JP4669624B2 - Crystallization reactor equipped with evaporative concentration means of treated water - Google Patents
Crystallization reactor equipped with evaporative concentration means of treated water Download PDFInfo
- Publication number
- JP4669624B2 JP4669624B2 JP2001100154A JP2001100154A JP4669624B2 JP 4669624 B2 JP4669624 B2 JP 4669624B2 JP 2001100154 A JP2001100154 A JP 2001100154A JP 2001100154 A JP2001100154 A JP 2001100154A JP 4669624 B2 JP4669624 B2 JP 4669624B2
- Authority
- JP
- Japan
- Prior art keywords
- crystallization
- crystallization reaction
- reaction tank
- treated water
- discharged
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Removal Of Specific Substances (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、原水中のフッ素、リンおよび重金属をはじめとする晶析対象成分を晶析除去する晶析反応装置に関する。
【0002】
【従来の技術】
工場などからの排水の水質については厳しい制限がなされているが、その規制は年々厳しくなる傾向にある。電子産業(特に半導体関連)、発電所、アルミニウム工業などから排出される原水中には、フッ素、リンまたは重金属類という、近年厳しい排水基準が設けられている元素が含まれている場合が多い。このため、これらを排水から効率良く除去することが求められており、フッ素、リン、重金属等を除去する従来の技術としては、凝集沈殿法、晶析法等が知られている。
【0003】
フッ素の除去技術としては、フッ素を含む原水に、水酸化カルシウム(Ca(OH)2)、塩化カルシウム(CaCl2)、炭酸カルシウム(CaCO3)をはじめとするカルシウム化合物を添加し、式(I)に示されるように、難溶性のフッ化カルシウムを生じさせることを基本とする。
Ca2++2F−→ CaF2↓ (I)
最も多く用いられているフッ化カルシウム沈殿法では、硫酸バン土、ポリ塩化アルミニウム、高分子凝集剤等を添加することにより、式(I)の反応により生成されたフッ化カルシウムをフロック化し、沈殿槽で固液分離をすることにより、原水からのフッ素除去を行っている。この沈殿法は、沈殿槽の設置面積が大きいこと、生成された沈殿汚泥の量が多いこと、汚泥の脱水性が良くないこと等が問題となっている。
【0004】
フッ化カルシウムの生成を利用した他のフッ素除去技術としては、特願昭59−63884号(特開昭60−206485号)に示されるように、フッ素とカルシウムを含有する種晶を充填した反応槽にフッ素含有原水をカルシウム剤と共に導入して、種晶上にフッ化カルシウムを析出させる、いわゆるフッ化カルシウム晶析法がある。この晶析法においては、一般的に、反応槽の底部から原水を導入し、種晶を流動化させながら上向流で通水して処理を行い、必要に応じて反応槽からの流出水を循環している。この方法の長所としては装置設置面積を低減できること、汚泥発生量が少ないこと等が挙げられる。なお、反応槽内に充填される種晶としては、フッ素とカルシウムを含有する粒子が一般的であるが、必ずしもこれに限定されるものではなく、砂や活性炭などの微細粒子が用いられる場合もある。
【0005】
また、原水からのリンの除去方法としては、物理化学的な方法や生物学的な方法があるが、生物学的なリン除去法は下水処理での利用が主であり、上述のような産業排水の処理においては、カルシウム化合物やアルミニウム化合物を用いた物理化学的なリン除去法が採用されることが多い。
カルシウム化合物によるリン除去技術としては、リンを含む原水に、水酸化カルシウム(Ca(OH)2)、塩化カルシウム(CaCl2)をはじめとするカルシウム化合物を添加し、式(II)および(III)に示されるように、難溶性のリン酸カルシウムおよびリン酸ヒドロキシアパタイト(以下、リン酸カルシウム等という)を生じさせることを基本とする。
3Ca2++2PO4 3−→Ca3(PO4)2↓ (II)
5Ca2++OH−+3PO4 3−→Ca5OH(PO4)3↓ (III)
最も多く用いられている凝集沈殿法では、硫酸バン土、ポリ塩化アルミニウム、高分子凝集剤等を添加することにより、式(II)、(III)の反応により生成されたリン酸カルシウム等をフロック化し、これを沈殿槽で固液分離することによって、原水からリンが除去される。この方法は沈殿槽の設置面積が大きいこと、生成された沈殿汚泥の量が多いこと、汚泥の脱水性が良くないこと等が問題となっている。
【0006】
リン酸カルシウムの生成を利用した他のリン除去技術としては、リンとカルシウムを含有する種晶、または砂や活性炭などの微細粒子を充填した反応槽に、リン含有原水をカルシウム剤と共に導入して、種晶上にリン酸カルシウムを析出させる、いわゆるリン酸カルシウム晶析法が提案されている。この方法の長所としては、装置設置面積を低減できること、汚泥発生量が少ないこと等が挙げられる。しかし、いわゆる下水処理の場合には、原水中のリンの濃度がそれほど高くない場合が多いことや、きわめて多量の原水の処理が要求される場合が多いことから、現時点ではあまり実用化されていない。
【0007】
さらに、銅、鉄、鉛などの重金属を原水から除去する技術としては、水酸化ナトリウムなどの添加によりpHを上昇させ、金属水酸化物の不溶体を生じさせることにより、凝集沈殿あるいは晶析除去する技術が代表的なものとして知られている。
【0008】
上述の様に、フッ素、リンおよび/または重金属を含む原水からこれらを除去するために晶析処理を利用することができ、該晶析処理に使用される従来の晶析反応装置の概略図を図3に示す。図3の態様においては、晶析反応装置は、内部に種晶2が充填され、原水中の晶析対象成分を晶析反応により除去する晶析反応槽1と、原水を該晶析反応槽1に供給する原水供給手段と、晶析用薬液を該晶析反応槽1に供給する晶析用薬液供給手段と、該晶析反応槽1から排出される処理水の少なくとも一部を該晶析反応槽1に返送する処理水循環手段とを具備している。また、原水供給手段は、原水を貯留する原水タンク3、該原水タンク3と晶析反応槽1とを連結する原水供給ライン4を具備する。晶析用薬液供給手段は、晶析用薬液を貯留する晶析用薬液タンク6、該晶析用薬液タンク6と晶析反応槽1とを連結する晶析用薬液供給ライン7を具備する。晶析反応槽1で得られる処理水は該晶析反応槽1の上部から処理水排出ライン8を通って排出され、該処理水排出ライン8には砂ろ過装置9、軟化装置10、精密ろ過膜装置11および逆浸透膜装置12が順次介装されている。また、図3の態様においては、処理水循環手段として、砂ろ過装置9の後段で処理水排出ライン8から処理水循環ライン13が分岐し、該処理水循環ライン13は晶析反応槽1と接続されている。
【0009】
【発明が解決しようとする課題】
晶析処理によって、原水からフッ素等の晶析対象成分を除去する場合には、晶析反応槽内で、晶析用薬液中の晶析反応成分(例えば、フッ化カルシウムの生成における「Ca」等)と、晶析対象成分との存在割合が、晶析対象成分の溶解度に対する過飽和条件の、液中に核が存在しなければ晶析反応を生じない準安定域に制御されることが要求される。この準安定域をはずれる場合、例えば、より過飽和度が大きい不安定域に達する場合には、晶析対象成分の反応物が種晶上に晶析するのではなく、微細な結晶を形成して処理水が白濁するという問題がある。また、晶析反応成分が少ない場合には、晶析が起こらず晶析対象成分を除去できない。この過飽和条件を適正な範囲に維持するためには、晶析反応槽における原水および晶析用薬液の供給部分で、晶析対象成分および晶析反応成分の濃度が一定以下になるように制御されている。このため、原水中の晶析対象成分の濃度が上昇するような場合には、原水の晶析反応槽への流入量を減らすことにより対応している。
しかし、上述の晶析対象成分の反応物による微細結晶の形成は単に晶析対象成分と晶析反応成分の濃度に依存するものではなく、水温の変動、共存する他のイオンや界面活性剤の混入などにより溶解度が変化した場合にも起こるものである。このため、原水および晶析用薬液の供給制御だけでは、晶析処理中に微細結晶の形成を完全に防止するように系を制御するのは困難である。
【0010】
晶析処理においては、晶析対象成分と晶析反応成分の反応物である難溶性物質を析出させることにより晶析対象成分を除去する。しかし、該反応物は難溶性であるが、溶解度の範囲内で処理水中に溶解するので、処理水は常に一定量の晶析対象成分を含むこととなる。例えば、晶析対象成分としてフッ素、晶析反応成分としてカルシウムが使用され、フッ化カルシウムを析出させる場合には、フッ化カルシウムの溶解度以下(Fとして8mg/L以下)の処理水を得るのは困難である。フッ素においては、排水基準が8mg/Lであるため、該処理水をそのまま環境中に放流するのは難しく、晶析反応だけでなく別の方法を組み合わせて晶析対象成分を除去する方法が必要とされている。
また、晶析反応においては、晶析対象成分を除去するために、過剰量の晶析反応成分が添加され、多量の晶析反応成分が処理水中に残存することとなる。例えば、上記フッ化カルシウムの場合においては、フッ化カルシウムを生成させるために添加されたカルシウムが処理水中に数百mg/L程度も残存する場合がある。このため、晶析反応により得られた処理水から、逆浸透膜装置、イオン交換装置等で含有されるイオンを除去する場合には、上記カルシウムによるスケーリングを防止するために軟化装置を用い、さらに微細結晶を除去するために精密ろ過膜装置等の除濁装置が必要となる。このように、従来の晶析反応装置においては、晶析処理後に種々の装置を設ける必要が生じ、これに伴った装置の逆洗排水処理など、フローが複雑になるという問題がある。
【0011】
本発明は、このような事情に鑑みてなされたものであって、フッ素、リンおよび/または重金属をはじめとする晶析対象成分を含む原水を晶析処理する晶析反応装置において、系内で生じた微細結晶を種晶として利用することにより、種晶の消費量を低減でき、晶析反応槽における過飽和度の維持が不完全であっても運転できる晶析反応装置を提供することを目的とする。また、本発明は、蒸発濃縮処理によって純度の高い水を回収できる晶析反応装置を提供することを目的とする。さらに、本発明は、従来のように砂ろ過装置、精密ろ過膜装置などの除濁装置、軟化装置などが不要な、簡易な晶析反応装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明は請求項1として、内部に種晶が充填され、原水中の晶析対象成分が低減された処理水を排出する晶析反応槽と、
前記原水を前記晶析反応槽に供給する原水供給手段と、
晶析用薬液を前記晶析反応槽に供給する晶析用薬液供給手段と、
前記晶析反応槽から排出される処理水の少なくとも一部を循環水として前記晶析反応槽に返送する処理水循環手段とを具備する晶析反応装置において、
前記晶析反応槽から排出される残りの処理水を加熱濃縮して濃縮液を生成し、同時に生じる水蒸気を系外に排出する蒸発濃縮装置と、
前記晶析反応槽から排出される残りの処理水を前記蒸発濃縮装置に供給する処理水供給ラインと、
前記蒸発濃縮装置から排出される濃縮液の少なくとも一部を前記晶析反応槽に返送する濃縮液返送ラインと、
前記蒸発濃縮装置から排出される濃縮液の残部を前記蒸発濃縮装置に循環させる濃縮液循環ラインとを具備する前記晶析反応装置を提供する。
本発明は請求項2として、前記蒸発濃縮装置で生じる濃縮液中の粒子を分級する粒子分級器をさらに具備し、前記粒子分級器が、粗粒部を前記濃縮液返送ラインを通じて前記晶析反応槽に返送し、微粒部を前記濃縮液循環ラインを通じて前記蒸発濃縮装置に循環するように、前記濃縮液返送ラインに接続されることを特徴とする請求項1記載の晶析反応装置を提供する。
本発明は請求項3として、前記晶析反応槽から排出される処理水または前記蒸発濃縮装置から排出される濃縮液を前記晶析反応装置の系外に排出する系外排出ラインをさらに具備し、前記系外排出ラインが前記処理水供給ラインおよび/または前記濃縮液循環ラインに接続されていることを特徴とする請求項1又は2記載の晶析反応装置を提供する。
本発明は請求項4として、前記系外排出ラインに介装された晶析対象成分を吸着除去する吸着手段と、該吸着手段の再生排水を原水供給手段に返送する再生排水返送ラインとを具備することを特徴とする請求項3記載の晶析反応装置を提供する。
【0013】
【発明の実施の形態】
図1に本発明の晶析反応装置の一態様を示し、以下、詳述する。本発明の晶析反応装置は、内部に種晶2が充填され、原水中の晶析対象成分が低減された処理水を排出する晶析反応槽1と、該原水を晶析反応槽1に供給する原水供給手段と、晶析用薬液を晶析反応槽1に供給する晶析用薬液供給手段と、該晶析反応槽から排出される処理水の少なくとも一部を晶析反応槽1に返送する処理水循環手段とを具備する晶析反応装置において、晶析反応槽1から排出される残りの処理水を加熱濃縮し、生じる水蒸気を系外に排出し、生じる濃縮液の少なくとも一部を晶析反応槽1に返送する蒸発濃縮手段をさらに具備することを特徴とする。
蒸発濃縮手段は本発明の目的を達成するものであれば任意の態様が可能であり、特に限定されるものではない。好ましくは、蒸発濃縮手段は、処理水供給ライン14から供給される処理水を加熱濃縮して濃縮液を生成し、同時に生じる水蒸気を系外に排出する蒸発濃縮装置15と、該蒸発濃縮装置15から排出される濃縮液の少なくとも一部を晶析反応槽1に返送する濃縮液返送ライン16と、該濃縮液の残部を蒸発濃縮装置15に循環させる濃縮液循環ライン17とを具備する態様であり、この態様は図1に示される。
【0014】
蒸発濃縮装置15は、処理水を加熱することにより濃縮し、濃縮液を製造できるものであれば任意の装置を使用できる。例えば、図1に例示されるような伝熱管が水平に配置され、上方から液を噴霧することにより濃縮を行う態様であっても良いし、伝熱管が鉛直に配置される態様も可能であり、特に限定されるものではない。図1の蒸発濃縮装置15においては、処理水供給ライン14から蒸発濃縮装置15の底部に処理水が供給される。蒸発濃縮装置15で製造された濃縮液は濃縮液返送ライン16を通って該蒸発濃縮装置15から排出される。排出された濃縮液の少なくとも一部はそのまま濃縮液返送ライン16を通って晶析反応槽1に返送される。また、蒸発濃縮装置15から排出される濃縮液の残部は、濃縮液返送ライン16から分岐した、濃縮液循環ライン17を通って蒸発濃縮装置15に循環される。図1の態様においては、蒸発濃縮装置15の底部から濃縮液が排出され、上部から該濃縮液が返送されているが、この態様に特に限定されるものではなく、任意の態様が可能である。
【0015】
本発明においては、処理水を蒸発濃縮装置15で濃縮することにより、処理水を過飽和状態にすることができ、該過飽和状態の濃縮液を晶析反応槽1に返送することにより晶析反応槽1内での晶析を有利に進めることができる。また、蒸発濃縮装置15においては濃縮を行うことにより微細結晶が生じ、該微細結晶を含む濃縮液を濃縮液循環ライン17を用いて循環させることにより、種晶2として使用可能な大きさにまで微細結晶を成長させることが可能となる。種晶2として使用可能な結晶は、濃縮液返送ライン16から晶析反応槽1に返送されて、種晶2として機能する。これにより、種晶2の補給量を減らすことができ経済的である。なお、種晶2として晶析反応槽1に維持されないような大きさの微細結晶は、晶析反応槽1から排出され蒸発濃縮装置15に戻される。
また、晶析反応槽1から排出される処理水が微細結晶を有する場合には、通常の晶析反応装置であれば、この微細結晶が装置の運転に悪影響を及ぼすこととなる。しかし、本発明の晶析反応装置においては、処理水中の微細結晶は蒸発濃縮装置15で濃縮され、微細結晶が成長し種晶2として使用される。つまり、本発明の晶析反応装置においては、処理水中に微細結晶が形成されても運転できるので、従来の晶析反応装置で要求されていた厳格な制御が不要になるという利点がある。
【0016】
本発明の晶析反応装置においては、蒸発濃縮装置15において、処理水を加熱することにより水蒸気が得られ、この水蒸気を凝縮することにより高純度の凝縮水を得ることができる。この凝縮水の導電率は濃縮液の1/1万程度(10μS/cm以下)であり、純水装置の原水として再利用することができるという利点がある。
【0017】
本発明の晶析反応装置は、図2の態様のように、濃縮液中に含まれる微細結晶を、大粒子を多く含む群である粗粒部と小粒子を多く含む群である微粒部の2つに分級することができる粒子分級器18を具備することができる。本発明において使用可能な粒子分級器18としては、流水中での沈降速度の差を利用して粗粒部と微粒部に分ける沈降分級器、粒子の沈降方向と逆向きに二次的な水流を加えて分級を行う水力分級器、粗粒の排出、洗浄に機械的な機構を用いる機械的分級器、遠心力場での沈降速度の差を利用するサイクロンセパレーターをはじめとする遠心分級器等が挙げられるが、これらに限定されるものではない。好ましくは、分離能に優れるという観点から、粒子分級器18は遠心分級器であり、より好ましくはサイクロンセパレーターである。
【0018】
粒子分級器18は、蒸発濃縮装置15から排出された濃縮液中に含まれる粒子を分級処理できるように、濃縮液返送ライン16に介装される。濃縮液に含まれる粒子を種晶2として利用する場合にはある程度の大きさを有することが好ましいので、粒子分級器18によって分級された粗粒部が濃縮液返送ライン16を通じて晶析反応槽1に返送され、微粒部は濃縮液循環ライン17を通じて蒸発濃縮装置15に戻され、さらに粒子の成長が行われる。このように、粒子分級器18を用いると、適切な大きさの粒子だけを種晶2として利用することが可能となる。
【0019】
本発明の晶析反応装置は、晶析反応槽1から排出される処理水または蒸発濃縮装置15から排出される濃縮液を該晶析反応装置の系外に排出する系外排出ライン19を具備することができる。本発明の晶析反応装置の運転を継続すると、晶析対象成分は晶析反応成分と反応して種晶2の上に析出するが、原水中に含まれる晶析対象成分以外の成分で、晶析反応成分と反応せず析出しない塩などが系内で濃縮される。このため、系内に循環するこれらの成分の排出が必要となる。本発明の晶析反応装置においては、微細結晶は種晶2として再利用されるので、微細結晶をなるべく系外に排出しないのが好ましい。この観点から、該系外排出ライン19は処理水供給ライン14および/または濃縮液循環ライン17に接続されるのが好ましく、より好ましくは、図2の態様のように処理水供給ライン14に接続されるものである。
【0020】
系外排出ライン19には、晶析対象成分を吸着除去する吸着手段20が介装されるのが好ましい。系外排出ライン19から排出される処理水または濃縮液には、晶析対象成分が含まれているので、吸着手段20を介装することにより、該晶析対象成分が除去された処理水または濃縮水が系外に排出されることとなる。吸着手段20は、吸着すべき晶析対象成分に応じて適宜選択され、例えば、フッ素の場合には、フッ素吸着剤が使用される。
系外排出ライン19には、該吸着手段20の再生排水を原水供給手段に返送する再生排水返送ライン21を設けることがより好ましい。吸着手段20を用いて晶析対象成分の吸着処理を行う場合には、吸着手段20の吸着能を回復させるために、定期的に再生処理を行うことが必要である。この再生処理においては晶析対象成分を高濃度で含む再生排水が排出されるので、該再生排水を再生排水返送ライン21によって原水タンク3などの原水供給手段に返送し、再度晶析処理を行うことにより、系外への晶析対象成分の排出が抑制できる。
【0021】
本発明における晶析反応槽1は、内部に種晶2が充填されており、該種晶2の表面上に、原水に含まれる晶析対象成分と、該晶析用薬液に含まれる晶析反応成分との反応物が析出することにより、原水中の晶析対象成分を低減させ、晶析対象成分の濃度が低下した処理水を排出するものである。晶析反応槽1は前記機能を有するものであれば、長さ、内径、形状などについては、任意の態様が可能であり、特に限定されるものではない。
【0022】
晶析反応槽1に充填される種晶2の充填量も、晶析対象成分を晶析反応により除去できるのであれば特に限定されるものではなく、晶析対象成分の濃度、種類、使用される晶析用薬液の種類、濃度、また、晶析反応装置の運転条件等に応じて適宜設定される。本発明の晶析反応装置においては、晶析反応槽1内に上向流を形成し、該上向流によって種晶2が流動するような流動床の晶析反応槽1が好ましいので、種晶2は流動可能な量で晶析反応槽1に充填されるのが好ましい。
種晶2は、本発明の目的に反しない限りは、任意の材質が可能であり、例えば、ろ過砂、活性炭、金属酸化物の1以上からなる粒子、または、晶析対象成分と晶析反応成分が反応して生じる化合物からなる粒子等が挙げられるが、これらに限定されるものではない。種晶2の上で晶析反応が起こりやすいという観点、また、種晶2の上に晶析対象成分と晶析反応成分の反応物が析出して成長した粒子から、より純粋な反応物を回収できるという観点から、晶析反応により生じる化合物と同じ化合物、例えば、原水中の晶析対象成分がフッ素であり、晶析用薬液がカルシウム化合物を含む薬液の場合には、フッ化カルシウム(蛍石)が種晶2として使用されるのが好ましい。
【0023】
また、晶析反応槽1内に上向流が形成される場合に、この上向流の流速が大きくなると、種晶2が晶析反応槽1の外に流出してしまうことがある。よって、晶析反応槽1内の上向流の流速を上げることができるという観点から、種晶2は比重が大きい粒子が好ましい。さらに、本発明の晶析反応装置において処理される原水はフッ酸をはじめとする、腐食性、酸性物質を含む場合が多いので、種晶2は金属などの様に、酸によって溶解される材質は好ましくない。腐食性でないとの観点からは、種晶2はケイ素、チタン、アルミニウム、マグネシウム、鉄、ジルコニウムなどをはじめとする金属元素の酸化物からなる粒子が好ましい。比重も考慮すると、ジルコンサンド、ガーネットサンド、サクランダム(商品名、日本カーリット株式会社製)がより好ましい。
種晶2の形状、粒径は、晶析反応槽1内での流速、晶析対象成分の濃度等に応じて適宜設定され、本発明の目的に反しない限りは特に限定されるものではない。
【0024】
本発明の原水供給手段は、原水を晶析反応槽1に供給できるものであれば任意の態様が可能である。図1の態様においては、原水供給手段は、原水を貯留する原水タンク3、該原水タンク3と晶析反応槽1とを連結する原水供給ライン4を具備している。原水を一旦貯留し、晶析対象成分を一定濃度にできるので、原水供給手段は、図1のように原水タンク3を有する態様が好ましい。
晶析用薬液供給手段は、晶析用薬液を晶析反応槽1に供給できるものであれば任意の態様が可能である。図1の態様においては、晶析用薬液供給手段は、晶析用薬液を貯留する晶析用薬液タンク6、該晶析用薬液タンク6と晶析反応槽1とを連結する晶析用薬液供給ライン7を具備する。
【0025】
原水供給ライン4および晶析用薬液供給ライン7は晶析反応槽1の任意の部分に接続することができる。本発明の晶析反応装置においては、晶析反応槽1内に上向流を形成して晶析処理を行う場合には、効率的に反応を行うという観点から、原水供給ライン4および晶析用薬液供給ライン7は晶析反応槽1の底部に接続されるのが好ましい。また、図1の態様においては、原水タンク3、原水供給ライン4、晶析用薬液タンク6、および晶析用薬液供給ライン7はそれぞれ1つであるが、これに限定されるものではなく、本発明の晶析反応装置においてはこれらが複数設けられても良い。
【0026】
晶析反応槽1は、晶析反応により生じた晶析対象成分が低減された処理水を該晶析反応槽1の外部に排出する。処理水は、晶析反応槽1における液体の流れに従って任意の部分から排出される。晶析反応槽1内で上向流が形成される場合には、晶析反応槽1の上部から処理水が排出される。図1の態様では、該晶析反応槽1の上部から排出される処理水は、処理水供給ライン14を通って蒸発濃縮装置15に供給される。
本発明の晶析反応装置は、晶析反応槽1から排出される処理水の少なくとも一部を該晶析反応槽1に返送する処理水循環手段を有する。処理水循環手段としては、処理水の少なくとも一部を晶析反応槽1に返送できるものであれば任意の態様が可能であり、特に限定されるものではない。図1の態様においては、処理水循環手段として、処理水循環ライン13が設けられている。処理水循環手段は、処理水を晶析反応槽1に循環させることにより、晶析反応槽1内に供給された原水を希釈すると共に、晶析用薬液と原水を混合し、さらに、晶析反応槽1内で所定の流れ、特に上向流を形成させるものである。よって、晶析反応槽1内で上向流が形成される場合には、図1のように、処理水循環ライン11は晶析反応槽1の底部に接続されるような態様が好ましい。
【0027】
本発明の晶析反応装置で処理される原水は、晶析処理により除去される晶析対象成分を含むものであれば、如何なる由来の原水であっても良く、例えば、半導体関連産業をはじめとする電子産業、発電所、アルミニウム工業などから排出される原水が挙げられるが、これらに限定されるものではない。
本発明における原水中の晶析対象成分としては、晶析反応により晶析し、原水中から除去可能であれば任意の元素が挙げられ、特に限定されるものではない。また、晶析対象成分となる元素の種類は1種類であっても良いし、2種類以上であっても良い。特に、原水中における存在が問題となるという観点から、本発明の晶析対象成分としては、フッ素、リンおよび重金属元素、並びにこれらの混合物が挙げられる。また、重金属元素としては、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Mo、Ag、Cd、Hg、Sn、Pb、Teが挙げられるが、これに限定されるものではない。
晶析対象成分となる元素は、晶析反応により晶析するものであれば、任意の状態で原水中に存在することが可能である。原水中に溶解しているという観点から、晶析対象成分はイオン化した状態であるのが好ましい。晶析対象成分がイオン化した状態としては、例えば、F−、Cu2+等をはじめとする原子がイオン化したもの、メタリン酸、ピロリン酸、オルトリン酸、三リン酸、四リン酸、亜リン酸等をはじめとする晶析対象成分を含む化合物がイオン化したもの、また、重金属等の錯イオンなどが挙げられるがこれらに限定されるものではない。
【0028】
晶析用薬液としては、晶析対象成分と反応して難溶性化合物を形成することにより、原水から晶析対象成分を除去できる晶析反応成分を含むものであれば、任意の化合物を含む薬液を使用することができ、除去されるべき晶析対象成分に応じて適宜設定される。なお、晶析反応成分とは、上述のように晶析対象成分と反応して難溶性化合物を形成するものであり、例えば、カルシウム、マグネシウム、ストロンチウム、バリウム等の元素またはイオンが挙げられるが、これらに限定されるものではない。また、晶析用薬液に含まれる、晶析反応成分は1種類であっても良いし、複数種類であっても良い。また、薬液を構成する液体媒体としては、本発明の目的に反しない限りは任意の物質が可能であり、好ましくは水である。
例えば、晶析対象成分がフッ素の場合には、晶析用薬液としては、水酸化カルシウム、塩化カルシウム、炭酸カルシウムをはじめとするカルシウム化合物、炭酸マグネシウム、塩化マグネシウムをはじめとするマグネシウム化合物、水酸化ストロンチウム、塩化ストロンチウムをはじめとするストロンチウム化合物を含む薬液、またはこれらの混合物を含む薬液が挙げられるがこれらに限定されるものではない。また、フッ素と反応して形成されるフッ化物の溶解度が低いという観点から、晶析用薬液としては、マグネシウム化合物および/またはカルシウム化合物を含む薬液が好ましく、より好ましくは、カルシウム化合物を含む薬液である。
【0029】
晶析対象成分がリン元素であり、原水中にリン酸等のリン化合物として存在している場合には、晶析用薬液としては、水酸化カルシウム、塩化カルシウムをはじめとするカルシウム化合物、塩化バリウムをはじめとするバリウム化合物、塩化マグネシウムをはじめとするマグネシウム化合物が挙げられるがこれらに限定されるものではない。リン酸等の形態のリンと反応して形成される化合物の溶解度が低いという観点から、晶析用薬液としては、カルシウム化合物および/またはバリウム化合物を含む薬液が好ましい。
晶析対象成分が上述の重金属である場合には、晶析用薬液としては、水酸化カルシウム、水酸化カリウム、水酸化ナトリウム、炭酸ナトリウムをはじめとする、水に溶解された場合にアルカリ性を示すアルカリ化合物が好ましいが、これらに限定されるものではない。
【0030】
晶析対象成分が原水中に複数種類存在し、この中の全部もしくは2以上の成分の晶析除去が望まれる場合には、除去が望まれる晶析対象成分のいずれに対しても難溶性塩を形成する晶析反応成分を含む晶析用薬液が適宜選択される。例えば、晶析対象成分としてフッ素とリン酸を含む場合には、晶析用薬液としては、フッ素およびリン酸のいずれにも適した晶析反応成分であるカルシウムを含む晶析用薬液が使用されても良いし、また、それぞれに適した複数の晶析反応成分を含む晶析用薬液でも良い。また、晶析用薬液中の晶析反応成分の濃度は、晶析反応槽の処理能力、循環される処理水量、晶析対象成分の種類および濃度等に応じて適宜設定される。
【0031】
【発明の効果】
以上、説明したように、本発明の晶析反応装置は、フッ素、リンおよび/または重金属をはじめとする晶析対象成分を含む原水を晶析処理する晶析反応装置において、晶析反応槽から排出される残りの処理水を加熱濃縮して濃縮液を生成し、同時に生じる水蒸気を系外に排出する蒸発濃縮装置と、晶析反応槽から排出される残りの処理水を蒸発濃縮装置に供給する処理水供給ラインと、蒸発濃縮装置から排出される濃縮液の少なくとも一部を晶析反応槽に返送する濃縮液返送ラインと、蒸発濃縮装置から排出される濃縮液の残部を蒸発濃縮装置に循環させる濃縮液循環ラインとを具備することにより、処理水を過飽和状態にして晶析反応槽で利用することができ、晶析反応槽内での晶析を有利に進めることが可能となる。また、処理水を濃縮することにより、微細結晶を成長させ種晶として晶析反応槽で利用できるので、種晶の補給量を減らすことができ経済的である。また、晶析反応槽から排出される処理液中に微細結晶が存在しても該微細結晶による弊害が少ないので、晶析反応槽における過飽和度の維持が不完全であっても運転することが可能となる。また、蒸発濃縮装置から排出される水蒸気を凝縮し、純度の高い凝縮水として有効利用できる。また、本発明の晶析反応装置は、従来のように砂ろ過装置、精密ろ過膜装置などの除濁装置、軟化装置などが不要な、簡易な晶析反応装置である。
さらに、本発明の晶析反応装置は、粒子分級器を具備することにより、適切な大きさの粒子だけを選別して種晶として利用し、小さな粒子は蒸発濃縮装置で成長させた後に種晶として使用するという、種晶の効率的な供給が可能となる。
さらに、系外排出ラインに晶析対象成分の吸着手段を設けることにより、晶析対象成分以外の塩を系外に排出し、本装置の運転を容易にすると共に、系外への晶析対象成分の排出も抑制できる。
【図面の簡単な説明】
【図1】図1は、本発明の晶析反応装置の一態様を示す概略図である。
【図2】図2は、本発明の晶析反応装置の一態様を示す概略図である。
【図3】図3は、従来の晶析反応装置を示す概略図である。
【符号の説明】
1 晶析反応槽
2 種晶
3 原水タンク
4 原水供給ライン
6 晶析用薬液タンク
7 晶析用薬液供給ライン
8 処理水排出ライン
9 砂ろ過装置
10 軟化装置
11 精密ろ過膜装置
12 逆浸透膜装置
13 処理水循環ライン
14 処理水供給ライン
15 蒸発濃縮装置
16 濃縮液返送ライン
17 濃縮液循環ライン
18 粒子分級器
19 系外排出ライン
20 吸着手段
21 再生排水返送ライン[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a crystallization reaction apparatus that crystallizes and removes crystallization target components including fluorine, phosphorus and heavy metals in raw water.
[0002]
[Prior art]
Although there are strict restrictions on the quality of wastewater from factories, the regulations tend to be stricter year by year. In many cases, raw water discharged from the electronics industry (especially semiconductor-related), power plants, aluminum industries, etc. contains elements such as fluorine, phosphorus, or heavy metals, which have recently established strict drainage standards. For this reason, it is required to efficiently remove these from wastewater. As conventional techniques for removing fluorine, phosphorus, heavy metals, and the like, a coagulation precipitation method, a crystallization method, and the like are known.
[0003]
As a technique for removing fluorine, calcium compounds such as calcium hydroxide (Ca (OH) 2 ), calcium chloride (CaCl 2 ), calcium carbonate (CaCO 3 ) are added to raw water containing fluorine, and the formula (I As shown in (2), it is based on the generation of sparingly soluble calcium fluoride.
Ca 2+ + 2F − → CaF 2 ↓ (I)
In the calcium fluoride precipitation method that is most often used, the calcium fluoride produced by the reaction of formula (I) is flocked and precipitated by adding vanous sulfate, polyaluminum chloride, polymer flocculant, etc. Fluorine is removed from raw water by solid-liquid separation in a tank. This precipitation method has problems such as a large installation area of the sedimentation tank, a large amount of the generated sludge, and poor dewaterability of the sludge.
[0004]
As another fluorine removal technique using the generation of calcium fluoride, as shown in Japanese Patent Application No. 59-63884 (Japanese Patent Laid-Open No. 60-206485), a reaction in which a seed crystal containing fluorine and calcium is filled is used. There is a so-called calcium fluoride crystallization method in which fluorine-containing raw water is introduced into a tank together with a calcium agent to precipitate calcium fluoride on a seed crystal. In this crystallization method, in general, raw water is introduced from the bottom of the reaction vessel , and the seed crystal is fluidized and passed in an upward flow for treatment. If necessary, the effluent from the reaction vessel Is circulating. Advantages of this method include a reduction in equipment installation area and a small amount of sludge generation. The seed crystals filled in the reaction tank are generally particles containing fluorine and calcium, but are not necessarily limited thereto, and fine particles such as sand and activated carbon may be used. is there.
[0005]
In addition, there are physicochemical methods and biological methods for removing phosphorus from raw water. However, biological phosphorus removal methods are mainly used in sewage treatment, and are In wastewater treatment, a physicochemical phosphorus removal method using a calcium compound or an aluminum compound is often employed.
As a phosphorus removal technique using a calcium compound, calcium compounds such as calcium hydroxide (Ca (OH) 2 ) and calcium chloride (CaCl 2 ) are added to raw water containing phosphorus, and the formulas (II) and (III) As shown in the above, it is based on the formation of hardly soluble calcium phosphate and hydroxyapatite phosphate (hereinafter referred to as calcium phosphate or the like).
3Ca 2+ + 2PO 4 3− → Ca3 (PO 4 ) 2 ↓ (II)
5Ca 2+ + OH − + 3PO 4 3− → Ca 5 OH (PO 4 ) 3 ↓ (III)
In the most commonly used coagulation precipitation method, calcium phosphate produced by the reaction of the formulas (II) and (III) is flocked by adding sulfite, polyaluminum chloride, polymer coagulant, etc. Phosphorus is removed from the raw water by solid-liquid separation in a precipitation tank . This method has problems such as a large installation area of the settling tank, a large amount of the generated sludge, and poor dewaterability of the sludge.
[0006]
As another phosphorus removal technique using the production of calcium phosphate, phosphorus-containing raw water and a calcium agent are introduced into a reaction tank filled with seed crystals containing phosphorus and calcium, or fine particles such as sand and activated carbon, and seeding is performed. A so-called calcium phosphate crystallization method in which calcium phosphate is precipitated on the crystal has been proposed. Advantages of this method include that the installation area of the apparatus can be reduced and the amount of sludge generated is small. However, in the case of so-called sewage treatment, since the concentration of phosphorus in the raw water is often not so high and the treatment of a very large amount of raw water is often required, it has not been practically used at present. .
[0007]
Furthermore, the technology for removing heavy metals such as copper, iron, and lead from raw water is to remove pH by increasing the pH by adding sodium hydroxide, etc., thereby generating insoluble metal hydroxide, thereby removing coagulated sediment or crystallization. This technique is known as a representative technique.
[0008]
As described above, a crystallization process can be used to remove these from raw water containing fluorine, phosphorus and / or heavy metals, and a schematic diagram of a conventional crystallization reaction apparatus used for the crystallization process is shown. As shown in FIG. In the embodiment of FIG. 3, the crystallization reaction apparatus includes a crystallization reaction tank 1 that is filled with a
[0009]
[Problems to be solved by the invention]
When the crystallization target component such as fluorine is removed from the raw water by the crystallization treatment, the crystallization reaction component (for example, “Ca” in the formation of calcium fluoride) in the crystallization chemical solution in the crystallization reaction tank . Etc.) and the component to be crystallized must be controlled to a metastable range in which the crystallization reaction does not occur if there are no nuclei in the liquid, in the supersaturated condition with respect to the solubility of the component to be crystallized. Is done. When the metastable region is deviated, for example, when an unstable region with a higher degree of supersaturation is reached, the reactant of the crystallization target component does not crystallize on the seed crystal, but forms fine crystals. There is a problem that the treated water becomes cloudy. Moreover, when there are few crystallization reaction components, crystallization does not occur and crystallization target components cannot be removed. In order to maintain this supersaturation condition in an appropriate range, the concentration of the crystallization target component and the crystallization reaction component is controlled to be below a certain level in the supply portion of the raw water and the crystallization chemical solution in the crystallization reaction tank . ing. For this reason, when the density | concentration of the crystallization target component in raw | natural water rises, it respond | corresponds by reducing the inflow amount to the crystallization reaction tank of raw | natural water.
However, the formation of fine crystals by the above-mentioned reactants of the crystallization target component does not simply depend on the concentrations of the crystallization target component and the crystallization reaction component, but the fluctuation of the water temperature, the presence of other ions and surfactants that coexist. It also occurs when the solubility changes due to contamination. For this reason, it is difficult to control the system so as to completely prevent the formation of fine crystals during the crystallization process only by controlling the supply of the raw water and the chemical solution for crystallization.
[0010]
In the crystallization treatment, the crystallization target component is removed by precipitating a hardly soluble substance that is a reaction product of the crystallization target component and the crystallization reaction component. However, although the reaction product is hardly soluble, it is dissolved in the treated water within the solubility range, so that the treated water always contains a certain amount of the crystallization target component. For example, when fluorine is used as a crystallization target component and calcium is used as a crystallization reaction component, and calcium fluoride is precipitated, treated water having a solubility of calcium fluoride or less (F as 8 mg / L or less) is obtained. Have difficulty. In fluorine, since the wastewater standard is 8 mg / L, it is difficult to discharge the treated water as it is into the environment, and it is necessary to have a method for removing the crystallization target component by combining not only the crystallization reaction but also another method. It is said that.
In the crystallization reaction, an excessive amount of the crystallization reaction component is added to remove the crystallization target component, and a large amount of the crystallization reaction component remains in the treated water. For example, in the case of the above calcium fluoride, the calcium added to generate calcium fluoride may remain in the treated water as much as several hundred mg / L. For this reason, when removing ions contained in the reverse osmosis membrane device, ion exchange device, etc. from the treated water obtained by the crystallization reaction, a softening device is used to prevent the scaling caused by the calcium. In order to remove the fine crystals, a turbidity device such as a microfiltration membrane device is required. As described above, in the conventional crystallization reaction apparatus, it is necessary to provide various apparatuses after the crystallization process, and there is a problem that the flow becomes complicated such as the backwash drainage process of the apparatus.
[0011]
The present invention has been made in view of such circumstances, and in a crystallization reaction apparatus for crystallizing raw water containing components to be crystallized including fluorine, phosphorus and / or heavy metals, The purpose of the present invention is to provide a crystallization reaction apparatus that can reduce the consumption of seed crystals by using the generated fine crystals as seed crystals, and can be operated even if the supersaturation degree in the crystallization reaction tank is incompletely maintained. And Another object of the present invention is to provide a crystallization reaction apparatus that can recover high-purity water by evaporation concentration treatment. Furthermore, an object of the present invention is to provide a simple crystallization reaction device that does not require a turbidity device such as a sand filtration device and a microfiltration membrane device, a softening device, and the like as in the prior art.
[0012]
[Means for Solving the Problems]
The present invention as claimed in claim 1, a crystallization reaction tank for discharging treated water in which seed crystals are filled and crystallization target components in raw water are reduced;
A raw water supply means for supplying the raw water to said crystallization reaction tank,
And crystallization析用chemical supply means for supplying the crystal析用chemical in said crystallization reaction tank,
In the crystallization reaction apparatus and a treated water circulating means for returning at least a portion of the treated water discharged from the crystallization reaction tank to said crystallization reaction tank as a circulating water,
Evaporation concentration apparatus that heats and concentrates the remaining treated water discharged from the crystallization reaction tank to produce a concentrate, and simultaneously discharges the generated water vapor out of the system ,
A treated water supply line for supplying the remaining treated water discharged from the crystallization reaction tank to the evaporative concentration apparatus;
And concentrate return line for returning at least a portion of the concentrate discharged from the evaporation device to the crystallization reaction tank,
Provided is the crystallization reaction device comprising a concentrate circulation line for circulating the remainder of the concentrate discharged from the evaporation concentration device to the evaporation concentration device .
The present invention further includes a particle classifier for classifying particles in the concentrated liquid generated in the evaporative concentration apparatus as claimed in
According to a third aspect of the present invention, there is further provided an out-of-system discharge line for discharging the treated water discharged from the crystallization reaction tank or the concentrated liquid discharged from the evaporative concentration apparatus to the outside of the crystallization reaction apparatus. The crystallization reaction apparatus according to
According to a fourth aspect of the present invention, there is provided an adsorption means for adsorbing and removing a crystallization target component interposed in the out-of-system discharge line, and a reclaimed waste water return line for returning the regenerated waste water of the adsorption means to the raw water supply means. A crystallization reaction apparatus according to
[0013]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment of the crystallization reaction apparatus of the present invention, which will be described in detail below. The crystallization reaction apparatus of the present invention includes a crystallization reaction tank 1 filled with a
The evaporative concentration means can be in any form as long as it achieves the object of the present invention, and is not particularly limited. Preferably, the evaporative concentration means heats and concentrates the treated water supplied from the treated
[0014]
As the
[0015]
In the present invention, by concentrating the treated water in the
Moreover, when the treated water discharged | emitted from the crystallization reaction tank 1 has a fine crystal, if it is a normal crystallization reaction apparatus, this fine crystal will have a bad influence on operation | movement of an apparatus. However, in the crystallization reaction apparatus of the present invention, the fine crystals in the treated water are concentrated by the
[0016]
In the crystallization reaction apparatus of the present invention, steam is obtained by heating the treated water in the
[0017]
In the crystallization reaction apparatus of the present invention, as shown in FIG. 2, the fine crystals contained in the concentrated liquid are divided into a coarse portion which is a group containing a large amount of particles and a fine portion which is a group containing a lot of small particles. A
[0018]
The
[0019]
The crystallization reaction apparatus of the present invention includes an out-of-
[0020]
The out-of-
More preferably, the out-of-
[0021]
The crystallization reaction tank 1 in the present invention is filled with a
[0022]
The amount of
The
[0023]
In addition, when an upward flow is formed in the crystallization reaction tank 1, the
The shape and particle size of the
[0024]
The raw water supply means of the present invention can be in any form as long as the raw water can be supplied to the crystallization reaction tank 1. In the embodiment of FIG. 1, the raw water supply means includes a
The crystallization chemical supply means can be in any form as long as it can supply the crystallization chemical to the crystallization reaction tank 1. In the embodiment of FIG. 1, the crystallization chemical supply means includes a crystallization
[0025]
The raw
[0026]
The crystallization reaction tank 1 discharges treated water in which the crystallization target component generated by the crystallization reaction is reduced to the outside of the crystallization reaction tank 1. The treated water is discharged from an arbitrary part according to the liquid flow in the crystallization reaction tank 1. When the upward flow is formed in the crystallization reaction tank 1, the treated water is discharged from the top of the crystallization reaction tank 1. In the embodiment of FIG. 1, the treated water discharged from the upper part of the crystallization reaction tank 1 is supplied to the
Crystallization reaction apparatus of the present invention includes a processing water circulation means for returning at least a portion of the treated water discharged from the crystallization reaction tank 1 to該晶analysis reactor 1. The treatment water circulation means can be any mode as long as at least a part of the treatment water can be returned to the crystallization reaction tank 1, and is not particularly limited. In the embodiment of FIG. 1, a treated
[0027]
The raw water to be treated by the crystallization reaction apparatus of the present invention may be any raw water as long as it contains the crystallization target component to be removed by the crystallization treatment, such as the semiconductor-related industry. Examples include, but are not limited to, raw water discharged from the electronics industry, power plant, aluminum industry, and the like.
The crystallization target component in the raw water in the present invention includes any element as long as it is crystallized by a crystallization reaction and can be removed from the raw water, and is not particularly limited. Moreover, the kind of element used as a crystallization target component may be one, and may be two or more. In particular, from the viewpoint that existence in raw water becomes a problem, examples of the crystallization target component of the present invention include fluorine, phosphorus, heavy metal elements, and mixtures thereof. Examples of heavy metal elements include, but are not limited to, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Ag, Cd, Hg, Sn, Pb, and Te.
Element serving as a crystallization target component, if be construed as constituting crystallization by the crystallization reaction, it may be present in the raw water in any state. From the viewpoint of being dissolved in the raw water, the crystallization target component is preferably in an ionized state. Examples of the state in which the crystallization target component is ionized include those in which atoms such as F − and Cu 2+ are ionized, metaphosphoric acid, pyrophosphoric acid, orthophosphoric acid, triphosphoric acid, tetraphosphoric acid, phosphorous acid, and the like. Examples include compounds in which a compound containing a crystallization target component such as is ionized, and complex ions such as heavy metals, but are not limited thereto.
[0028]
As the chemical solution for crystallization, a chemical solution containing any compound as long as it contains a crystallization reaction component capable of removing the crystallization target component from raw water by reacting with the crystallization target component to form a hardly soluble compound. Is appropriately set according to the crystallization target component to be removed. The crystallization reaction component is a component that reacts with the crystallization target component to form a hardly soluble compound as described above, and examples thereof include elements or ions such as calcium, magnesium, strontium, and barium. It is not limited to these. Further, the crystallization reaction component contained in the chemical liquid for crystallization may be one kind or plural kinds. Moreover, as a liquid medium which comprises a chemical | medical solution, unless it is contrary to the objective of this invention, arbitrary substances are possible, Preferably it is water.
For example, when the component to be crystallized is fluorine, the chemical solution for crystallization includes calcium compounds such as calcium hydroxide, calcium chloride and calcium carbonate, magnesium compounds such as magnesium carbonate and magnesium chloride, Examples include, but are not limited to, a chemical solution containing strontium compounds such as strontium and strontium chloride, or a chemical solution containing a mixture thereof. Further, from the viewpoint of low solubility of fluoride formed by reacting with fluorine, the chemical solution for crystallization is preferably a chemical solution containing a magnesium compound and / or a calcium compound, more preferably a chemical solution containing a calcium compound. is there.
[0029]
In the case where the crystallization target component is elemental phosphorus and is present in the raw water as a phosphorous compound such as phosphoric acid, the crystallization chemical solution includes calcium hydroxide, calcium chloride and other calcium compounds, and barium chloride. And barium compounds, and magnesium compounds such as magnesium chloride, but are not limited thereto. From the viewpoint of low solubility of a compound formed by reacting with phosphorus in a form such as phosphoric acid, the chemical solution containing a calcium compound and / or a barium compound is preferable as the chemical solution for crystallization.
When the crystallization target component is the above-mentioned heavy metal, the chemical solution for crystallization shows alkalinity when dissolved in water such as calcium hydroxide, potassium hydroxide, sodium hydroxide, sodium carbonate. Alkali compounds are preferred, but are not limited to these.
[0030]
When there are multiple types of crystallization target components in the raw water, and crystallization removal of all or two or more of these components is desired, a sparingly soluble salt for any of the crystallization target components desired to be removed A chemical liquid for crystallization containing a crystallization reaction component for forming s is appropriately selected. For example, when fluorine and phosphoric acid are included as crystallization target components, a crystallization chemical solution containing calcium, which is a crystallization reaction component suitable for both fluorine and phosphoric acid, is used as the crystallization chemical solution. Alternatively, it may be a crystallization chemical solution containing a plurality of crystallization reaction components suitable for each. The concentration of the crystallization reaction component in the crystallization chemical solution is appropriately set according to the treatment capacity of the crystallization reaction tank , the amount of treated water to be circulated, the type and concentration of the crystallization target component, and the like.
[0031]
【The invention's effect】
As described above, the crystallization reaction apparatus of the present invention, fluorine, in the crystallization reaction apparatus for crystallization treatment raw water containing crystallization target component including phosphor and / or heavy metals, from the crystallization reaction tank The remaining treated water discharged is heated and concentrated to produce a concentrate, and at the same time, the water vapor generated from the system is discharged out of the system, and the remaining treated water discharged from the crystallization reaction tank is supplied to the evaporation concentrator. The treated water supply line, the concentrate return line for returning at least part of the concentrate discharged from the evaporation concentrator to the crystallization reaction tank, and the remainder of the concentrate discharged from the evaporator concentrator to the evaporation concentrator By providing the concentrated liquid circulation line to be circulated , the treated water can be used in the crystallization reaction tank in a supersaturated state, and the crystallization in the crystallization reaction tank can be advantageously advanced. Further, by concentrating the treated water, fine crystals can be grown and used as seed crystals in the crystallization reaction tank, so that the amount of seed crystals replenished can be reduced, which is economical. In addition, even if fine crystals are present in the treatment liquid discharged from the crystallization reaction tank, there are few harmful effects due to the fine crystals. It becomes possible. Moreover, the water vapor | steam discharged | emitted from an evaporative concentration apparatus can be condensed, and it can utilize effectively as condensed water with high purity. In addition, the crystallization reaction apparatus of the present invention is a simple crystallization reaction apparatus that does not require a turbidity removal apparatus such as a sand filtration apparatus or a microfiltration membrane apparatus, a softening apparatus, and the like as in the prior art.
Furthermore, the crystallization reaction apparatus of the present invention is equipped with a particle classifier, so that only particles of an appropriate size are selected and used as seed crystals, and small particles are grown as seed crystals after being grown in an evaporation concentrator. As a result, it is possible to efficiently supply seed crystals.
Furthermore, by providing a means for adsorbing the crystallization target component in the out-of-system discharge line, the salt other than the crystallization target component is discharged out of the system, facilitating the operation of the apparatus, and the crystallization target out of the system. The discharge of components can also be suppressed.
[Brief description of the drawings]
FIG. 1 is a schematic view showing one embodiment of a crystallization reaction apparatus of the present invention.
FIG. 2 is a schematic view showing one embodiment of a crystallization reaction apparatus of the present invention.
FIG. 3 is a schematic view showing a conventional crystallization reaction apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1
Claims (4)
前記原水を前記晶析反応槽に供給する原水供給手段と、
晶析用薬液を前記晶析反応槽に供給する晶析用薬液供給手段と、
前記晶析反応槽から排出される処理水の少なくとも一部を循環水として前記晶析反応槽に返送する処理水循環手段とを具備する晶析反応装置において、
前記晶析反応槽から排出される残りの処理水を加熱濃縮して濃縮液を生成し、同時に生じる水蒸気を系外に排出する蒸発濃縮装置と、
前記晶析反応槽から排出される残りの処理水を前記蒸発濃縮装置に供給する処理水供給ラインと、
前記蒸発濃縮装置から排出される濃縮液の少なくとも一部を前記晶析反応槽に返送する濃縮液返送ラインと、
前記蒸発濃縮装置から排出される濃縮液の残部を前記蒸発濃縮装置に循環させる濃縮液循環ラインとを具備する前記晶析反応装置。A crystallization reaction tank for discharging treated water in which seed crystals are filled and crystallization target components in raw water are reduced,
A raw water supply means for supplying the raw water to said crystallization reaction tank,
And crystallization析用chemical supply means for supplying the crystal析用chemical in said crystallization reaction tank,
In the crystallization reaction apparatus and a treated water circulating means for returning at least a portion of the treated water discharged from the crystallization reaction tank to said crystallization reaction tank as a circulating water,
Evaporation concentration apparatus that heats and concentrates the remaining treated water discharged from the crystallization reaction tank to produce a concentrate, and simultaneously discharges the generated water vapor out of the system ,
A treated water supply line for supplying the remaining treated water discharged from the crystallization reaction tank to the evaporative concentration apparatus;
And concentrate return line for returning at least a portion of the concentrate discharged from the evaporation device to the crystallization reaction tank,
The crystallization reaction apparatus comprising: a concentrate circulation line for circulating the remainder of the concentrate discharged from the evaporation concentration apparatus to the evaporation concentration apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001100154A JP4669624B2 (en) | 2001-03-30 | 2001-03-30 | Crystallization reactor equipped with evaporative concentration means of treated water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001100154A JP4669624B2 (en) | 2001-03-30 | 2001-03-30 | Crystallization reactor equipped with evaporative concentration means of treated water |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2002292201A JP2002292201A (en) | 2002-10-08 |
JP2002292201A5 JP2002292201A5 (en) | 2007-11-29 |
JP4669624B2 true JP4669624B2 (en) | 2011-04-13 |
Family
ID=18953623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001100154A Expired - Fee Related JP4669624B2 (en) | 2001-03-30 | 2001-03-30 | Crystallization reactor equipped with evaporative concentration means of treated water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4669624B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102803154A (en) * | 2009-06-29 | 2012-11-28 | 纳尔科公司 | Fluid Treatment Reactor |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4657680B2 (en) * | 2004-11-05 | 2011-03-23 | 悠平 稲森 | Recovery method of phosphorus component |
JP4503523B2 (en) * | 2005-10-27 | 2010-07-14 | 荏原エンジニアリングサービス株式会社 | A method and apparatus for treating wastewater containing a crystallization target component. |
CN102631793A (en) * | 2012-03-05 | 2012-08-15 | 郑加福 | Automatically cleaned multiple-effect evaporation crystallizer |
JP6256496B2 (en) * | 2015-03-06 | 2018-01-10 | Jfeスチール株式会社 | Crystallizer and crystallization method |
JP6427235B2 (en) * | 2017-07-31 | 2018-11-21 | 株式会社ササクラ | Method of evaporation of aqueous solution |
CN111646581A (en) * | 2020-06-28 | 2020-09-11 | 西安西热水务环保有限公司 | Crystallization softening anti-scale water treatment device and method without sludge discharge |
CN114733225B (en) * | 2022-03-09 | 2023-11-03 | 福建省南仹生物科技有限公司 | Crystallization tank for hyodeoxycholic acid extraction |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58183902A (en) * | 1982-04-23 | 1983-10-27 | Japan Organo Co Ltd | Vacuum evaporation type crystallizing apparatus |
JPS62103050A (en) * | 1985-10-28 | 1987-05-13 | Hitachi Plant Eng & Constr Co Ltd | Method of recovering edta from waste liquor of edta |
JPH05309203A (en) * | 1992-05-07 | 1993-11-22 | Tsukishima Kikai Co Ltd | Method for adiabatic cooling type melt crystallization where absorbing condenser is provided and device therefor |
JPH1085761A (en) * | 1996-09-13 | 1998-04-07 | Japan Organo Co Ltd | Method and apparatus for treating drainage containing fluorine |
JPH11310414A (en) * | 1998-04-27 | 1999-11-09 | Mitsui Chem Inc | Production of highly pure lithium carbonate |
JP2000024639A (en) * | 1998-07-07 | 2000-01-25 | Japan Organo Co Ltd | Evaporating and concentrating method of sulfuric acid- containing waste water and device therefor |
JP2000024638A (en) * | 1998-07-07 | 2000-01-25 | Japan Organo Co Ltd | Evaporative concentrating method of sulfuric acid- containing waste water and evaporative concentrating device |
-
2001
- 2001-03-30 JP JP2001100154A patent/JP4669624B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58183902A (en) * | 1982-04-23 | 1983-10-27 | Japan Organo Co Ltd | Vacuum evaporation type crystallizing apparatus |
JPS62103050A (en) * | 1985-10-28 | 1987-05-13 | Hitachi Plant Eng & Constr Co Ltd | Method of recovering edta from waste liquor of edta |
JPH05309203A (en) * | 1992-05-07 | 1993-11-22 | Tsukishima Kikai Co Ltd | Method for adiabatic cooling type melt crystallization where absorbing condenser is provided and device therefor |
JPH1085761A (en) * | 1996-09-13 | 1998-04-07 | Japan Organo Co Ltd | Method and apparatus for treating drainage containing fluorine |
JPH11310414A (en) * | 1998-04-27 | 1999-11-09 | Mitsui Chem Inc | Production of highly pure lithium carbonate |
JP2000024639A (en) * | 1998-07-07 | 2000-01-25 | Japan Organo Co Ltd | Evaporating and concentrating method of sulfuric acid- containing waste water and device therefor |
JP2000024638A (en) * | 1998-07-07 | 2000-01-25 | Japan Organo Co Ltd | Evaporative concentrating method of sulfuric acid- containing waste water and evaporative concentrating device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102803154A (en) * | 2009-06-29 | 2012-11-28 | 纳尔科公司 | Fluid Treatment Reactor |
CN102803154B (en) * | 2009-06-29 | 2014-07-09 | 纳尔科公司 | Fluid Treatment Reactor |
Also Published As
Publication number | Publication date |
---|---|
JP2002292201A (en) | 2002-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103813987B (en) | The processing of phosphatic waste water and fluosilicate and phosphatic recovery | |
JP6005283B2 (en) | Water treatment method and water treatment system | |
JP4669624B2 (en) | Crystallization reactor equipped with evaporative concentration means of treated water | |
JP5968524B2 (en) | Water treatment method and water treatment system | |
JP4693128B2 (en) | Phosphorus recovery method and phosphorus recovery system | |
JP2002292201A5 (en) | ||
JP2001096281A (en) | Method of recovering desalted water from fluorine- containing waste water | |
JP2002292204A5 (en) | ||
JP2002292204A (en) | Crystallization reaction apparatus provided with means for controlling amount of raw water to be supplied and crystallization method to use the same | |
JP4669625B2 (en) | Crystallization reactor equipped with crystallization reaction component recovery means | |
JP2003305458A (en) | Method for treating fluorine-containing waste water | |
JP4842450B2 (en) | Crystallization reactor equipped with turbidity measuring means and crystallization treatment method using the same | |
JP4139600B2 (en) | Treatment method of wastewater containing fluorine | |
JP2002292202A5 (en) | ||
JP2009119382A (en) | Crystallization reactor and crystallization reaction method | |
JP2002292205A5 (en) | ||
JP4370745B2 (en) | Method for treating fluorine-containing water containing phosphate ions | |
JP2002035766A (en) | Method for removing fluorine and phosphorus in wastewater | |
JP4104855B2 (en) | Crystallization method | |
CN1203193A (en) | Inhibition of magnesium scale formation in production of soda ash from trona | |
JP4369083B2 (en) | Crystallization reactor management method | |
JP2002145607A (en) | Apparatus and method of recovering phosphorus | |
JP2006007010A (en) | Crystallization treatment method of fluorine-containing water | |
CN108726761A (en) | A kind of processing method of catalyst production waste water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20070309 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071012 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071012 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101102 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101227 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140121 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4669624 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |