JP4668529B2 - GaInNAs semiconductor laser - Google Patents

GaInNAs semiconductor laser Download PDF

Info

Publication number
JP4668529B2
JP4668529B2 JP2003403176A JP2003403176A JP4668529B2 JP 4668529 B2 JP4668529 B2 JP 4668529B2 JP 2003403176 A JP2003403176 A JP 2003403176A JP 2003403176 A JP2003403176 A JP 2003403176A JP 4668529 B2 JP4668529 B2 JP 4668529B2
Authority
JP
Japan
Prior art keywords
layer
gainnas
strain
gaas
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003403176A
Other languages
Japanese (ja)
Other versions
JP2005166921A (en
Inventor
正彦 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003403176A priority Critical patent/JP4668529B2/en
Publication of JP2005166921A publication Critical patent/JP2005166921A/en
Application granted granted Critical
Publication of JP4668529B2 publication Critical patent/JP4668529B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、GaAs基板結晶上に光を発生するGaInNAs系歪活性層と活性層から発生した光からレーザ光を得る共振器構造をもち、活性層の近くに応力補償層が形成される構造のGaInNAs系半導体レーザに関するものである。   The present invention has a GaInNAs-based strained active layer that generates light on a GaAs substrate crystal and a resonator structure that obtains laser light from light generated from the active layer, and a structure in which a stress compensation layer is formed near the active layer. The present invention relates to a GaInNAs semiconductor laser.

近年のインターネット人口の爆発的増大により情報伝送の急速な高速化および大容量化が求められており、今後も光通信が重要な役割を果たすと考えられている。光通信で光源となる半導体レーザは、性能面での要求に加えて低コストで提供することが重要であり、特に伝送距離の短いアクセス系、LAN系光リンクでは低コスト化が必須となっている。   With the explosive growth of the Internet population in recent years, there has been a demand for rapid increase in information transmission and capacity, and optical communication will continue to play an important role in the future. In addition to performance requirements, it is important to provide semiconductor lasers that serve as light sources in optical communications at low cost. In particular, it is essential to reduce costs for access systems with short transmission distances and LAN optical links. Yes.

近年開発されたGaInNAs系材料を活性層に用いるGaInNAs系半導体レーザは、InP基板結晶上に形成される従来の通信用レーザとは異なり、安価で大口径のGaAs基板上に形成されるので低コスト化に有利である。GaInNAs系材料は、従来のIII-V族半導体とは化学的性質が大きく異なる窒素が添加されていることが最大の特徴である。本発明でのGaInNAs系材料とは、GaInNAsを基本とし、燐やアンチモンやドーパントなどの他元素が微量添加されている物も含む。   GaInNAs semiconductor lasers that use GaInNAs-based materials developed in recent years for the active layer are different from conventional communication lasers formed on InP substrate crystals, and are low-cost because they are formed on inexpensive and large-diameter GaAs substrates. It is advantageous to make. GaInNAs-based materials are characterized by the addition of nitrogen, which has chemical properties that are significantly different from those of conventional III-V group semiconductors. The GaInNAs-based material in the present invention includes a material based on GaInNAs and containing a small amount of other elements such as phosphorus, antimony, and dopant.

Electronics Letters, vol. 36, No.16, pp.1381-1382Electronics Letters, vol. 36, No. 16, pp.1381-1382

GaInNAs系材料は、従来のIII-V族半導体に化学的性質が大きく異なる窒素が添加されていることが特徴である。窒素添加により光通信に適した発光波長を有する活性層材料をGaAs基板上に形成できる様になるが、化学的性質が大きく異なる窒素の添加は母体のIII-V族半導体の結晶性を一般に低下させる。添加される窒素の量は、光通信波長を実現できる範囲で可能な限り低減され1%前後であることが殆どである。その為、活性層のInの組成は30〜40%になり、2%以上の圧縮歪が活性層にかかることになる。従来の半導体レーザの活性層の歪量は最大1.5%程度であり、GaInNAs系レーザの活性層の歪は非常に大きい。   GaInNAs-based materials are characterized by the addition of nitrogen with significantly different chemical properties to conventional III-V group semiconductors. Addition of nitrogen makes it possible to form an active layer material with an emission wavelength suitable for optical communication on a GaAs substrate. However, the addition of nitrogen, which differs greatly in chemical properties, generally lowers the crystallinity of the parent group III-V semiconductor. Let The amount of nitrogen added is reduced as much as possible within the range where optical communication wavelengths can be realized, and is almost around 1%. Therefore, the composition of In in the active layer is 30 to 40%, and a compressive strain of 2% or more is applied to the active layer. The strain amount of the active layer of the conventional semiconductor laser is about 1.5% at maximum, and the strain of the active layer of the GaInNAs laser is very large.

大きな歪量は、一般に、素子寿命や歩留まりに悪影響を与える。それを低減させる為には、従来の半導体レーザと同様に、圧縮歪GaInNAs活性層の直近に伸張歪を有する層を配置し応力補償することが考えられる。GaAs基板上では、伸張歪を有する応力補償層の材料はGaPAsとGaNAsが基本となる。GaPAsの結晶成長では、砒素と燐の原料の切り替えが難しく、良質な結晶を得る事が困難である。他方、GaNAsの場合は、活性層と同様に少量の窒素をGaAsに添加すれば良いので結晶成長は比較的容易である。   A large amount of strain generally has an adverse effect on device life and yield. In order to reduce this, it is conceivable to arrange a layer having an extension strain in the immediate vicinity of the compressive strain GaInNAs active layer as in the conventional semiconductor laser to compensate the stress. On the GaAs substrate, the material of the stress compensation layer having a tensile strain is basically GaPAs and GaNAs. In the crystal growth of GaPAs, it is difficult to switch the raw materials of arsenic and phosphorus, and it is difficult to obtain good quality crystals. On the other hand, in the case of GaNAs, crystal growth is relatively easy because a small amount of nitrogen may be added to GaAs as in the active layer.

Livshits等は、Electronics Letters, vol. 36, No.16, pp.1381-1382において、GaInNAs圧縮歪井戸層をGaNAs応力補償層で挟み込んだ量子井戸を活性層にするGaInNAs系レーザを報告し良好な結果を得ている。しかし、発明者らが追試したところ、素子寿命や歩留まりはあまり改善されなかった。報告者等がその原因を鋭意調査したところ、GaInNAs圧縮歪層とGaNAs伸張歪層との界面での歪量差の絶対値が大きすぎて、良好なヘテロ界面が形成できない場合が多い事が分かった。   Livshits et al., In Electronics Letters, vol. 36, No. 16, pp. 1381-1382, reported a GaInNAs-based laser in which a GaInNAs compression-strained well layer is sandwiched between GaNAS stress compensation layers and an active layer is used as a quantum well. I'm getting results. However, when the inventors made additional trials, the device life and yield were not improved much. The reporters and others conducted an extensive investigation to find out that the absolute value of the strain difference at the interface between the GaInNAs compressive strained layer and the GaNAs strained layer is too large, and it is often impossible to form a good heterointerface. It was.

本発明の目的は、GaInNAs系圧縮歪活性層と活性層の近くに形成されるGaNAs伸張歪層が共に良好なヘテロ界面を有する応力補償型GaInNAs系半導体レーザを提供することにある。   An object of the present invention is to provide a stress-compensated GaInNAs semiconductor laser in which both a GaInNAs compressive strain active layer and a GaNAs stretch strain layer formed near the active layer have a good heterointerface.

GaInNAs系圧縮歪活性層とGaNAs伸張歪応力補償層の間に中間の歪量を有する中間層を挿入することにより、ヘテロ界面での歪量差の絶対量を低減できるので良好なヘテロ界面が形成でき、上記の目的は達成できる。中間層の材料としては、GaAs、GaAsSb、GaInAsが良い。通例の如く圧縮歪を+歪と表すと、中間層の歪量は、+側であまり大きいと応力補償の目的に反するので、0から+0.5%の範囲が良い。中間層の厚みは、薄すぎると挿入の効果がなく、反対に増加させ過ぎても応力補償の効果が減少するので最適な範囲が存在する。   By inserting an intermediate layer with an intermediate strain amount between the GaInNAs-based compressive strain active layer and the GaNAs extensional strain stress compensation layer, the absolute amount of strain difference at the heterointerface can be reduced, thus forming a good heterointerface And the above objective can be achieved. As the material of the intermediate layer, GaAs, GaAsSb, and GaInAs are preferable. As usual, when compressive strain is expressed as + strain, if the amount of strain in the intermediate layer is too large on the + side, it is against the purpose of stress compensation, so a range of 0 to + 0.5% is preferable. If the thickness of the intermediate layer is too thin, there is no effect of insertion, and conversely if it is increased too much, the effect of stress compensation is reduced, so there is an optimum range.

図2に、中間層厚と活性層からのフォトルミネセンス(PL)強度の関係を示す(実験例)。本例の場合の中間層の材料はGaAsである。同図に示す様に、中間層の厚みを増すとヘテロ界面が改善されてPL強度が増加する。また、中間層の厚みを増加させ過ぎてもPL強度が低下する。よって、中間層の厚みは、0.5〜2.5 nmが好適である事が分かる。   FIG. 2 shows the relationship between the intermediate layer thickness and the photoluminescence (PL) intensity from the active layer (experimental example). The material of the intermediate layer in this example is GaAs. As shown in the figure, increasing the thickness of the intermediate layer improves the heterointerface and increases the PL intensity. In addition, the PL strength decreases even if the thickness of the intermediate layer is excessively increased. Therefore, it can be seen that the thickness of the intermediate layer is preferably 0.5 to 2.5 nm.

一般に、活性層の下に形成するヘテロ層の厚みが厚いほど活性層の結晶性を向上させる事が困難である。応力補償の効果はクラッド層が1.5μm程度の端面発光型レーザよりも多層膜反射鏡厚が5μm程度の面発光型レーザにおいて大きい。従って、本発明の効果も面発光型レーザにおいて顕著である。   In general, it is difficult to improve the crystallinity of the active layer as the thickness of the hetero layer formed under the active layer increases. The effect of stress compensation is greater in a surface-emitting laser with a multilayer mirror thickness of about 5 μm than an edge-emitting laser with a cladding layer of about 1.5 μm. Therefore, the effect of the present invention is also remarkable in the surface emitting laser.

尚、本発明でのGaNAs応力補償層とは、GaNAs材料を基本としアンチモンやドーパントなどの他元素が微量添加されている場合も含む。   Note that the GaNAs stress compensation layer in the present invention includes a case where a trace amount of other elements such as antimony and dopant is added based on the GaNAs material.

本発明によれば、GaInNAs系圧縮歪活性層とGaNAs伸張歪層クラッド層の間に中間の歪量を有する中間層を挿入することによりヘテロ界面での歪量差の絶対量を低減できるので、良好なヘテロ界面を有する応力補償型GaInNAs系半導体レーザを提供することができる。   According to the present invention, the absolute amount of strain difference at the heterointerface can be reduced by inserting an intermediate layer having an intermediate strain amount between the GaInNAs-based compression strain active layer and the GaNAs stretch strain layer clad layer, A stress compensated GaInNAs semiconductor laser having a good heterointerface can be provided.

以下、本発明の実施例を図1および図3を用いて説明する。   Embodiments of the present invention will be described below with reference to FIGS.

第1の実施例は、本発明を1.3μm帯端面発光型半導体レーザに適用したものである。図1(a)は、断面構造を、図1(b)は活性層の拡大図を示している。n-GaAs基板1上に、GaAsバッファ層2、n-Al0.3Ga0.7Asクラッド層(層厚1500nm)3、GaAs光ガイド層(層厚150nm)10、GaN0.01As0.99応力補償層(層厚5nm)11、GaAs中間層(層厚2nm)12、及びGa0.6In0.4N0.005As0.995井戸層(層厚5nm)13から構成される歪補償量子井戸活性層4、p-Al0.3Ga0.7Asクラッド層(層厚1500nm)5、p-GaAsキャッフ゜層(層厚200nm)6を、GS-MBE(ガスソース分子線エピタキシー)法により順次結晶成長し多層構造を作製した。III族元素の原料は、金属アルミニュウム、金属ガリュウム、及び、金属インジュウムを用いた。V族元素の原料には、RFプラズマで活性化した窒素と金属ヒ素を用いた。通常の分子線セルに金属ヒ素を装着し、加熱昇華させてAs4分子ビームとして供給した。n型ドーパントとしてはSiを、p型ドーパントとしてはBeを用いた。層2、3、5、6は、600℃で結晶成長した。一方、活性層4は、相分離を抑制するために480℃と低温で結晶成長した。 In the first embodiment, the present invention is applied to a 1.3 μm band edge emitting semiconductor laser. FIG. 1 (a) shows a cross-sectional structure, and FIG. 1 (b) shows an enlarged view of the active layer. On n-GaAs substrate 1, GaAs buffer layer 2, n-Al 0.3 Ga 0.7 As cladding layer (layer thickness 1500 nm) 3, GaAs light guide layer (layer thickness 150 nm) 10, GaN 0.01 As 0.99 stress compensation layer (layer thickness) Strain compensated quantum well active layer 4 consisting of 5 nm) 11, GaAs intermediate layer (layer thickness 2 nm) 12, and Ga 0.6 In 0.4 N 0.005 As 0.995 well layer 13 (layer thickness 5 nm), p-Al 0.3 Ga 0.7 As A clad layer (layer thickness 1500 nm) 5 and a p-GaAs capping layer (layer thickness 200 nm) 6 were successively crystal-grown by a GS-MBE (gas source molecular beam epitaxy) method to produce a multilayer structure. Metal aluminum, metal gallium, and metal indium were used as Group III element materials. Nitrogen and metal arsenic activated by RF plasma were used as the raw materials for group V elements. Metal arsenic was attached to a normal molecular beam cell, heated and sublimated, and supplied as an As 4 molecular beam. Si was used as the n-type dopant, and Be was used as the p-type dopant. Layers 2, 3, 5, and 6 were grown at 600 ° C. On the other hand, the active layer 4 was grown at a low temperature of 480 ° C. in order to suppress phase separation.

作製した多層構造に、図1(a)に示す如く、SiNx窒化膜を堆積し、電流狭窄層7を形成した。p側電極8、n側電極9を形成した後、劈開法により共振器長約400μmのレーザ素子を得た。ストライプ幅は5μmとした。素子の前面にλ/4(λ:発振波長)の厚みのSiO2による低反射膜を、素子の後面にSiO2とアモルファスSiからなる4層膜による高反射膜を形成した。その後、p-n接合面を下にして素子をヒートシンク上にボンディングした。 As shown in FIG. 1 (a), a SiN x nitride film was deposited on the fabricated multilayer structure to form a current confinement layer 7. After forming the p-side electrode 8 and the n-side electrode 9, a laser element having a resonator length of about 400 μm was obtained by a cleavage method. The stripe width was 5 μm. A low reflection film made of SiO 2 having a thickness of λ / 4 (λ: oscillation wavelength) was formed on the front surface of the element, and a high reflection film made of a four-layer film made of SiO 2 and amorphous Si was formed on the rear surface of the element. Thereafter, the element was bonded onto the heat sink with the pn junction surface facing down.

本レーザは、閾値電流密度が0.5 kA/cm2で室温連続発振し、発振波長は1.3μmであった。本レーザは、中間層12によりGaInNAs井戸層13とGaNAs応力補償層11が共に良好なヘテロ界面を有するので活性層4の結晶性が良好であり、10万時間以上の長い素子寿命を有した。また、ウエハ内での分布が小さく、歩留まりも非常に良好であった。 This laser oscillated continuously at room temperature with a threshold current density of 0.5 kA / cm 2 and an oscillation wavelength of 1.3 μm. In this laser, the GaInNAs well layer 13 and the GaNAs stress compensation layer 11 both have a good heterointerface due to the intermediate layer 12, so that the crystallinity of the active layer 4 is good, and the device lifetime is longer than 100,000 hours. In addition, the distribution within the wafer was small, and the yield was very good.

本実施例は、本発明を1.3μm帯面発光型半導体レーザに適用したものである。以下、図3を用いて説明する。図3(a)は、断面構造を、図3(b)は活性層の拡大図を示している。n-GaAs基板1上に、n型半導体多層膜反射鏡20、GaAsスペーサ層21、GaN0.01As0.99応力補償層(層厚5nm)41、GaAs0.99Sb0.01中間層(層厚1.5nm)42、Ga0.6In0.4N0.005As0.995井戸層(層厚6nm)43、及びGaN0.01As0.99応力補償バリア層(層厚7nm)44から構成される二重量子井戸活性層24、GaAsスペーサ層25、GaAs基板に格子整合したp-Ga0.5In0.5Pクラッド層26、p-GaAsコンタクト層27をGSーMBE法により順次成長した。III族元素の原料は、金属アルミニュウム、金属ガリュウム、及び、金属インジュウムを用いた。V族元素の原料には、RFプラズマで活性化した窒素、ホスフィン、及び、金属ヒ素を用いた。金属ヒ素をバルブドクラッカー型の分子線セルに装着し、加熱昇華させて得たAs4分子をさらに高温でクラッキングしてAs2分子のビームとして供給した。また、n型ドーパントとしてはSiを、p型ドーパントとしてはC(カーボン)を用いた。 In this embodiment, the present invention is applied to a 1.3 μm band-emitting semiconductor laser. Hereinafter, a description will be given with reference to FIG. FIG. 3 (a) shows a cross-sectional structure, and FIG. 3 (b) shows an enlarged view of the active layer. n-GaAs substrate 1, n-type semiconductor multilayer reflector 20, GaAs spacer layer 21, GaN 0.01 As 0.99 stress compensation layer (layer thickness 5 nm) 41, GaAs 0.99 Sb 0.01 intermediate layer (layer thickness 1.5 nm) 42, Double quantum well active layer 24 composed of Ga 0.6 In 0.4 N 0.005 As 0.995 well layer (layer thickness 6 nm) 43 and GaN 0.01 As 0.99 stress compensation barrier layer (layer thickness 7 nm) 44, GaAs spacer layer 25, GaAs A p-Ga 0.5 In 0.5 P cladding layer 26 and a p-GaAs contact layer 27 lattice-matched to the substrate were sequentially grown by the GS-MBE method. Metal aluminum, metal gallium, and metal indium were used as Group III element materials. Nitrogen, phosphine, and metal arsenic activated by RF plasma were used as Group V element materials. Metal arsenic was attached to a valved cracker type molecular beam cell and As 4 molecules obtained by heating and sublimation were cracked at a higher temperature and supplied as a beam of As 2 molecules. Further, Si was used as the n-type dopant, and C (carbon) was used as the p-type dopant.

活性層24は、GaAsSb中間層42を有する応力補償型量子井戸構造とした。GaAsスペーサ層21、二重量子井戸活性層24、及び、GaAsスペーサ層25の厚みの合計が半導体中での波長と等しくなる様にGaAsスペーサ層の層厚を調整した。半導体多層膜反射鏡20は、半導体中で1/4波長厚の高屈折率のGaAs層と半導体中で1/4波長厚の低屈折率のAlAs層を交互に積層した。反射率を99%以上にする為に反射鏡層の積層数を22対とした。n型半導体多層膜反射鏡20は600℃、GaAsスペーサ層21、二重量子井戸活性層24、及び、GaAsスペーサ層25は450℃、p-Ga0.5In0.5Pクラッド層26、p-GaAsコンタクト層27は500℃で成長した。 The active layer 24 has a stress compensated quantum well structure having a GaAsSb intermediate layer 42. The thickness of the GaAs spacer layer was adjusted so that the total thickness of the GaAs spacer layer 21, the double quantum well active layer 24, and the GaAs spacer layer 25 was equal to the wavelength in the semiconductor. In the semiconductor multilayer mirror 20, the high refractive index GaAs layer having a quarter wavelength thickness in the semiconductor and the low refractive index AlAs layer having a quarter wavelength thickness in the semiconductor are alternately laminated. In order to make the reflectivity 99% or more, the number of reflector layers was 22 pairs. n-type semiconductor multilayer reflector 20 is 600 ° C., GaAs spacer layer 21, double quantum well active layer 24, and GaAs spacer layer 25 is 450 ° C., p-Ga 0.5 In 0.5 P cladding layer 26, p-GaAs contact Layer 27 was grown at 500 ° C.

次に、化学気相堆積工程とホトレジスト工程により直径10μmの円形のSiO2膜(後の工程で除去する為同図では不指示)を形成し、これをマスクとしてn型の半導体多層膜反射鏡20の途中までウエットエッチングしてメサ状にする。その後、SiO2マスクを残したまま化学気相堆積工程によりSiO2保護層28を形成し、ポリイミド29を塗布し、硬化する。次に、反応性イオンビームエッチングによりSiO2マスクが露出するまでポリイミド29をエッチングし、メサの上部のSiO2マスクを図に示したように除去することで平坦な面が得られる。この後、リフトオフ法によりリング状のp側電極31を形成し、さらにスパッタ蒸着法により誘電体多層膜反射鏡30を形成し、n側電極32を形成した。誘電体多層膜反射鏡30は、誘電体中で1/4波長厚さの高屈折率TiO2層と誘電体中で1/4波長厚さの低屈折率SiO2層を交互に積層して作製した。反射率を99%以上にする為に積層数を5対とした。 Next, a circular SiO 2 film with a diameter of 10 μm (not shown in the figure for removal in a later process) is formed by chemical vapor deposition and photoresist processes. Wet etching to halfway to form mesa. Thereafter, while a chemical vapor deposition process leaving the SiO 2 mask is formed of SiO 2 protective layer 28, a polyimide 29 is coated and cured. Next, the polyimide 29 is etched by reactive ion beam etching until the SiO 2 mask is exposed, and the SiO 2 mask on the top of the mesa is removed as shown in the figure to obtain a flat surface. Thereafter, a ring-shaped p-side electrode 31 was formed by a lift-off method, a dielectric multilayer film reflecting mirror 30 was further formed by a sputter deposition method, and an n-side electrode 32 was formed. The dielectric multilayer mirror 30 is formed by alternately laminating a high refractive index TiO 2 layer having a quarter wavelength thickness in a dielectric and a low refractive index SiO 2 layer having a quarter wavelength thickness in a dielectric. Produced. In order to achieve a reflectance of 99% or more, the number of layers was set to 5 pairs.

本面発光レーザに電流を注入したところ、85℃の高温まで連続動作に成功した。レーザ光は誘電体多層膜反射鏡側から出射され、波長は約1.3μmであった。また、本レーザは、活性層の結晶性が良好なので面発光レーザの実用化では十分な1万時間以上の長い素子寿命を有した。また、素子作製時の歩留まりも高く、大幅な低コスト化を達成できた。   When current was injected into the surface emitting laser, continuous operation was successful up to a high temperature of 85 ° C. The laser light was emitted from the dielectric multilayer film reflecting mirror side, and the wavelength was about 1.3 μm. Further, since this laser has good crystallinity of the active layer, it has a long device life of 10,000 hours or more sufficient for practical use of a surface emitting laser. In addition, the yield during device fabrication was high, and a significant cost reduction was achieved.

実施例1の半導体レーザの素子構造を示した図。FIG. 3 is a diagram showing an element structure of the semiconductor laser of Example 1. 中間層厚と活性層からのフォトルミネセンス(PL)強度の関係を示す図。The figure which shows the relationship between intermediate | middle layer thickness and the photoluminescence (PL) intensity | strength from an active layer. 実施例2の半導体レーザの素子構造を示した図。FIG. 5 is a diagram showing an element structure of a semiconductor laser of Example 2.

符号の説明Explanation of symbols

1:n-GaAs基板、2:GaAsバッファ層、3:n-Al0.3Ga0.7Asクラッド層(層厚1500nm)、4:歪補償量子井戸活性層、5:p-Al0.3Ga0.7Asクラッド層(層厚1500nm)、6:p-GaAsキャッフ゜層(層厚200nm)、10:GaAs光ガイド層(層厚150nm)、11:GaN0.01As0.99応力補償層(層厚5nm)、12:GaAs中間層(層厚2nm)、13:Ga0.6In0.4N0.005As0.995井戸層(層厚5nm)。 1: n-GaAs substrate, 2: GaAs buffer layer, 3: n-Al 0.3 Ga 0.7 As cladding layer (layer thickness 1500 nm), 4: strain compensation quantum well active layer, 5: p-Al 0.3 Ga 0.7 As cladding layer (Layer thickness 1500 nm), 6: p-GaAs capping layer (layer thickness 200 nm), 10: GaAs light guide layer (layer thickness 150 nm), 11: GaN 0.01 As 0.99 stress compensation layer (layer thickness 5 nm), 12: GaAs intermediate Layer (layer thickness 2 nm), 13: Ga 0.6 In 0.4 N 0.005 As 0.995 well layer (layer thickness 5 nm).

Claims (4)

GaAs基板上にGaInNAs系材料からなる圧縮歪活性層とGaNAs系材料からなる応力補償層とを有し、前記圧縮歪活性層と前記応力補償層との間に両者の中間の歪を有するGaAs、GaAsSb、又はGaInAsからなる中間層が挿入されていることを特徴とするGaInNAs系半導体レーザ。 GaAs having a compressive strain active layer made of a GaInNAs material and a stress compensation layer made of a GaNAs material on a GaAs substrate, and having a strain intermediate between the compressive strain active layer and the stress compensation layer , A GaInNAs semiconductor laser, wherein an intermediate layer made of GaAsSb or GaInAs is inserted. 請求項1に記載のGaInNAs系半導体レーザにおいて、前記中間層の歪は圧縮歪であり歪量が0から+0.5%の範囲にあることを特徴とするGaInNAs系半導体レーザ。   2. The GaInNAs semiconductor laser according to claim 1, wherein the strain of the intermediate layer is a compressive strain and the amount of strain is in the range of 0 to + 0.5%. 請求項1又は2記載のGaInNAs系半導体レーザにおいて、前記中間層の層厚が0.5nmから2.5nmの範囲にあることを特徴とするGaInNAs系半導体レーザ。 3. The GaInNAs semiconductor laser according to claim 1, wherein the intermediate layer has a thickness in a range of 0.5 nm to 2.5 nm. 請求項1〜のいずれか1項記載のGaInNAs系半導体レーザにおいて前記圧縮歪活性層の下方及び上方に多層膜反射鏡を有することを特徴とするGaInNAs系半導体レーザ。 The GaInNAs semiconductor laser according to any one of claims 1 to 3 , further comprising a multilayer reflector below and above the compressive strain active layer.
JP2003403176A 2003-12-02 2003-12-02 GaInNAs semiconductor laser Expired - Fee Related JP4668529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003403176A JP4668529B2 (en) 2003-12-02 2003-12-02 GaInNAs semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003403176A JP4668529B2 (en) 2003-12-02 2003-12-02 GaInNAs semiconductor laser

Publications (2)

Publication Number Publication Date
JP2005166921A JP2005166921A (en) 2005-06-23
JP4668529B2 true JP4668529B2 (en) 2011-04-13

Family

ID=34726561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003403176A Expired - Fee Related JP4668529B2 (en) 2003-12-02 2003-12-02 GaInNAs semiconductor laser

Country Status (1)

Country Link
JP (1) JP4668529B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5307972B2 (en) * 2006-01-31 2013-10-02 株式会社日立製作所 Optical semiconductor device
JP2007250878A (en) * 2006-03-16 2007-09-27 Sumitomo Electric Ind Ltd Semiconductor optical device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1084158A (en) * 1996-09-06 1998-03-31 Hitachi Ltd Semiconductor laser
JPH10145003A (en) * 1996-11-15 1998-05-29 Hitachi Ltd Semiconductor laser and optical communication system using the same
JPH1174607A (en) * 1997-06-23 1999-03-16 Sharp Corp Semiconductor laser
JP2001320135A (en) * 2000-02-28 2001-11-16 Fuji Photo Film Co Ltd Semiconductor laser device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1084158A (en) * 1996-09-06 1998-03-31 Hitachi Ltd Semiconductor laser
JPH10145003A (en) * 1996-11-15 1998-05-29 Hitachi Ltd Semiconductor laser and optical communication system using the same
JPH1174607A (en) * 1997-06-23 1999-03-16 Sharp Corp Semiconductor laser
JP2001320135A (en) * 2000-02-28 2001-11-16 Fuji Photo Film Co Ltd Semiconductor laser device

Also Published As

Publication number Publication date
JP2005166921A (en) 2005-06-23

Similar Documents

Publication Publication Date Title
US5416044A (en) Method for producing a surface-emitting laser
JP6136284B2 (en) Semiconductor laminate and surface emitting laser element
JP4663964B2 (en) Long wavelength photonics device comprising a GaAsSb quantum well layer
US8073029B2 (en) Semiconductor optical device
JP2002353568A (en) Semiconductor laser, optical module and optical communication system using the same
JPH10233557A (en) Semiconductor light emitting element
US7286584B2 (en) Carrier bonded 1550 nm VCSEL with InP substrate removal
US20020146053A1 (en) Surface emitting semiconductor laser device
JP5381692B2 (en) Semiconductor light emitting device
JP2004253802A (en) GaAsSb/GaAs DEVICE WITH IMPROVED TEMPERATURE PROPERTY
JP2009260093A (en) Optical semiconductor device
JP4084506B2 (en) Manufacturing method of semiconductor light emitting device
JP2004031925A (en) N-type semiconductor distributed bragg reflector, plane emission semiconductor laser device, plane emission laser array, plane emission laser module optical interconnection system, and optical communication system
JP4668529B2 (en) GaInNAs semiconductor laser
JP4134366B2 (en) Surface emitting laser
JP5307972B2 (en) Optical semiconductor device
JP4345673B2 (en) Semiconductor laser
JP4722404B2 (en) Long wavelength surface emitting semiconductor laser
JP2003332674A (en) Semiconductor laser element
JP2001024282A (en) Manufacture of semiconductor device using group iii-v mixed crystal semiconductor and optical communication system
JP2004179640A (en) Semiconductor laser, module for optical transmission, and optical communication system
JP2000277862A (en) Nitride semiconductor device
JP3680283B2 (en) Manufacturing method of semiconductor element
US20030179803A1 (en) Vertical cavity surface emitting laser and laser beam transmitting module using the same
JP3326833B2 (en) Semiconductor laser and light emitting diode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101203

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4668529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees