JP4668659B2 - Joining member and method for producing joining member - Google Patents

Joining member and method for producing joining member Download PDF

Info

Publication number
JP4668659B2
JP4668659B2 JP2005096826A JP2005096826A JP4668659B2 JP 4668659 B2 JP4668659 B2 JP 4668659B2 JP 2005096826 A JP2005096826 A JP 2005096826A JP 2005096826 A JP2005096826 A JP 2005096826A JP 4668659 B2 JP4668659 B2 JP 4668659B2
Authority
JP
Japan
Prior art keywords
wafer
bonding
joining member
joining
wafers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005096826A
Other languages
Japanese (ja)
Other versions
JP2006278807A (en
Inventor
祐樹 有塚
尚武 佐野
実 北田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2005096826A priority Critical patent/JP4668659B2/en
Publication of JP2006278807A publication Critical patent/JP2006278807A/en
Application granted granted Critical
Publication of JP4668659B2 publication Critical patent/JP4668659B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ウエハ同士の接合部材、あるいは、ウエハとウエハとは別の素材との接合部材と、それらの作製方法に関する。
特に、マスクの分野や微小電気機械システム(Micro Electro Mechanical System、以下、MEMSとも言う)の分野に関する。
マスクとしては、荷電粒子線転写用マスク、X線転写マスク等、ウエハを用いた構造体が挙げられ、また、MEMSとしては、ウエハ上に形成された、ダイヤフラム構造、梁構造、メンブレン構造を有する素子や構造体が挙げられる。
尚、荷電粒子線転写用マスクの主な例としては、イオンビーム用転写マスクの他に、電子線投影リソグラフィ(Electron Projection Lithography(以下、EPLとも言う)マスク、低速電子線近接投影リソグラフィ(Low−Energy Electron−beam Proximity−projection Lithography(以下、LEEPLとも言う、尚、LEEPLは登録商標である)マスク等の電子線転写用マスクがある。
尚、ここでは、ウエハとは、未処理のウエハ、処理済みのウエハを含むもので、処理済みのウエハとして、上記の各ウエハ構造体を含む。
The present invention relates to a bonding member between wafers, or a bonding member between a wafer and a material different from the wafer, and a manufacturing method thereof.
In particular, the present invention relates to the field of masks and the field of micro electro mechanical systems (hereinafter also referred to as MEMS).
Examples of the mask include a structure using a wafer such as a charged particle beam transfer mask and an X-ray transfer mask, and the MEMS has a diaphragm structure, a beam structure, and a membrane structure formed on the wafer. Examples include elements and structures.
As main examples of the charged particle beam transfer mask, in addition to the ion beam transfer mask, an electron projection lithography (hereinafter also referred to as EPL) mask, a low-speed electron beam proximity projection lithography (Low-) There is an electron beam transfer mask such as an Energy Electron-Beam Proximity-Projection Lithography (hereinafter also referred to as LEEPL, LEEPL is a registered trademark).
Here, the wafer includes an unprocessed wafer and a processed wafer. The processed wafer includes each of the above wafer structures.

近年の微細加工技術の進展に伴い、例えば、EPL、LEEPL等の電子線マスクの開発や、MEMS等の開発に伴い、ウエハ同士を接合、あるいは、ウエハとフレーム等のウエハとは同素材または異素材からなる材料との接合することがある。
ここでは、ウエハの接合としては、ウエハ同士あるいはウエハとは別の素材を何らかの方法により可逆的、あるいは不可逆的に接着することを意味するが、ここでは「不可逆的」(つまり二度と剥れないこと)な接合を目標としている。
接合方法として、代表的には、(1)フュージョン接合1(直接接合)、(2)フュージョン接合2(Si−O−Si接合)、(3)陽極接合、(4)金属接合、(5)接着剤による接合が挙げられるが、これらについて、以下、簡単に説明しておく。
<(1)フュージョン接合1(直接接合)>
Si表面をプラズマなどで処理し、平坦面同士を直接接合させるもので、ウエハ同士の接合の場合、プラズマ処理によりSiのダングリングボンドを露出させ、その状態で、ウエハ同士を接触させ、必要に応じて圧力と熱を印加すると、Siのダングリングボンド同士が接合される、とされている。
この接合は、低温でのプロセスが可能であり、表面処理や、熱、圧力の印加がなされる。
MEMS等の作製において用いられている。
特許 WO9910927号 (US19970057413(優先権主張)) <(2)フュージョン接合2(Si−O−Si接合)> Si表面に、SiO2 を、片側あるいは両側に形成し、親水性処理を施した上で密着させ、加熱することで、親水基(OH基)を反応させ、これにより、余分なH2Oを排し、SiとOによる結合によってウエハを接合させるものである。 低温でも接合が可能であるが、十分な接合力を得ようとする場合には、一般に1000℃以上の温度が必要であり、他にも表面処理や、圧力の印加がなされる場合がある。 ウエハ製造(Silicon On Insulator)、MEMSの作製に用いられている。 応用物理 第63巻 第11号 1994 「ULSIのための貼り合わせSOI技術」<(3)陽極接合> 可動イオン(主としてナトリウム)を含むガラスとシリコンウエハを密着する方法である。 接合時は上述のガラスとウエハを重ね合わせて加熱することで、ガラス側を軟化させると同時に、シリコン側を陽極として両者の間に高電圧を印加する。 これによって、静電引力による接合力が得られる。 この静電引力は、電圧を切り、温度を戻すことで電気的な二重層が固定されるため、結合力が維持される。 半導体製造装置用語辞典 第5版 (社)日本半導体製造装置協会 編 日刊工業新聞社<(4)金属接合> 対向する接合面の両側、あるいは片側に金属膜を形成し、密着状態にしたうえで、金属が溶融して溶け合うか、あるいは、対面させた基材と共晶化する加熱、加圧条件にて、加熱、加圧して、場合によっては、超音波振動を加えて接合を行うものである。 Siを接合させるものとしては、AuまたはAuを含むはんだ材がよく適用されている。 接合条件となる温度、圧力に到達して溶融、あるいは基材との共晶化する前は、金属と基材との密着性(濡れ性)が芳しくなく、剥がれを起こす可能性がある場合が存在するが、その際には基材と金属との間に密着性向上層(wetting layerとも言う)を入れることもある。 MEMSの作製に用いられている。 LOW TEMPERRATURE EUTECTIC BONDING FOR IN−PLANE TYPE MICRO THERMOELECTRIC COOLER Da−Jeng YAO,Gang CHEN,and Chang−Jin”CJ” KIM Proceedings 2001 ASME International Mechanical Engineering Congress and Exposition November 11−16、2001、New York、NY<(5)接着剤による接合> エポキシなどの樹脂で接着させるもので、接着剤と圧力と熱等により接合強度が決まり、MEMSの作製に用いられている。 VOID−FREE FULL WAFER ADHESIVE BONDEING Frank Niklaus、Peter Enoksson、Edvard K.Ivesten and G.ran Stemme Presented at the 13th IEEE Int. Confernce on Micro Electro Mechanical System(MEMS’00)Miyazaki Japan,January 23−27,pp.247−251
Accompanying the development of microfabrication technology in recent years, for example, the development of electron beam masks such as EPL and LEEPL, and the development of MEMS and the like, wafers are bonded together, or wafers such as wafers and frames are made of the same or different materials. It may be joined with materials made of raw materials.
Here, bonding of wafers means reversible or irreversible bonding of wafers or materials different from wafers by some method, but here “irreversible” (that is, never peel off) ).
As a bonding method, typically, (1) fusion bonding 1 (direct bonding), (2) fusion bonding 2 (Si—O—Si bonding), (3) anodic bonding, (4) metal bonding, (5) Although bonding by an adhesive is mentioned, these will be briefly described below.
<(1) Fusion bonding 1 (direct bonding)>
The Si surface is treated with plasma, etc., and the flat surfaces are directly joined together. When joining wafers, the dangling bonds of Si are exposed by plasma treatment, and the wafers are brought into contact with each other in this state. When pressure and heat are applied accordingly, Si dangling bonds are bonded to each other.
This joining can be performed at a low temperature, and surface treatment, application of heat and pressure are performed.
It is used in the production of MEMS and the like.
Patent WO9910927 (US19970057413 (priority claim)) <(2) Fusion bonding 2 (Si-O-Si bonding)> On the Si surface, SiO2 is formed on one side or both sides and subjected to hydrophilic treatment, and then adhered. By heating and heating, a hydrophilic group (OH group) is caused to react, thereby removing excess H 2 O and bonding the wafer by bonding with Si and O. Bonding is possible even at a low temperature, but in order to obtain a sufficient bonding force, a temperature of 1000 ° C. or higher is generally required, and surface treatment or application of pressure may also be performed. It is used for wafer manufacturing (Silicon On Insulator) and fabrication of MEMS. Applied Physics Vol. 63, No. 11, 1994 “Laminated SOI Technology for ULSI” <(3) Anodic Bonding> This is a method in which glass containing mobile ions (mainly sodium) and a silicon wafer are brought into close contact with each other. At the time of bonding, the above glass and wafer are superposed and heated to soften the glass side, and at the same time, a high voltage is applied between the two using the silicon side as an anode. Thereby, the joining force by electrostatic attraction is obtained. The electrostatic attractive force maintains the bonding force because the electric double layer is fixed by turning off the voltage and returning the temperature. Semiconductor Manufacturing Equipment Glossary 5th edition Japan Semiconductor Manufacturing Equipment Association edited by Nikkan Kogyo Shimbun, Ltd. <(4) Metal bonding> After forming a metal film on both sides or one side of the opposing bonding surface and making it in close contact , The metal melts and melts, or is heated and pressurized under the heating and pressurizing conditions to eutect with the facing substrate, and in some cases, ultrasonic vibration is applied to perform bonding. is there. As a material for bonding Si, a solder material containing Au or Au is often applied. Before reaching the bonding temperature and pressure and melting or eutectic with the base material, the adhesion (wetability) between the metal and the base material is not good and may cause peeling. In this case, an adhesion improving layer (also referred to as a wetting layer) may be provided between the base material and the metal. Used for fabrication of MEMS. LOW TEMPERRATURE EUTECTIC BONDING FOR IN-PLANE TYPE MICRO THERMOELECTRIC COOLER Da-Jeng YAO, Gang CHEN, and Chang-Jin "CJ" KIM Proceedings 2001 ASME International Mechanical Engineering Congress and Exposition November 11-16,2001, New York, NY <( 5) Bonding with an adhesive> Bonding is performed with a resin such as an epoxy, and bonding strength is determined by an adhesive, pressure, heat, and the like, and is used for manufacturing a MEMS. VOID-FREE FULL WAFER ADHESIVE BONDING Frank Niklaus, Peter Enoksson, Edward K. Ivesten and G.M. ran Stemmed Presented at the 13th IEEE Int. Conference on Micro Electro Mechanical System (MEMS'00) Miyazaki Japan, January 23-27, pp. 247-251

接合するウエハの端面形状として、代表的には、図9(b)に示すR型、図9(c)に示すT型の2種類がある。
尚、図9(b)、図9(c)は、図9(a)に示すウエハ110の外周の端部を跨ぐG1−G2における断面図形状を示したものである。
これらの形状は、一般には、ブレード方式あるいはテープ研磨方式のベベリングと呼ばれる面取り加工によって形成される。(非特許文献2参照)
ブレード方式は、図10(a)にその平面図を示し、図10(c)に図10(a)のH1−H2断面の一部を示すように、ウエハ110の端部を所望の端面形状に合わせた形状のブレード120に押し当てて研磨するものである。
尚、研磨時は、図10(b)に示すように、ウエハをスピンナー140に固定、回転しながら行う。
テープ研磨方式は、端面をテープ研磨するもので、例えば、図11(a)にその平面図を示し、図11(c)に図11(a)のI1−I2断面の一部を示すように、テープ研磨ユニット130を用い、ローラ132で研磨テープ131を送り出して、ウエハ110の端面を研磨するものである。
尚、研磨時は、図11(b)に示すように、ウエハをスピンナー140に固定、回転しながら行う。
As the end face shape of the wafer to be bonded, there are typically two types, an R type shown in FIG. 9B and a T type shown in FIG. 9C.
9B and 9C show cross-sectional views taken along G1-G2 across the outer peripheral edge of the wafer 110 shown in FIG. 9A.
These shapes are generally formed by a chamfering process called beveling of a blade method or a tape polishing method. (See Non-Patent Document 2)
In the blade method, a plan view is shown in FIG. 10A, and a part of the H1-H2 cross section in FIG. 10A is shown in FIG. It is pressed against the blade 120 having a shape matched to the above and polished.
The polishing is performed while fixing and rotating the wafer on the spinner 140 as shown in FIG.
In the tape polishing method, the end surface is tape-polished. For example, FIG. 11A shows a plan view thereof, and FIG. 11C shows a part of the I1-I2 cross section of FIG. The polishing tape 131 is sent out by the roller 132 using the tape polishing unit 130 and the end surface of the wafer 110 is polished.
The polishing is performed while fixing and rotating the wafer on the spinner 140 as shown in FIG.

このような端面形状を有するR型同士のウエハ、T型同士のウエハ、R型ウエハとT型ウエハを用いて、ウエハ同士を接合した場合、接合後の端面形状は、それぞれ、図12(a)〜図12(c)のようになる。
これらの場合、接合面に対して垂直な力に対しては強いが、端面(境界)に対する力には弱い。
図13(a)の矢印に示すような引っ張り力に対して接合面114aは強固で、過度の引っ張り力では、図13(a1)に示すように、接合面以外で剥れが発生する。
また、図13(b)に示すような側面からの力を与えると、簡単に、図13(b1)に示すように接合面114bにおいて剥れてしまう。
エッジ(端部)はハンドリングの際や装置内で保持する際に接触する可能性が高く、図14に示すように、さまざまな方向から外力が加わる可能性があり、外力が加わった場合、エッジ(端部)において、この外力により欠け、剥れが発生することがある。
尚、引っ張り力は、例えば、図8に示ようにして、破壊する引っ張り力を測定する。
この方法の場合、引っ張り冶具上部81に接合部材50の上面を接着材70により固定し、引っ張り冶具下部82に接合部材50の下面を接着材70により固定し、矢印の方向に引っ張り力をかけて、接合部材が破壊する引っ張り力を測定する。
When R-type wafers having such end face shapes, T-type wafers, R-type wafers and T-type wafers are used to join the wafers, the end face shapes after bonding are shown in FIG. ) To FIG. 12 (c).
In these cases, it is strong against a force perpendicular to the joint surface, but weak against a force against the end face (boundary).
The bonding surface 114a is strong against a pulling force as indicated by an arrow in FIG. 13A, and an excessive pulling force causes peeling at a portion other than the bonding surface as shown in FIG. 13A1.
Further, when a force from the side surface as shown in FIG. 13B is applied, it easily peels off at the joint surface 114b as shown in FIG. 13B1.
Edges (ends) are likely to come into contact with each other when handling or holding in the device, and as shown in FIG. 14, there is a possibility that external force may be applied from various directions. In the (end portion), the external force may cause chipping or peeling.
The tensile force is measured as shown in FIG. 8, for example.
In this method, the upper surface of the joining member 50 is fixed to the upper portion of the tension jig 81 with the adhesive 70, the lower surface of the joining member 50 is fixed to the lower portion of the tension jig 82 with the adhesive 70, and a tensile force is applied in the direction of the arrow. The tensile force at which the joining member breaks is measured.

また、ウエハ接合は、その処理方法にもよるが、周縁部付近、接合するウエハ間に微細な空隙(ボイドとも言う)が発生やすく、周縁部付近の接合状態が、中心付近に比較して悪くなる場合がある。
微細な空隙部においてはウエハの接合が未接合である。
尚、図15に示すように、ウエハ同士の接合部材210に対し、赤外光220を一面から照射し、Siを通過する赤外光により、前記一面の反対面側にて、赤外線検出カメラ230で接合部材210を撮影し、接合するウエハ211、212間に発生する空隙を検出することができる。
Although wafer bonding depends on the processing method, fine voids (also referred to as voids) are likely to occur near the periphery and between wafers to be bonded, and the bonding state near the periphery is worse than that near the center. There is a case.
The wafer is not bonded in the minute gap.
In addition, as shown in FIG. 15, the infrared detection camera 230 is irradiated on the opposite surface side of the said one surface by irradiating the infrared light 220 with respect to the joining member 210 of wafers from one surface, and the infrared light which passes Si. Thus, the bonding member 210 can be photographed, and the gap generated between the wafers 211 and 212 to be bonded can be detected.

上記のように、近年、微細加工技術の進展に伴い、ウエハ同士を接合、あるいは、ウエハと異素材とを、不可逆的な接合を目標として接合することがあるが、ウエハ同士を接合した端面の形状が、接合面に対して垂直な力に対しては強いが、端面(境界)に対する力には弱い形状で、エッジが、ハンドリングの際や、装置内で保持する際に、接触する可能性が高く、さまざまな方向から外力が加わる可能性があり、このため、この部分は、外力により、欠陥の原因となる欠けが発生することもあり、また接合面において剥れが発生することがあり、この対応が求められていた。
本発明はこれに対応するもので、端部の断面形状を、従来のものに比べ、欠け、特に、接合面における欠け、剥れが発生しづらい形状にした、ウエハ同士の接合部材あるいはウエハと他の素材との接合部材を提供しようとするものである。
同時に、このような、接合部材の作製方法を提供しようとするものである。
As described above, with the progress of microfabrication technology in recent years, wafers may be joined together, or wafers and different materials may be joined with the goal of irreversible joining. The shape is strong against the force perpendicular to the joint surface, but weak against the force on the end face (boundary), and the edge may come into contact when handling or holding in the device. Since there is a possibility that external force is applied from various directions, this part may cause chipping that causes defects due to external force, and peeling may occur on the joint surface. This response was sought.
The present invention is corresponding to this, and the cross-sectional shape of the end portion is less than that of the conventional one, and in particular, the bonding member between wafers or the wafer which has a shape in which chipping and peeling at the bonding surface are less likely to occur. The present invention intends to provide a joining member with another material.
At the same time, the present invention intends to provide a method for producing such a joining member.

本発明の接合部材は、Siからなる第1の素材であるウエハを、Siからなる第2の素材の一面に接合した接合部材であって、前記第1の素材であるウエハは、薄膜構造体を有するマスクであり、前記第2の素材は、第1の素材を支持するためのフレームで、ウエハからなり、前記第2の素材一面に、前記第1の素材であるウエハの端部を位置させ、直接接合により接合するもので、前記第1の素材であるウエハの外側の端部の断面形状において、外周が、直線、円弧、あるいはこれらの組み合わせ形状で、第2の素材との接合部が側面側に最も外側で、且つ、外側に凸状であることを特徴とするものである。
尚、ここでは、ウエハとは、未処理のウエハ、処理済みのウエハを含むもので、処理済みのウエハとして、薄膜構造を有するマスクを形成するウエハや、ダイヤフラム構造、梁構造、メンブレン構造を有する素子や構造体のMEMSを形成するウエハを含む。
また、「外側に凸状である」とは、断面形状において、外周が、連続的に接合部材の内側から外側にいくにつれて接合面側に近づく形状であることを意味しており、ここでは、接合部材を形成するウエハ同士あるいはウエハと他の素材の、一方もしくは両方の断面形状の外周が、接合部の最も外側位置において接合面に直交している場合も含む。
Joining member of the present invention, the wafer is first material consisting of Si, a joining member joined to one surface of the second material consisting of Si, the first wafer is a material, the thin film structure The second material is a frame for supporting the first material and is made of a wafer, and the end of the wafer as the first material is positioned on one surface of the second material. is, those bonded by direct bonding, the cross-sectional shape of the outer end portion of the first wafer which is a material, outer periphery, lines, arcs, or combinations thereof shaped, the junction of the second material Is characterized in that it is the outermost on the side surface side and is convex on the outer side.
In this case, the wafer includes an unprocessed wafer and a processed wafer, and the processed wafer includes a wafer forming a mask having a thin film structure, a diaphragm structure, a beam structure, and a membrane structure. It includes wafers that form MEMS of elements and structures.
Further, “outwardly convex” means that in the cross-sectional shape, the outer periphery is a shape that approaches the joining surface side as it goes from the inside to the outside of the joining member continuously, This includes the case where the outer circumferences of one or both of the cross-sectional shapes of wafers or wafers and other materials forming the bonding member are orthogonal to the bonding surface at the outermost position of the bonding portion.

本発明の接合部材の作製方法は、請求項1記載の接合部材を作製する、接合部材の作製方法であって、接合対象となる前記第1の素材であるウエハの端部を所定の形状に加工した後に、前記第1の素材と前記第2の素材の、両素材を、直接接合により接合することを特徴とするものである。 The manufacturing method of the joining member of this invention is a manufacturing method of the joining member which produces the joining member of Claim 1, Comprising: The edge part of the wafer which is the said 1st raw material used as joining object is made into predetermined shape. After the processing, both the first material and the second material are joined by direct joining .

(作用)
請求項1の発明の接合部材は、このような構成にすることにより、端部の断面形状を、第1の素材であるウエハの欠け、特に、接合面における、欠け、剥れが発生しづらい形状にした、第1の素材であるウエハと、第2の素材との接合部材の提供を可能としている。 具体的には、Siからなる第1の素材であるウエハを、Siからなる第2の素材の一面に接合した接合部材であって、前記第1の素材であるウエハは、薄膜構造体を有するマスクであり、前記第2の素材は、第1の素材を支持するためのフレームで、ウエハからなり、前記第2の素材一面に、前記第1の素材であるウエハの端部を位置させ、直接接合により接合するもので、前記第1の素材であるウエハの外側の端部の断面形状において、外周が、直線、円弧、あるいはこれらの組み合わせ形状で、第2の素材との接合部が側面側に最も外側で、且つ、外側に凸状であることによりこれを達成している。
このような接合部材としては、具体的には、LEEPL用のマスク等のマスク構造体がこれに相当する。
(Function)
By adopting such a configuration, the joining member according to the first aspect of the invention makes it difficult for the cross-sectional shape of the end portion to cause chipping of the wafer as the first material, particularly chipping and peeling off at the joint surface. It is possible to provide a bonding member formed between the wafer, which is the first material, and the second material. Specifically, the wafer is first material consisting of Si, a joining member joined to one surface of the second material consisting of Si, the first wafer is a material having a thin film structure A mask, and the second material is a frame for supporting the first material, is made of a wafer, and an end portion of the wafer as the first material is positioned on one surface of the second material, In the cross-sectional shape of the outer edge of the wafer, which is the first material, the outer periphery is a straight line, an arc, or a combination thereof, and the joint with the second material is a side surface. This is achieved by being outermost on the side and convex on the outside.
As such a joining member, specifically, a mask structure such as a mask for LEEPL corresponds to this.

請求項2の発明の接合部材の作製方法は、このような構成にすることにより、第1の素材の端部の断面形状を、欠け、特に、接合面における、欠け、剥れが発生しづらい形状にした、ウエハ同士の接合部材、あるいは第1の素材をウエハとし第2の素材をこれとは別の素材とする接合部材を、作製する接合部材の作製方法の提供を可能としている。 The manufacturing method of the joining member according to the invention of claim 2 makes it difficult to generate chipping, particularly chipping and peeling at the joining surface, by adopting such a configuration. It is possible to provide a method for producing a joining member for producing a joining member having a shape, or a joining member having a first material as a wafer and a second material as a different material.

本発明は、上記のように、従来のものに比べ、欠け、特に、接合面における、欠け、剥れが発生しづらい、接合部材の提供を可能とした。
同時に、そのような接合部材の作製方法の提供を可能とした。
As described above, the present invention makes it possible to provide a joining member that is less likely to cause chipping, particularly chipping and peeling on the joint surface, as compared with the conventional one.
At the same time, it was possible to provide a method for producing such a joining member.

本発明の実施の形態を図に基づいて説明する。
図1(a)は本発明に関わる接合部材の参考実施形態例1の1平面図で、図1(b)は図1(a)のA1−A2における断面図で、図2(a)、図2(b)、図2(c)は、それぞれ、図1に示す参考実施形態例1の変形例の端部を示した図で、図3(a)、図3(b)はそれぞれ、図1に示す参考実施形態例1の接合部材の作製方法を説明するための図で、図4(a)は本発明の接合部材の実施の形態の第1の例の1断面図で、図4(b)は図4(a)のC0側からみた平面図で、図5は従来のLEEPL用のマスク接合部材の断面図で、図6(a)は接合の強度を接着の強さで評価する場合の試験方法の概略図で、図6(b)は、図6(a)の試験に用いられる刃部の外形寸法を示した斜視図で、図7は接合の強度を接着の強さで評価する場合の試験方法を示した概略図で、図8は引っ張り試験方法を説明するための概略図である。
尚、図1中の点線部A3、図2中の点線部A31、A32、A33、図4中の点線部C1、図5中の点線部D1は、それぞれ、接合部材の外側の端部を示している。
また、図6(b)は図6(a)のE1部を拡大して示した図である。
図1〜図8中、1、1a、1b、1c、1A、1Bは接合部材、2、2a、2b、2c、2A、2Bはウエハ、3、3a、3b、3c、3A、3Bはウエハ、4、4a、4b、4c、4A、4Bは接合面、5、5a、5b、5c、5A、5Bは外周、6、6a、6b、6c、6A、6Bは(外周の)接合部、10はウエハ構造体(単にウエハあるいはマスクとも言う)、11はSiウエハ、12はSiO2 層、13はSi薄膜、14は露光領域(パターン領域とも言う)、15は穴部、18は研磨面、18AはR型の研磨面、20はフレーム、30は接合面、50は接合部材、51、51a、52、52aはウエハ、53、53aは接合面、60は刃部、70は接着材、81は引っ張り冶具上部、82は引っ張り冶具下部である。
Embodiments of the present invention will be described with reference to the drawings.
1 (a) is in a plane view of Reference Embodiment 1 of the bonding member according to the present invention, in a sectional view along A1-A2 of FIG. 1 (b) FIGS. 1 (a), FIG. 2 (a), the 2 (b) and FIG. 2 (c) are views showing the end portions of the modified example of the reference embodiment example 1 shown in FIG. 1, and FIG. 3 (a) and FIG. FIG. 4 is a view for explaining a method of manufacturing the joining member of Reference Embodiment Example 1 shown in FIG. 1, and FIG. 4A is a cross-sectional view of the first example of the joining member embodiment of the present invention. 4 (b) is a plan view seen from the C0 side of FIG. 4 (a), FIG. 5 is a cross-sectional view of a conventional mask joining member for LEEPL, and FIG. 6 (a) shows the bonding strength in terms of adhesion strength. FIG. 6 (b) is a perspective view showing the outer dimensions of the blade part used in the test of FIG. 6 (a), and FIG. Evaluate A schematic view showing a method of testing a case, FIG. 8 is a schematic view for explaining a tensile test method.
In addition, the dotted line part A3 in FIG. 1, the dotted line parts A31, A32, and A33 in FIG. 2, the dotted line part C1 in FIG. 4, and the dotted line part D1 in FIG. ing.
FIG. 6 (b) is an enlarged view of the E1 portion of FIG. 6 (a).
1 to 8, 1, 1a, 1b, 1c, 1A, 1B are bonding members, 2, 2a, 2b, 2c, 2A, 2B are wafers, 3, 3a, 3b, 3c, 3A, 3B are wafers, 4, 4a, 4b, 4c, 4A, 4B are joint surfaces, 5, 5a, 5b, 5c, 5A, 5B are outer peripheries, 6, 6a, 6b, 6c, 6A, 6B are joints (outer perimeter), 10 is Wafer structure (also simply referred to as a wafer or mask), 11 is a Si wafer, 12 is a SiO2 layer, 13 is a Si thin film, 14 is an exposure area (also referred to as a pattern area), 15 is a hole, 18 is a polished surface, 18A is R-type polishing surface, 20 is a frame, 30 is a bonding surface, 50 is a bonding member, 51, 51a, 52 and 52a are wafers, 53 and 53a are bonding surfaces, 60 is a blade, 70 is an adhesive, and 81 is a tensile member A jig upper part 82 is a tension jig lower part.

はじめに、本発明に関わる接合部材の参考実施形態例1を図1に基づいて説明する。
参考実施形態例1の接合部材1は、8インチサイズ、厚さ0.725mmのSiウエハ同士2、3を先に述べたフュージョン接合1(直接接合)により接合した接合部材である。
そして、図1(b)に示すように、その外側の端部は、接合する側の各ウエハ2、3の面同士は互いに合わさり接合されており、外側の端部の断面において、各ウエハ2、3の断面外周は、円弧形状であり、また、断面形状の接合部材1の側面側の外周5は、両ウエハ2、3の接合部6が最も外側で、且つ、外側に凸状である。
本例の場合、その外側端部の断面外周の形状は、図9に示すR型と同じ形状で、この場合もR型と言う。
このようにすることにより、接合部材1の外側の端部の断面形状を、従来のものに比べ、欠け、特に、接合面における、欠け、剥れが発生しづらいものとしている。
接合部材1の接合部6に隙間は無く、従来の接合部材に比べ、接合部材の接合面に直交する引っ張り力にも、これと直交する側からの外力にも、接合面における欠け、剥れが発生し難い構造となっている。
First , a reference embodiment example 1 of a joining member according to the present invention will be described with reference to FIG.
The joining member 1 of the reference embodiment 1 is a joining member obtained by joining the Si wafers 2 and 3 having a size of 8 inches and a thickness of 0.725 mm by the fusion joining 1 (direct joining) described above.
As shown in FIG. 1B, the outer end portions of the wafers 2 and 3 on the bonding side are joined to each other and bonded to each other. 3 has an arc shape, and the outer periphery 5 on the side surface side of the bonding member 1 having a cross-sectional shape is such that the bonding portion 6 of both wafers 2 and 3 is the outermost and convex outward. .
In the case of this example, the shape of the outer periphery of the cross section of the outer end portion is the same shape as the R shape shown in FIG.
By doing in this way, the cross-sectional shape of the outer end portion of the joining member 1 is less likely to cause chipping, particularly chipping and peeling at the joint surface, compared to the conventional one.
There are no gaps in the joint 6 of the joining member 1, and the tensile force perpendicular to the joining surface of the joining member and the external force from the side perpendicular to the joining member, as compared with the conventional joining member, are chipped or peeled off at the joining surface. The structure is less likely to occur.

本例の接合部材1の作製方法としては、図3(a)にその概容を示す示す第1の作製方法や、図3(b)にその概容を示す示す第2の作製方法がある。
第1の作製方法は、接合対象となる両方のウエハ2A、2Bの端部を所定の形状にベベリング加工した後に、ウエハ同士2A、2Bをフュージョン接合1(直接接合)により接合するものである。
また、第2の作製方法は、接合対象となる両方のウエハ同士2A、2Bを接合した後に、接合した両方のウエハ2A、2Bの端部を所定の形状にベベリングするものである。
尚、ベベリング加工は、先にも述べたが、図10に示すようにブレードを用いて行うか、図11に示すようにテープ研磨ユニットを用いて行う。
上記の第1の作製方法により接合された接合部材は、ウエハ2Aと2Bの重ね合わせズレにより、厳密に言うと、前述の断面形状(以下、理想形状と言う。)を実現できていない。
しかし、そのズレの大きさが百マイクロメータ程度より小さいときには、外力に対する接合部材の性能は、理想形状の接合部材の性能と同等である。
As a manufacturing method of the joining member 1 of this example, there is a first manufacturing method whose outline is shown in FIG. 3A and a second manufacturing method whose outline is shown in FIG.
In the first manufacturing method, the end portions of both wafers 2A and 2B to be bonded are beveled into a predetermined shape, and then the wafers 2A and 2B are bonded to each other by fusion bonding 1 (direct bonding).
In the second manufacturing method, both the wafers 2A and 2B to be bonded are bonded to each other, and then the end portions of both bonded wafers 2A and 2B are beveled into a predetermined shape.
As described above, the beveling process is performed using a blade as shown in FIG. 10 or using a tape polishing unit as shown in FIG.
Strictly speaking, the bonding member bonded by the first manufacturing method described above cannot realize the above-described cross-sectional shape (hereinafter referred to as an ideal shape) due to the misalignment of the wafers 2A and 2B.
However, when the displacement is smaller than about 100 micrometers, the performance of the joining member with respect to external force is equivalent to the performance of the ideal shape joining member.

本例の変形例の接合部材としては、ウエハ同士を接合した接合部材の外側の端部の形状が、図2(a)、図2(b)、図2(c)に示す断面をもつものが挙げられる。
これらは、いずれも、接合する側の各ウエハの面同士は互いに合わさり接合されており、外側の端部の断面形状において、外周が、直線の組み合わせ形状であり、また、両ウエハの接合部が側面側に最も外側で、且つ、外側に凸状である。
図2(a)に示す断面の場合、その外側端部の断面外周の形状は、図9に示すT型と同じ形状で、この場合もT型と言う。
欠けの面からは、図1に示す本例の接合部材1の端部の断面形状がR型で最も好ましいが、図2(a)に示すT型も欠け発生し難い構造と言える。
As a joining member of the modified example of this example, the shape of the outer end portion of the joining member obtained by joining the wafers has a cross section shown in FIGS. 2 (a), 2 (b), and 2 (c). Is mentioned.
In both of these, the surfaces of the wafers to be joined are joined together and joined together, and the outer periphery has a linear combination shape in the cross-sectional shape of the outer end, and the joining parts of both wafers are It is outermost on the side surface side and convex on the outer side.
In the case of the cross section shown in FIG. 2A, the shape of the outer periphery of the cross section of the outer end is the same shape as the T type shown in FIG.
From the surface of the chip, the cross-sectional shape of the end portion of the joining member 1 of this example shown in FIG. 1 is most preferable in the R type, but the T type shown in FIG.

次いで、本発明の接合部材の実施の形態の第1の例を図4に基づいて説明する。
第1の例の接合部材は、8インチサイズ、厚さ0.725mmのSiウエハを加工して6インチサイズのほぼ角形に外形加工したLEEPL用のマスク(ウエハ構造体)10を、Siウエハ11側で6インチ角型形状のSiからなる四角枠状のフレーム20にフュージョン接合1(直接接合)により接合した接合部材で、フレーム20の一面に、ウエハ構造体10の端部を位置させるものである。
尚、ウエハ構造体10を単にウエハあるいはマスクとも言う。
図4(a)に示すように、ウエハ構造体10の断面外周は直線形状で、その外側の断面形状の側面側の外周は、前記一方のウエハとの接合部が最も外側で、且つ、外側に凸状である。
これにより、ウエハ構造体10の欠け、特に、接合面30における、欠け、剥れが発生しづらいものとしている。
尚、従来は、LEEPL用のマスク(ウエハ構造体)10をフレーム20に接合した接合部材は、図5に示すような断面で、ウエハ構造体10の外側の端部の断面外周の形状はR型で、この外周形状のままフレームに接合されており、露光処理や洗浄等のプロセス処理において、ウエハ構造体10に欠け、特に、接合面30における、欠け、剥れが発生し、問題になっていた。
Next, a first example of the embodiment of the joining member of the present invention will be described with reference to FIG.
The bonding member of the first example is a mask for LEEPL (wafer structure) 10 obtained by processing a Si wafer having a size of 8 inches and a thickness of 0.725 mm so as to have a 6-inch size in a substantially square shape. This is a joining member joined to a square frame 20 made of Si having a 6-inch square shape by fusion joining 1 (direct joining), and the end of the wafer structure 10 is positioned on one surface of the frame 20. is there.
The wafer structure 10 is also simply referred to as a wafer or a mask.
As shown in FIG. 4A, the outer periphery of the cross section of the wafer structure 10 is a linear shape, and the outer periphery of the side surface side of the outer cross sectional shape is the outermost portion of the junction with the one wafer and the outer side. Convex shape.
This makes it difficult for chipping of the wafer structure 10, particularly chipping and peeling at the bonding surface 30.
Conventionally, the joining member obtained by joining the LEEPL mask (wafer structure) 10 to the frame 20 has a cross section as shown in FIG. 5 and the shape of the outer periphery of the cross section of the outer end of the wafer structure 10 is R. The mold is bonded to the frame in the outer peripheral shape, and the wafer structure 10 is chipped in the process processing such as exposure processing and cleaning, and in particular, the chipping and peeling are generated on the bonding surface 30 and become a problem. It was.

第1の例の接合部材の作製方法としては、通常、接合対象となるウエハ構造体10の端部を所定の形状にベベリング加工した後に、ウエハ構造体10をフレーム20の一面にフュージョン接合1(直接接合)により接合する方法が採られる。 As a manufacturing method of the bonding member of the first example, the wafer structure 10 is usually welded to one surface of the frame 20 after the end of the wafer structure 10 to be bonded is beveled into a predetermined shape. The method of joining by direct joining) is taken.

第1の例の変形例としては、第1の例のフレーム20をSiではなく、OH基を含有したアルカリ水溶液に耐エッチング性のある材質のものを用いる場合も挙げられる。
この場合の作製方法としては、上記の第1の例の接合部材の作製方法のように、研磨してベベリング加工した後に、ウエハ構造体をフレームの一面にフュージョン接合1(直接接合)により接合する第1の方法の他に、ウエハ構造体10を、フレーム20にフュージョン接合1(直接接合)により接合した後に、ウエハ構造体10の端部を、OH基を含有したアルカリ水溶液、例えば水酸化カリウム水溶液によりエッチングして加工して形成し、図4に示すような、研磨面18に相当する断面形状として作製する第2の方法がある。 第2の方法は、ウエハのエッチング速度が結晶の面方位により異なる性質を利用するものである。
例えば、ウエハの(100)面側から水酸化カリウム水溶液によりエッチング加工を行うと、(111)面が露出するようにエッチングが進行する。
As a modified example of the first example, there is a case where the frame 20 of the first example is made of an alkaline aqueous solution containing OH groups instead of Si and made of a material having etching resistance.
As a manufacturing method in this case, the wafer structure is bonded to one surface of the frame by fusion bonding 1 (direct bonding) after being polished and beveled like the manufacturing method of the bonding member of the first example. In addition to the first method, after the wafer structure 10 is bonded to the frame 20 by the fusion bonding 1 (direct bonding), the end of the wafer structure 10 is bonded to an alkaline aqueous solution containing OH groups, such as potassium hydroxide. There is a second method in which a cross-sectional shape corresponding to the polished surface 18 as shown in FIG. The second method utilizes the property that the etching rate of the wafer varies depending on the crystal plane orientation.
For example, when etching is performed with a potassium hydroxide aqueous solution from the (100) surface side of the wafer, the etching proceeds so that the (111) surface is exposed.

上記、参考実施形態例1の接合部材、第1の例の接合部材は1例で、本発明に関わる接合部材としてはこれらに限定はされない。
上記、参考実施形態例1の接合部材、第1の例の接合部材の場合は、フュージョン接合1(直接接合)にて接合されているが、先に述べた、フュージョン接合2(Si−O−Si接合)、陽極接合や、金属接合、接着剤による接合にて、接合した形態も挙げることができる。
また、第1の例の接合部材のウエハ構造体10は、LEEPL用のマスクであるが、これ以外の、荷電粒子線転写用マスク、X線転写マスク等のウエハを用いた構造体が挙げられ、また、ウエハ上に形成された、ダイヤフラム構造、梁構造、メンブレン構造を有する素子や構造体が挙げられる。
The joining member of Reference Embodiment Example 1 and the joining member of the first example are one example, and the joining member according to the present invention is not limited thereto.
In the case of the joining member of the reference embodiment example 1 and the joining member of the first example , the joining members are joined by the fusion joining 1 (direct joining), but the fusion joining 2 (Si—O—) described above is used. Si bonding), anodic bonding, metal bonding, and bonding with an adhesive can also be mentioned.
In addition, the bonding member wafer structure 10 of the first example is a mask for LEEPL, but other structures using wafers such as a charged particle beam transfer mask, an X-ray transfer mask, and the like can be given. In addition, an element or a structure having a diaphragm structure, a beam structure, or a membrane structure formed on a wafer can be used.

ここで、本発明に関わる接合部材の接着強度について、図6、図7、図8を参照にして簡単に説明しておく。
図6(a)は、図2(b)に示す形態の端部の断面形状を有するSiウエハ同士(51、52)をフュージョン接合1(直接接合)にて接合した、サイズ15mm□の試験片からなる接合部材の、側面側から刃部60を外力fにより押し当てて、破壊に至った外力f1を測定したものである。
尚、Siウエハ51の端部面(側面のこと)は水酸化カリウム水溶液でエッチングして形成したもので、ウエハ52の端部面(側面のこと)はダイシングによる形成した面である。
刃部60の形状寸法は、図6(b)に示す通りである。
この場合、結果は表1のようになった。

Figure 0004668659
尚、表1で測定不能は、刃部60の先端が入らなかったものである。
また、MPaはメガパスカルを表す。
試験片No3については、fが53.9MPaで、接合面53に剥れが発生した。
これより、f1は53.9MPaと判断された。
また、図7(a)は、それぞれ、R型の形態の端部断面を有するSiウエハ同士(51、52)を接合した、サイズ15mm□の試験片からなる接合部材の、側面側から刃部60を外力fにより押し当てて、破壊に至った外力f2を測定したものである。
図6(b)に示す刃部と同じ形状サイズの刃部を用いた。
この場合、結果は表2のようになった。
Figure 0004668659
上記のように、図6に示す本発明の接合部材におけるf1は53.9MPaで、図7に示す従来の、接合部材におけるf2は0.6MPa〜4.7MPaの範囲にわたり、接合の強度の比較を示す指標としてf1とf2の比f1/f2をとってみると、f1/f2は、12〜89となった。
これより、図6に示す本発明に関わる接合部材の方が、図7に示す従来の接合部材よりも接合面の接合強度が1桁以上大きいことが分かる。
尚、図6に示す接合部材以外の端部の断面を有する本発明に関わる接合部材についても、その構造から、基本的には、同様な接合の強度が期待できる。 Here, the adhesive strength of the joining member according to the present invention will be briefly described with reference to FIG. 6, FIG. 7, and FIG.
FIG. 6A shows a test piece having a size of 15 mm □ in which Si wafers (51, 52) having the cross-sectional shape of the end shown in FIG. 2B are joined together by fusion joining 1 (direct joining). The external force f1 which resulted in the fracture | rupture was measured by pressing the blade part 60 with the external force f from the side surface side.
The end surface (side surface) of the Si wafer 51 is formed by etching with an aqueous potassium hydroxide solution, and the end surface (side surface) of the wafer 52 is a surface formed by dicing.
The shape dimension of the blade part 60 is as shown in FIG.6 (b).
In this case, the results are as shown in Table 1.
Figure 0004668659
In Table 1, “impossible to measure” means that the tip of the blade portion 60 did not enter.
MPa represents megapascal.
Regarding test piece No3, f was 53.9 MPa, and peeling occurred on the joint surface 53.
From this, f1 was determined to be 53.9 MPa.
FIG. 7 (a) shows a blade part from the side surface of a joining member made of a test piece of size 15 mm □, in which Si wafers (51, 52) each having an R-shaped end section are joined together. 60 is pressed by an external force f, and the external force f2 that has led to destruction is measured.
A blade portion having the same shape and size as the blade portion shown in FIG.
In this case, the result was as shown in Table 2.
Figure 0004668659
As described above, f1 in the joining member of the present invention shown in FIG. 6 is 53.9 MPa, and f2 in the conventional joining member shown in FIG. 7 is in the range of 0.6 MPa to 4.7 MPa. When the ratio f1 / f2 of f1 and f2 is taken as an index indicating f1, f1 / f2 is 12 to 89.
From this, the direction of the joining member according to the present invention shown in FIG. 6, it can be seen bonding strength of the bonding surface than conventional joining members shown in FIG. 7 is greater by one digit or more.
In addition, regarding the joining member according to the present invention having a cross section at the end other than the joining member shown in FIG. 6, basically the same joining strength can be expected from the structure.

尚、参考までに、図6に示す接合部材について、図8に示す引っ張り試験方法により、破壊する引っ張り力f0を測定したが、表3のようになった。

Figure 0004668659
このように、図6に示す接合部材については、破壊する引っ張り力f0は、f1と同程度の大きさで、図6に示す接合部材の接合強度が端面側(側面側)からの力に対しても十分強いことが分かる。
尚、図8に示す引っぱり試験方法は、引っ張り冶具上部81に接合部材50の上面を接着材70により固定し、引っ張り冶具下部82に接合部材50の下面を接着材70により固定し、矢印の方向に引っ張り力をかけて、接合部材が破壊する引っ張り力を測定する。 For reference, the breaking force f0 for the joining member shown in FIG. 6 was measured by the tensile test method shown in FIG.
Figure 0004668659
Thus, with respect to the joining member shown in FIG. 6, the tensile force f0 to be broken is as large as f1, and the joining strength of the joining member shown in FIG. 6 is relative to the force from the end face side (side face side). However, it turns out that it is strong enough.
In the pulling test method shown in FIG. 8, the upper surface of the joining member 50 is fixed to the upper portion of the tension jig 81 with the adhesive 70, and the lower surface of the joining member 50 is fixed to the lower portion of the tension jig 82 with the adhesive 70. A tensile force is applied to, and the tensile force at which the joining member breaks is measured.

図1(a)は本発明に関わる接合部材の参考実施形態例1の1平面図で、図1(b)は図1(a)のA1−A2における断面図である。1 (a) is in a plane view of Reference Embodiment 1 of the bonding member according to the present invention, FIG. 1 (b) is a cross-sectional view taken along A1-A2 of FIG. 1 (a). 図2(a)、図2(b)、図2(c)は、それぞれ、図1に示す参考実施形態例1の変形例の端部を示した図である。2 (a), 2 (b), and 2 (c) are views showing the end portions of a modification of the reference embodiment example 1 shown in FIG. 図3(a)、図3(b)はそれぞれ、図1に示す参考実施形態例1の接合部材の作製方法を説明するための図である。FIG. 3A and FIG. 3B are views for explaining a method of manufacturing the joining member of the reference embodiment example 1 shown in FIG. 図4(a)は本発明の接合部材の実施の形態の第1の例の1断面図で、図4(b)は図4(a)のC0側からみた平面図である。FIG. 4A is a sectional view of a first example of the embodiment of the joining member of the present invention, and FIG. 4B is a plan view seen from the C0 side of FIG. 図5は従来のLEEPL用のマスク接合部材の断面図である。FIG. 5 is a cross-sectional view of a conventional LEEPL mask bonding member. 図6(a)は接合の強度を接着の強さで評価する場合の試験方法の概略図で、図6(b)は、図6(a)の試験に用いられる刃部の外形寸法を示した斜視図である。FIG. 6A is a schematic diagram of a test method in the case where the strength of bonding is evaluated by the strength of bonding, and FIG. FIG. 接合の強度を接着の強さで評価する場合の試験方法を示した概略図である。It is the schematic which showed the test method in the case of evaluating the intensity | strength of joining by the strength of adhesion | attachment. 引っ張り試験方法を説明するための概略図である。It is the schematic for demonstrating the tension test method. 従来のウエハの外側の端部の断面形状を説明するための図である。It is a figure for demonstrating the cross-sectional shape of the edge part of the outer side of the conventional wafer. ブレードによるベベリングを説明するための図である。It is a figure for demonstrating the beveling by a blade. テープ研磨によるベベリングを説明するための図である。It is a figure for demonstrating the beveling by tape grinding | polishing. 従来のウエハ同士を接合した接合部材の外側の端部の断面形状を説明するための図である。It is a figure for demonstrating the cross-sectional shape of the outer edge part of the joining member which joined the conventional wafers. 従来のR型のウエハ同士を接合した接合部材の引っ張り力、側面からの外力による破壊、剥れを説明するための図である。It is a figure for demonstrating destruction by the pulling force of the joining member which joined the conventional R type wafers, and the external force from a side surface, and peeling. 従来の接合部材における欠けを説明するための図である。It is a figure for demonstrating the chip | tip in the conventional joining member. 接合部材の接着における空隙を撮像するための撮影方法を説明するための図である。It is a figure for demonstrating the imaging | photography method for imaging the space | gap in adhesion | attachment of a joining member.

符号の説明Explanation of symbols

1、1a、1b、1c、1A、1B 接合部材
2、2a、2b、2c、2A、2B ウエハ
3、3a、3b、3c、3A、3B ウエハ
4、4a、4b、4c、4A、4B 接合面
5、5a、5b、5c、5A、5B 外周
6、6a、6b、6c、6A、6B (外周の)接合部
10 ウエハ構造体(単にウエハあるいはマスクとも言う)
11 Siウエハ
12 SiO2
13 Si薄膜
14 露光領域(パターン領域とも言う)
15 穴部
18 研磨面
18A R型の研磨面
20 フレーム
30 接合面
50 接合部材
51、51a、52、52a ウエハ
53、53a 接合面
60 刃部
70 接着材
81 引っ張り冶具上部
82 引っ張り冶具下部
110 ウエハ
110a 端部
111〜116 ウエハ
111a、111b、111c ウエハ
112a、112b、112c ウエハ
114a、114b、114c 接合面
120 ブレード
130 テープユニット
131 研磨テープ
132 ローラ
140 スピンナー
210 接合部材
211、212 ウエハ
220 赤外光
230 赤外線検出カメラ

1, 1a, 1b, 1c, 1A, 1B Bonding member 2, 2a, 2b, 2c, 2A, 2B Wafer 3, 3a, 3b, 3c, 3A, 3B Wafer 4, 4a, 4b, 4c, 4A, 4B Bonding surface 5, 5a, 5b, 5c, 5A, 5B Outer periphery 6, 6a, 6b, 6c, 6A, 6B (outer periphery) joint 10 Wafer structure (also simply referred to as wafer or mask)
11 Si wafer 12 SiO 2 layer 13 Si thin film 14 Exposure region (also referred to as pattern region)
15 Hole 18 Polishing surface 18A R-type polishing surface 20 Frame 30 Joining surface 50 Joining member 51, 51a, 52, 52a Wafer 53, 53a Joining surface 60 Blade part 70 Adhesive 81 Upper part of tension jig 82 Lower part of tension jig 110 Wafer 110a Edges 111-116 Wafer 111a, 111b, 111c Wafer 112a, 112b, 112c Wafer 114a, 114b, 114c Joining surface 120 Blade 130 Tape unit 131 Polishing tape 132 Roller 140 Spinner 210 Joining member 211, 212 Wafer 220 Infrared light 230 Infrared Detection camera

Claims (2)

Siからなる第1の素材であるウエハを、Siからなる第2の素材の一面に接合した接合部材であって、前記第1の素材であるウエハは、薄膜構造体を有するマスクであり、前記第2の素材は、第1の素材を支持するためのフレームで、ウエハからなり、前記第2の素材一面に、前記第1の素材であるウエハの端部を位置させ、直接接合により接合するもので、前記第1の素材であるウエハの外側の端部の断面形状において、外周が、直線、円弧、あるいはこれらの組み合わせ形状で、第2の素材との接合部が側面側に最も外側で、且つ、外側に凸状であることを特徴とする接合部材。 A first wafer which is a material composed of Si, a joining member joined to one surface of the second material consisting of Si, the first wafer is a material, a mask having a thin-film structure, wherein The second material is a frame for supporting the first material, and is made of a wafer. The end of the wafer, which is the first material, is positioned on one surface of the second material, and is joined by direct joining. In the cross-sectional shape of the outer edge of the wafer, which is the first material, the outer periphery is a straight line, an arc, or a combination thereof, and the joint with the second material is on the outermost side on the side surface side. And the joining member characterized by being convex outward. 請求項1記載の接合部材を作製する、接合部材の作製方法であって、接合対象となる前記第1の素材であるウエハの端部を所定の形状に加工した後に、前記第1の素材と前記第2の素材の、両素材を、直接接合により接合することを特徴とする接合部材の作製方法。 A manufacturing method of a bonding member for manufacturing the bonding member according to claim 1, wherein after processing an end portion of a wafer as the first material to be bonded into a predetermined shape, the first material and A method for producing a joining member, wherein the two materials of the second material are joined by direct joining .
JP2005096826A 2005-03-30 2005-03-30 Joining member and method for producing joining member Expired - Fee Related JP4668659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005096826A JP4668659B2 (en) 2005-03-30 2005-03-30 Joining member and method for producing joining member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005096826A JP4668659B2 (en) 2005-03-30 2005-03-30 Joining member and method for producing joining member

Publications (2)

Publication Number Publication Date
JP2006278807A JP2006278807A (en) 2006-10-12
JP4668659B2 true JP4668659B2 (en) 2011-04-13

Family

ID=37213233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005096826A Expired - Fee Related JP4668659B2 (en) 2005-03-30 2005-03-30 Joining member and method for producing joining member

Country Status (1)

Country Link
JP (1) JP4668659B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235776A (en) * 2007-03-23 2008-10-02 Sumco Corp Production process of laminated wafer
KR101570917B1 (en) 2011-04-11 2015-11-20 에베 그룹 에. 탈너 게엠베하 Bendable carrier mounting, device and method for releasing a carrier substrate
US9806054B2 (en) 2011-12-22 2017-10-31 Ev Group E. Thallner Gmbh Flexible substrate holder, device and method for detaching a first substrate
JP6440248B2 (en) * 2014-09-12 2018-12-19 Jx金属株式会社 Wafer and wafer manufacturing method
EP3244604B1 (en) * 2016-05-12 2018-07-18 Axis AB Camera
JP6469070B2 (en) * 2016-12-21 2019-02-13 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Method for peeling a first substrate from a second substrate and use of a flexible substrate holding device
JP7194025B2 (en) * 2019-01-08 2022-12-21 三星電子株式会社 Wafer inspection equipment
JP2023032581A (en) * 2021-08-27 2023-03-09 株式会社荏原製作所 Substrate processing method and substrate processing device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0562951A (en) * 1991-09-02 1993-03-12 Fujitsu Ltd Support substrate for adhesion type soi substrate use
JPH08195483A (en) * 1995-01-19 1996-07-30 Hitachi Ltd Soi substrate, and its manufacture
JPH08279441A (en) * 1995-04-07 1996-10-22 Toshiba Corp Bonded wafer
JPH0917984A (en) * 1995-06-29 1997-01-17 Sumitomo Sitix Corp Bonded soi substrate manufacturing method
JPH09213593A (en) * 1996-01-29 1997-08-15 Sumitomo Sitix Corp Bonded substrate and manufacture thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0562951A (en) * 1991-09-02 1993-03-12 Fujitsu Ltd Support substrate for adhesion type soi substrate use
JPH08195483A (en) * 1995-01-19 1996-07-30 Hitachi Ltd Soi substrate, and its manufacture
JPH08279441A (en) * 1995-04-07 1996-10-22 Toshiba Corp Bonded wafer
JPH0917984A (en) * 1995-06-29 1997-01-17 Sumitomo Sitix Corp Bonded soi substrate manufacturing method
JPH09213593A (en) * 1996-01-29 1997-08-15 Sumitomo Sitix Corp Bonded substrate and manufacture thereof

Also Published As

Publication number Publication date
JP2006278807A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
JP4668659B2 (en) Joining member and method for producing joining member
KR102189172B1 (en) Pellicle membrane, pellicle frame, pellicle and manufacturing method thereof
TWI462834B (en) Process for fabricating a multilayer structure with trimming using thermo-mechanical effects
JP4957139B2 (en) Mold manufacturing method
CN107636801B (en) Composite wafer having oxide single crystal thin film and method for producing same
US20150380292A1 (en) Method for manufacturing semiconductor device
KR102061369B1 (en) Method for the temporary connection of a product substrate to a carrier substrate
TWI713493B (en) Manufacturing method of dustproof film assembly
JP5775409B2 (en) Manufacturing method of optical scanner
JP4867373B2 (en) Wafer holder and semiconductor device manufacturing method
JP2007165503A (en) Hermetic seal structure, piezoelectric device and its manufacturing method
KR20010101155A (en) Bonded wafer producing method and bonded wafer
US20150357150A1 (en) Reinforced radiation window, and method for manufacturing the same
JP6166170B2 (en) Composite substrate and manufacturing method thereof
JP5704602B2 (en) Thin semiconductor device manufacturing method and support for brittle member
JP2012104644A (en) Wafer cutting method and wafer cutting device
JP6396756B2 (en) Composite, method for producing the same, and method for producing composite substrate
JP2008155314A (en) Method for manufacturing mems device
JP2012124300A (en) Wafer breaking method and wafer breaking device
WO2020188732A1 (en) Optical scanning device and method for manufacturing same
JP2005158962A (en) Electrostatic chuck and method for manufacturing the same
JP5464121B2 (en) Optical element manufacturing method
JP2006310398A (en) Method of manufacturing thin-film element, and electronic apparatus
JP2863980B2 (en) Wafer fabrication method
JP4795041B2 (en) Lithographic mask and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees