JP4668458B2 - Graphite continuous casting nozzle and manufacturing method thereof, porous graphite material - Google Patents

Graphite continuous casting nozzle and manufacturing method thereof, porous graphite material Download PDF

Info

Publication number
JP4668458B2
JP4668458B2 JP2001144719A JP2001144719A JP4668458B2 JP 4668458 B2 JP4668458 B2 JP 4668458B2 JP 2001144719 A JP2001144719 A JP 2001144719A JP 2001144719 A JP2001144719 A JP 2001144719A JP 4668458 B2 JP4668458 B2 JP 4668458B2
Authority
JP
Japan
Prior art keywords
graphite
continuous casting
casting nozzle
continuous
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001144719A
Other languages
Japanese (ja)
Other versions
JP2002336939A (en
Inventor
正弘 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2001144719A priority Critical patent/JP4668458B2/en
Publication of JP2002336939A publication Critical patent/JP2002336939A/en
Application granted granted Critical
Publication of JP4668458B2 publication Critical patent/JP4668458B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、金属の溶湯から所定形状の鋳造物を連続的に鋳造する鋳型として用いられる黒鉛製連続鋳造用ノズル(黒鉛製連鋳ノズル)及びその製造方法、多孔質黒鉛材に関するものである。
【0002】
【従来の技術】
従来、連鋳ノズル用の材料としては黒鉛材料が使用されている。黒鉛材料は、高耐熱性と自己潤滑性とを備えている。このため黒鉛材料は、高温の溶湯から所定形状の鋳造物を連続的に鋳造する鋳型として用いられる連鋳ノズルに適した材料であるといえる。
【0003】
連鋳ノズルにより鋳造される鋳造物の一種として、 Cu−Ni−Zn合金である洋白が従来知られている。洋白の構成成分のうちZnは、CuやNiに比べて沸点が非常に低く、鋳造時にガス化しやすいという特性を有する。従って、このガス化したZnが連鋳ノズルを構成する黒鉛材料の気孔内にて滞留した場合、Znが冷却されて亜鉛華を発生させてしまう。すると、連鋳ノズルの熱拡散性が悪化し、いわゆる「す入り」の鋳造品が発生しやすくなるばかりでなく、引き抜かれる洋白表面に引っ掻き傷が付きやすくなる。即ち、品質のよい鋳造品を得ることが困難になる。
【0004】
従って、亜鉛華の発生原因であるZnガスの滞留を解消するためには、例えば、黒鉛材料を多孔質化することにより、その気孔を介してZnガスを外部に抜いてやることが必要になる。具体的には、原料粉末中にバインダとして含まれているピッチの量を減らして内部に空隙を形成させる等の方法が考えられる。
【0005】
【発明が解決しようとする課題】
ところが、ガス抜け性の向上を優先してバインダ量を減らした場合、粒子間の結合力が弱くなるため、連鋳ノズルの機械的強度が著しく損なわれる。その結果、洋白の引き抜き時に連鋳ノズルに破断が起こりやすくなり、連鋳ノズルの寿命が短くなってしまう。また、多孔質化は熱伝導性の悪化を伴うので、洋白を速やかに冷却できなくなり、洋白の引き抜き速度を遅く設定せざるをえなくなる。
【0006】
本発明は上記の課題に鑑みてなされたものであり、その第1の目的は、ガス抜け性が良好な多孔質体であるにもかかわらず、高熱伝導性及び高強度を有する黒鉛製連鋳ノズル、多孔質黒鉛材を提供することにある。また、第2の目的は、上記の優れた黒鉛製連鋳ノズルを簡単にかつ安価に製造することができる製造方法を提供することにある。
【0007】
【課題を解決するための手段】
上記の課題を解決するために、請求項1に記載の発明では、多孔質黒鉛材からなる黒鉛製連鋳ノズルであって、前記多孔質黒鉛材は、炭素を含む原料粉末中に熱分解性繊維を分散させた成形体を焼成して黒鉛化することにより得られたものであり、前記多孔質黒鉛材には連続気孔が1体積%〜10体積%存在し、当該連続気孔の直径は1mm以下であると共に連続気孔の長さは3mm〜50mmであり、当該多孔質黒鉛材の密度は1.7g/cm 〜2.0g/cm であることを特徴とする黒鉛製連鋳ノズルをその要旨とする。
【0008】
請求項2に記載の発明は、請求項1において、熱伝導率が100W/m・K以上であり、ショアー硬度が35〜60であるとした
【0009】
請求項に記載の発明では、多孔質黒鉛材からなる黒鉛製連鋳ノズルの製造方法であって、炭素を含む原料粉末中に熱分解性繊維を分散させた成形体を焼成して黒鉛化することにより、前記多孔質黒鉛材には連続気孔が1体積%〜10体積%存在し、当該連続気孔の直径は1mm以下であると共に連続気孔の長さは3mm〜50mmに形成されることを特徴とする黒鉛製連鋳ノズルの製造方法をその要旨とする。
【0010】
請求項に記載の発明は、請求項において、前記熱分解性繊維は、直径1mm以下であって長さが3mm〜50mmであるとした。
請求項に記載の発明は、請求項において、前記原料粉末は、平均粒子径100μm以下のコークス粉末にピッチを重量比で40%以上混合して混練した後、これを粉砕して得たものであるとした。
【0012】
以下、本発明の「作用」について説明する。
請求項1に記載の発明によると、気孔が連続気孔であることに加え、比較的長いものであることから、ガス抜け性が良好となる。しかも、このような連続気孔が1体積%〜10体積%の範囲で存在していることから、高い熱伝導性及び強度を維持することができる。
【0013】
気孔の長さが3mm未満のものは、連続気孔であるとは言い難く、多孔質黒鉛材中に存在していたとしても十分なガス抜け性の向上にはつながらない。気孔の長さが50mmを超えるものは、そもそも形成が困難である。また、連続気孔が10体積%を超えて存在する場合や、気孔の直径が1mmを超えるような場合、多孔質黒鉛材におけるマトリクス部分が減少する結果、熱伝導性及び強度が低下してしまう。連続気孔が1体積%未満しか存在していない場合、良好なガス抜け性が得られなくなる。このようにして形成される連続気孔は、径のバラツキが極めて小さいため、ガス通過抵抗も極めて小さい。ゆえに、発生したガスを多孔質黒鉛材から確実に抜くことができ、当該ガスが多孔質黒鉛材内に滞留しにくくなる。また、多孔質化を図るためにバインダ量を低減する必要がないので、粒子間の結合力が弱くなることもなく、黒鉛からなるマトリクス部分に高熱伝導性及び高強度を付与することができる。
【0014】
請求項2に記載の発明によると、熱伝導性及びショアー硬度を上記好適範囲内に設定したことにより、生産性の低下や連鋳ノズルの短命化を回避しつつ、高品質の鋳造品を得ることができる。
【0015】
熱伝導率が100W/m・K未満であると、溶融金属を速やかに冷却できなくなり、引き抜き速度を遅く設定せざるをえなくなる。ショアー硬度が35未満であると、鋳造品との摺動により連鋳ノズルの表面が傷付き、連鋳ノズルの寿命が短くなる。ショアー硬度が60を越えると、鋳造品に引っ掻き傷が発生しやすくなる。
【0017】
請求項に記載の発明によると、炭素を含む原料粉末中に熱分解性繊維を分散させた成形体を焼成して黒鉛化した場合、焼成時の熱によって繊維が熱分解し、元あった繊維の形状に対応した連続気孔が形成される。このようにして形成された連続気孔は、径のバラツキが極めて小さいため、ガス通過抵抗も極めて小さい。ゆえに、発生したガスを多孔質黒鉛材から確実に抜くことができ、当該ガスが多孔質黒鉛材内に滞留しにくくなる。また、多孔質化を図るためにバインダ量を低減する必要がないので、粒子間の結合力が弱くなることもなく、黒鉛からなるマトリクスに高熱伝導性及び高強度を付与することができる。しかも、本発明の方法によれば、機械加工により連続気孔を形成する場合に比べ、容易にかつ安価に連続気孔を形成することができる。
【0018】
請求項に記載の発明によると、直径1mm以下であって長さが3mm〜50mmである熱分解性繊維を用いることにより、直径1mm以下であって長さが3mm〜50mmという好適な寸法の連続気孔を確実に得ることができる。また、長繊維に比べて短繊維は絡みが少なく、原料粉末中に比較的均一に分散させることができる。従って、成形工程及び焼成工程を経て得られた多孔質黒鉛材中に均一に連続気孔を形成することができ、熱伝導性や密度等のバラツキの発生を防ぐことができる。
【0019】
請求項に記載の発明によると、平均粒子径100μm以下のコークス粉末にピッチを重量比で40%以上混合して混練した後、これを粉砕して得たものを原料粉末としているため、黒鉛からなるマトリクスに高熱伝導性及び高強度を確実に付与することができる。なお、ピッチが重量比で40%未満しか混合されていないと、高熱伝導性及び高強度を十分に付与できなくなる場合がある。
【0021】
【発明の実施の形態】
以下、本発明を具体化した一実施形態の金属連鋳装置1を図1〜図4に基づき詳細に説明する。
【0022】
図1,図2に示されるように、本実施形態の金属連鋳装置1は、金属を加熱溶融するための溶融炉2と、溶融炉2に連設された金属連続鋳造用の鋳型部3とによって構成されている。鋳型部3は、鋳造品5を導出するための連鋳ノズル6と、鋳造品5を冷却する冷却部4とを有している。連鋳ノズル6は上型11と下型12とからなり、両者間には連続鋳造用の空洞部13が設けられている。空洞部13からは鋳造品5が導出されるようになっている。なお、本実施形態における連続鋳造品5は洋白(Cu−64%,Ni−18%,Zn−18%)である。
【0023】
冷却部4は上部材16及び下部材17からなり、これらは連鋳ノズル6の上下両側にそれぞれ配設されている。上部材16及び下部材17の内部には、連鋳ノズル6及び鋳造品5を冷却するための水冷ジャケット18,19が設けられている。上部材16及び下部材17には、水冷ジャケット18,19内に水を循環させるための水冷パイプ14,15がそれぞれ接続されている。
【0024】
本実施形態の連鋳ノズル6は多孔質黒鉛材からなる。図4において概略的に示すように、この多孔質黒鉛材には連続気孔6aが一定比率存在している。連続気孔6aの向く方向は特に規則性がなくアトランダムである。連続気孔6aのうちの一部のもの同士は互いに連通し合っている。連続気孔6aは繊維の形状に対応したものとなっている。
【0025】
多孔質黒鉛材において連続気孔6aは1体積%〜10体積%存在していることがよく、3体積%〜7体積%存在していることがよりよい。連続気孔6aが10体積%を超えて存在する場合、多孔質黒鉛材におけるマトリクス部分(即ち気孔ではない黒鉛の部分)6bが減少する結果、熱伝導性及び強度が低下してしまうからである。逆に、連続気孔6aが1体積%未満しか存在していない場合、良好なガス抜け性が得られなくなるからである。
【0026】
連続気孔6aの直径は1mm以下であり、特には0.1mm〜0.5mm程度であることがよい。連続気孔6aの直径が1mmを超えるような場合、マトリクス部分6bが減少する結果、熱伝導性及び強度が低下してしまうからである。
【0027】
連続気孔の6aの長さは3mm〜50mmであり、特には3mm〜20mmであることがよい。長さが3mm未満のものは、連続気孔6aであるとは言い難く、多孔質黒鉛材中に存在していたとしても十分なガス抜け性の向上にはつながらないからである。長さが50mmを超えるものは、ガス抜け性の観点からは好ましい反面、そもそも形成が困難である。
【0028】
なお、連続気孔6aの長さとは、1本の繊維が分解・焼失してそこに形成される1つの連続気孔6aの長さを指すものであって、複数のものが互いに連通した状態での長さを指すわけではない。
【0029】
多孔質黒鉛材の熱伝導率は100W/m・K以上であることがよく、特には120W/m・K以上であることがよい。熱伝導率が100W/m・K未満であると、溶融金属を速やかに冷却できなくなり、引き抜き速度を遅く設定せざるをえなくなる。よって、生産性の低下を来してしまう。
【0030】
多孔質黒鉛材のショアー硬度は35〜60であることがよく、特には40〜55であることがよい。ショアー硬度が35未満であると、鋳造品5との摺動により連鋳ノズル6の表面が傷付き、連鋳ノズル6の寿命が短くなる。逆に、ショアー硬度が60を越えると、鋳造品5に引っ掻き傷が発生しやすくなり、鋳造品5の高品質化を達成することができなくなる。
【0031】
多孔質黒鉛材の密度は1.7g/cm3〜2.0g/cm3であることがよく、特には1.8g/cm3〜1.9g/cm3であることがよい。密度が1.7g/cm3未満であると、原料粉末21同士の結合力が弱くなり、マトリクス部分6bの熱伝導性及び強度が低下してしまうからである。逆に、密度を2.0g/cm3よりも大きくしようとした場合、大きな成形圧を設定しなければならず、多孔質黒鉛材の製造が困難になるおそれがある。
【0032】
多孔質黒鉛材の熱膨張係数は2.0×10-6/℃〜6.0×10-6/℃(RT〜400℃平均値)であることがよい。その理由は、鋳造品5との熱膨張係数差を小さくすることにより、鋳造品5に高い寸法精度を与えるためである。
【0033】
次に、本実施形態の連鋳ノズル6の製造手順について説明する。
まず、コークス粉末にバインダとしてのピッチを混合し、これを加熱下で混練した後、これを粉砕することにより、原料粉末21を得る(原料粉末作製工程)。コークス粉末の平均粒子径は100μm以下であることが好ましい。ピッチはコークス粉末に対して重量比40%〜70%の範囲で混合されることが好ましい。ピッチの量が40重量%未満であると、原料粉末21同士の結合力が弱くなり、マトリクス部分6bに十分高い熱伝導性及び強度を付与することができなるからである。なお、混練は200℃〜300℃の範囲で行われることが好ましい。
【0034】
次に、前記原料粉末21に熱分解性繊維22を分散させた成形用材料をあらかじめ作製する。そして、この成形用材料を用いて成形を行うことにより、所定形状の成形体23を得る(成形工程)。ここで行われる成形法としては、例えば押出成形、型押成形、ラバープレス等がある。成形圧は0.5t/cm2〜1.5t/cm2に設定されることがよい。なお、図3には成形体23の一部が概略的に示されている。
【0035】
本実施形態において前記熱分解性繊維22とは、成形体23を焼成して黒鉛化した場合、焼成時の熱によって分解・焼失する繊維を全般的を指す。熱分解性繊維22としては具体的には、ナイロン、アクリル、ポリエステル、ビニロン等の合成高分子からなる繊維、綿糸や麻糸等の天然繊維がある。なお、黒鉛化温度に達するまでに分解・焼失するものであれば、ガラス繊維等の無機繊維や一部の金属繊維であっても選択可能である。
【0036】
熱分解性繊維22としては3mm〜50mmの長さのものが使用可能であり、特には長さが3mm〜10mmの短繊維を用いることが好ましい。
その理由は、短繊維は長繊維に比べて絡みが少なく、原料粉末21中に比較的均一に分散させることができるからである。従って、得られる多孔質黒鉛材中に均一に連続気孔6aを形成することができ、熱伝導性や密度等のバラツキの発生を防ぐことができる。熱分解性繊維22の直径は1mm以下であることがよい。
【0037】
次に、前記成形工程により得られた成形体23を900℃〜1100℃で焼成することにより炭素化し、さらにこれを2700℃〜2900℃で焼成することにより黒鉛化する(焼成工程)。その結果、図4にて概略的に示されるように、成形体中の熱分解性繊維22が分解・焼失し、元あった繊維の形状に対応した連続気孔6aが形成される。よって、所望の多孔質黒鉛材を得ることができる。このような多孔質黒鉛材における所定箇所を必要に応じて鏡面加工した後、加工を経た2つの多孔質黒鉛材同士を貼り合わせれば、所望の黒鉛製連鋳ノズル6が完成する。
【0038】
【実施例及び比較例】
(実施例1のサンプル作製)
実施例1では、まず、平均粒子径20μmの石炭系コークス100重量部と、バインダーピッチ45重量部とを混合し、これを双腕型ニーダーを用いて200℃で3時間混練した。次に、その混練物を平均粒子径40μmになるように粉砕し、原料粉末21とした。
【0039】
次に、前記原料粉末21に直径0.8mmかつ長さが5mmのナイロン繊維を分散させた成形用材料を作製し、この成形用材料を用いて0.6t/cm2でラバープレスを行うことにより、成形体23を得た。
【0040】
次に、成形体23を1000℃で焼成して炭素化した後、さらにこれを2800℃で焼成して黒鉛化した。その結果、連続気孔6aを有する2個の多孔質黒鉛材を得た。その後、これらの多孔質黒鉛材に鏡面加工を施した後、多孔質黒鉛材同士を貼り合わせて、実施例1の黒鉛製連鋳ノズル6を完成させた。
(実施例2のサンプル作製)
実施例2では、上記のようにして得た原料粉末21に直径0.8mmかつ長さが15mmのナイロン繊維を分散させた成形用材料を作製し、この成形用材料を用いて成形体23を得た。それ以外の条件については基本的に実施例1と同様にし、最終的に実施例2の黒鉛製連鋳ノズル6を完成させた。
(実施例3のサンプル作製)
実施例3では、上記のようにして得た原料粉末21に直径1.0mmかつ長さが40mmのナイロン繊維を分散させた成形用材料を作製し、この成形用材料を用いて成形体23を得た。それ以外の条件については基本的に実施例1と同様にし、最終的に実施例3の黒鉛製連鋳ノズル6を完成させた。
(実施例4のサンプル作製)
実施例4では、上記のようにして得た原料粉末21に直径0.5mmかつ長さが5mmのナイロン繊維を分散させた成形用材料を作製し、この成形用材料を用いて成形体23を得た。それ以外の条件については基本的に実施例1と同様にし、最終的に実施例4の黒鉛製連鋳ノズル6を完成させた。
(実施例5のサンプル作製)
実施例5では、上記のようにして得た原料粉末21に直径0.8mmかつ長さが5mmのアクリル繊維を分散させた成形用材料を作製し、この成形用材料を用いて成形体23を得た。それ以外の条件については基本的に実施例1と同様にし、最終的に実施例5の黒鉛製連鋳ノズル6を完成させた。
(実施例6のサンプル作製)
実施例6では、上記のようにして得た原料粉末21に直径0.8mmかつ長さが5mmのガラス繊維を分散させた成形用材料を作製し、この成形用材料を用いて成形体23を得た。それ以外の条件については基本的に実施例1と同様にし、最終的に実施例6の黒鉛製連鋳ノズル6を完成させた。
(比較例1のサンプル作製)
比較例1では、まず、平均粒子径20μmの石炭系コークス100重量部と、バインダーピッチ45重量部とを混合し、これを双腕型ニーダーを用いて200℃で3時間混練した。次に、その混練物を平均粒子径40μmになるように粉砕し、原料粉末21とした。
【0041】
次に、前記原料粉末21を用いて0.6t/cm2でラバープレスを行うことにより、成形体23を得た。なお、原料粉末21中には熱分解性繊維を分散させなかった。
【0042】
次に、成形体23を1000℃で焼成して炭素化した後、さらにこれを2800℃で焼成して黒鉛化した。このようにして得られた2つの多孔質黒鉛材に鏡面加工を施した後、多孔質黒鉛材同士を貼り合わせて、比較例1の黒鉛製連鋳ノズル6を完成させた。
(比較例2のサンプル作製)
比較例2では、まず、平均粒子径20μmの石炭系コークス100重量部と、所定量のバインダーピッチ35重量部とを混合し、これを双腕型ニーダーを用いて200℃で3時間混練した。次に、その混練物を平均粒子径40μmになるように粉砕し、原料粉末21とした。ここでは、多孔質化を図るためにバインダーピッチの量を35重量部に減らすこととした。それ以外の条件については基本的に比較例1と同様にした。
(評価試験及び評価結果)
各サンプルについて、連続気孔6aの直径、連続気孔6aの長さ、気孔存在比、熱伝導率、ショアー硬度、密度を測定した。その結果を表1、表2に示す。これによると、熱伝導率、ショアー硬度、密度は、比較例1が最も高く、それに次いで実施例1〜6が高かった。つまり、比較例1における熱伝導率、ショアー硬度、密度を基準とした場合、これらの数値の低下度合いは、比較例2において顕著である反面、実施例1〜6においては僅かであった。ゆえに、実施例1〜6のノズル6については、熱伝導性及び強度が損なわれていないことがわかった。
【0043】
また、各サンプルについてSEM等による観察を行ったところ、実施例1〜6では、元あった繊維の形状に対応した連続気孔6aが形成されていた。また、このようにして形成された連続気孔6aは、径のバラツキが極めて小さかった。これに対し、比較例2における気孔は、基本的に炭素粒子の粒界に存在する隙間であるため、入り組んだ形状でありかつ径のバラツキも大きかった。よって、比較例2のほうが各実施例に比べて、ガス通過抵抗が極めて大きいであろうことが予測された。
【0044】
次に、上記8種のサンプルを用いて金属連鋳装置1を構成し、実際に洋白の連鋳を長期にわたり連続して行った。そして、亜鉛華の発生、鋳造品5の製品外観及びノズル寿命の調査を行った。その結果を表1,2に示す。なお、溶融炉2内における洋白の温度を1200℃〜1250℃に設定し、鋳造時のノズル内面温度を1100℃に保持し、鋳造スピードを200mm/minに設定した。
【0045】
その結果、比較例1ではすぐに亜鉛華の発生が認められたのに対し、実施例1〜6及び比較例2では、いずれも亜鉛華の発生が認められず、Znのガス抜け性が良好であることがわかった。また、比較例1では約20時間で亜鉛華の発生による引っ掻き傷が認められたのに対し、実施例1〜6及び比較例2では、引っ掻き傷等も認められず、鋳造品5の外観についても特に問題がなかった。また、実施例1〜6では120時間以上にわたって連続的に鋳造を行ったときでも、連鋳ノズル6に破断等が生じなかったのに対し、比較例2では約50時間という短時間のうちに破断が生じた。即ち、各実施例のほうが比較例1,2に比べて明らかに長寿命であった。
【0046】
【表1】

Figure 0004668458
【0047】
【表2】
Figure 0004668458
従って、本実施形態によれば以下のような効果を得ることができる。
【0048】
(1)本実施形態の連鋳ノズル6は、直径1mm以下であって長さが3mm〜50mmの連続気孔6aが1体積%〜10体積%存在する多孔質黒鉛材からなる。従って、気孔が連続気孔6aであることに加え、比較的長いものであることから、従来のものに比べてガス抜け性が良好となる。ゆえに、ガス化したZnが連鋳ノズル6内に滞留せず確実に外部に排出され、亜鉛華の発生を確実に防止することができる。このため、鋳造品5における「す」の発生及び引っ掻き傷の発生を確実に防ぐことができ、品質のよい鋳造品5を得ることが可能となる。
【0049】
しかも、このような連続気孔6aが1体積%〜10体積%という好適範囲で存在していることから、多孔質黒鉛材の機械的強度が損なわれることがない。ゆえに、破断が起こりにくくて長寿命の連鋳ノズル6を実現することができる。また、多孔質黒鉛材の熱伝導性も損なわれていないので、冷却効率の高い連鋳ノズル6となり、洋白の引き抜き速度を速く設定することが可能となる。このことは生産性の向上に貢献する。
【0050】
(2)本実施形態の連鋳ノズル6では、熱伝導性及びショアー硬度を上記好適範囲内に設定している。このため、生産性の低下や連鋳ノズル6の短命化を回避しつつ、高品質の鋳造品5を得ることができる。
【0051】
(3)本実施形態の製造方法では、炭素を含む原料粉末中に熱分解性繊維22を分散させた成形体23を焼成して黒鉛化することにより、連鋳ノズル6を得ている。この方法により形成された連続気孔6aは、径のバラツキが極めて小さいため、ガス通過抵抗も極めて小さい。ゆえに、発生したガスを多孔質黒鉛材から確実に抜くことができ、当該ガスが多孔質黒鉛材内に滞留しにくくなる。また、多孔質化を図るためにバインダ量を低減する必要がないので、粒子間の結合力が弱くなることもなく、黒鉛からなるマトリクス部分6bに高熱伝導性及び高強度を付与することができる。しかも、本実施形態の製造方法によれば、機械加工により連続気孔6aを形成する場合に比べ、容易にかつ安価に連続気孔6aを形成することができる。このため、上記の優れた黒鉛製連鋳ノズル6を簡単にかつ安価に製造することができる。
【0052】
(4)本実施形態の製造方法では、熱分解性繊維22として、直径1mm以下であって長さが3mm〜10mmの短繊維を用いているため、好適な寸法の連続気孔6aを確実に得ることができる。また、長繊維に比べて短繊維は絡みが少なく、原料粉末21中に比較的均一に分散させることができる。従って、成形工程及び焼成工程を経て得られた多孔質黒鉛材中に均一に連続気孔6aを形成することができ、熱伝導性や密度等のバラツキの発生を防ぐことができる。
【0053】
(5)実施形態の製造方法では、平均粒子径100μm以下のコークス粉末にピッチを重量比で40%以上混合して混練した後、これを粉砕して得た原料粉末21を用いている。従って、黒鉛からなるマトリクス部分6bに高熱伝導性及び高強度を確実に付与することができる。
【0054】
なお、本発明の実施形態は以下のように変更してもよい。
・ 本発明の連鋳ノズル6は、実施形態にて挙げた洋白以外にも、例えばニッケル、亜鉛等のような他の金属や合金の連鋳に利用することが可能である。
【0055】
・ 連鋳ノズル6の形状は実施形態のようなもののみに限定されることはなく、用途に応じて任意に変更することが可能である。
・ 本発明の多孔質黒鉛材は上記実施形態のような連鋳ノズル6用の形成材料として用いられるばかりでなく、例えばフィルタや熱交換器等の形成材料として用いられても構わない。
【0056】
次に、特許請求の範囲に記載された技術的思想のほかに、前述した実施形態によって把握される技術的思想を以下に列挙する。
(1) 請求項4,5,6のいずれか1つにおいて、前記熱分解性繊維は、黒鉛化温度よりも低い温度において分解・焼失する、合成高分子、天然繊維、無機繊維または金属繊維であること。従って、この技術的思想1に記載の発明によれば、確実に連続気孔を形成することができる。
【0057】
(2) 連続気孔が1体積%〜10体積%存在する黒鉛製連鋳ノズルの製造方法であって、平均粒子径100μm以下のコークス粉末にピッチを重量比40%〜70%の範囲で混合し、かつ200℃〜300℃の範囲で混練した後、これを粉砕することにより原料粉末を得る原料粉末作製工程と、前記原料粉末に、直径1mm以下であって長さが3mm〜10mmの熱分解性の短繊維を分散させたものを所定形状に成形する成形工程と、前記成形工程により得られた成形体を焼成して炭素化・黒鉛化する焼成工程と、を含むことを特徴とする黒鉛製連鋳ノズルの製造方法。
【0058】
【発明の効果】
以上詳述したように、請求項1または2に記載の発明によれば、ガス抜け性が良好な多孔質体であるにもかかわらず、高熱伝導性及び高強度を有する黒鉛製連鋳ノズルを提供することができる。
【0059】
請求項に記載の発明によれば、上記の優れた黒鉛製連鋳ノズルを簡単にかつ安価に製造することができる製造方法を提供することができる
【図面の簡単な説明】
【図1】本発明を具体化した一実施形態の金属連鋳装置の斜視図。
【図2】実施形態の金属連鋳装置の要部概略断面図。
【図3】連鋳ノズルの製造方法を説明するための要部拡大断面図。
【図4】連鋳ノズルの製造方法を説明するための要部拡大断面図。
【符号の説明】
6…黒鉛製連鋳ノズル、6a…連続気孔、22…熱分解性繊維。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a graphite continuous casting nozzle (graphite continuous casting nozzle) used as a mold for continuously casting a predetermined shape casting from a molten metal, a method for producing the same, and a porous graphite material.
[0002]
[Prior art]
Conventionally, a graphite material has been used as a material for a continuous casting nozzle. Graphite materials have high heat resistance and self-lubricating properties. For this reason, it can be said that the graphite material is a material suitable for a continuous casting nozzle used as a mold for continuously casting a casting having a predetermined shape from a high-temperature molten metal.
[0003]
As a type of castings cast by a continuous casting nozzle, a white alloy that is a Cu—Ni—Zn alloy is conventionally known. Among the components of the white and white, Zn has a characteristic that it has a very low boiling point compared to Cu and Ni and is easily gasified during casting. Therefore, when this gasified Zn stays in the pores of the graphite material constituting the continuous casting nozzle, the Zn is cooled to generate zinc white. As a result, the thermal diffusibility of the continuous casting nozzle deteriorates, so that not only the so-called “soot” casting product is likely to be generated, but also the surface of the extracted white is easily scratched. That is, it becomes difficult to obtain a cast product with good quality.
[0004]
Therefore, in order to eliminate the stagnation of Zn gas, which is the cause of zinc oxide generation, for example, by making the graphite material porous, it is necessary to extract Zn gas to the outside through the pores. . Specifically, a method of reducing the amount of pitch contained as a binder in the raw material powder to form voids inside is conceivable.
[0005]
[Problems to be solved by the invention]
However, when the amount of the binder is reduced in order to improve the gas releasing property, the bonding strength between the particles becomes weak, so that the mechanical strength of the continuous casting nozzle is significantly impaired. As a result, the continuous casting nozzle is likely to break when the white is drawn, and the life of the continuous casting nozzle is shortened. Further, since the porous formation is accompanied by deterioration of thermal conductivity, the white cannot be cooled quickly, and the extraction speed of the white must be set slower.
[0006]
The present invention has been made in view of the above problems, and a first object thereof is a graphite continuous casting having high thermal conductivity and high strength in spite of being a porous body having good gas releasing properties. It is to provide a nozzle and a porous graphite material. A second object is to provide a production method capable of easily and inexpensively producing the excellent graphite continuous casting nozzle.
[0007]
[Means for Solving the Problems]
  In order to solve the above problems, in the invention according to claim 1, a graphite continuous casting nozzle made of a porous graphite material,The porous graphite material is obtained by baking and graphitizing a molded body in which pyrolyzable fibers are dispersed in a raw material powder containing carbon,The porous graphite material has 1 to 10% by volume of continuous pores, the diameter of the continuous pores is 1 mm or less, and the length of the continuous pores is 3 to 50 mm.The density of the porous graphite material is 1.7 g / cm. 3 ~ 2.0 g / cm 3 IsThe gist of the continuous casting nozzle made of graphite is as follows.
[0008]
  The invention described in claim 2 is that in claim 1, the thermal conductivity is 100 W / m · K or more, and the Shore hardness is 35-60..
[0009]
  Claim3In the invention described in, a method for producing a graphite continuous casting nozzle made of a porous graphite material, wherein a molded body in which pyrolyzable fibers are dispersed in a raw material powder containing carbon is fired and graphitized. In the porous graphite material, 1 to 10% by volume of continuous pores are present, the diameter of the continuous pores is 1 mm or less, and the length of the continuous pores is 3 to 50 mm. The gist of the method is a method for producing a graphite continuous casting nozzle.
[0010]
  Claim4The invention described in claim3The thermodegradable fiber had a diameter of 1 mm or less and a length of 3 mm to 50 mm.
  Claim5The invention described in claim4In the above, the raw material powder was obtained by mixing 40% or more of pitch with a coke powder having an average particle diameter of 100 μm or less, kneading, and then pulverizing it.
[0012]
The “action” of the present invention will be described below.
According to the first aspect of the present invention, since the pores are relatively long in addition to the continuous pores, the outgassing property is improved. And since such a continuous pore exists in the range of 1 volume%-10 volume%, high thermal conductivity and intensity | strength can be maintained.
[0013]
  When the pore length is less than 3 mm, it is difficult to say that the pore length is continuous, and even if it exists in the porous graphite material, it does not lead to a sufficient improvement in gas release properties. If the pore length exceeds 50 mm, it is difficult to form in the first place. Further, when the continuous pores are present in excess of 10% by volume, or when the pore diameter exceeds 1 mm, the matrix portion in the porous graphite material is reduced, resulting in a decrease in thermal conductivity and strength. When continuous pores are present in an amount of less than 1% by volume, good outgassing properties cannot be obtained.The continuous pores formed in this way have extremely small variation in diameter, and therefore have extremely small gas passage resistance. Therefore, the generated gas can be surely extracted from the porous graphite material, and the gas is less likely to stay in the porous graphite material. In addition, since it is not necessary to reduce the amount of the binder in order to make it porous, high thermal conductivity and high strength can be imparted to the matrix portion made of graphite without weakening the bonding force between the particles.
[0014]
According to the invention described in claim 2, by setting the thermal conductivity and the Shore hardness within the preferable ranges, a high-quality cast product can be obtained while avoiding a decrease in productivity and a shortened life of the continuous casting nozzle. be able to.
[0015]
If the thermal conductivity is less than 100 W / m · K, the molten metal cannot be rapidly cooled, and the drawing speed must be set slower. When the Shore hardness is less than 35, the surface of the continuous casting nozzle is damaged by sliding with the cast product, and the life of the continuous casting nozzle is shortened. If the Shore hardness exceeds 60, scratches are likely to occur in the cast product.
[0017]
    Claim3According to the invention described in the above, when a molded body in which pyrolyzable fibers are dispersed in a raw material powder containing carbon is calcined and graphitized, the fibers are pyrolyzed by heat at the time of firing, and the original fiber shape The continuous pores corresponding to are formed. The continuous pores formed in this way have extremely small variation in diameter, and therefore have extremely small gas passage resistance. Therefore, the generated gas can be surely extracted from the porous graphite material, and the gas is less likely to stay in the porous graphite material. Moreover, since it is not necessary to reduce the amount of the binder in order to make it porous, high thermal conductivity and high strength can be imparted to the matrix made of graphite without weakening the bonding force between the particles. Moreover, according to the method of the present invention, it is possible to form the continuous pores easily and inexpensively as compared with the case where the continuous pores are formed by machining.
[0018]
  Claim4According to the invention described in the above, by using a thermally decomposable fiber having a diameter of 1 mm or less and a length of 3 mm to 50 mm, continuous pores having a suitable dimension of a diameter of 1 mm or less and a length of 3 mm to 50 mm can be obtained. You can definitely get it. Further, the short fibers are less entangled than the long fibers, and can be dispersed relatively uniformly in the raw material powder. Therefore, continuous pores can be uniformly formed in the porous graphite material obtained through the molding step and the firing step, and variations in thermal conductivity and density can be prevented.
[0019]
  Claim5According to the invention described in the above, since a raw material powder is obtained by mixing and kneading a pitch of 40% or more by weight with a coke powder having an average particle size of 100 μm or less, a matrix made of graphite. High thermal conductivity and high strength can be surely imparted. If the pitch is less than 40% by weight, high thermal conductivity and high strength may not be sufficiently provided.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a metal continuous casting apparatus 1 according to an embodiment embodying the present invention will be described in detail with reference to FIGS.
[0022]
As shown in FIGS. 1 and 2, the metal continuous casting apparatus 1 of this embodiment includes a melting furnace 2 for heating and melting metal, and a mold part 3 for continuous metal casting provided continuously with the melting furnace 2. And is composed of. The mold part 3 has a continuous casting nozzle 6 for deriving the casting 5 and a cooling part 4 for cooling the casting 5. The continuous casting nozzle 6 includes an upper die 11 and a lower die 12, and a continuous casting cavity 13 is provided between the upper die 11 and the lower die 12. The casting 5 is led out from the cavity 13. In addition, the continuous casting product 5 in this embodiment is white (Cu-64%, Ni-18%, Zn-18%).
[0023]
The cooling unit 4 includes an upper member 16 and a lower member 17, which are disposed on both upper and lower sides of the continuous casting nozzle 6. Water cooling jackets 18 and 19 for cooling the continuous casting nozzle 6 and the cast product 5 are provided inside the upper member 16 and the lower member 17. Water cooling pipes 14 and 15 for circulating water in water cooling jackets 18 and 19 are connected to the upper member 16 and the lower member 17, respectively.
[0024]
The continuous casting nozzle 6 of this embodiment consists of a porous graphite material. As schematically shown in FIG. 4, the porous graphite material has a constant ratio of continuous pores 6a. The direction in which the continuous pores 6a face is not regular and is at random. Some of the continuous pores 6a communicate with each other. The continuous pores 6a correspond to the shape of the fiber.
[0025]
In the porous graphite material, the continuous pores 6a are preferably present in an amount of 1% by volume to 10% by volume, and more preferably 3% by volume to 7% by volume. This is because when the continuous pores 6a are present in excess of 10% by volume, the matrix portion (that is, the portion of graphite that is not pores) 6b in the porous graphite material is reduced, resulting in a decrease in thermal conductivity and strength. On the other hand, when the continuous pores 6a are present only in an amount of less than 1% by volume, good outgassing properties cannot be obtained.
[0026]
The diameter of the continuous pores 6a is 1 mm or less, and particularly preferably about 0.1 mm to 0.5 mm. This is because when the diameter of the continuous pores 6a exceeds 1 mm, the matrix portion 6b decreases, resulting in a decrease in thermal conductivity and strength.
[0027]
The length of the continuous pore 6a is 3 mm to 50 mm, and particularly preferably 3 mm to 20 mm. If the length is less than 3 mm, it is difficult to say that the pores are continuous pores 6a, and even if they exist in the porous graphite material, they do not lead to a sufficient improvement in gas release properties. Those having a length exceeding 50 mm are preferable from the viewpoint of outgassing properties, but are difficult to form in the first place.
[0028]
The length of the continuous pores 6a refers to the length of one continuous pore 6a formed by decomposing / burning out one fiber, and a plurality of continuous pores 6a are in communication with each other. It does not refer to the length.
[0029]
The thermal conductivity of the porous graphite material is preferably 100 W / m · K or more, and particularly preferably 120 W / m · K or more. If the thermal conductivity is less than 100 W / m · K, the molten metal cannot be rapidly cooled, and the drawing speed must be set slower. Therefore, the productivity is lowered.
[0030]
The Shore hardness of the porous graphite material is preferably 35 to 60, and particularly preferably 40 to 55. When the Shore hardness is less than 35, the surface of the continuous casting nozzle 6 is damaged due to sliding with the cast product 5, and the life of the continuous casting nozzle 6 is shortened. On the other hand, if the Shore hardness exceeds 60, scratches are easily generated in the cast product 5, and it becomes impossible to achieve high quality of the cast product 5.
[0031]
The density of the porous graphite material is 1.7 g / cm.Three~ 2.0 g / cmThreeIn particular, 1.8 g / cmThree~ 1.9g / cmThreeIt is good that it is. Density is 1.7 g / cmThreeIf it is less than the range, the bonding force between the raw material powders 21 becomes weak, and the thermal conductivity and strength of the matrix portion 6b are lowered. Conversely, the density is 2.0 g / cmThreeWhen it is going to be larger than this, a large molding pressure must be set, which may make it difficult to produce a porous graphite material.
[0032]
The thermal expansion coefficient of the porous graphite material is 2.0 × 10-6/ ° C. to 6.0 × 10-6/ ° C. (RT to 400 ° C. average value). The reason is to give high dimensional accuracy to the cast product 5 by reducing the difference in thermal expansion coefficient from the cast product 5.
[0033]
Next, the manufacturing procedure of the continuous casting nozzle 6 of this embodiment will be described.
First, pitch as a binder is mixed with coke powder, and this is kneaded under heating, and then pulverized to obtain raw material powder 21 (raw material powder production step). The average particle size of the coke powder is preferably 100 μm or less. The pitch is preferably mixed in a range of 40% to 70% by weight with respect to the coke powder. This is because if the amount of the pitch is less than 40% by weight, the bonding force between the raw material powders 21 becomes weak, and a sufficiently high thermal conductivity and strength cannot be imparted to the matrix portion 6b. In addition, it is preferable that kneading | mixing is performed in the range of 200 to 300 degreeC.
[0034]
Next, a molding material in which the pyrolyzable fibers 22 are dispersed in the raw material powder 21 is prepared in advance. Then, by performing molding using this molding material, a molded body 23 having a predetermined shape is obtained (molding step). Examples of the molding method performed here include extrusion molding, die pressing, rubber press, and the like. Molding pressure is 0.5t / cm2~ 1.5t / cm2It is good to be set to. FIG. 3 schematically shows a part of the molded body 23.
[0035]
In the present embodiment, the thermally decomposable fiber 22 generally refers to a fiber that decomposes and burns down by heat during firing when the molded body 23 is fired and graphitized. Specific examples of the thermally decomposable fiber 22 include fibers made of synthetic polymers such as nylon, acrylic, polyester, and vinylon, and natural fibers such as cotton yarn and hemp yarn. It should be noted that inorganic fibers such as glass fibers and some metal fibers can be selected as long as they decompose and burn out before reaching the graphitization temperature.
[0036]
As the thermally decomposable fiber 22, one having a length of 3 mm to 50 mm can be used, and it is particularly preferable to use a short fiber having a length of 3 mm to 10 mm.
The reason is that short fibers are less entangled than long fibers and can be dispersed relatively uniformly in the raw material powder 21. Therefore, the continuous pores 6a can be uniformly formed in the obtained porous graphite material, and the occurrence of variations such as thermal conductivity and density can be prevented. The diameter of the thermally decomposable fiber 22 is preferably 1 mm or less.
[0037]
Next, the molded body 23 obtained by the molding step is carbonized by firing at 900 ° C. to 1100 ° C., and further graphitized by firing at 2700 ° C. to 2900 ° C. (firing step). As a result, as schematically shown in FIG. 4, the thermally decomposable fibers 22 in the molded body are decomposed and burned, and continuous pores 6 a corresponding to the original fiber shape are formed. Therefore, a desired porous graphite material can be obtained. A predetermined portion of the porous graphite material is mirror-finished as necessary, and then the two porous graphite materials that have been processed are bonded to each other, whereby a desired graphite continuous casting nozzle 6 is completed.
[0038]
[Examples and Comparative Examples]
(Sample preparation of Example 1)
In Example 1, first, 100 parts by weight of coal-based coke having an average particle diameter of 20 μm and 45 parts by weight of a binder pitch were mixed and kneaded at 200 ° C. for 3 hours using a double-arm kneader. Next, the kneaded product was pulverized so as to have an average particle diameter of 40 μm to obtain a raw material powder 21.
[0039]
Next, a molding material is prepared by dispersing nylon fibers having a diameter of 0.8 mm and a length of 5 mm in the raw material powder 21, and 0.6 t / cm using the molding material.2A molded body 23 was obtained by performing rubber pressing.
[0040]
Next, the compact 23 was fired at 1000 ° C. to be carbonized, and then fired at 2800 ° C. to graphitize. As a result, two porous graphite materials having continuous pores 6a were obtained. Thereafter, the porous graphite materials were mirror-finished, and then the porous graphite materials were bonded together to complete the graphite continuous casting nozzle 6 of Example 1.
(Sample preparation of Example 2)
In Example 2, a molding material in which a nylon fiber having a diameter of 0.8 mm and a length of 15 mm is dispersed in the raw material powder 21 obtained as described above is produced, and a molded body 23 is formed using this molding material. Obtained. The other conditions were basically the same as in Example 1, and the graphite continuous casting nozzle 6 of Example 2 was finally completed.
(Sample preparation of Example 3)
In Example 3, a molding material is prepared by dispersing nylon fibers having a diameter of 1.0 mm and a length of 40 mm in the raw material powder 21 obtained as described above, and a molded body 23 is formed using this molding material. Obtained. Other conditions were basically the same as in Example 1, and finally the graphite continuous casting nozzle 6 of Example 3 was completed.
(Sample preparation of Example 4)
In Example 4, a molding material is prepared by dispersing nylon fibers having a diameter of 0.5 mm and a length of 5 mm in the raw material powder 21 obtained as described above, and a molded body 23 is formed using this molding material. Obtained. The other conditions were basically the same as in Example 1, and the graphite continuous casting nozzle 6 of Example 4 was finally completed.
(Sample preparation of Example 5)
In Example 5, a molding material is prepared by dispersing acrylic fiber having a diameter of 0.8 mm and a length of 5 mm in the raw material powder 21 obtained as described above, and a molded body 23 is formed using this molding material. Obtained. The other conditions were basically the same as in Example 1, and the graphite continuous casting nozzle 6 of Example 5 was finally completed.
(Sample preparation of Example 6)
In Example 6, a molding material in which glass fibers having a diameter of 0.8 mm and a length of 5 mm are dispersed in the raw material powder 21 obtained as described above is produced, and a molded body 23 is formed using this molding material. Obtained. The other conditions were basically the same as in Example 1, and finally the graphite continuous casting nozzle 6 of Example 6 was completed.
(Sample preparation of Comparative Example 1)
In Comparative Example 1, first, 100 parts by weight of coal-based coke having an average particle diameter of 20 μm and 45 parts by weight of a binder pitch were mixed, and this was kneaded at 200 ° C. for 3 hours using a double-arm kneader. Next, the kneaded product was pulverized so as to have an average particle diameter of 40 μm to obtain a raw material powder 21.
[0041]
Next, 0.6 t / cm using the raw material powder 212A molded body 23 was obtained by performing rubber pressing. Note that the pyrolyzable fibers were not dispersed in the raw material powder 21.
[0042]
Next, the compact 23 was fired at 1000 ° C. to be carbonized, and then fired at 2800 ° C. to graphitize. The two porous graphite materials thus obtained were mirror-finished, and then the porous graphite materials were bonded together to complete the graphite continuous casting nozzle 6 of Comparative Example 1.
(Sample preparation of Comparative Example 2)
In Comparative Example 2, first, 100 parts by weight of coal-based coke having an average particle diameter of 20 μm and 35 parts by weight of a predetermined amount of binder pitch were mixed and kneaded at 200 ° C. for 3 hours using a double-arm kneader. Next, the kneaded product was pulverized so as to have an average particle diameter of 40 μm to obtain a raw material powder 21. Here, the amount of the binder pitch was reduced to 35 parts by weight in order to achieve porosity. Other conditions were basically the same as in Comparative Example 1.
(Evaluation test and evaluation results)
For each sample, the diameter of the continuous pores 6a, the length of the continuous pores 6a, the pore abundance ratio, the thermal conductivity, the Shore hardness, and the density were measured. The results are shown in Tables 1 and 2. According to this, the thermal conductivity, Shore hardness, and density were highest in Comparative Example 1, followed by Examples 1-6. That is, when the thermal conductivity, Shore hardness, and density in Comparative Example 1 are used as references, the degree of decrease in these numerical values is remarkable in Comparative Example 2, but is slight in Examples 1-6. Therefore, about the nozzle 6 of Examples 1-6, it turned out that thermal conductivity and intensity | strength are not impaired.
[0043]
Moreover, when each sample was observed by SEM etc., in Examples 1-6, the continuous pore 6a corresponding to the shape of the original fiber was formed. Further, the continuous pores 6a formed in this way had extremely small diameter variations. On the other hand, the pores in Comparative Example 2 were basically gaps existing at the grain boundaries of the carbon particles, and thus had complicated shapes and large variations in diameter. Therefore, it was predicted that the gas passing resistance of Comparative Example 2 would be extremely higher than each Example.
[0044]
Next, the metal continuous casting apparatus 1 was configured using the above-mentioned eight types of samples, and the white and white continuous casting was actually continuously performed over a long period of time. Then, the occurrence of zinc white, the appearance of the casting 5 and the nozzle life were investigated. The results are shown in Tables 1 and 2. The temperature of the white in the melting furnace 2 was set to 1200 ° C. to 1250 ° C., the nozzle inner surface temperature during casting was maintained at 1100 ° C., and the casting speed was set to 200 mm / min.
[0045]
As a result, generation of zinc white was immediately observed in Comparative Example 1, whereas in Examples 1 to 6 and Comparative Example 2, generation of zinc white was not recognized, and Zn gas releasing properties were good. I found out that Further, in Comparative Example 1, scratches due to the occurrence of zinc white were observed in about 20 hours, whereas in Examples 1 to 6 and Comparative Example 2, scratches and the like were not recognized, and the appearance of the cast product 5 was confirmed. There was no particular problem. In Examples 1 to 6, even when continuous casting was performed for 120 hours or more, breakage or the like did not occur in the continuous casting nozzle 6, whereas in Comparative Example 2 in a short time of about 50 hours. Breakage occurred. That is, each example clearly had a longer life than Comparative Examples 1 and 2.
[0046]
[Table 1]
Figure 0004668458
[0047]
[Table 2]
Figure 0004668458
Therefore, according to the present embodiment, the following effects can be obtained.
[0048]
(1) The continuous casting nozzle 6 of the present embodiment is made of a porous graphite material having a diameter of 1 mm or less and a continuous pore 6 a having a length of 3 mm to 50 mm and 1 volume% to 10 volume%. Accordingly, since the pores are relatively long in addition to the continuous pores 6a, the outgassing property is improved as compared with the conventional one. Therefore, the gasified Zn does not stay in the continuous casting nozzle 6 and is reliably discharged to the outside, and the occurrence of zinc white can be reliably prevented. For this reason, generation | occurrence | production of "su" and the generation | occurrence | production of a scratch in the casting 5 can be prevented reliably, and it becomes possible to obtain the casting 5 with good quality.
[0049]
Moreover, since such continuous pores 6a are present in a suitable range of 1% by volume to 10% by volume, the mechanical strength of the porous graphite material is not impaired. Therefore, the continuous casting nozzle 6 which is hard to break and has a long life can be realized. In addition, since the thermal conductivity of the porous graphite material is not impaired, the continuous casting nozzle 6 with high cooling efficiency can be obtained, and the extraction speed of the white can be set fast. This contributes to productivity improvement.
[0050]
(2) In the continuous casting nozzle 6 of the present embodiment, the thermal conductivity and the Shore hardness are set within the above preferred ranges. For this reason, it is possible to obtain a high-quality cast product 5 while avoiding a decrease in productivity and shortening of the life of the continuous casting nozzle 6.
[0051]
(3) In the manufacturing method of this embodiment, the continuous casting nozzle 6 is obtained by baking and graphitizing the molded object 23 which disperse | distributed the pyrolyzable fiber 22 in the raw material powder containing carbon. The continuous pores 6a formed by this method have extremely small variation in diameter, and therefore have extremely small gas passage resistance. Therefore, the generated gas can be surely extracted from the porous graphite material, and the gas is less likely to stay in the porous graphite material. Moreover, since it is not necessary to reduce the amount of the binder in order to make it porous, it is possible to impart high thermal conductivity and high strength to the matrix portion 6b made of graphite without weakening the bonding force between the particles. . Moreover, according to the manufacturing method of the present embodiment, the continuous pores 6a can be formed easily and inexpensively as compared with the case where the continuous pores 6a are formed by machining. For this reason, the above-described excellent graphite continuous casting nozzle 6 can be manufactured easily and inexpensively.
[0052]
(4) In the manufacturing method of this embodiment, since the short fibers having a diameter of 1 mm or less and a length of 3 mm to 10 mm are used as the thermally decomposable fibers 22, continuous pores 6a having suitable dimensions can be reliably obtained. be able to. Further, the short fibers are less entangled than the long fibers and can be dispersed relatively uniformly in the raw material powder 21. Therefore, the continuous pores 6a can be uniformly formed in the porous graphite material obtained through the molding step and the firing step, and variations in thermal conductivity and density can be prevented.
[0053]
(5) In the manufacturing method of the embodiment, the raw material powder 21 obtained by mixing 40% or more of pitch by weight with a coke powder having an average particle diameter of 100 μm or less and kneading the mixture is used. Therefore, high thermal conductivity and high strength can be reliably imparted to the matrix portion 6b made of graphite.
[0054]
In addition, you may change embodiment of this invention as follows.
The continuous casting nozzle 6 of the present invention can be used for continuous casting of other metals and alloys such as nickel and zinc other than the white and white listed in the embodiment.
[0055]
-The shape of the continuous casting nozzle 6 is not limited only to what is like embodiment, It can change arbitrarily according to a use.
The porous graphite material of the present invention is not only used as a forming material for the continuous casting nozzle 6 as in the above embodiment, but may be used as a forming material for, for example, a filter or a heat exchanger.
[0056]
Next, in addition to the technical ideas described in the claims, the technical ideas grasped by the embodiment described above are listed below.
(1) In any one of claims 4, 5, and 6, the thermally decomposable fiber is a synthetic polymer, natural fiber, inorganic fiber, or metal fiber that decomposes and burns at a temperature lower than the graphitization temperature. There is. Therefore, according to the invention described in the technical idea 1, continuous pores can be reliably formed.
[0057]
(2) A method for producing a graphite continuous casting nozzle having 1 to 10% by volume of continuous pores, wherein pitch is mixed with a coke powder having an average particle diameter of 100 μm or less within a range of 40% to 70% by weight. And after knead | mixing in the range of 200 degreeC-300 degreeC, the raw material powder preparation process which obtains raw material powder by grind | pulverizing this, and the said raw material powder are 1 mm or less in diameter, and the thermal decomposition of 3 mm-10 mm in length A graphite comprising: a molding step in which a dispersible short fiber is formed into a predetermined shape; and a firing step in which the molded body obtained by the molding step is fired to be carbonized and graphitized. Manufacturing method of continuous casting nozzle.
[0058]
【The invention's effect】
  As detailed above, claim 1Or 2According to the invention described in (1), it is possible to provide a graphite continuous casting nozzle having high thermal conductivity and high strength despite being a porous body having good gas escape properties.
[0059]
  Claim3~5According to the invention described in the above, it is possible to provide a manufacturing method capable of easily and inexpensively manufacturing the above-described excellent graphite continuous casting nozzle..
[Brief description of the drawings]
FIG. 1 is a perspective view of a continuous metal casting apparatus according to an embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view of a main part of the metal continuous casting apparatus according to the embodiment.
FIG. 3 is an enlarged cross-sectional view of a main part for explaining a method for manufacturing a continuous casting nozzle.
FIG. 4 is an enlarged cross-sectional view of a main part for explaining a method for manufacturing a continuous casting nozzle.
[Explanation of symbols]
6 ... Graphite continuous casting nozzle, 6a ... Continuous pores, 22 ... Pyrolytic fiber.

Claims (5)

多孔質黒鉛材からなる黒鉛製連鋳ノズルであって、前記多孔質黒鉛材は、炭素を含む原料粉末中に熱分解性繊維を分散させた成形体を焼成して黒鉛化することにより得られたものであり、前記多孔質黒鉛材には連続気孔が1体積%〜10体積%存在し、当該連続気孔の直径は1mm以下であると共に連続気孔の長さは3mm〜50mmであり、当該多孔質黒鉛材の密度は1.7g/cm 〜2.0g/cm であることを特徴とする黒鉛製連鋳ノズル。A graphite continuous casting nozzle made of a porous graphite material , wherein the porous graphite material is obtained by firing and graphitizing a compact in which pyrolyzable fibers are dispersed in a raw material powder containing carbon. are as hereinbefore, wherein the porous continuous pores exist 10 vol% 1 vol% graphite material, Ri 3mm~50mm der length of continuous pores with a diameter of the open pores is 1mm or less, the graphite continuous casting nozzle, wherein the density of the porous graphite material is 1.7g / cm 3 ~2.0g / cm 3 . 熱伝導率が100W/m・K以上であり、ショアー硬度が35〜60であることを特徴とする請求項1に記載の黒鉛製連鋳ノズル。  The graphite continuous casting nozzle according to claim 1, wherein the thermal conductivity is 100 W / m · K or more, and the Shore hardness is 35 to 60. 多孔質黒鉛材からなる黒鉛製連鋳ノズルの製造方法であって、炭素を含む原料粉末中に熱分解性繊維を分散させた成形体を焼成して黒鉛化することにより、前記多孔質黒鉛材には連続気孔が1体積%〜10体積%存在し、当該連続気孔の直径は1mm以下であると共に連続気孔の長さは3mm〜50mmに形成されることを特徴とする黒鉛製連鋳ノズルの製造方法。A method for producing a graphite continuous casting nozzle comprising a porous graphite material, wherein the porous graphite material is obtained by firing and graphitizing a compact in which pyrolyzable fibers are dispersed in a raw material powder containing carbon. In the continuous casting nozzle made of graphite, the continuous pores are present in an amount of 1 to 10% by volume, the diameter of the continuous pores is 1 mm or less, and the length of the continuous pores is 3 mm to 50 mm. Production method. 前記熱分解性繊維は、直径1mm以下であって長さが3mm〜50mmであることを特徴とする請求項3に記載の黒鉛製連鋳ノズルの製造方法。The method for producing a graphite continuous casting nozzle according to claim 3, wherein the pyrolyzable fiber has a diameter of 1 mm or less and a length of 3 mm to 50 mm. 前記原料粉末は、平均粒子径100μm以下のコークス粉末にピッチを重量比で40%以上混合して混練した後、これを粉砕して得たものであることを特徴とする請求項4に記載の黒鉛製連鋳ノズルの製造方法。5. The raw material powder according to claim 4, wherein the raw material powder is obtained by mixing 40% or more of pitch by weight with a coke powder having an average particle diameter of 100 μm or less and kneading the mixture. A method for producing a graphite continuous casting nozzle.
JP2001144719A 2001-05-15 2001-05-15 Graphite continuous casting nozzle and manufacturing method thereof, porous graphite material Expired - Fee Related JP4668458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001144719A JP4668458B2 (en) 2001-05-15 2001-05-15 Graphite continuous casting nozzle and manufacturing method thereof, porous graphite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001144719A JP4668458B2 (en) 2001-05-15 2001-05-15 Graphite continuous casting nozzle and manufacturing method thereof, porous graphite material

Publications (2)

Publication Number Publication Date
JP2002336939A JP2002336939A (en) 2002-11-26
JP4668458B2 true JP4668458B2 (en) 2011-04-13

Family

ID=18990625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001144719A Expired - Fee Related JP4668458B2 (en) 2001-05-15 2001-05-15 Graphite continuous casting nozzle and manufacturing method thereof, porous graphite material

Country Status (1)

Country Link
JP (1) JP4668458B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115784743B (en) * 2022-09-19 2023-10-27 中钢集团南京新材料研究院有限公司 High-open-porosity graphite roasting product, preparation method thereof and graphite product

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63313640A (en) * 1987-06-12 1988-12-21 Ibiden Co Ltd Continuous casting nozzle
JPH01197362A (en) * 1988-01-29 1989-08-09 Ibiden Co Ltd Continuous casting nozzle
JPH03137075A (en) * 1989-10-18 1991-06-11 Tokai Carbon Co Ltd Production of porous carbon tube
JPH03285742A (en) * 1990-04-03 1991-12-16 Furukawa Electric Co Ltd:The Graphite mold for continuous casting
JPH05104217A (en) * 1991-10-11 1993-04-27 Ibiden Co Ltd Graphite-made continuous casting nozzle for nickel silver
JPH07223051A (en) * 1994-02-15 1995-08-22 Ibiden Co Ltd Metal continuous casting apparatus
JPH08229645A (en) * 1995-02-24 1996-09-10 Nippon Steel Corp Continuous casting nozzle for carbonizing reactive alloy and method thereof
JPH08229646A (en) * 1995-02-24 1996-09-10 Nippon Steel Corp Continuous casting nozzle for brass
JPH11147162A (en) * 1997-11-13 1999-06-02 Tokai Carbon Co Ltd Graphite mold for continuous casting
JPH11263681A (en) * 1998-03-17 1999-09-28 Osaka Gas Co Ltd Production of carbonaceous porous body for fuel cell

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63313640A (en) * 1987-06-12 1988-12-21 Ibiden Co Ltd Continuous casting nozzle
JPH01197362A (en) * 1988-01-29 1989-08-09 Ibiden Co Ltd Continuous casting nozzle
JPH03137075A (en) * 1989-10-18 1991-06-11 Tokai Carbon Co Ltd Production of porous carbon tube
JPH03285742A (en) * 1990-04-03 1991-12-16 Furukawa Electric Co Ltd:The Graphite mold for continuous casting
JPH05104217A (en) * 1991-10-11 1993-04-27 Ibiden Co Ltd Graphite-made continuous casting nozzle for nickel silver
JPH07223051A (en) * 1994-02-15 1995-08-22 Ibiden Co Ltd Metal continuous casting apparatus
JPH08229645A (en) * 1995-02-24 1996-09-10 Nippon Steel Corp Continuous casting nozzle for carbonizing reactive alloy and method thereof
JPH08229646A (en) * 1995-02-24 1996-09-10 Nippon Steel Corp Continuous casting nozzle for brass
JPH11147162A (en) * 1997-11-13 1999-06-02 Tokai Carbon Co Ltd Graphite mold for continuous casting
JPH11263681A (en) * 1998-03-17 1999-09-28 Osaka Gas Co Ltd Production of carbonaceous porous body for fuel cell

Also Published As

Publication number Publication date
JP2002336939A (en) 2002-11-26

Similar Documents

Publication Publication Date Title
EP1741685B1 (en) Porous beta-SiC containing shaped ceramic body and method of making it.
US5733352A (en) Honeycomb structure, process for its production, its use and heating apparatus
EP1364928B1 (en) Honeycomb structure
DE102007000840B4 (en) A fired Si-SiC based body and method of making the same
JP6906343B2 (en) Method for manufacturing silicon carbide sintered body
JP2010503605A (en) Low CTE isotropic graphite
JP2010234445A (en) Fiber reinforced filter for molten metal filtration and method for producing such filter
EP1741687B1 (en) Porous ß-SiC containing shaped ceramic body and method of making it.
JP2010001184A (en) Method for manufacturing exhaust gas filter
JPH06100381A (en) Porous mullite article resistive to heat shock and creep produced from topaz and method of producing the same
US20150035192A1 (en) Porous ceramic and method of making
WO2013076045A1 (en) Porous alpha-sic-containing shaped body having a contiguous open pore structure
CN109279909A (en) A kind of preparation method of high strength carbonizing boron porous ceramics
CN106045551A (en) Method for preparing large-diameter thin-wall honeycomb ceramic carrier
JP4991636B2 (en) Method for producing silicon carbide based porous material
JP4668458B2 (en) Graphite continuous casting nozzle and manufacturing method thereof, porous graphite material
JP3094148B2 (en) Manufacturing method of lightweight refractory
CN113754453A (en) Carbon fiber gain ceramic atomizing core and preparation method thereof
CN104529469A (en) Ceramic material used for crucibles, and preparation method thereof
CN108675826A (en) A kind of cordierite wall-flow honeycomb ceramic filter and preparation method thereof
JPS5831729A (en) Manufacture of composite material and composite material obtained through said method
JPS597667B2 (en) Blast furnace hearth structure
KR100441563B1 (en) Method for recycling uo2 powder scrap into manufacture of nuclear fuel pellet
CN101531527A (en) Producing method of sintering coarse granule silicon carbide products by one reaction
JP2006176347A (en) Porous ceramic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4668458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees