・育苗するものがある。
【0003】
併し乍ら、ピートモスは乾燥状態では、撥水性があり灌水しても吸水性が悪くて、復元するのに非常に長い時間を要し、また、復元能力も低くて、適切な形状の復元が行なえず、非常に作業性が悪いものであった。
そこで、ピートモスに界面活性剤の水溶液とベントナイトとを混合して圧縮成形した人口培地が考えられたが、ピートモスと界面活性剤とベントナイトの全てを同時に混合するものであった為に、ピートモスとベントナイトとが界面活性剤の水溶液で団子状になってしまい、適正な混合処理が行なえず、良質の圧縮成形培地を得ることができなかった。
【0004】
【課題を解決するための手段】
この発明は、従来の課題を解決するために、請求項1記載の発明は、植物繊維と界面活性剤と農薬を混合して適正含水率まで乾燥させた後に、粘土質材を混合して圧縮成形した培地としたものであり、請求項2記載の発明は、混合後の粒径が1mm以下のものを圧縮成形した請求項1記載の培地としたものであり、請求項3記載の発明は、植物繊維がピートモスである請求項1乃至2記載の培地としたものであり、請求項4記載の発明は、粘土質材がベントナイト若しくはバーミキュライトである請求項1から請求項3の何れか1項に記載の培地としたものであり、請求項5記載の発明は、請求項1から請求項4の何れか1項に記載の培地を、錠剤状又は球状圧縮成形した培地としたものである。
【0005】
【発明の作用効果】
請求項1記載の発明は、植物繊維と界面活性剤と農薬を混合して適正含水率まで乾燥させた後に、粘土質材を混合して圧縮成形した培地としたものであるから、界面活性剤を水で薄めて多量にしたものを植物繊維に混合することにより、植物繊維を適正にむらなく界面活性化処理することができる。そして、界面活性化処理した後に乾燥させてから、乾いた非常に細かい粉状である粘土質材を混合するので、両者は水分が少ない状態で混合されることになり、従来例のように団子状になってしまうようなことが回避でき、適正な混合が行なえる。従って、混合むらの無い均一な混合物ができ、軽量で保水性の良い植物繊維の特性を活かしたままで、吸水性が良い復元性能の優れた培地を得ることができる。従って、この培地は、使用時に水を加えることにより直ちに所望の形状に復元するので播種作業が効率良く行なえ、また、軽量で保水性が良いので育苗作業が容易である。
【0006】
更に、軽量で容積の小さい乾燥状態で保存及び輸送を行なうことができ、非常に産業上優れている。
請求項2記載の発明は、混合後の粒径が1mm以下のものを圧縮成形した請求項1記載の培地としたものであるから、混合後の圧縮成形作業が容易になると共に、圧縮成形して得た圧縮成形培地に水を加えて復元させる際の復元速度が速くて復元形状も非常に安定する。然も、復元後の培地の強度も強くて育苗及び育苗後の苗の取扱いが容易となる。
【0007】
請求項3記載の発明は、植物繊維がピートモスである請求項1乃至2記載の培地としたものであるから、世界中に拡販されていて入手が容易で安価なピートモスの優れた保水性と軽量な長所を兼ね備えた圧縮成形培地を得ることができる。
請求項4記載の発明は、粘土質材がベントナイト若しくはバーミキュライトである請求項1から請求項3の何れか1項に記載の培地としたものであるから、大量に産出され安価なベントナイト若しくはバーミキュライトの優れた吸水性を兼ね備えた安価な圧縮成形培地を得ることができる。然も、ベントナイト若しくはバーミキュライトの粘結力がピートモスの粒間を繋ぐバインダーとしての役もなし、培地の形状を保持する効果もある。
【0008】
請求項5記載の発明は、請求項1から請求項4の何れか1項に記載の培地を、錠剤状又は球状圧縮成形したものであるから、請求項1乃至4記載の培地の作用効果に加えて、軽量で容積の小さい乾燥状態で保存及び輸送を行なうことができ、非常に産業上優れている。また、育苗容器の形状に合わせた形状にすることにより、更に、播種作業が効率良く行なえる。
【0009】
【発明の実施の形態】
この発明の実施の一形態であるレタスを播種育苗する場合について、以下に詳述する。
図1に示すものは、圧縮成形した培地(圧縮成形培地)1の一実施例で、タブレット(錠剤状又は低い円柱状)の形状に成形したものである。この圧縮成形培地1の材料となる植物繊維を含む材料としては、ピートモスやヤシ類の果実繊維(ヤシの実の果肉部の繊維を圧搾裁断したもの)、おが屑、樹皮(バーク)、バーク堆肥などを用いることができる。特に、ミズゴケ類が堆積してできたピートモスが最も好ましい。なお、ピートモスとヤシ類の果実繊維等を混合した材料を用いることもできる。
【0010】
なお、ピートモスは、含水率約30%以下に乾燥すると撥水性が顕著となる。そのため、ピートモスを圧縮成形する材料に使用する場合は、それが乾燥していると、圧縮成形後使用時に水で膨張させるとき、その水が吸収されにくくなり、取扱いが不便となる。そこで、圧縮成形前にピートモスを、ベントナイト或はモンモリロナイトと混合し又は水溶液に浸して、ピートモスの繊維表面にベントナイト或はモンモリロナイトの微粒子を付着させ、それを乾燥して圧縮成形すれば、圧縮成形されたピートモスが乾燥していても吸水しやすいものとなり、上記問題は解消される。また、ベントナイト或はモンモリロナイトは粘土成分の一種で天然の物から抽出できるものであるが、化学物質のものを用いるならば、アルキレンオキサイド系やエステル系の非イオン活性剤等の界面活性剤を撥水防止剤として用いることができる。尚、ピートモスを界面活性剤にて撥水防止処理をして、更に、ピートモスの繊維表面にベントナイト或はモンモリロナイトの微粒子を付着させ、それを乾燥して圧縮成形すれば、圧縮成形されたピートモスが乾燥していても更に吸水しやすいものとなる。
【0011】
また、ピートモスは、一般にpH3.5〜5.5と、pHが低いため、消石灰や生石灰、苦土石灰、炭酸カルシウムなどでpH調節を行う。なお、取扱易さと効果の面から苦土石灰が好ましい。ところで、上記ベントナイト或はモンモリロナイトは、ピートモスを圧縮成形する時のバインダーとして作用する粘結剤にもなり、成形時の粘結効果を高めるものとなる。ほかのバインダーとしてアルギン酸ナトリウム等を使用することもできる。
【0012】
また、圧縮成形した培地1が水を含んで膨張するときの膨張倍率を大きくするため、前記ピートモス等の植物繊維を含む材料に、市販の高吸水性ポリマー等を混入させて用いることもできる。
ここで、上記の圧縮成形培地の一実施例として、植物繊維を含む材料としてピートモスを用いて製造する例を詳細に説明する。
【0013】
先ず、市販のピートモス(含水率は通常40〜50%で、平均的には45%のものが多い)の塊を解砕(解いて砕く)し、3mmメッシュ(縦横が3mmの網目)で篩いをかけて、粒径が3mm以下のものを精選する。尚、5mmメッシュ(縦横が5mmの網目)で篩いをかけて、粒径が5mm以下のものを精選しても後工程の混合時に混合むらが発生する恐れはあまりなく出来上がった圧縮成形培地の使用上の問題はないので、精選は5mmメッシュ以下であれば良い。併し乍ら、粒径が5mmを超えるものは、後工程の混合時に混合むらが発生し、出来上がった圧縮成形培地に水を加えて復元する際の復元性能が悪い(復元速度が遅く、復元形状も安定しない)。
【0014】
そして、この精選したピートモス1kgに対して、苦土石灰(Mg,Ca)10〜30g(ピートモスのPH調整の為に入れるが、20gが最適である)と、水1リットルに界面活性剤である非イオン系のポリオキシエチレンアルキルフェニルエーテルを0.2〜1ccと肥料として窒素0.7〜4.2g・燐0.8〜4.8g・カリウム0.6〜3.6gと農薬(市販の殺菌剤や殺虫剤を適量)を混ぜたものと、を10分間混合する。すると、ピートモスの撥水性が界面活性剤でなくなり、ピートモスと苦土石灰と肥料と薬剤とが混在した含水率が50〜60%(平均的には55%のものが多い)の粉状の混合物が得られる。
【0015】
この粉状の混合物を乾燥機にて含水率が15%になるまで乾燥させた後に、ベントナイト(若しくはバーミキュライト)100〜400g(200gが最適で、200g以下であると若干出来上がった圧縮成形培地の強度が弱くなるが、使用上の問題はさほどない。また、200g以上用いても出来上がった圧縮成形培地の性能は200gの場合に比して大差ない)を混合する。すると、両者は乾燥した状態で混合されるので、適正に且つ均一に混合されて、ピートモスの表面にベントナイト(若しくはバーミキュライト)の微粒子が付着した状態となる。
【0016】
その後、圧延ロール等で1mmメッシュの細かな粉(縦横が1mmの網目の篩いを通る粉)状まで粉砕し、1mmメッシュの網で精選して粉状の培地を得る。
そして、これを圧縮成形する。圧縮成形には、プレス機を用い、下型2の円筒状の穴内に前記粉状の培地を詰めて上型3の円筒状突部が上方から下降して圧縮成形して(図2参照)、圧縮成形培地1を得る。
【0017】
このときの圧縮する圧力は、含水率15%のもので150kg/cm2 の圧力で圧縮すると良好に圧縮成形できる。
そして、混合物を1mmメッシュの細かな粉状まで粉砕してから圧縮成形するのは、プレス機で成形する際に、混合物を型に入れるのが容易になると共に、圧縮成形して得た圧縮成形培地1に水を加えて復元させる際に、復元速度が速くて復元形状も非常に安定する。然も、復元後の培地の強度も強くて育苗及び育苗後の苗の取扱いが容易となる。尚、テストで混合物を2mmメッシュ(粒径2mm)の状態で圧縮成形してみたが、成形後の水を加えて復元させる際の復元速度及び復元形状の安定性は、共に劣るものであった。そして、復元後の培地の強度も粒が大きいために弱くて壊れ易いものであった。
【0018】
また、圧縮成形後の具体的な寸法を示すと、圧縮成形培地1の大きさは、直径D1=15mm、高さH1=15mmの円筒形状に圧縮成形される。
次に、図3〜図7に示す育苗トレイ4は、発砲スチロールを材料として成形したもので、図6及び図7に示されるような平面視が円形で断面形状がコップ状の育苗ポット5…を多数設けたものである。そして、各育苗ポット5には、内側面5aから底面5bに到るL字状の溝9・9・9・9が4箇所形成されており、その底部には育苗時の水抜け孔であり、育苗後に苗を押し出す為に苗押出し棒7や指等を差し込むことのできる孔6…が開けられている。尚、各溝9・9・9・9は、育苗ポット5の上部からこの孔6まで連通しており、苗を育苗するときに、空気が自由に育苗ポット5の上部から各溝9・9・9・9及び孔6を通って下部まで流れるようになっている(勿論、逆に、空気が自由に育苗ポット5の下部から孔6及び各溝9・9・9・9を通って上部まで流れるようになっている)。また、灌水時には、育苗ポット5内の培地に上面及び各溝9・9・9・9から側面に水が浸透するので灌水も容易であり、また、余分な水は各溝9・9・9・9及び孔6から排水されるので水が過分に溜って根腐れを起こすことの防止にもなる。
【0019】
そして、特に、各溝9・9・9・9の溝深さは、上端部の溝深さA1から下端部の溝深さA2に到るまで順次深くなるように形成されている。
尚、育苗ポット5の内容部の大きさは、具体的な寸法を示すと、底部直径D3=18mm、上端開口部の口径D2=23mm、深さH2=37mm、上端部の溝深さA1=3.5mm、下端部の溝深さA2=4.7mmに形成されている。
【0020】
次に、上記の育苗トレイ4と圧縮成形培地1を用いた播種作業の説明をする。
先ず、育苗トレイ4の各育苗ポット5…内に圧縮成形培地1を入れる(図8)。そして、その各育苗ポット5…内に入れられた圧縮成形培地1に上から灌水する。すると、圧縮成形培地1は主原料であるピートモスの撥水性が界面活性剤でなくなっているので、各育苗ポット5…内で水を吸収して急速に膨張し(圧縮成形培地1の膨張は、テストすると20秒以内で終了する)、膨張した培地1’は育苗ポット5…内にほぼ充満する(図9)。この圧縮成形培地1は、水を含んで膨張すると、育苗ポット5の内側面との間に少し空隙が残り、上端開口部からH3=1〜2mm突出するような大きさの培地1’になるように圧縮成形されている。尚、圧縮成形培地1は、前記のようにピートモスの繊維表面にベントナイトの微粒子を付着させて乾燥させたものを粒径が1mm以下に粉砕した粒の揃ったものを用いているので、水を含んで復元する際に、希望する形状とおりにまっすぐ綺麗に急速に復元する。
【0021】
そして、このように充填された培地1’の上部から周知の播種穴形成ロール22を転動させて圧を掛けると(図10)、その播種穴形成突部23が培地1’内に嵌まり込んで深さL=5mmの播種穴24を形成すると共に、円筒外面25にて培地1’の上部が押圧されて前記培地1’の育苗ポット5上端開口部から1〜2mm突出した分だけ培地1’は圧縮されて、培地1’は育苗ポット5内に充満される(図11)。このとき、圧縮成形された培地1の膨張に多少の誤差があって育苗ポット5の内側面との間に多少空隙が生じていても、育苗ポット5の適正な培地高さH2よりもH3だけ高く膨張させた後に適正な培地高さH2まで押圧するから、育苗ポット5に適切に培地を充填することができる。
【0022】
その後、播種穴24に播種をして播種穴24部をバーミキュライト若しくは土にて覆土26する(図12)。その時、上記のように各育苗ポット5に適切な培地の充填がなされるのであるが、仮に、圧縮成形培地1の角が欠けていて、膨張後に押圧しても適切な培地の充填が行なわれなかった場合にも、バーミキュライトや土等の覆土26で育苗ポット5内の培地を適切な量に補正できて、個々の苗が不均一に成長したり苗の育苗に支障を来したりすることなく、良好な育苗が行なえて、良質の苗を得ることができる。
【0023】
そして、上記のようにして播種作業を終えた育苗トレイ4を各育苗ポット5底部の各孔6…を塞がないような格子状の台に並べて、溝9と孔6を空気が自由に流通できる状態で育苗が行われる。そして、適度に成長した苗は栽培圃場に移植されるが、このとき、育苗ポット5…の底部の孔6…に苗押出し棒7…を差し込むか指で押し上げることにより育苗ポット5…内に収容された苗を押し出すと容易に苗を育苗トレイ4の育苗ポット5…から取り出すことができる(図13)。尚、覆土26にはバーミキュライトを用いると、比重が軽いので種子が出芽し易く出芽率が向上し、また、保水性が良いので育苗も容易である。
【0024】
そして、この育苗トレイ4の各育苗ポット5…には溝9…が設けられており、培地1’が膨張時に溝9…内に入り込んで溝を埋めてしまわないので、溝9…内には空間が形成されている。従って、育苗時に、苗の根が伸長して培地内から溝9…内に出て伸びようとしたとき、エアープルーニング効果により、そこで根の伸長が止まる。よって、根が培地外周面に沿って過密に巻いた状態になるのが防止されることと併せて、溝9…部で根の伸長が止まる分、培地内で側根の成育が旺盛となるので、圃場へ移植したときの苗の活着が良好となる。(尚、根が伸長し過ぎて培地外周面に沿って過密に巻いた状態になると、移植後、圃場に活着しようとする新しい根が培地外周面に過密に巻いた根に阻止されて、培地の外の土壌に根が伸長しにくくなり活着しにくくなる問題がある。)
また、上記のような育苗上の効果を有する育苗ポット5…を形成した育苗トレイ4を用いた育苗を行うとき、圧縮成形培地1は、育苗ポット5に合わせた円柱形状であるから、水を含んで膨張した時に溝9…内を培地が塞ぐことがない。特に、前記のように、圧縮成形培地1を、その圧縮された方向が上下方向となる姿勢で各育苗ポット5内に入れ、そのように入れた圧縮成形培地1に水を含ませることで圧縮成形培地1を各育苗ポット5内で膨張させて充満させ、育苗ポット5内に培地を充填する方法をとると、その圧縮成形培地1は、水を含むと水平方向には大きく膨張せず上下方向に大きく膨張するから、溝9…内を埋めるように培地が入り込むことがなく溝9…内に空間が形成される状態に培地を育苗ポット5内に充填することが容易に行なえる。従って、この育苗ポット5…の溝9…によるエアープルーニング効果を充分に奏する状態での播種、育苗が容易に行なえるものとなる。
【0025】
更に、小さなゴミや砂や小石等が溝9内に詰まると、その詰まった部分から上の溝9は灌水の度に小さなゴミや砂や小石等が滞積して埋まってしまう。すると、エアープルーニング効果が得られなくなり、良質な苗の育成が行なえなくなるが、各溝9・9・9・9の溝深さは、上端部の溝深さA1から下端部の溝深さA2に到るまで順次深くなるように形成され、然も、各溝9・9・9・9の断面積も上端部の開口部面積から下端部の開口部面積に到るまで順次広くなるように形成されているので、育苗時に小さなゴミや砂や小石等が溝9の上端部から溝9内に入っても、溝9内に詰まることなく下端部から孔6を通って容易に外に排出され(溝9内に小さなゴミや砂や小石等が入っていても、特に灌水時に、水で容易に外部に押し流される。)、溝9が埋まってしまうことが防止され、前記のようなエアープルーニング効果を充分に奏する状態での育苗が容易に行なえる。
【0026】
尚、植物繊維を含む材料を圧縮成形した培地1には、圧縮成形後、水を含ませて膨張させると、圧縮成形時の圧縮方向とは略々反対方向に向かう膨張が大きいという特性がある。例えば、図1に示すタブレットの形状の圧縮成形培地1を、ピートモスを用いて、上下方向から圧縮して成形したところ、圧縮成形時の大きさが直径15mm×高さ15mmの大きさのものが、水を含んで膨張すると、圧縮方向の反対方向の膨張が、高さ15mmから高さ38〜39mmとなって約2.5倍の膨張となり、圧縮方向に交差する方向の膨張が、直径15mmから直径18〜19mmとなって約1.2倍の膨張となった。
【0027】
一方、育苗トレイ4は、発砲スチロールを材料として成形され各育苗ポット5の内側面5aと底面5bとで培地1’を覆った状態になっているので、断熱性が良くて根部の温度が必要以上に上がることが防止され、夏場の熱い時期に苗を育苗しても、苗がひょろ長く伸びてしまう徒長を防止でき、健全な苗の育成が行なえると共に、育苗トレイ4の各育苗ポット5の各苗を均一に成育させることができる。
【0028】
そして、圧縮成形培地1は、前記のように、水を含むと圧縮方向とは略々反対方向に大きく膨張するが、その膨張後の培地1’は、膨張方向(上下方向)の剪断に対しては強く、その膨張方向と交差する方向(左右方向)の剪断に対しては弱い特性がある。
【0029】
従来、エアープルーニング効果により根巻きが起こっていない苗の茎を持って上方に引っ張って抜こうとすると、根が培地に絡んでいないため苗だけが引き抜かれてしまって培地ごと苗を引き抜くことはできにくく、また、育苗ポットの底部の孔に棒を押し込んで培地ごと苗を取り出そうとしても、根が培地に絡んでいないため底部に押し込んだ棒が土を崩してしまい培地ごと苗を押し上げることはできにくい問題がある。
【0030】
そこで、圧縮成形培地1…をその圧縮された方向が上下方向となる姿勢で各育苗ポット5…内に入れ、該圧縮成形培地1…に水を含ませて圧縮成形培地1…を各育苗ポット5…内で膨張させて充満させ、その後、該膨張後の培地1’…に播種して育苗する育苗方法をとることにより、各育苗ポット5…内で育苗された苗の培地は上下方向の剪断に対して強いことになるから、苗の茎を持って上方に引っ張って抜くことができ、また、育苗ポット5…の底部の孔6…に苗押出し棒7…を差し込んで育苗ポット5…内に収容された苗を押し出すときに培地が崩れにくく、苗の根があまり伸びていないときでも、従来に比べて苗を育苗ポット5…から取り出しやすくなる。従って、移植機にて苗の植付けができる適応性の高い苗(各育苗ポット5…内から上方に引き抜く装置や下方から押し出す装置にて抜きやすい苗)を育成することができる。
【0031】
尚、育苗ポット5が平面視円形なので、上記圧縮成形培地1の平面視形状も円形のものを用いるが、育苗ポットが平面視四角形であれば、それに入れる圧縮成形培地の平面視形状も四角形のものを用いると、育苗ポット内に入れた圧縮成形培地に水を含ませて膨張させたとき、適確に育苗ポット内に培地が充満する。よって、圧縮成形培地の平面視形状は、それを入れる育苗トレイの育苗ポットの平面視形状に合わせたものとすると、良好に育苗ポット内に培地を充満させられる。
【0032】
更に、育苗トレイの材質は、発砲スチロールに限定されるものではなく、硬質の合成樹脂や自由に湾曲させれるような軟質の合成樹脂等の如何なる材質で成型しても良い。
また、上記の例においては、育苗トレイ4に多数配列した育苗ポット5の例を示したが、植木鉢やビニールポット(鉢)や水稲用育苗箱等の単体の育苗容器に本願発明を用いても良いことは、謂うまでもない。
【0033】
最後に、圧縮成形前にバインダーとしてポリビニルアルコール又はポリアクリル酸塩又は水ガラス(ケイ酸ナトリウム)等を混入すれば、復元後もブロック強度が保持できて、培地1が崩れにくく、更に苗の取扱いが容易となる。
【図面の簡単な説明】
【図1】圧縮成形培地1の一例を示す斜視図である。
【図2】圧縮成形培地1の圧縮成形の一例を示す側面図である。
【図3】育苗トレイ4の一例を示す斜視図である。
【図4】育苗トレイ4の平面図である。
【図5】育苗トレイ4の底面図である。
【図6】育苗トレイ4の育苗ポット5の平面図である。
【図7】図4のS1−S1断面図である。
【図8】圧縮成形培地1の育苗ポット5への装填例を示す断面側面図である。
【図9】育苗ポット5へ装填した圧縮成形培地1が水を含んで膨張が終了した状態を示す断面側面図である。
【図10】播種穴形成ロール22による作用説明側面図である。
【図11】播種穴24が形成された状態を示す断面側面図である。
【図12】播種穴24に播種して覆土26した状態を示す断面側面図である。
【図13】苗が成育した状態を示す断面側面図である。
【符号の説明】
1 圧縮成形培地
4 育苗トレイ
5 育苗ポット
30 苗箱
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a medium loaded in a seedling tray or box-shaped seedling container in which a large number of seedling pots are continuously provided when sowing and raising seedlings of vegetables, paddy rice, and flower buds.
[0002]
[Prior art and problems to be solved by the invention]
As a conventional example of this type, there is one in which a culture medium in which peat moss or the like is compression-molded is loaded into a seedling tray and then restored by irrigation to sow and breed vegetables, paddy rice, flower buds and the like.
[0003]
At the same time, peat moss has water repellency and poor water absorption even when irrigated in the dry state, and it takes a very long time to restore. The workability was very bad.
Therefore, an artificial culture medium in which an aqueous solution of a surfactant and bentonite was mixed with peat moss and compression molded was considered, but because all of peat moss, surfactant and bentonite were mixed at the same time, peat moss and bentonite were mixed. However, it became a dumpling with an aqueous solution of a surfactant, and proper mixing treatment could not be performed, and a high-quality compression molding medium could not be obtained.
[0004]
[Means for Solving the Problems]
In order to solve the conventional problems, the invention according to claim 1 is a mixture of plant fiber, surfactant and agricultural chemical , dried to an appropriate moisture content, and then mixed with a clay material and compressed. The invention according to claim 2 is a culture medium according to claim 1 in which the particle diameter after mixing is 1 mm or less, and the invention according to claim 3 The plant fiber is peat moss. The medium according to claim 1 or 2, and the invention according to claim 4 is the clay material according to any one of claims 1 to 3 , wherein the clayey material is bentonite or vermiculite. is obtained by a culture medium according to an invention of claim 5 is one in which the culture medium as claimed in any one of claims 4, was medium compressed into tablets or spherical .
[0005]
[Effects of the invention]
Since the invention according to claim 1 is a medium in which plant fiber, surfactant and agricultural chemical are mixed and dried to an appropriate moisture content, and then a clay material is mixed and compression-molded, the surfactant is used. The plant fiber can be appropriately surface-activated without unevenness by mixing the plant fiber with a large amount diluted with water. Then, after the surface activation treatment and drying, the clay material, which is a dry and very fine powder, is mixed, so both are mixed in a state of low moisture, and the dumpling as in the conventional example Can be avoided, and proper mixing can be performed. Therefore, a uniform mixture with no unevenness of mixing can be obtained, and a medium excellent in restoration performance with good water absorption can be obtained while taking advantage of the characteristics of lightweight and water-retaining plant fibers. Therefore, since this medium is immediately restored to a desired shape by adding water at the time of use, sowing work can be performed efficiently, and seedling work is easy because it is lightweight and has good water retention.
[0006]
Furthermore, it can be stored and transported in a dry state with a light weight and a small volume.
The invention according to claim 2 is the culture medium according to claim 1 in which the particle diameter after mixing is 1 mm or less, so that the compression molding operation after mixing becomes easy and the compression molding is performed. The restoration speed when restoring the compression molding medium obtained by adding water is high and the restoration shape is very stable. However, the strength of the medium after restoration is strong, and it is easy to handle seedlings and seedlings after seedlings.
[0007]
The invention according to claim 3 is the medium according to claim 1 or 2 in which the plant fiber is peat moss. Therefore, the water retention and light weight of peat moss which are widely available worldwide and are easily available and inexpensive. It is possible to obtain a compression-molding medium that has various advantages.
The invention according to claim 4 is the medium according to any one of claims 1 to 3 in which the clayey material is bentonite or vermiculite. Therefore, the bentonite or vermiculite is produced in large quantities and is inexpensive. An inexpensive compression-molding medium having excellent water absorption can be obtained. However, the caking force of bentonite or vermiculite also serves as a binder that connects peat moss grains, and has the effect of maintaining the shape of the medium.
[0008]
Since the invention according to claim 5 is obtained by compressing the medium according to any one of claims 1 to 4 into a tablet shape or a spherical shape , the effect of the medium according to any one of claims 1 to 4 is achieved. In addition, it can be stored and transported in a dry state with a light weight and a small volume. Moreover, by making it into a shape that matches the shape of the seedling container, the sowing operation can be performed more efficiently.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The case of seeding and raising lettuce according to an embodiment of the present invention will be described in detail below.
FIG. 1 shows an example of a compression-molded culture medium (compression-molded culture medium) 1 that is formed into a tablet (tablet or low cylindrical shape). Examples of the material containing the plant fiber used as the material of the compression molding medium 1 include peat moss and palm fruit fibers (pressed and cut from the pulp of the fruit of palm fruit), sawdust, bark, bark compost, etc. Can be used. In particular, peat moss formed by depositing sphagnum is most preferable. In addition, the material which mixed peat moss and the fruit fiber of palms, etc. can also be used.
[0010]
In addition, when peat moss is dried to a moisture content of about 30% or less, the water repellency becomes remarkable. Therefore, when peat moss is used as a material for compression molding, if it is dry, when it is expanded with water during use after compression molding, the water becomes difficult to be absorbed, and handling becomes inconvenient. Therefore, before compression molding, peat moss is mixed with bentonite or montmorillonite or soaked in an aqueous solution to adhere the fine particles of bentonite or montmorillonite to the surface of the peat moss fiber. Even if peat moss is dried, it becomes easy to absorb water, and the above problem is solved. Bentonite or montmorillonite is a kind of clay component that can be extracted from natural products. If chemical substances are used, surfactants such as alkylene oxide and ester nonionic surfactants are repelled. It can be used as a water inhibitor. The peat moss is treated with a surfactant to prevent water repellency. Further, bentonite or montmorillonite fine particles are adhered to the surface of the peat moss fiber, and then dried and compression molded. Even if it is dry, it becomes easier to absorb water.
[0011]
Moreover, since peat moss generally has a low pH of 3.5 to 5.5, the pH is adjusted with slaked lime, quick lime, mashed lime, calcium carbonate, or the like. In addition, from the viewpoint of ease of handling and effect, the clay lime is preferable. By the way, the bentonite or montmorillonite also serves as a binder acting as a binder when compression molding peat moss, and enhances the caking effect during molding. Sodium alginate or the like can be used as another binder.
[0012]
Further, in order to increase the expansion ratio when the compression-molded culture medium 1 expands with water, a commercially available superabsorbent polymer or the like can be mixed with a material containing plant fibers such as peat moss.
Here, the example manufactured using peat moss as a material containing a vegetable fiber is demonstrated in detail as one Example of said compression molding culture medium.
[0013]
First, a mass of commercially available peat moss (water content is usually 40 to 50%, and on average 45%) is crushed (unrolled and crushed), and sieved with a 3 mm mesh (3 mm in length and breadth). , And finely select those having a particle size of 3 mm or less. Use a compression molding medium that has been screened with a 5 mm mesh (5 mm in length and breadth), and even if the particle size is 5 mm or less is carefully selected, there is no risk of uneven mixing during mixing in the subsequent process. Since there is no problem above, fine selection should be 5 mm mesh or less. At the same time, when the particle size exceeds 5 mm, uneven mixing occurs during mixing in the subsequent process, and the restoration performance is poor when restoring the resulting compression molding medium by adding water (the restoration speed is slow and the restoration shape is stable). do not do).
[0014]
And 1kg of this carefully selected peat moss is 10-30g of bitter lime (Mg, Ca) (added to adjust the pH of peat moss, 20g is optimal), and 1 liter of water is a surfactant. Nonionic polyoxyethylene alkylphenyl ether 0.2-1 cc and fertilizer 0.7-4.2 g nitrogen, 0.8-4.8 g phosphorus, 0.6-3.6 g potassium and pesticides (commercially available A mixture of a suitable amount of bactericides and insecticides is mixed for 10 minutes. Then, the water repellency of peat moss is no longer a surfactant, and a powdery mixture having a moisture content of 50 to 60% (on average 55% is high) in which peat moss, mashed lime, fertilizer and chemicals are mixed. Is obtained.
[0015]
After drying this powdery mixture with a dryer until the water content is 15%, 100 to 400 g of bentonite (or vermiculite) (200 g is optimal, 200 g or less is the strength of the compression molding medium that is slightly completed. However, there is not much problem in use, and even if 200 g or more is used, the performance of the compression-molded medium obtained is not much different from the case of 200 g). Then, since they are mixed in a dry state, they are properly and uniformly mixed, and bentonite (or vermiculite) fine particles are adhered to the surface of peat moss.
[0016]
Then, it is pulverized to a fine powder of 1 mm mesh (powder passing through a 1 mm mesh screen) with a rolling roll or the like, and carefully selected with a 1 mm mesh to obtain a powdery medium.
And this is compression-molded. For the compression molding, a press machine is used to fill the cylindrical medium of the lower mold 2 with the powdery culture medium, and the cylindrical protrusion of the upper mold 3 descends from above to perform compression molding (see FIG. 2). The compression molding medium 1 is obtained.
[0017]
The pressure to be compressed at this time is 15% with a water content of 15%, and compression can be performed satisfactorily by compression at a pressure of 150 kg / cm 2 .
Then, the mixture is pulverized to a fine powder of 1 mm mesh and then compression-molded. When molding with a press machine, the mixture can be easily put into a mold, and compression molding obtained by compression molding is used. When water is added to the medium 1 for restoration, the restoration speed is fast and the restoration shape is very stable. However, the strength of the medium after restoration is strong, and it is easy to handle seedlings and seedlings after seedlings. In addition, in the test, the mixture was compression-molded in a state of 2 mm mesh (particle size 2 mm), but both the restoration speed and the stability of the restored shape when restored by adding water after molding were inferior. . The strength of the restored medium was also weak and fragile due to the large grains.
[0018]
Moreover, when the specific dimension after compression molding is shown, the compression molding medium 1 is compression molded into a cylindrical shape having a diameter D1 = 15 mm and a height H1 = 15 mm.
Next, the seedling raising tray 4 shown in FIGS. 3 to 7 is formed by using foamed polystyrene as a material, and the seedling raising pot 5 having a circular shape in cross-section and a cup shape as shown in FIGS. 6 and 7. Are provided. Each seedling pot 5 has four L-shaped grooves 9, 9, 9, 9 extending from the inner surface 5 a to the bottom surface 5 b, and the bottom is a drainage hole for raising seedlings. In order to extrude the seedling after raising the seedling, a hole 6 is inserted through which a seedling extruding rod 7 or a finger can be inserted. Each groove 9, 9, 9, 9 communicates from the upper part of the seedling pot 5 to this hole 6, and when the seedling is grown, air freely passes from the upper part of the seedling pot 5 to each groove 9, 9. -It flows to the lower part through 9, 9 and the hole 6 (of course, conversely, air freely passes from the lower part of the seedling pot 5 to the upper part through the hole 6 and the grooves 9, 9, 9, 9). To flow). Further, at the time of irrigation, water permeates into the culture medium in the seedling pot 5 from the upper surface and each groove 9, 9, 9, 9 to the side surface, so that water is easy to irrigate. -Since it drains from 9 and the hole 6, it also prevents that water accumulates excessively and causes root rot.
[0019]
In particular, the groove depth of each of the grooves 9, 9, 9, 9 is formed so as to increase gradually from the groove depth A1 at the upper end portion to the groove depth A2 at the lower end portion.
In addition, the size of the content part of the seedling pot 5 indicates a specific dimension: bottom diameter D3 = 18 mm, diameter D2 = 23 mm at the upper end opening, depth H2 = 37 mm, groove depth A1 at the upper end It is formed with a groove depth A2 of 4.7 mm at the lower end portion of 3.5 mm.
[0020]
Next, the seeding operation using the seedling tray 4 and the compression molding medium 1 will be described.
First, the compression molding medium 1 is put into each seedling pot 5 of the seedling tray 4 (FIG. 8). Then, the compression molding medium 1 placed in each seedling pot 5 is irrigated from above. Then, since the water repellency of peat moss, which is the main raw material, is no longer a surfactant, the compression molding medium 1 absorbs water in each seedling pot 5 ... and rapidly expands (the expansion of the compression molding medium 1 is The test is completed within 20 seconds), and the expanded medium 1 ′ is almost filled in the seedling pot 5 (FIG. 9). When the compression-molding medium 1 expands with water, a small gap remains between the inside surface of the seedling pot 5 and becomes a medium 1 ′ having a size such that H3 = 1 to 2 mm protrudes from the upper end opening. So that it is compression molded. Note that the compression molding medium 1 uses a material in which bentonite fine particles are attached to the surface of peat moss fibers and dried, as described above, and the particles are pulverized to a particle size of 1 mm or less. When it is restored, it will be restored straight and neatly according to the desired shape.
[0021]
Then, when a well-known seeding hole forming roll 22 is rolled from the upper part of the medium 1 ′ filled in this way to apply pressure (FIG. 10), the seeding hole forming protrusion 23 is fitted into the medium 1 ′. To form a seeding hole 24 having a depth L = 5 mm, and the medium 1 ′ is pressed by the upper part of the culture medium 1 ′ by the cylindrical outer surface 25 and protrudes by 1 to 2 mm from the upper end opening of the seedling pot 5 of the culture medium 1 ′. 1 ′ is compressed, and the medium 1 ′ is filled in the seedling pot 5 (FIG. 11). At this time, even if there is some error in expansion of the compression-molded culture medium 1 and there are some gaps between the inside surface of the seedling pot 5, only H3 is higher than the appropriate medium height H2 of the seedling pot 5. Since it presses to the appropriate culture medium height H2 after making it expand | swell highly, the culture medium can be filled with the culture seedling pot 5 appropriately.
[0022]
Thereafter, seeding is carried out in the seeding hole 24, and the 24 part of the seeding hole is covered with vermiculite or soil 26 (FIG. 12). At that time, as described above, each of the seedling pots 5 is filled with an appropriate medium. However, if the corners of the compression-molded medium 1 are missing and are pressed after expansion, the appropriate medium is filled. Even if not, the medium in the seedling pot 5 can be corrected to an appropriate amount with the covering 26 such as vermiculite or soil, so that individual seedlings grow unevenly or interfere with seedling raising. Therefore, good seedlings can be grown and good quality seedlings can be obtained.
[0023]
Then, the seedling trays 4 that have been seeded as described above are arranged on a grid-like base that does not block the holes 6 at the bottom of the seedling pots 5, and air freely flows through the grooves 9 and the holes 6. Raising seedlings in a ready state. The seedlings that have grown moderately are transplanted into the cultivation field. At this time, the seedling pusher bar 7 is inserted into the hole 6 at the bottom of the seedling pot 5. When the seedlings are pushed out, the seedlings can be easily taken out from the seedling pots 5 of the seedling tray 4 (FIG. 13). When vermiculite is used for the cover soil 26, the specific gravity is light, so that the seeds are easily germinated, the germination rate is improved, and the water retention is good, so that the seedlings are easy to grow.
[0024]
Each of the seedling pots 5 of the seedling tray 4 is provided with a groove 9, and the medium 1 ′ does not enter the groove 9 and fill the groove when expanded, so that the groove 9. A space is formed. Therefore, when raising seedlings, when the roots of the seedlings are extended and try to extend out of the medium into the grooves 9 ..., the roots stop growing there due to the air pruning effect. Therefore, in addition to preventing the roots from being overwhelmed along the outer peripheral surface of the medium, the growth of the side roots is vigorous in the medium as long as the roots stop growing at the grooves 9. The seedling survival when transplanted to the field is improved. (In addition, if the roots are extended too much and rolled up along the outer peripheral surface of the medium, after transplanting, the new roots to be entrapped in the field are blocked by the roots that are wound around the outer peripheral surface of the medium. There is a problem that the roots are difficult to grow and hard to settle in the soil outside.
In addition, when performing seedling using the seedling tray 4 in which the seedling pots 5 having the above-described effects on the seedlings are formed, the compression-molding medium 1 has a cylindrical shape matched to the seedling pots 5, so that water is supplied. The medium does not block the inside of the grooves 9 when expanded. In particular, as described above, the compression molding medium 1 is put into each seedling pot 5 in a posture in which the compressed direction is the vertical direction, and the compression molding medium 1 thus placed is compressed by including water. When the molding medium 1 is expanded and filled in each seedling pot 5 and the seedling pot 5 is filled with the medium, the compression molding medium 1 does not expand greatly in the horizontal direction when it contains water. Since the medium expands greatly in the direction, the culture medium does not enter so as to fill the grooves 9. The medium can be easily filled in the seedling pot 5 so that a space is formed in the grooves 9. Therefore, sowing and raising of seedlings can be easily performed in a state where the air pruning effect by the grooves 9 of the raising seed pots 5 is sufficiently exhibited.
[0025]
Further, when small dust, sand, pebbles, etc. are clogged in the groove 9, the crevice 9 above the clogged portion is filled with small trash, sand, pebbles, etc. every time it is irrigated. Then, the air pruning effect cannot be obtained, and it is impossible to grow a good quality seedling. However, the groove depth of each of the grooves 9, 9, 9, 9 is changed from the groove depth A1 at the upper end to the groove depth A2 at the lower end. The cross-sectional area of each groove 9, 9, 9, 9 is gradually increased from the opening area at the upper end to the opening area at the lower end. Since it is formed, even if small dust, sand, pebbles, etc. enter the groove 9 from the upper end of the groove 9 when raising seedlings, they are easily discharged from the lower end through the hole 6 without clogging the groove 9 (Even if small debris, sand, pebbles or the like are contained in the groove 9, it is easily washed away with water, especially during irrigation.) Raising seedlings with sufficient pruning effect is easy.
[0026]
In addition, the culture medium 1 which compression-molded the material containing a vegetable fiber has the characteristic that expansion | swelling which goes in the direction substantially opposite to the compression direction at the time of compression molding is large when it is made to expand | swell after containing compression. . For example, when the compression-molding medium 1 in the shape of a tablet shown in FIG. 1 is formed by compressing from above and below using peat moss, the size at the time of compression molding is 15 mm in diameter × 15 mm in height. When expanded with water, the expansion in the opposite direction of the compression direction is about 2.5 times the expansion from the height of 15 mm to the height of 38 to 39 mm, and the expansion in the direction crossing the compression direction is 15 mm in diameter. From 18 to 19 mm in diameter, the expansion was about 1.2 times.
[0027]
On the other hand, the seedling tray 4 is formed using foamed styrene as a material and covers the medium 1 'with the inner surface 5a and the bottom surface 5b of each seedling pot 5, so that the heat insulation is good and the root temperature is required. Even if the seedlings are raised during the hot summer season, it is possible to prevent the seedlings from growing too long, so that healthy seedlings can be nurtured. Each seedling of the pot 5 can be grown uniformly.
[0028]
As described above, the compression-molded medium 1 expands greatly in the direction substantially opposite to the compression direction when it contains water, but the expanded medium 1 ′ is subjected to shear in the expansion direction (vertical direction). It is strong and weak against shearing in the direction crossing the expansion direction (left-right direction).
[0029]
Conventionally, if you try to pull out the stem of the seedling that does not have root winding due to the air pruning effect and pull it upward, only the seedling will be pulled out because the root is not entangled in the medium, It is difficult to do, and even if you try to remove the seedling with the medium by pushing a stick into the bottom hole of the seedling pot, the stick pushed into the bottom will break up the soil and push the seedling with the medium because the roots are not tangled with the medium There is a problem that is difficult to do.
[0030]
Therefore, the compression molding medium 1 is placed in each seedling pot 5 in such a posture that the compressed direction is the vertical direction, and the compression molding medium 1 is soaked in water by adding the compression molding medium 1 to water. 5... The seedling medium grown in each seedling pot 5... Is expanded in the vertical direction by taking a seedling raising method in which the seedling is expanded and filled in the medium 5 ′ and then seeded on the expanded medium 1 ′. Because it is strong against shearing, it can be pulled out by holding the stem of the seedling, and the seedling pusher bar 7 is inserted into the hole 6 at the bottom of the seedling pot 5 ... When extruding the seedlings housed in the medium, the medium is less likely to collapse, and even when the seedling roots are not stretched much, the seedlings can be easily taken out from the seedling pots 5. Therefore, it is possible to grow a highly adaptable seedling that can be planted by a transplanter (a seedling that can be easily extracted by a device that pulls upward from the inside of each seedling pot 5... Or a device that pushes it from below).
[0031]
Since the seedling pot 5 is circular in plan view, the shape of the compression molding medium 1 is also circular, but if the seedling pot is square in plan view, the shape of the compression molding medium to be put in it is also rectangular. If a thing is used, when a compression molding culture medium put in the seedling pot is made to contain water and it is expanded, the culture medium will be filled with the medium properly. Therefore, if the shape of the compression-molded medium in plan view is matched with the shape of the seedling pot in the seedling tray in which it is placed, the medium can be satisfactorily filled in the seedling pot.
[0032]
Further, the material of the seedling tray is not limited to the foamed polystyrene, but may be formed of any material such as a hard synthetic resin or a soft synthetic resin that can be freely bent.
In the above example, an example of the seedling pots 5 arranged in the seedling tray 4 is shown. However, the present invention may be used for a single seedling container such as a flower pot, a vinyl pot (pot), or a rice seedling box. Needless to say, the good thing is.
[0033]
Finally, if polyvinyl alcohol or polyacrylate or water glass (sodium silicate) is mixed as a binder before compression molding, the block strength can be maintained even after restoration, and the culture medium 1 is less likely to collapse. Becomes easy.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example of a compression molding medium 1. FIG.
FIG. 2 is a side view showing an example of compression molding of a compression molding medium 1;
FIG. 3 is a perspective view showing an example of a seedling tray 4. FIG.
FIG. 4 is a plan view of the seedling tray 4. FIG.
FIG. 5 is a bottom view of the seedling tray 4. FIG.
6 is a plan view of a seedling pot 5 in the seedling tray 4. FIG.
7 is a cross-sectional view taken along line S1-S1 of FIG.
FIG. 8 is a cross-sectional side view illustrating an example of loading the compression molding medium 1 into the seedling pot 5;
FIG. 9 is a cross-sectional side view showing a state where the compression molding medium 1 loaded in the seedling pot 5 contains water and has finished expanding.
10 is a side view for explaining the operation of the sowing hole forming roll 22. FIG.
FIG. 11 is a cross-sectional side view showing a state in which a seeding hole 24 is formed.
FIG. 12 is a cross-sectional side view showing a state in which the seed hole 26 is seeded and covered with soil.
FIG. 13 is a cross-sectional side view showing a state in which a seedling has grown.
[Explanation of symbols]
1 Compression Molding Medium 4 Nursery Tray 5 Nursery Pot 30 Nursery Box

Claims (5)

植物繊維と界面活性剤と農薬を混合して適正含水率まで乾燥させた後に、粘土質材を混合して圧縮成形したことを特徴とする培地。A medium characterized by mixing plant fibers, a surfactant, and an agrochemical and drying them to an appropriate moisture content, and then mixing and compression-molding a clay material. 混合後の粒径が1mm以下のものを圧縮成形した請求項1記載の培地。  The culture medium according to claim 1, wherein a medium having a particle diameter after mixing of 1 mm or less is compression molded. 植物繊維がピートモスである請求項1乃至2記載の培地。  The medium according to claim 1 or 2, wherein the plant fiber is peat moss. 粘土質材がベントナイト若しくはバーミキュライトである請求項1から請求項3の何れか1項に記載の培地。The culture medium according to any one of claims 1 to 3, wherein the clayey material is bentonite or vermiculite. 請求項1から請求項4の何れか1項に記載の培地を、錠剤状又は球状圧縮成形したことを特徴とする培地。A culture medium obtained by compressing the culture medium according to any one of claims 1 to 4 into a tablet shape or a spherical shape.
JP2000199160A 2000-06-30 2000-06-30 Culture medium Expired - Fee Related JP4670129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000199160A JP4670129B2 (en) 2000-06-30 2000-06-30 Culture medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000199160A JP4670129B2 (en) 2000-06-30 2000-06-30 Culture medium

Publications (2)

Publication Number Publication Date
JP2002017159A JP2002017159A (en) 2002-01-22
JP4670129B2 true JP4670129B2 (en) 2011-04-13

Family

ID=18697216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000199160A Expired - Fee Related JP4670129B2 (en) 2000-06-30 2000-06-30 Culture medium

Country Status (1)

Country Link
JP (1) JP4670129B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7129684B2 (en) * 2018-01-10 2022-09-02 みのる産業株式会社 oil absorber

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000116233A (en) * 1998-10-14 2000-04-25 Iseki & Co Ltd Medium
JP2000139205A (en) * 1989-07-21 2000-05-23 Takeda Engei Kk Artificial culture soil

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2508577B2 (en) * 1993-04-14 1996-06-19 日東紡績株式会社 Mixed medium
JPH10164975A (en) * 1996-12-12 1998-06-23 Kureha Chem Ind Co Ltd Water repellence suppression type peat-moss and material for agriculture and horticulture
JPH11266694A (en) * 1998-03-23 1999-10-05 Iseki & Co Ltd Culture medium and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000139205A (en) * 1989-07-21 2000-05-23 Takeda Engei Kk Artificial culture soil
JP2000116233A (en) * 1998-10-14 2000-04-25 Iseki & Co Ltd Medium

Also Published As

Publication number Publication date
JP2002017159A (en) 2002-01-22

Similar Documents

Publication Publication Date Title
CA2690272C (en) Compressed growing medium
US8381439B2 (en) Compressed growing medium including castings
US8544206B2 (en) Compressed growing medium
US9756798B2 (en) Burrow filling compressed growing medium
JP4670129B2 (en) Culture medium
JP2000116233A (en) Medium
JP4529211B2 (en) Seeding machine
JP4608720B2 (en) Culture medium
JPH11289861A (en) Culture medium
JP3932622B2 (en) Seedling method
JP2000004668A (en) Compression molded medium
JP2000201530A (en) Culture medium
JP3572683B2 (en) Seedling cultivation
JP2000217426A (en) Culture medium
JP2000014241A (en) Culture medium and method for raising seedling
JP2000217424A (en) Culture medium and device for compress forming the culture medium
JPH11113408A (en) Tray for raising seedling and raising of seedling
JPH09308386A (en) Paper cylinder filled with molded culture medium for raising seedling
JPH11266694A (en) Culture medium and its production
JP2001095391A (en) Culturing mat for growing seedling and cutting, potting coltore soil and its production thereof
JPH11151043A (en) Raising seedling tray and raising seedling using the same
KR20140006557A (en) Earthworm cast port using peat moss
JPH11137093A (en) Auxiliary tool for charging culture medium into seedling-raising pot and charging of culture medium into seedling-raising pot
JPH1175567A (en) Method of filling culture medium into seedling-raising pot
JPH1189444A (en) Growth of seedling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110103

R150 Certificate of patent or registration of utility model

Ref document number: 4670129

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees