JP4795041B2 - Lithographic mask and method of manufacturing the same - Google Patents

Lithographic mask and method of manufacturing the same Download PDF

Info

Publication number
JP4795041B2
JP4795041B2 JP2006030745A JP2006030745A JP4795041B2 JP 4795041 B2 JP4795041 B2 JP 4795041B2 JP 2006030745 A JP2006030745 A JP 2006030745A JP 2006030745 A JP2006030745 A JP 2006030745A JP 4795041 B2 JP4795041 B2 JP 4795041B2
Authority
JP
Japan
Prior art keywords
support substrate
reinforcing frame
thin film
metal foil
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006030745A
Other languages
Japanese (ja)
Other versions
JP2006303446A (en
Inventor
祐樹 有塚
浩 藤田
実 北田
尚武 佐野
守 石井
達也 塩貝
基宏 梅津
浩道 大滝
信之 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
NTK Ceratec Co Ltd
Original Assignee
Nihon Ceratec Co Ltd
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Ceratec Co Ltd, Taiheiyo Cement Corp filed Critical Nihon Ceratec Co Ltd
Priority to JP2006030745A priority Critical patent/JP4795041B2/en
Publication of JP2006303446A publication Critical patent/JP2006303446A/en
Application granted granted Critical
Publication of JP4795041B2 publication Critical patent/JP4795041B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、リソグラフィ用マスク、特には反りや歪みがなく、高精度なリソグラフィが可能になるリソグラフィ用マスクとその製造方法に関するものである。   The present invention relates to a lithographic mask, and more particularly to a lithographic mask capable of performing high-precision lithography without warping or distortion, and a method for manufacturing the same.

半導体デバイスにおけるリソグラフィ技術についてはパターン形成の微細化に伴ってX線リソグラフィ技術や、荷電粒子線を用いたリソグラフィ技術である電子線リソグラフィ技術やイオンビームリソグラフィ技術が有望視されている。   As for lithography technology in semiconductor devices, X-ray lithography technology, electron beam lithography technology and ion beam lithography technology, which are lithography technologies using charged particle beams, are promising as pattern formation becomes finer.

図1は電子線リソグラフィに用いられるリソグラフィ用マスク100の概略を示す斜視図である。図2はリソグラフィ用マスク100の積層構造を示す断面図である。例えば、リソグラフィ用マスク100は、所望のパターンが形成されている薄膜103と、その薄膜103の外周を固定して下面側より支持する枠状の支持基板105と、支持基板105を補強するための補強枠107からなる。   FIG. 1 is a perspective view showing an outline of a lithography mask 100 used for electron beam lithography. FIG. 2 is a cross-sectional view showing a laminated structure of the lithography mask 100. For example, the lithography mask 100 includes a thin film 103 on which a desired pattern is formed, a frame-shaped support substrate 105 that fixes the outer periphery of the thin film 103 and supports the thin film 103 from the lower surface side, and a reinforcement for the support substrate 105. It consists of a reinforcing frame 107.

なお、X線リソグラフィに用いられるマスクは、薄膜103の下面側にX線透過性の薄膜が積層されたもので、その他の点については、上記のものと同様であり、イオンビームリソグラフィ技術に用いられるマスクは、電子線リソグラフィ技術に用いられるものと同様である。   The mask used for X-ray lithography is a thin film 103 laminated with an X-ray transparent thin film on the lower surface side. The other points are the same as described above, and are used for the ion beam lithography technique. The mask used is the same as that used in the electron beam lithography technique.

ここで、薄膜103としては一般的には厚さ1μm以下の薄膜が用いられている。また、薄膜103を支持する支持基板105は、表面が平坦で、アルカリ液による異方性エッチングやドライエッチング等の確立されたエッチング方式に適していることから、通常はシリコンウエハ(以下Siウエハと記す)が用いられている。   Here, a thin film having a thickness of 1 μm or less is generally used as the thin film 103. The support substrate 105 that supports the thin film 103 has a flat surface and is suitable for an established etching method such as anisotropic etching or dry etching using an alkaline solution. Is used).

このような電子線リソグラフィ用マスクは、例えばSiウエハの鏡面にSiC薄膜を成膜した後、Siウエハの反対面からアルカリエッチングを行ってSiC薄膜をメンブレン状態とすることによって作られ、この場合メンブレンの周囲に相当する未エッチング領域がSiCの支持基板105となる。SiC薄膜への所望のパターン形成は、SiC薄膜のメンブレン形成後に行っている。   Such a mask for electron beam lithography is made, for example, by forming a SiC thin film on the mirror surface of a Si wafer and then performing alkali etching from the opposite surface of the Si wafer to bring the SiC thin film into a membrane state. An unetched region corresponding to the periphery of the substrate becomes a SiC support substrate 105. The desired pattern formation on the SiC thin film is performed after the formation of the SiC thin film membrane.

しかし、このSiC薄膜103と支持基板105としてのSiウエハは割れ易く、強度も不十分である。またマスク作製あるいは露光時の保持により変形を起こすため、安定したマスク作製、および露光結果が得られにくいという問題がある。従って支持基板105はその周囲を補強枠107で補強する必要があり、この補強枠107としては、Siウエハと比較的熱膨張係数が等しい、ほうけい酸ガラス(たとえば、商品名パイレックスガラス(登録商標)など)が用いられている。この支持基板105と補強枠107は通常、接着材を用いて固定する方法、あるいは陽極接合により結合されている。   However, the SiC thin film 103 and the Si wafer as the support substrate 105 are easily broken and insufficient in strength. Further, since deformation occurs due to mask fabrication or holding during exposure, there is a problem that stable mask fabrication and exposure results are difficult to obtain. Accordingly, it is necessary to reinforce the periphery of the support substrate 105 with a reinforcing frame 107. As the reinforcing frame 107, a borosilicate glass (for example, a trade name Pyrex glass (registered trademark)) having a thermal expansion coefficient relatively equal to that of an Si wafer is used. ) Etc.) are used. The support substrate 105 and the reinforcing frame 107 are usually coupled by a method of fixing using an adhesive or anodic bonding.

しかし、支持基板105と補強枠107を接着材により接着する場合、接着材層の厚さが30〜100μmとなり、接着後のSiC薄膜103の平面度が、電子線リソグラフィ用マスクとして要求されるマスクの平面度1μm以下とすることができないという問題が生じる。また、接着材がマスク洗浄に通常用いられる薬液により変質したり、薬液中に成分が溶出するという問題があった。   However, when the support substrate 105 and the reinforcing frame 107 are bonded with an adhesive, the thickness of the adhesive layer is 30 to 100 μm, and the flatness of the SiC thin film 103 after bonding is required as a mask for electron beam lithography. This causes a problem that the flatness cannot be 1 μm or less. In addition, there is a problem that the adhesive material is altered by a chemical solution usually used for mask cleaning, and components are eluted in the chemical solution.

また陽極接合を用いた場合であっても、支持基板105の材料としてのSiウエハの熱膨張率が4.2×10−6/℃であるのに対し、補強枠107の材料としてのほうけい酸ガラスの熱膨張率が3.5×10−6/℃と差があるために、温度変化によってSiC薄膜に歪みが発生し易いという問題点が生じている。 Even when anodic bonding is used, the thermal expansion coefficient of the Si wafer as the material of the support substrate 105 is 4.2 × 10 −6 / ° C., whereas the silicate as the material of the reinforcing frame 107 is used. Since the thermal expansion coefficient of acid glass is different from 3.5 × 10 −6 / ° C., there is a problem that the SiC thin film is likely to be distorted due to temperature change.

これに対しては、補強枠107を支持基板105と同じ材質であるSi単結晶板とし、支持基板105のSiウエハと補強枠107のSi単結晶板を高温下での熱処理で直接接合するという方法が提案されている(たとえば[特許文献1]参照。)。
特開平2−162714号公報
For this, the reinforcing frame 107 is a Si single crystal plate made of the same material as the support substrate 105, and the Si wafer of the support substrate 105 and the Si single crystal plate of the reinforcement frame 107 are directly bonded by heat treatment at high temperature. A method has been proposed (see, for example, [Patent Document 1]).
JP-A-2-162714

しかしながら、この場合には実用に耐える接着強度を得るためには900℃以上の高温で熱処理を行う必要があるために、SiC薄膜103の内部応力が変化し、SiC薄膜103に歪みや破壊が引き起こされるという欠点があった。   However, in this case, since it is necessary to perform heat treatment at a high temperature of 900 ° C. or higher in order to obtain an adhesive strength that can withstand practical use, the internal stress of the SiC thin film 103 changes, causing the SiC thin film 103 to be distorted or broken. There was a drawback of being.

また、支持基板105と補強枠107との間には、絶縁性のSiO層が生成して導電性が低下するので、実際にリソグラフィ用マスクとして使用する際に、電子線等の照射によって電荷が次第に蓄積され、この蓄積された電荷が、電子線等の進行に影響を及ぼすため、安定した照射が行えなくなる欠点もある。 In addition, since an insulating SiO 2 layer is formed between the support substrate 105 and the reinforcing frame 107 and the conductivity is lowered, the charge is generated by irradiation with an electron beam or the like when actually used as a lithography mask. Is accumulated gradually, and the accumulated electric charge affects the progress of the electron beam and the like, so that there is a disadvantage that stable irradiation cannot be performed.

本発明は、前述した目的に鑑みてなされたもので、上記の従来技術における諸欠点が解消された高い平面平行度を有するリソグラフィ用マスクを提供することを目的とする。   The present invention has been made in view of the above-described object, and an object of the present invention is to provide a lithography mask having high plane parallelism in which the above-described drawbacks in the prior art are eliminated.

前述した目的を達成するために第1の発明は、所望のパターンが形成されている薄膜と、前記薄膜の外周を固定して支持する支持基板と、補強枠と、金属箔の溶解固化物から成り前記支持基板と前記補強枠とを接合する接合部と、を具備し、前記支持基板の前記補強枠側、もしくは前記補強枠の前記支持基板側の少なくともいずれか一方の面に、凹部を有し、前記凹部が、前記支持基板の前記補強枠側、もしくは前記補強枠の前記支持基板側のいずれか一方の面に形成される場合には、前記凹部の深さが10μm〜20μmであり、前記凹部が、前記支持基板の前記補強枠側、および前記補強枠の前記支持基板側の両方の面に形成される場合には、前記凹部の深さの合計が10μm〜20μmであり、前記凹部内に前記接合部が配されていることを特徴とするリソグラフィ用マスクである。 In order to achieve the above-described object, the first invention includes a thin film in which a desired pattern is formed, a support substrate that fixes and supports the outer periphery of the thin film, a reinforcing frame, and a melted and solidified metal foil. And a joint portion for joining the support substrate and the reinforcement frame, and has a recess on at least one of the reinforcement frame side of the support substrate and the support substrate side of the reinforcement frame. And when the said recessed part is formed in the any one surface of the said reinforcement frame side of the said support substrate, or the said support substrate side of the said reinforcement frame, the depth of the said recessed part is 10 micrometers-20 micrometers, When the recess is formed on both the reinforcing frame side of the support substrate and the support substrate side of the reinforcement frame, the total depth of the recess is 10 μm to 20 μm, and the recess this said joint is disposed within It is a lithography mask and said.

このリソグラフィ用マスクは、金属箔を構成する素材は支持基板及び補強枠と共晶をなす材料、または共晶をなす材料を含む合金が望ましく、例えば、金または金を含む合金が望まれる。また、凹部が、支持基板の補強枠側、もしくは補強枠の支持基板側のいずれか一方の面に形成されるようにしてもよい。 The lithographic mask material constituting the gold Shokuhaku material constituting the support substrate and the reinforcing frame and the eutectic or alloy preferably containing a material of the eutectic, e.g., desired alloys containing gold or gold. Moreover, you may make it a recessed part be formed in the any one surface of the reinforcement frame side of a support substrate, or the support substrate side of a reinforcement frame.

また、第2の発明は、所望のパターンが形成されている薄膜と前記薄膜の外周を固定して支持する支持基板とからなる薄膜/支持基板複合体と、前記支持基板を補強する補強枠とを準備し、前記支持基板もしくは前記補強枠の少なくともいずれか一方の接合対象面に、凹部を設け、前記凹部に金属箔を配置して、前記薄膜/支持基板複合体および前記補強枠を重ねた後、前記金属箔を加熱及び加圧により溶解させ、固化させて前記支持基板と前記補強枠とを接合する工程を具備し、前記凹部が、前記支持基板もしくは前記補強枠のいずれか一方の接合対象面に形成される場合には、前記凹部の深さが10μm〜20μmであり、前記凹部が、前記支持基板および前記補強枠の両方の接合対象面に形成される場合には、前記凹部の深さの合計が10μm〜20μmであることを特徴とするリソグラフィ用マスクの製造方法である。 According to a second aspect of the present invention, there is provided a thin film / support substrate composite comprising a thin film on which a desired pattern is formed and a support substrate that fixes and supports the outer periphery of the thin film, and a reinforcing frame that reinforces the support substrate; And a thin film / support substrate composite and the reinforcing frame are stacked by providing a concave portion on at least one of the surfaces to be joined of the supporting substrate or the reinforcing frame, disposing a metal foil in the concave portion . after, the metal foil is dissolved by heat and pressure, and comprising a step of bonding the supporting substrate and the reinforcing frame is solidified, the recess, one of the bonding of the support substrate or the reinforcing frame When formed on the target surface, the depth of the concave portion is 10 μm to 20 μm, and when the concave portion is formed on the bonding target surface of both the support substrate and the reinforcing frame, Total depth is 1 It is a manufacturing method of the mask for lithography characterized by being 0 micrometer-20 micrometers .

第1の発明によれば、所望のパターンが形成されている薄膜と、該薄膜の外周を固定して支持する支持基板と、前記支持基板を補強する補強枠とからなるリソグラフィ用マスクにおいて、マスクの支持基板上に配置された薄膜に歪みや破壊が引き起こされることがなく、また、支持基板と補強枠との間に導電性が付与されるため、荷電粒子線が照射された際に電荷が蓄積して荷電粒子線の進行に影響が生じることを回避可能で、高精度の平面平行度を有するリソグラフィ用マスクを提供することができる。   According to the first invention, there is provided a lithography mask comprising a thin film on which a desired pattern is formed, a support substrate that fixes and supports the outer periphery of the thin film, and a reinforcement frame that reinforces the support substrate. The thin film placed on the support substrate is not distorted or broken, and conductivity is imparted between the support substrate and the reinforcing frame. It is possible to provide a lithography mask that can avoid accumulation and affect the progress of the charged particle beam, and has high-precision plane parallelism.

また、第2の発明によれば、上記の薄膜と支持基板との複合体と、上記の補強枠とを準備し、支持基板と補強枠との間に金属箔を配置し、溶解させて両者間を接合することにより、上記のような利点を有するリソグラフィ用マスクを支障なく、かつ効率よく製造可能な製造方法を提供することができる。   According to the second invention, the composite of the thin film and the supporting substrate and the reinforcing frame are prepared, and the metal foil is disposed between the supporting substrate and the reinforcing frame, and both are dissolved. By joining the gaps, it is possible to provide a manufacturing method that can efficiently and efficiently manufacture a lithography mask having the above-described advantages.

以下添付図面に基づいて、本発明の実施の形態に係るリソグラフィ用マスク1について詳細に説明する。ここでは電子線リソグラフィ用マスクを例にとって示す。
図3は本実施の形態に係るリソグラフィ用マスク1の斜視図、図4は、リソグラフィ用マスク1の積層構造を示すための断面図である。
Hereinafter, a lithography mask 1 according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. Here, an electron beam lithography mask is taken as an example.
FIG. 3 is a perspective view of the lithography mask 1 according to the present embodiment, and FIG. 4 is a cross-sectional view showing the laminated structure of the lithography mask 1.

図3及び図4に示すように、リソグラフィ用マスク1は、図中の上側から、薄膜3、支持基板5、接合部9及び補強枠7が順に積層された積層構造を有し、図示の例では、全体の平面形状が円形のものであるが、円形以外の多角形であってもよい。薄膜3は平面形状が円形であり、周縁部(外周部)を除いた部分に、所望のパターン、好ましくは集積回路等に相当するパターン(図示せず)が形成される。   As shown in FIGS. 3 and 4, the lithography mask 1 has a laminated structure in which a thin film 3, a support substrate 5, a joint portion 9, and a reinforcing frame 7 are laminated in this order from the upper side in the drawing. Then, although the whole planar shape is circular, it may be a polygon other than a circle. The thin film 3 has a circular planar shape, and a desired pattern, preferably a pattern (not shown) corresponding to an integrated circuit or the like is formed in a portion excluding the peripheral edge (outer peripheral part).

薄膜3は、その外周部を図中の下面側において支持基板5により支持される。支持基板5は板状で、平面形状の外形が薄膜3の外形と同一な円形であり、中心からの大部分を同心円状にくりぬかれた環状の形状を有する。補強枠7は支持基板5を補強するために、支持基板5の下面側に積層される。図に示す例では、補強枠7の外形は支持基板5の外形よりも大きく、支持基板5と同様、中心からの大部分を同心円状にくりぬかれた穴17を有し、また、その穴17の大きさは、支持基板5におけるくりぬかれた部分の大きさよりも大きい。   The outer periphery of the thin film 3 is supported by the support substrate 5 on the lower surface side in the drawing. The support substrate 5 is plate-shaped, and has a circular shape in which the outer shape of the planar shape is the same as the outer shape of the thin film 3 and most of the center is concentrically cut out. The reinforcing frame 7 is laminated on the lower surface side of the support substrate 5 in order to reinforce the support substrate 5. In the example shown in the drawing, the outer shape of the reinforcing frame 7 is larger than the outer shape of the support substrate 5. Like the support substrate 5, the reinforcement frame 7 has a hole 17 that is concentrically cut out from the center. Is larger than the size of the hollowed portion of the support substrate 5.

なお、所望のパターンが形成されている薄膜3は、必ずしも一層ではなく、マスクのパターンを転写する際に用いる荷電粒子線の種類に合わせてバリエーションがあり得る。一例として荷電粒子線が電子線である場合、開孔部で構成されたパターンを有する薄膜3は、開孔部を覆う別の膜を伴うと、結果として、電子線が開孔部から透過しないので、薄膜3単独であることが望ましい。荷電粒子線がイオンビームである場合にも同様である。しかしながら、荷電粒子線がX線である場合には、X線が透過し得る材料で構成された膜で、開孔部が覆われていてもよい。   Note that the thin film 3 on which a desired pattern is formed is not necessarily a single layer, and there may be variations according to the type of charged particle beam used when transferring the mask pattern. As an example, when the charged particle beam is an electron beam, the thin film 3 having a pattern constituted by the aperture portion is accompanied by another film covering the aperture portion, and as a result, the electron beam does not pass through the aperture portion. Therefore, it is desirable that the thin film 3 is used alone. The same applies when the charged particle beam is an ion beam. However, when the charged particle beam is an X-ray, the opening portion may be covered with a film made of a material that can transmit the X-ray.

また、図4に示されるように、支持基板5のくりぬかれた部分は、図4中の下方に向かうほど、直径が大きいものが多いが、この限りではない。さらに、補強枠7のくりぬかれた穴17の壁面部は、図4で垂直に表現されているが、斜めであってもかまわない。また、支持基板5、接合部9、補強枠7が重なる部分の形状についても、接合部9は両者より小さくてもよい。   Further, as shown in FIG. 4, the hollowed portion of the support substrate 5 has a larger diameter as it goes downward in FIG. 4, but this is not restrictive. Furthermore, although the wall surface portion of the hole 17 that is hollowed out of the reinforcing frame 7 is expressed vertically in FIG. 4, it may be inclined. Moreover, also about the shape of the part which the support substrate 5, the junction part 9, and the reinforcement frame 7 overlap, the junction part 9 may be smaller than both.

リソグラフィ用マスク1は、支持基板5と補強枠7の間に金属箔15からなる接合部9を有する。接合部9の平面形状は、支持基板5と補強枠7が重なる部分の形状に相当する。支持基板5と補強枠7の間の相対する面は平坦であるが、これらの相対する面の一方もしくは両方が凹部を有するほうが好ましい(図9〜図13で後述する。)。   The lithography mask 1 has a joint 9 made of a metal foil 15 between the support substrate 5 and the reinforcing frame 7. The planar shape of the joint portion 9 corresponds to the shape of the portion where the support substrate 5 and the reinforcing frame 7 overlap. Although the opposing surface between the support substrate 5 and the reinforcing frame 7 is flat, it is preferable that one or both of these opposing surfaces have a recess (described later in FIGS. 9 to 13).

次に、図5〜図7を用いて、リソグラフィ用マスク1の製造方法について説明を行う。
リソグラフィ用マスク1を製造するには、まず支持基板5と穴17を有する補強枠7の間の接合部9が設けられる予定の区域に、金属箔15を配置する。その後、支持基板5と補強枠7との間に熱をかけ、より好ましくは、熱と圧力をかけて、金属箔15を溶解させ、支持基板5と補強枠7との間に接合部9を形成する。
Next, the manufacturing method of the lithography mask 1 will be described with reference to FIGS.
In order to manufacture the lithography mask 1, first, the metal foil 15 is arranged in an area where the joint 9 between the support substrate 5 and the reinforcing frame 7 having the holes 17 is to be provided. Thereafter, heat is applied between the support substrate 5 and the reinforcing frame 7, and more preferably, heat and pressure are applied to dissolve the metal foil 15, and the joint 9 is formed between the support substrate 5 and the reinforcing frame 7. Form.

接合部9を形成するタイミングとしては、支持基板5をくり抜き、図4と同様の形状に加工した後でもよいが、これにより形成される薄膜3のメンブレンはデリケートで衝撃に弱いため、支持基板5のくりぬき前に支持基板5と補強枠7との間に接合部9を形成することが好ましい。   The timing of forming the joint 9 may be after the support substrate 5 is cut out and processed into the same shape as in FIG. 4, but the membrane of the thin film 3 formed thereby is delicate and vulnerable to impacts. It is preferable to form the joint portion 9 between the support substrate 5 and the reinforcing frame 7 before drilling.

図5(a)に示すように、支持基板5上に薄膜3を形成したマスクブランク13を準備し、図5(b)に示すように、所定の素材の板8を切削加工等により環状の形状に成形し、穴17を有する補強枠7を準備しておく。
図9で後述するような凹部11を形成する場合には、切削するか、もしくはエッチング等によって行う。
As shown in FIG. 5A, a mask blank 13 having a thin film 3 formed on a support substrate 5 is prepared. As shown in FIG. 5B, a predetermined material plate 8 is formed into an annular shape by cutting or the like. A reinforcing frame 7 which is molded into a shape and has holes 17 is prepared.
When forming the recess 11 as will be described later with reference to FIG. 9, it is performed by cutting or etching.

次に、図6に示すように、支持基板5側の所定の位置に金属箔15を配置するか、もしくは、補強枠7側の所定の位置に金属箔15を配置する。ここで、パターン形成領域19は、次のステップで接合後エッチングを施してパターンを形成する領域である。   Next, as shown in FIG. 6, the metal foil 15 is disposed at a predetermined position on the support substrate 5 side, or the metal foil 15 is disposed at a predetermined position on the reinforcing frame 7 side. Here, the pattern formation region 19 is a region where a pattern is formed by performing post-bonding etching in the next step.

その後、図7に示すように、支持基板5、金属箔15、及び補強枠7側を重ね、例えば、上部に支持基板5の形状に合った凹部23を有する加圧板21、下部に加圧板21aを配置する。その後支持基板5側、もしくは補強枠7側のいずれか一方、もしくは両方から加熱し、より好ましくは加熱及び加圧板21、加圧板21aで加圧して金属箔15を溶解させた後、冷却して固化させることにより、支持基板5及び補強枠7を接合する。   Thereafter, as shown in FIG. 7, the support substrate 5, the metal foil 15, and the reinforcing frame 7 side are overlapped, for example, a pressure plate 21 having a concave portion 23 matching the shape of the support substrate 5 at the upper portion, and a pressure plate 21 a at the lower portion. Place. Thereafter, heating is performed from one or both of the support substrate 5 side and the reinforcing frame 7 side, and more preferably, the metal foil 15 is dissolved by heating and pressing with the pressing plate 21 and the pressing plate 21a, and then cooled. By solidifying, the support substrate 5 and the reinforcing frame 7 are joined.

図8は支持基板5と補強枠7が接合された図を示す。図7における金属箔15が溶解されて接合部9となる。支持基板5と補強枠7は接合部9により接合される。   FIG. 8 shows a view in which the support substrate 5 and the reinforcing frame 7 are joined. The metal foil 15 in FIG. The support substrate 5 and the reinforcing frame 7 are joined by the joint portion 9.

接合後、補強枠7側からパターン状にエッチングして、支持基板5を補強枠7に対応した環状に成形して、外周部以外の薄膜3を露出させ、さらに、露出した部分の薄膜3にパターン状にエッチングを施して、図4に示すリソグラフィ用マスク1を得る。
以上の製造過程において、薄膜3に対するエッチング及び支持基板5に対するエッチングは、逆の順に行ってもよい。
After joining, etching is performed in a pattern from the reinforcing frame 7 side, and the support substrate 5 is formed into an annular shape corresponding to the reinforcing frame 7 to expose the thin film 3 other than the outer peripheral portion, and further to the exposed portion of the thin film 3 Etching is performed in a pattern to obtain a lithography mask 1 shown in FIG.
In the above manufacturing process, the etching on the thin film 3 and the etching on the support substrate 5 may be performed in the reverse order.

次に、他の実施の形態に係るリソグラフィ用マスク1aについて説明する。
図9は補強枠7の上面に凹部11aを有したリソグラフィ用マスク1aを示し、図10は図9の要部の拡大図を示す。
図9、図10に示すリソグラフィ用マスク1aでは、補強枠7の上面に凹部11aを有しており、補強枠7側の凹部11aにおいて金属箔15からなる接合部9を有している。
Next, a lithography mask 1a according to another embodiment will be described.
FIG. 9 shows a lithography mask 1a having a recess 11a on the upper surface of the reinforcing frame 7, and FIG. 10 shows an enlarged view of the main part of FIG.
The lithography mask 1a shown in FIGS. 9 and 10 has a concave portion 11a on the upper surface of the reinforcing frame 7, and has a joint portion 9 made of a metal foil 15 in the concave portion 11a on the reinforcing frame 7 side.

次に図11、図12を参照しながら、リソグラフィ用マスク1aの製造方法について説明を行う。
図11は接合対象面に凹部11aを設けた場合の接合前の状態を示す断面図である。補強枠7の上部に形成された凹部11aに金属箔15を配置する。この後、第1の実施形態と同様、加熱し、好ましくは加熱及び加圧し、金属箔15を溶解させる。
Next, a method for manufacturing the lithography mask 1a will be described with reference to FIGS.
FIG. 11 is a cross-sectional view showing a state before joining when a concave portion 11a is provided on the joining target surfaces. A metal foil 15 is disposed in a recess 11 a formed in the upper part of the reinforcing frame 7. Thereafter, similarly to the first embodiment, the metal foil 15 is dissolved by heating, preferably heating and pressurizing.

このとき、接合対象面に凹部11aが設けられている場合は、凹部11の形状に合わせた形状の金属箔15を凹部11aに配置することが好ましい。
この後、冷却して固化させ、図12に示すように金属箔15が固化して接合部9となり、支持基板5と補強枠7が接合される。
接合部9において、実際に接合に寄与する面積は、必ずしも広くなくてもよい。例えば、接合部9は、図12に示すように、補強枠7と支持基板5の重なり合う部分の幅に対して、十分な幅を有していてもよいが、十分な面積を有していなくてもよく、線状や点状に接合した部分であってもよい。
At this time, when the recessed part 11a is provided in the joining object surface, it is preferable to arrange | position the metal foil 15 of the shape matched with the shape of the recessed part 11 in the recessed part 11a.
Then, it cools and solidifies, and as shown in FIG. 12, the metal foil 15 solidifies and becomes the junction part 9, and the support substrate 5 and the reinforcement frame 7 are joined.
In the joint portion 9, the area that actually contributes to the joint does not necessarily have to be wide. For example, as shown in FIG. 12, the joint portion 9 may have a sufficient width with respect to the width of the overlapping portion of the reinforcing frame 7 and the support substrate 5, but does not have a sufficient area. Alternatively, it may be a part joined in a linear or dot shape.

図13(a)、図13(b)は、他の実施の形態に係るリソグラフィ用マスク1b、1cを示す図である。
図13(a)、図13(b)は、接合部9における、支持基板5と補強枠7の間の相対する面の表面形状を示す図である。なお、図13(a)、図13(b)においては、接合に関係する部分のみを図示する。
FIGS. 13A and 13B are diagrams showing lithography masks 1b and 1c according to other embodiments.
FIGS. 13A and 13B are diagrams showing the surface shapes of the opposing surfaces between the support substrate 5 and the reinforcing frame 7 in the joint portion 9. In FIGS. 13A and 13B, only the portion related to bonding is shown.

図13(a)に示すリソグラフィ用マスク1bにおいては、支持基板5の下面に凹部11bを有しており、凹部11bにおいて金属箔15の溶解固化物からなる接合部9(図では、その断面形状が垂直に模式的に示されている。)を有している。   In the lithography mask 1b shown in FIG. 13 (a), a concave portion 11b is formed on the lower surface of the support substrate 5, and the joint portion 9 (in the figure, its cross-sectional shape) made of a melted and solidified metal foil 15 is formed in the concave portion 11b. Is schematically shown vertically).

また、図13(b)に示すリソグラフィ用マスク1cにおいては、補強枠7の上面に凹部11c、支持基板5の下面に凹部11dを有しており、凹部11cと凹部11dが重なって生じる空間において金属箔15の溶解固化物からなる接合部9を有している。補強枠7を支持基板5よりも十分に厚い素材で構成する場合には、補強枠7側に凹部11dを形成する方が、作業効率上好ましい。   Further, the lithography mask 1c shown in FIG. 13B has a recess 11c on the upper surface of the reinforcing frame 7 and a recess 11d on the lower surface of the support substrate 5, and in a space formed by overlapping the recess 11c and the recess 11d. It has a joint 9 made of a melted and solidified product of the metal foil 15. When the reinforcing frame 7 is made of a material that is sufficiently thicker than the support substrate 5, it is preferable in terms of work efficiency to form the recess 11d on the reinforcing frame 7 side.

以上説明したように、支持基板5と補強枠7の間のいずれかに凹部11を設け、接合部9を形成するが、これらの凹部11は、支持基板5もしくは補強枠7の外周に沿って、連続的に設けてもよいし、不連続的に設けてもよい。   As described above, the concave portion 11 is provided between the support substrate 5 and the reinforcing frame 7 to form the joint portion 9, and these concave portions 11 extend along the outer periphery of the supporting substrate 5 or the reinforcing frame 7. These may be provided continuously or discontinuously.

なお、凹部11を設ける理由は、接合に必要な金属の厚みを保つためであるが、接合時に流動した余分な金属を受け入れる受け皿としての役割を持たせるためでもある。また、凹部11の容積を調節することにより、受け皿としての凹部11を金属が乗り越えることを防止することも可能になる。   The reason why the recess 11 is provided is to maintain the thickness of the metal necessary for joining, but also to provide a role as a receiving tray for receiving excess metal that has flowed during joining. Further, by adjusting the volume of the recess 11, it becomes possible to prevent the metal from getting over the recess 11 as a tray.

図10、図13(a)、(b)に示すリソグラフィ用マスク1a、1b、1cにおいては、補強枠7の上面もしくは支持基板5の下面の少なくとも一方の接合部となる場所に凹部11を形成し、その凹部11に金属箔の溶解固化物15を配することにより、支持基板5と補強枠7との接合部9以外に余計な接合層を介在させることなく、支持基板5と補強枠7が互いに直接接触した状態で接合することができ、支持基板5のゆがみが補正できる。さらには、補強枠7の接合部9に凹部11を形成しない場合と比較して、接合層の厚みのバラッキによる平面度の低下を極力抑えることができる効果がある。   In the lithography masks 1 a, 1 b, and 1 c shown in FIGS. 10, 13 (a), and (b), the concave portion 11 is formed at a location that becomes at least one joint portion of the upper surface of the reinforcing frame 7 or the lower surface of the support substrate 5. In addition, by disposing the solidified product 15 of the metal foil in the recess 11, the support substrate 5 and the reinforcement frame 7 can be provided without interposing an extra joining layer other than the joint 9 between the support substrate 5 and the reinforcement frame 7. Can be joined while being in direct contact with each other, and the distortion of the support substrate 5 can be corrected. Furthermore, compared with the case where the recessed part 11 is not formed in the junction part 9 of the reinforcement frame 7, there exists an effect which can suppress the fall of the flatness by the variation in the thickness of a joining layer as much as possible.

凹部11の深さは10〜20μmが好ましい。凹部11の深さが10μmより浅いと、支持基板5と補強枠7を接合する金属箔15の延伸量が少ないので、支持基板5の歪みを十分に補正する力が得られない。なお、図13(b)に示すリソグラフィ用マスク1cにおいては、支持基板5に設けられた凹部11bの深さと補強枠7に設けられた凹部11dの深さの合計が10〜20μmであることが好ましい。また、凹部の深さが20μmより深いと、逆に、支持基板5と補強枠7を接合する金属箔15の硬度により、支持基板5の歪みを補正する力が強すぎるため、支持基板5の歪みが増加し、さらに支持基板5が破損する可能性があり好ましくない。
また、凹部11の直径は1mm〜10mmが好ましい。凹部11の直径が1mmより小さいと支持基板5と補強枠7の金属箔15の接合面積が小さく、接合の信頼性に欠ける。また、凹部の直径が10mmより大きいと、支持基板5と補強枠7の接合強度が強く、支持基板5と補強枠7の間に発生する熱収縮量差に起因する応力により、支持基板5を破壊することがある。
As for the depth of the recessed part 11, 10-20 micrometers is preferable. If the depth of the recess 11 is shallower than 10 μm, the amount of stretching of the metal foil 15 that joins the support substrate 5 and the reinforcing frame 7 is small, so that a force that sufficiently corrects the distortion of the support substrate 5 cannot be obtained. In the lithography mask 1c shown in FIG. 13B, the sum of the depth of the recess 11b provided in the support substrate 5 and the depth of the recess 11d provided in the reinforcing frame 7 is 10 to 20 μm. preferable. On the other hand, if the depth of the recess is deeper than 20 μm, the strength of the metal foil 15 that joins the support substrate 5 and the reinforcing frame 7 is too strong to correct the distortion of the support substrate 5. This is not preferable because distortion increases and the support substrate 5 may be damaged.
The diameter of the recess 11 is preferably 1 mm to 10 mm. When the diameter of the recess 11 is smaller than 1 mm, the bonding area between the support substrate 5 and the metal foil 15 of the reinforcing frame 7 is small, and the bonding reliability is lacking. Further, if the diameter of the recess is larger than 10 mm, the bonding strength between the support substrate 5 and the reinforcement frame 7 is strong, and the support substrate 5 is caused by the stress caused by the difference in thermal shrinkage generated between the support substrate 5 and the reinforcement frame 7. May destroy.

前述した各実施の形態においては、薄膜1としては、シリコン、窒化ケイ素、炭化ケイ素、ダイヤモンドライクカーボン(DLC)、もしくはダイヤモンド等を素材とするものが好ましく、薄膜1の厚みは、0.2μm〜4μm程度であることが好ましい。
支持基板5としては、シリコン、炭素、低膨張ガラス、アルミナ等の酸化物セラミック、炭化ケイ素、炭化タングステン、もしくは炭化モリブデン等の炭化物セラミック、または、窒化ケイ素、もしくは窒化アルミニウム等の窒化物セラミックを素材とするものが好ましく、支持基板5の厚みとしては、一例として、0.6mm〜2mm程度が好ましい。
In each of the embodiments described above, the thin film 1 is preferably made of silicon, silicon nitride, silicon carbide, diamond-like carbon (DLC), diamond or the like, and the thickness of the thin film 1 is 0.2 μm to It is preferably about 4 μm.
The support substrate 5 is made of oxide ceramic such as silicon, carbon, low expansion glass, alumina, carbide ceramic such as silicon carbide, tungsten carbide, or molybdenum carbide, or nitride ceramic such as silicon nitride or aluminum nitride. The thickness of the support substrate 5 is preferably about 0.6 mm to 2 mm as an example.

補強枠7としては、上記の支持基板5と同様な素材からなるもので、厚みとしては、3mm〜15mm程度が好ましい。   The reinforcing frame 7 is made of the same material as the support substrate 5 described above, and the thickness is preferably about 3 mm to 15 mm.

接合部4を構成する金属箔の素材としては支持基板5及び補強枠7と共晶をなす金属、あるいは共晶をなす金属を含む合金が望ましく、支持基板5及び補強枠7がシリコンの場合は金Au、アルミニウムAl、またはこれらを含む合金を用いるのがよい。支持基板5及び補強枠7がアルミナ、炭化タングステンの場合はモリブデンMo、支持基板5及び補強枠7が炭化ケイ素、窒化ケイ素の場合はチタンTi、Zr、モリブデンMo、支持基板5及び補強枠7が炭化モリブデン、窒化アルミニウムの場合はシリコンSiなどが挙げられる。中でも、低温度で高い接合強度が得られる点で金Auがより好ましい。また、接合部9を導線として利用する場合には導電性が高い金Auが好ましい。金属箔の厚みは、凹部よりも厚いことが望ましい。   The metal foil constituting the joint 4 is preferably a metal eutectic with the support substrate 5 and the reinforcing frame 7 or an alloy containing a metal that forms the eutectic. When the support substrate 5 and the reinforcement frame 7 are silicon, Gold Au, aluminum Al, or an alloy containing these may be used. When the support substrate 5 and the reinforcement frame 7 are alumina and tungsten carbide, molybdenum Mo, and when the support substrate 5 and the reinforcement frame 7 are silicon carbide and silicon nitride, titanium Ti, Zr, molybdenum Mo, the support substrate 5 and the reinforcement frame 7 are In the case of molybdenum carbide and aluminum nitride, silicon Si and the like can be mentioned. Among these, gold Au is more preferable in that high bonding strength can be obtained at a low temperature. Moreover, when using the junction part 9 as a conducting wire, gold Au with high electroconductivity is preferable. As for the thickness of metal foil, it is desirable that it is thicker than a recessed part.

さらに、支持基板5と補強枠7との接合において、支持基板5と補強枠7とが金から成る金属箔15の溶解固化物により点接合することが特に望ましい。その理由は、線接合及び面接合では、SiとAuとの熱膨張係数の差により、応力が発生し、支持基板5が歪んだり、破損する場合があるからである。
ここで、接合部9の配置は、補強枠7の穴17の周囲でその穴17と同心円上で円周を3等分とした120°等配の3点接合が発生応力を低減し、高い平面平行度が得られることから、特に望ましい。
Furthermore, in the joining of the support substrate 5 and the reinforcing frame 7, it is particularly desirable that the supporting substrate 5 and the reinforcing frame 7 are spot-joined with a melted and solidified metal foil 15 made of gold. The reason is that in line bonding and surface bonding, stress is generated due to the difference in thermal expansion coefficient between Si and Au, and the support substrate 5 may be distorted or broken.
Here, the arrangement of the joint portion 9 is high at 120 ° equidistant three-point joining around the hole 17 of the reinforcing frame 7 and concentric with the hole 17 to reduce the generated stress. This is particularly desirable because it provides a plane parallelism.

補強枠7を単結晶Siとする理由は、補強枠7の材質を、支持基板5の材質と同じSi単結晶とすることにより、補強枠7と支持基板5の熱膨張差がなくなり、熱膨張差による歪みを低減することが可能であるからである。   The reason why the reinforcement frame 7 is made of single crystal Si is that the difference in thermal expansion between the reinforcement frame 7 and the support substrate 5 is eliminated by making the material of the reinforcement frame 7 the same Si single crystal as that of the support substrate 5. This is because distortion due to the difference can be reduced.

次に、図14〜図15を参照しながら、本発明の実施例におけるSiC薄膜3部分の平面平行度(そり量)の評価について説明を行う。図14、図15はリソグラフィ用マスク1aに係る実施例1、実施例3をそれぞれ示す。   Next, the evaluation of the plane parallelism (warping amount) of the SiC thin film 3 portion in the embodiment of the present invention will be described with reference to FIGS. FIGS. 14 and 15 show Example 1 and Example 3 related to the lithography mask 1a, respectively.

(実施例1)
図14を参照しながら、実施例1について説明を行う。
支持基板5としては、直径4インチ、厚さ600μmの結晶方位が(100)である、両面研磨したSiウエハを用いた。これにCVD法で厚さ0.5μmのSiC薄膜3を成膜した。
Example 1
Example 1 will be described with reference to FIG.
As the support substrate 5, a double-side polished Si wafer having a diameter of 4 inches and a thickness of 600 μm and a crystal orientation of (100) was used. An SiC thin film 3 having a thickness of 0.5 μm was formed thereon by CVD.

次に、結晶方位が同じく(100)で、直径が100mm、厚さが5mmである両面研磨した円盤形のSi単結晶の中央部に直径55mmの穴17を設けてリング円盤状の補強枠7を作った。   Next, a hole 17 having a diameter of 55 mm is provided in the center of a double-side polished disc-shaped Si single crystal having the same crystal orientation (100), a diameter of 100 mm, and a thickness of 5 mm. made.

次に、リング円盤状の補強枠7の穴17の周囲でその穴17と同心円上で円周を3等分とした120°等配部位に点状の深さ15μmの凹部11aを3箇所形成した。
その凹部11aに純度99.9%の金Auからなる金属箔15を配した後、支持基板5のSiC薄膜3を形成した面と反対面である研磨面と補強枠7とが接触するように重ね合わせ、それを真空中において、10g/cmの荷重をかけながら加熱処理して補強枠7と支持基板5とを実質的に点接合した。
Next, three spot-shaped recesses 11a having a depth of 15 μm are formed at 120 ° equidistant portions around the hole 17 of the ring-shaped reinforcing frame 7 and concentric with the hole 17 and divided into three equal parts. did.
After the metal foil 15 made of gold Au having a purity of 99.9% is arranged in the recess 11a, the polishing surface of the support substrate 5 opposite to the surface on which the SiC thin film 3 is formed and the reinforcing frame 7 are in contact with each other. The layers were superposed and heat-treated in a vacuum while applying a load of 10 g / cm 2 , so that the reinforcing frame 7 and the support substrate 5 were substantially point-joined.

また、この接合体については支持基板5の接合面にプラズマCVD法で、アルカリエッチング保護膜としてSiN膜を厚さ0.5μmに形成した後、メンブレン領域となる1辺25mmの四角形部分のBN膜をCF/O混合ガスによってドライエッチングで除去した後、露出したSi面をアルカリエッチングで除去して、リソグラフィ用マスク1aを得た。 In addition, for this joined body, a SiN film having a thickness of 0.5 μm was formed as an alkali etching protective film on the joining surface of the support substrate 5 by plasma CVD, and then a BN film having a rectangular portion of 25 mm on one side serving as a membrane region. Was removed by dry etching with a CF 4 / O 2 mixed gas, and then the exposed Si surface was removed by alkali etching to obtain a lithography mask 1a.

(実施例2)
同様にして、リング円盤状の補強枠7の穴17の周囲でその穴17と同心円上で円周を4等分とした90°等配部位に点状の深さ20μmの凹部11aを4箇所形成した場合を実施例2とした。
(Example 2)
In the same manner, around the hole 17 of the ring disk-shaped reinforcing frame 7, concentric circles with the hole 17 and four concave portions 11a having a depth of 20 μm are provided at 90 ° equidistant portions with the circumference divided into four equal parts. The formed case was designated as Example 2.

(実施例3)
次に図15を参照しながら、実施例3について説明を行う。実施例1と同様に、リング円盤状の補強枠7の穴17の周囲にリング状に深さ10μmの凹部11aを形成した。
(Example 3)
Next, Embodiment 3 will be described with reference to FIG. In the same manner as in Example 1, a concave portion 11a having a depth of 10 μm was formed in a ring shape around the hole 17 of the ring disk-shaped reinforcing frame 7.

さらに、参考例4〜参考例7について検証を行った。補強枠7の材質をSi単結晶とし、点接合の部位を120°等配部位と試料作製条件を固定し、補強枠7の接合面9の凹部11がない場合(参考例4)、凹部11の深さが7μmの場合(参考例5)、凹部11の深さが25μmの場合(参考例6)、凹部11の深さを15μmとしてシリコンSiを含む金Auはんだを用いた場合(参考例7)について、リソグラフィ用マスク1を実施例1〜実施例3と同様にして得た。表1に実施例1〜実施例3、参考例4〜参考例7の作製条件をまとめて示した。 Further, Reference Example 4 to Reference Example 7 were verified. When the material of the reinforcing frame 7 is made of Si single crystal, the point bonding part is fixed at 120 ° and the sample preparation conditions are fixed, and there is no concave part 11 on the joint surface 9 of the reinforcing frame 7 ( Reference Example 4), the concave part 11 When the depth of the recess 11 is 7 μm ( Reference Example 5), when the depth of the recess 11 is 25 μm ( Reference Example 6), when the depth of the recess 11 is 15 μm, and gold Au solder containing silicon Si is used ( Reference Example) With respect to 7), a lithography mask 1 was obtained in the same manner as in Examples 1 to 3. Table 1 collectively shows the production conditions of Examples 1 to 3 and Reference Examples 4 to 7.

Figure 0004795041
Figure 0004795041

表1は実施例1〜実施例3、参考例4〜参考例7の作製条件を示す表である。「補強枠接触面の凹部の有無」は、補強枠7及び支持基板5の接合面に凹部11を配しているか否かを示す。「凹部の深さ」は接合面の凹部11の深さを示す。接合材は、接合時に用いる金属箔15の溶解固化物の材質を示す。接合形態は、接合面において補強枠7及び支持基板5が金属箔15によって接合される形態を示す。接合温度及び荷重はそれぞれ接合時の加熱、加圧の大きさを示すものである。 Table 1 is a table showing the production conditions of Examples 1 to 3 and Reference Examples 4 to 7. “Presence / absence of a recess on the reinforcing frame contact surface” indicates whether or not the recess 11 is arranged on the joint surface between the reinforcing frame 7 and the support substrate 5. “Depth of recess” indicates the depth of the recess 11 of the joint surface. A joining material shows the material of the melt-solidified material of the metal foil 15 used at the time of joining. The joining form indicates a form in which the reinforcing frame 7 and the support substrate 5 are joined by the metal foil 15 on the joining surface. The joining temperature and load indicate the magnitude of heating and pressurization during joining, respectively.

また、表2は前述の作製条件によって得られたリソグラフィ用マスク1を評価した評価結果を示す。   Table 2 shows an evaluation result of evaluating the lithography mask 1 obtained under the above-described manufacturing conditions.

Figure 0004795041
Figure 0004795041

評価方法としては、得られたリソグラフィ用マスク1の平面平行度を補強枠7の表面を仮想基準面としたときのSiC薄膜3部分の仮想基準面からのそり量で求めることとし、レーザ干渉計式平面度測定機により測定した。   As an evaluation method, the plane parallelism of the obtained lithography mask 1 is obtained by the amount of warpage of the SiC thin film 3 portion from the virtual reference plane when the surface of the reinforcing frame 7 is the virtual reference plane. It was measured with an expression flatness measuring machine.

「SiC薄膜部分の平面平行度」は、前述のそり量をμm単位で示し、そのそり量に基づいた評価を示している。
ここで、SiC薄膜3部分のそり量が1μm以下のものを「良好」であるとして評価した。
“Planar parallelism of the SiC thin film portion” indicates the above-described warpage amount in units of μm, and indicates an evaluation based on the warpage amount.
Here, a case where the amount of warpage of the SiC thin film 3 portion was 1 μm or less was evaluated as “good”.

表2の結果から、実施例1〜実施例3のリソグラフィ用マスク1のSiC薄膜3部分の平面平行度は1μm以下と良好であった。参考例4〜参考例7については、いずれもSiC薄膜3部分の平面平行度は1μmを超えて大きいものであった。 From the results of Table 2, the plane parallelism of the SiC thin film 3 portion of the lithography mask 1 of Examples 1 to 3 was as good as 1 μm or less. For Reference Example 4 Reference Example 7, both the plane parallelism of the SiC film 3 portion was so large beyond 1 [mu] m.

以上の評価結果より、接合面に凹部11が存在することが望ましく、さらに凹部11の深さは10μm〜20μmであることが望ましい。   From the above evaluation results, it is desirable that the concave portion 11 exists on the joint surface, and the depth of the concave portion 11 is desirably 10 μm to 20 μm.

参考例8)
次に、図16を参照しながら、参考例8について説明を行う。図16(a)は支持基板5と薄膜3を示す断面図である。図16(b)はパターン部35を有する支持基板5を示す平面図、図16(c)は補強枠7に接合前の金属箔15を配した補強枠7の平面図である。支持基板5と薄膜3は金属箔15を介して補強枠7に接合される。下側から、厚みが725μmのSiからなる支持基板5、厚みが0.10μmのエッチングストッパ層となるSiO、及び厚みが1μmのSiからなる薄膜3(メンブレン)が順に積層した、合計厚みが726μmの直径200mmである、Silicon
On Insulator(SOI)ウエハを準備した。このSOIウエハを、ウエハ中心を通る直線の長さが縦横とも152mmとなり、かつそれらの直線に対して垂直方向に交わるよう、ダイシングによって外形を切断加工したうえで、支持基板5の中央部を裏面からパターンエッチングを行って除去し、周縁部に沿った幅64mmの支持基板5を形成した。
( Reference Example 8)
Next, Reference Example 8 will be described with reference to FIG. FIG. 16A is a cross-sectional view showing the support substrate 5 and the thin film 3. FIG. 16 (b) plan view of a supporting substrate 5 having a pattern portion 35, FIG. 16 (c) is a plan view of the reinforcing frame 7 which arranged metal foil 15 before bonding to the reinforcing frame 7. The support substrate 5 and the thin film 3 are joined to the reinforcing frame 7 via the metal foil 15. From the lower side, the support substrate 5 made of Si having a thickness of 725 μm, SiO 2 serving as an etching stopper layer having a thickness of 0.10 μm, and a thin film 3 (membrane) made of Si having a thickness of 1 μm were laminated in order. 726 μm diameter 200 mm, Silicon
An On Insulator (SOI) wafer was prepared. The SOI wafer was cut by cutting the outer shape by dicing so that the length of the straight line passing through the center of the wafer is 152 mm in length and breadth and intersecting the straight line in the vertical direction. The support substrate 5 having a width of 64 mm along the peripheral edge was formed.

その後、エッチングストッパ層をエッチングにより除去して、Si薄膜3のみの状態とし、中央部に24mm×24mmの正方形状のパターン部35を形成した。   Thereafter, the etching stopper layer was removed by etching, so that only the Si thin film 3 was formed, and a square pattern portion of 24 mm × 24 mm was formed at the center.

上記のものとは別に、縦横152mm×152mmの正方形状を有し、厚みが5.62mm、中央部に縦横52mm×52mmの正方形状の穴17を有するSi製の補強枠7を準備した。なお補強枠7の外側半分は一定の厚みとし、内側半分は一定の傾斜で内側へ行くほど薄くなるよう、最も内側の厚みが2mmとなるベベル形状とした。   Separately from the above, a Si reinforcing frame 7 having a square shape of 152 mm × 152 mm in length, a thickness of 5.62 mm, and a square hole 17 of 52 mm × 52 mm in length and width in the center was prepared. The outer half of the reinforcing frame 7 has a constant thickness, and the inner half has a bevel shape with an innermost thickness of 2 mm so that the inner half becomes thinner toward the inside.

縦横5mm×5mmの正方形状を有し、厚みが10μmの金から成る金属箔15を準備し、補強枠7の上面の四隅、及び補強枠7の各辺の中央、の合計8箇所に載せ、その上にパターン部を有する支持基板5を、その支持基板5側が接するようにして載せ、一番上に、外形が152mm×152mm、厚みが3mm、中央部に70mm×70mmの貫通孔を有する50gの石英製のおもりを載せた。   A metal foil 15 having a square shape of 5 mm × 5 mm in length and width and made of gold having a thickness of 10 μm is prepared, and is placed on a total of eight locations, the four corners of the upper surface of the reinforcing frame 7 and the center of each side of the reinforcing frame 7; A support substrate 5 having a pattern portion thereon is placed so that the support substrate 5 side is in contact therewith, and 50 g having a through hole having an outer shape of 152 mm × 152 mm, a thickness of 3 mm, and a central portion of 70 mm × 70 mm on the top. A quartz weight was placed.

このように重ねられたものを真空中、600℃の温度で1時間加熱処理を行なったところ、補強枠7と支持基板5が接合されたリソグラフィ用マスク1を得た。   The stacked layers were heat-treated in a vacuum at a temperature of 600 ° C. for 1 hour, whereby the lithography mask 1 in which the reinforcing frame 7 and the support substrate 5 were joined was obtained.

接合前のパターン部を有する支持基板5の平面平行度が57.3μmであったのに対し、得られたリソグラフィ用マスク1における支持基板5の平面平行度は6.9μmと著しく向上が見られた。   While the plane parallelism of the support substrate 5 having the pattern portion before bonding was 57.3 μm, the plane parallelism of the support substrate 5 in the obtained lithography mask 1 was remarkably improved to 6.9 μm. It was.

参考例9)
次に図17、図18を参照しながら、参考例9について説明を行う。図17は、シリコンブロック(Siブロック)29の平面図、図18はSiブロック29と、シリコン板(Si板)25との接合状態を示す断面図である。
( Reference Example 9)
Next, Reference Example 9 will be described with reference to FIGS. 17 and 18. FIG. 17 is a plan view of the silicon block (Si block) 29, and FIG. 18 is a cross-sectional view showing a bonding state between the Si block 29 and the silicon plate (Si plate) 25.

接合に用いる金属を変えたときの接合状態を確認するために、接合に関与する各材料を次のような形状のものとして準備した。まず、図17および図18のAの部分に示すように上面が縦横25mm×50mmの長方形を有し、厚みが5mmのSiブロック29を準備し、縦横5mm×5mmの面積を有し、上面が平面で、かつ高さが10μmの突起27どうしが、Siブロック29上面の縦方向に2個、横方向に4個、従って合計8個、いずれも5mm間隔で配列するよう、切削加工(ブラスト)により設けて、突起27のついたSiブロック29を得た。このSiブロック29は補強枠を想定したものである。   In order to confirm the joining state when the metal used for joining was changed, each material involved in joining was prepared as having the following shape. First, as shown in part A of FIG. 17 and FIG. 18, an Si block 29 having a top surface of a rectangle of 25 mm × 50 mm and a thickness of 5 mm is prepared, and has an area of 5 mm × 5 mm. Cutting (blasting) so that two protrusions 27 having a flat surface and a height of 10 μm are arranged in the vertical direction on the top surface of the Si block 29, two in the vertical direction, and four in the horizontal direction, and therefore a total of eight. Thus, an Si block 29 with protrusions 27 was obtained. This Si block 29 assumes a reinforcing frame.

上記のものとは別に、縦横25mm×50mmの長方形を有し、厚みが725μmのSi板25を準備した。このSi板25は支持基板を想定したものである。   Apart from the above, a Si plate 25 having a rectangle of 25 mm × 50 mm in length and width of 725 μm was prepared. This Si plate 25 assumes a support substrate.

図18に示すように、上記の突起27のついたSiブロック29を突起27を上にして置いた。さらに、縦横5mm×5mm、厚みが10μmの金から成る金属箔15をSiブロック29上の中央の4つの突起27上に載せ、その上に、上記のSi板25を、板全体が突起27付きのSiブロック29上を覆うようにして載せた。さらに、Si板25上に30gのモリブデン製のおもり31を載せた。   As shown in FIG. 18, the Si block 29 with the protrusions 27 was placed with the protrusions 27 facing upward. Further, a metal foil 15 made of gold having a length and width of 5 mm × 5 mm and a thickness of 10 μm is placed on the four central projections 27 on the Si block 29, and the Si plate 25 is disposed on the four projections 27. The Si block 29 was placed so as to cover it. Further, a 30 g molybdenum weight 31 was placed on the Si plate 25.

突起27付きのSiブロック29、金から成る金属箔15、Si板25、及びおもり31が重ね合わされた状態のものを、真空度が1.3×10−3Pa以下の真空炉内で、550℃の温度で15分間加熱処理を行ない、接合を行った。また、同様のSiブロック29とSi板25とを、以上とほぼ同様の手順で、金属箔15に金Auの代わりにアルミニウムAlを用いて接合した。 In a vacuum furnace having a degree of vacuum of 1.3 × 10 −3 Pa or less, the Si block 29 with protrusions 27, the metal foil 15 made of gold, the Si plate 25, and the weight 31 are stacked in a vacuum furnace with a vacuum degree of 1.3 × 10 −3 Pa or less. Heat treatment was performed at a temperature of 15 ° C. for 15 minutes to perform bonding. Further, the same Si block 29 and the Si plate 25 were joined to the metal foil 15 using aluminum Al instead of gold Au in the same procedure as described above.

なお、上記の手順で接合を行った場合、共晶層の形成状態を、サンプル断面を走査型電子顕微鏡によって確認したところ、シリコンSiと金Auとの共晶点は363℃であり、シリコンSiとアルミニウムAlとの共晶点は577℃であった。   When bonding was performed according to the above procedure, the eutectic layer formation state was confirmed by scanning electron microscope, and the eutectic point of silicon Si and gold Au was 363 ° C., and silicon Si The eutectic point between aluminum and aluminum was 577 ° C.

接合後、おもりを除去し、Siブロック29及びSi板25のいずれもチャックに接着剤で接着し、引張試験を行った結果、金属箔15に金Au、アルミニウムAlのいずれを用いた場合にも、Si板25が破損してしまった。これにより十分な接合強度を有していることが確かめられた。Si板25が破損に至った際の引っ張り力は、金属箔15に金Auを用いた場合が13MPaであり、また、金属箔15にアルミニウムAlを用いた場合が12.5MPaであった。   After joining, the weight is removed, and both the Si block 29 and the Si plate 25 are bonded to the chuck with an adhesive, and a tensile test is performed. As a result, even when either gold Au or aluminum Al is used for the metal foil 15 The Si plate 25 has been damaged. Thereby, it was confirmed that it has sufficient joint strength. The tensile force when the Si plate 25 was damaged was 13 MPa when gold Au was used for the metal foil 15, and 12.5 MPa when aluminum Al was used for the metal foil 15.

以上説明したように、本発明のリソグラフィ用マスクにおいては、支持基板上に配置された薄膜に歪みや破壊が引き起こされることがなく、また、支持基板と補強枠との間に導電性が付与されるため、荷電粒子線が照射された際に電荷が蓄積して荷電粒子線の進行に影響が生じることを回避可能で、高精度の平面平行度を有する。
また、製造の過程においても、上記の薄膜と支持基板との複合体と、上記の補強枠とを準備し、支持基板と補強枠との間に金属箔を配置し、溶解させて両者間を接合することにより、上記のような利点を有するリソグラフィ用マスクの製造を支障なく、かつ効率よく行うことができる。
As described above, in the lithography mask of the present invention, the thin film disposed on the support substrate is not distorted or broken, and conductivity is imparted between the support substrate and the reinforcing frame. Therefore, it is possible to avoid the occurrence of an influence on the progress of the charged particle beam due to the accumulation of charges when the charged particle beam is irradiated, and the plane parallelism has high accuracy.
Also, during the manufacturing process, the composite of the thin film and the supporting substrate and the reinforcing frame are prepared, a metal foil is disposed between the supporting substrate and the reinforcing frame, and dissolved between the two. By bonding, it is possible to efficiently and efficiently manufacture a lithography mask having the above-described advantages.

以上、添付図面を参照しながら、本発明にかかるリソグラフィ用マスク及びその製造方法等の好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the lithography mask and the manufacturing method thereof according to the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such examples. It will be apparent to those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea disclosed in the present application, and these are naturally within the technical scope of the present invention. Understood.

従来のリソグラフィ用マスク100の斜視図A perspective view of a conventional lithography mask 100 従来のリソグラフィ用マスク100の断面図Sectional view of a conventional lithography mask 100 リソグラフィ用マスク1の斜視図The perspective view of the mask 1 for lithography リソグラフィ用マスク1の断面図Cross-sectional view of lithography mask 1 リソグラフィ用マスク1を製造するためのマスクブランク13及び補強枠7を示す図The figure which shows the mask blank 13 and the reinforcement frame 7 for manufacturing the mask 1 for lithography リソグラフィ用マスク1の製造工程を示す図The figure which shows the manufacturing process of the mask 1 for lithography リソグラフィ用マスク1の製造工程を示す図The figure which shows the manufacturing process of the mask 1 for lithography リソグラフィ用マスク1の製造工程を示す図The figure which shows the manufacturing process of the mask 1 for lithography リソグラフィ用マスク1aの断面図Sectional drawing of the mask 1a for lithography 図9の要部拡大図The main part enlarged view of FIG. リソグラフィ用マスク1aの製造工程を示す図The figure which shows the manufacturing process of the mask 1a for lithography リソグラフィ用マスク1aの製造工程を示す図The figure which shows the manufacturing process of the mask 1a for lithography リソグラフィ用マスク1b、1cの要部の断面図Sectional drawing of the principal part of the masks 1b and 1c for lithography 実施例1を示す図The figure which shows Example 1. 実施例3を示す図The figure which shows Example 3. 参考例8における支持基板等を示す図 The figure which shows the support substrate in the reference example 8, etc. 参考例9におけるSiブロック29を示す図 The figure which shows Si block 29 in the reference example 9. 参考例9におけるSi板25とSiブロック29を示す図 The figure which shows Si board 25 and Si block 29 in the reference example 9.

符号の説明Explanation of symbols

1………リソグラフィ用マスク
3………薄膜
5………支持基板
7………補強枠
9………接合部
13………マスクブランク
15………金属箔
17………穴
DESCRIPTION OF SYMBOLS 1 ......... Lithography mask 3 ......... Thin film 5 ......... Support substrate 7 ......... Reinforcement frame 9 ......... Joint part 13 ......... Mask blank 15 ......... Metal foil 17 ......... Hole

Claims (9)

所望のパターンが形成されている薄膜と、前記薄膜の外周を固定して支持する支持基板と、補強枠と、金属箔の溶解固化物から成り前記支持基板と前記補強枠とを接合する接合部と、を具備し、
前記支持基板の前記補強枠側、もしくは前記補強枠の前記支持基板側の少なくともいずれか一方の面に、凹部を有し、
前記凹部が、前記支持基板の前記補強枠側、もしくは前記補強枠の前記支持基板側のいずれか一方の面に形成される場合には、前記凹部の深さが10μm〜20μmであり、
前記凹部が、前記支持基板の前記補強枠側、および前記補強枠の前記支持基板側の両方の面に形成される場合には、前記凹部の深さの合計が10μm〜20μmであり、
前記凹部内に前記接合部が配されていることを特徴とするリソグラフィ用マスク。
A thin film in which a desired pattern is formed, a support substrate that fixes and supports the outer periphery of the thin film, a reinforcement frame, and a joint portion that joins the support substrate and the reinforcement frame, which is formed by dissolving and solidifying a metal foil. and, the equipped,
On at least one surface of the reinforcing substrate side of the supporting substrate or the supporting substrate side of the reinforcing frame, there is a recess,
When the recess is formed on either the reinforcing frame side of the support substrate or the support substrate side of the reinforcement frame, the depth of the recess is 10 μm to 20 μm,
When the concave portion is formed on both the reinforcing frame side of the support substrate and the surface of the reinforcing frame on the support substrate side, the total depth of the concave portion is 10 μm to 20 μm,
A lithography mask , wherein the joint is disposed in the recess .
前記金属箔を構成する素材が前記支持基板及び前記補強枠と共晶をなす材料または共晶をなす材料を含む合金であることを特徴とする請求項1記載のリソグラフィ用マスク。   The lithography mask according to claim 1, wherein a material constituting the metal foil is a material that forms a eutectic with the support substrate and the reinforcing frame or an alloy that includes a material that forms a eutectic. 前記金属箔を構成する素材が金または金を含む合金であることを特徴とする請求項記載のリソグラフィ用マスク。 3. The lithography mask according to claim 2, wherein the material constituting the metal foil is gold or an alloy containing gold. 前記凹部が、前記支持基板の前記補強枠側、もしくは前記補強枠の前記支持基板側のいずれか一方の面に形成されることを特徴とする請求項1〜3のいずれか1項に記載のリソグラフィ用マスク。The said recessed part is formed in the any one surface of the said reinforcement frame side of the said support substrate, or the said support substrate side of the said reinforcement frame, The Claim 1 characterized by the above-mentioned. Lithography mask. 所望のパターンが形成されている薄膜と前記薄膜の外周を固定して支持する支持基板とからなる薄膜/支持基板複合体と、前記支持基板を補強する補強枠とを準備し、
前記支持基板もしくは前記補強枠の少なくともいずれか一方の接合対象面に、凹部を設け、
前記凹部に金属箔を配置して、前記薄膜/支持基板複合体および前記補強枠を重ねた後
前記金属箔を加熱及び加圧により溶解させ、固化させて前記支持基板と前記補強枠とを接合する工程を具備し、
前記凹部が、前記支持基板もしくは前記補強枠のいずれか一方の接合対象面に形成される場合には、前記凹部の深さが10μm〜20μmであり、
前記凹部が、前記支持基板および前記補強枠の両方の接合対象面に形成される場合には、前記凹部の深さの合計が10μm〜20μmである
ことを特徴とするリソグラフィ用マスクの製造方法。
Preparing a thin film / support substrate composite composed of a thin film in which a desired pattern is formed and a support substrate that fixes and supports the outer periphery of the thin film, and a reinforcing frame that reinforces the support substrate;
A concave portion is provided on the surface to be joined of at least one of the support substrate or the reinforcing frame,
After placing a metal foil in the recess , and stacking the thin film / support substrate composite and the reinforcing frame ,
The metal foil is dissolved by heat and pressure, and comprising a step of bonding the supporting substrate and the reinforcing frame to solidify,
When the recess is formed on the surface to be joined of either the support substrate or the reinforcement frame, the depth of the recess is 10 μm to 20 μm,
The lithography mask , wherein when the recesses are formed on the surfaces to be joined of both the support substrate and the reinforcing frame, the total depth of the recesses is 10 m to 20 m. Manufacturing method.
前記金属箔を構成する素材が前記支持基板及び前記補強枠と共晶をなす材料または共晶をなす材料を含む合金であることを特徴とする請求項記載のリソグラフィ用マスクの製造方法。 6. The method of manufacturing a lithography mask according to claim 5, wherein the material constituting the metal foil is a material that forms a eutectic with the support substrate and the reinforcing frame or an alloy that includes a material that forms a eutectic. 前記金属箔を構成する素材が金または金を含む合金であることを特徴とする請求項記載のリソグラフィ用マスクの製造方法。 The method for manufacturing a lithography mask according to claim 6, wherein a material constituting the metal foil is gold or an alloy containing gold. 前記凹部が、前記支持基板もしくは前記補強枠のいずれか一方の接合対象面に形成されることを特徴とする請求項5〜7のいずれか1項に記載のリソグラフィ用マスクの製造方法。 The method for manufacturing a lithography mask according to claim 5, wherein the concave portion is formed on a surface to be joined of either the support substrate or the reinforcing frame. 前記金属箔の厚みが、前記凹部よりも厚いことを特徴とする請求項5〜8のいずれか1項に記載のリソグラフィ用マスクの製造方法。The method for manufacturing a lithography mask according to claim 5, wherein the metal foil is thicker than the concave portion.
JP2006030745A 2005-03-24 2006-02-08 Lithographic mask and method of manufacturing the same Expired - Fee Related JP4795041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006030745A JP4795041B2 (en) 2005-03-24 2006-02-08 Lithographic mask and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005087009 2005-03-24
JP2005087009 2005-03-24
JP2006030745A JP4795041B2 (en) 2005-03-24 2006-02-08 Lithographic mask and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2006303446A JP2006303446A (en) 2006-11-02
JP4795041B2 true JP4795041B2 (en) 2011-10-19

Family

ID=37471316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006030745A Expired - Fee Related JP4795041B2 (en) 2005-03-24 2006-02-08 Lithographic mask and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP4795041B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050433A (en) * 2008-07-24 2010-03-04 Toppan Printing Co Ltd Method for manufacturing transfer mask

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09102447A (en) * 1995-10-03 1997-04-15 Canon Inc Mask structure body and its manufacture, aligner using the mask structure, manufacture of device and device manufactured by the method
JP2000306805A (en) * 1999-04-20 2000-11-02 Nikon Corp Transferring mask for charged particle beam exposure with reinforcing frame nd manufacture thereof
JP2002252164A (en) * 2001-02-27 2002-09-06 Riipuru:Kk Transfer mask and method for inspecting the same

Also Published As

Publication number Publication date
JP2006303446A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
TWI282780B (en) Method for producing small glass wafers, and larger glass wafer as a semi-finished product for this production
JP5276035B2 (en) Piezoelectric device manufacturing method and piezoelectric device
JP6645502B2 (en) Glass substrate, laminated substrate, method for producing laminated substrate, laminate, package, and method for producing glass substrate
JP4353939B2 (en) MEMS element package and manufacturing method thereof
JP2012019108A (en) Method for manufacturing glass substrate and method for manufacturing electronic component
KR20170128546A (en) Method for manufacturing pellicle and method for manufacturing pellicle-attached
JP2011091787A (en) Piezoelectric vibrating device and methods for manufacturing the same
JP4777681B2 (en) Anodic bonding apparatus, anodic bonding method and acceleration sensor manufacturing method
JP4795041B2 (en) Lithographic mask and method of manufacturing the same
US20110062828A1 (en) Piezoelectric vibrating devices and methods for manufacturing same
JP2006062002A (en) Method of segmenting substrate of semiconductor device
JP2012039227A (en) At-cut crystal device and manufacturing method of at-cut crystal device
JP2007005520A (en) Chamfering method and cutting method of rectangular flat plate
JP6383138B2 (en) Electronic devices
JP2006229295A (en) Vibrator package
JP2006188732A (en) Mask, method for manufacturing mask, and method for manufacturing organic electroluminescence apparatus
JP2014011421A (en) Manufacturing method for electronic device, substrate for lid, electronic device and electronic apparatus
JP2009124587A (en) Piezoelectric vibrating chip, piezoelectric vibration device, and method of manufacturing piezoelectric vibrating chip
JP2002299196A (en) Wafer for manufacturing semiconductor
JP3133602B2 (en) X-ray mask structure, method of manufacturing the same, X-ray exposure method using the X-ray mask structure, X-ray exposure apparatus, semiconductor device manufactured using the X-ray mask structure, and manufacture of semiconductor device Method
JP2013219237A (en) Vacuum package and manufacturing method of the same
JPWO2020022015A1 (en) Joining method and joining device
CN116707473A (en) Crystal wafer and method for manufacturing crystal oscillator
JP2005175404A (en) Mask structure for electron-beam lithography and method of forming the same
JP2011091685A (en) Piezoelectric device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110330

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110727

R150 Certificate of patent or registration of utility model

Ref document number: 4795041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees