JP2006176347A - Porous ceramic - Google Patents

Porous ceramic Download PDF

Info

Publication number
JP2006176347A
JP2006176347A JP2004369261A JP2004369261A JP2006176347A JP 2006176347 A JP2006176347 A JP 2006176347A JP 2004369261 A JP2004369261 A JP 2004369261A JP 2004369261 A JP2004369261 A JP 2004369261A JP 2006176347 A JP2006176347 A JP 2006176347A
Authority
JP
Japan
Prior art keywords
carbon fiber
pores
porous ceramic
clay
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004369261A
Other languages
Japanese (ja)
Inventor
Sunao Toba
直 鳥羽
Yukiyoshi Mori
幸由 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004369261A priority Critical patent/JP2006176347A/en
Publication of JP2006176347A publication Critical patent/JP2006176347A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Filtering Materials (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous ceramic body in which columnar open pores or closed pores are formed and which has desired water-retaining property, filtration property and air permeability since the pore shape, the pore arrangement, and the pore density of the pores can be controlled. <P>SOLUTION: The porous ceramic has columnar open pores or closed pores having pore diameters of 5-30 μm. A method for producing the porous ceramic comprises sintering a sea-island form formed body containing, as sea structure, a body for the ceramics and, as island structure, fibers in an oxidizing gas atmosphere. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は粒子状物質からなる除去フィルター、建材、水質浄化材、碍子、絶縁版、動植物の育成基盤、土壌改質材や耐火材などに利用できる多孔質陶磁器体に関する。 The present invention relates to a porous ceramic body that can be used as a removal filter, a building material, a water purification material, an insulator, an insulating plate, a plant and animal growth base, a soil modifying material, a refractory material, and the like made of particulate matter.

多孔質の陶磁器体は、軽量で耐熱性や耐酸化性を有しており、通気性、吸水性、通水性、断熱性、吸着性、防音、耐薬品性などの各種機能に優れており、近年では水質浄化微生物や粒子状物質(PM)触媒の担持材、環境ホルモンの吸着材料などとして注目を浴びている。   Porous ceramic body is lightweight, heat and oxidation resistant, and has excellent functions such as breathability, water absorption, water permeability, heat insulation, adsorptivity, soundproofing, chemical resistance, In recent years, it has attracted attention as a support material for water purification microorganisms, particulate matter (PM) catalyst, and an adsorbing material for environmental hormones.

一般に、多孔質陶磁器体は、原料となる坏土に、数10μmの粒子からなる木炭を細かく砕いた粉体や籾殻・おがくず・木屑などを混練し、焼結することにより得られる。しかしながらこれらの有機材料はそれ自体が不均一な形態であったり、これらの材料を含む成型体を焼結した場合、水蒸気や二酸化炭素などの発生ガスが焼結中の成型体を貫通しながら抜ける際に気孔形態が崩れ、陶磁器体内部に気孔がランダムな状態で散在し、見掛けの気孔率や嵩密度はある程度コントロール出来るものの、その気孔配置を制御するには至っていない。かくして得られた多孔質陶磁器は、濾過特性や通気特性、保水性の制御が不正確なものになるため、窯業用粘土を用いた陶磁器体の各種機能素材への利用が制限される一因となっている。   In general, a porous ceramic body is obtained by kneading and sintering a finely pulverized powder of charcoal made of particles of several tens of μm, rice husk, sawdust, wood chips, etc., in a kneaded material as a raw material. However, these organic materials themselves are in a non-uniform form, or when a molded body containing these materials is sintered, the generated gas such as water vapor and carbon dioxide escapes through the molded body being sintered. However, the pore shape collapses and the pores are randomly scattered inside the ceramic body. Although the apparent porosity and bulk density can be controlled to some extent, the arrangement of the pores has not been controlled. The porous ceramics thus obtained have inaccurate control of filtration characteristics, ventilation characteristics, and water retention, which is one reason why the use of ceramic bodies using ceramic clay for various functional materials is limited. It has become.

さらに、これらの粉体や籾殻・おがくず・木屑・天然繊維等は吸水性を有するため、可塑性を向上させるために水分を多く必要とし、乾燥時に亀裂を生じたり、不均一な収縮を生じて、寸法精度の高い陶磁器体を得るには至っていなかった。(たとえば特許文献1)
また、その他の方法としては、樹脂フィラーまたは、フェノール樹脂やウレタン樹脂発泡材料を用いる方法が一般的であるが、これらの技術を用いた場合、焼結時に樹脂フィラーや炭素成分が比較的低温で酸化消失するため、陶磁器体を形成する粘土の粒子同士が結合する前に、分解ガスが大量に発生したり、その分解ガスが気孔内でタール化し、清浄な気孔を形成できないなどの問題点があった(たとえば特許文献2)。
Furthermore, these powders, rice husks, sawdust, wood chips, natural fibers, etc. have water absorption, so a lot of moisture is required to improve plasticity, cracks occur during drying, and uneven shrinkage occurs. A ceramic body with high dimensional accuracy has not been obtained. (For example, Patent Document 1)
In addition, as other methods, a method using a resin filler or a phenol resin or a urethane resin foam material is generally used. However, when these techniques are used, the resin filler and the carbon component are kept at a relatively low temperature during sintering. Oxidation disappears, so there are problems such as generation of large amounts of cracked gas before the clay particles forming the ceramic body are combined, or tarring of the cracked gas in the pores, making it impossible to form clean pores. (For example, Patent Document 2).

そのため、高性能なフィルターや絶縁物など高度に制御された多孔質体が必要な分野には、ファインセラミックス成形体が用いられており、圧縮成型法による貫通孔を有する多孔質セラミックスの製造方法が開示されているが(例えば特許文献3)、その貫通孔は直径数10μm〜100μm程度の大きなものであり、さらに製造方法は、外径1mm以下の棒状成型体を成型したのち、該成型体を束ねて圧縮し、気孔を形成する方法を採用している。そのため、棒状成型体をさらに圧縮成型して多孔質セラミックスを得る専用の圧縮設備が必要となるため、得られる成型体は高価なものとなっている。
特開2003−20290号公報 特開2002−274929号公報 特開平11−139887号公報
Therefore, fine ceramic molded bodies are used in fields that require highly controlled porous bodies such as high-performance filters and insulators, and a method for producing porous ceramics having through-holes by compression molding is used. Although disclosed (for example, Patent Document 3), the through-hole is a large one having a diameter of about 10 μm to 100 μm, and the manufacturing method is to form a rod-shaped molded body having an outer diameter of 1 mm or less, A method of bundling and compressing to form pores is adopted. Therefore, a dedicated compression facility for obtaining porous ceramics by further compression-molding the rod-shaped molded body is required, and thus the molded body obtained is expensive.
JP 2003-20290 A JP 2002-274929 A Japanese Patent Application Laid-Open No. 11-13987

本発明の目的は、多孔質陶磁器体において、円柱状の開気孔もしくは閉気孔を形成し、孔形状、孔配列、孔密度を制御することであり、特に窯業用坏土を原材料とした該陶磁器体の製造方法を提供することにある。   An object of the present invention is to form cylindrical open pores or closed pores in a porous ceramic body, and to control the hole shape, the hole arrangement, and the hole density. It is in providing the manufacturing method of a body.

陶磁器内に平均孔径5〜30μmの円柱状開気孔もしくは閉気孔を有する多孔質陶磁器。
海構造に窯業用坏土、島構造に繊維を含有する海島状成型体を酸化性ガス雰囲気下で焼結する多孔質陶磁器の製造方法。
Porous ceramics having cylindrical open pores or closed pores having an average pore diameter of 5 to 30 μm in the ceramics.
A method for producing porous ceramics, in which a sea island-shaped molded body containing ceramic clay for the sea structure and fibers for the island structure is sintered in an oxidizing gas atmosphere.

本発明によれば、多孔質陶磁器体において円柱状の開気孔もしくは閉気孔を形成し、それらの孔形状、孔配列、孔密度を制御することが可能なため、所望の保水性、濾過特性、通気特性等を有することのできる多孔質陶磁器体を提供することができる。   According to the present invention, it is possible to form cylindrical open pores or closed pores in a porous ceramic body, and to control the pore shape, the pore arrangement, and the pore density. It is possible to provide a porous ceramic body that can have ventilation characteristics and the like.

本発明の陶磁器体は、平均孔径5〜30μmの円筒状開気孔もしくは閉気孔を有する多孔質陶磁器体である。30μmを上回ると、微細な粒子の除去などの機能に影響を与える可能性がある。   The ceramic body of the present invention is a porous ceramic body having cylindrical open pores or closed pores having an average pore diameter of 5 to 30 μm. When it exceeds 30 μm, there is a possibility of affecting functions such as removal of fine particles.

また平均孔径が5μmを下回ると、坏土の特性によっては、水滴との表面張力が大きくなり、吸水性が低下する可能性がある。   On the other hand, when the average pore diameter is less than 5 μm, depending on the characteristics of the clay, the surface tension with water droplets may increase and water absorption may be reduced.

円柱状気孔の軸方向に対して垂直な方向の陶磁器体切断面に観察される孔密度は、10個/mm以上〜10000個/mm以下であることが好ましい。10個/mm未満では多孔質体としての性能を発揮せず、吸水率も向上しない。10000個/mm以上であると、吸水率は向上するものの、曲げ強度が低下する可能性がある。 The hole density observed on the cut surface of the ceramic body in the direction perpendicular to the axial direction of the columnar pores is preferably 10 / mm 2 or more and 10000 / mm 2 or less. If it is less than 10 pieces / mm 2 , the performance as a porous body is not exhibited, and the water absorption rate is not improved. If it is 10,000 pieces / mm 2 or more, the water absorption rate is improved, but the bending strength may be lowered.

円柱状気孔の軸方向に対して垂直な方向の陶磁器体切断面に観察される気孔は、気孔径の長軸(La)/短軸(Lb)からなる真円度(La/Lb)が2.0〜1.0であることが好適である。真円度が2.0を上回る場合、すなわち真円から程遠い楕円が観察される場合、気孔の並行度が低いもしくは、気孔が大きく湾曲していることを示している。気孔の並行度が低いと2つ以上の気孔同士が結合する可能性があり、気孔の大きさを制御できず、フィルター性能や触媒担持性能などの低下を引き起こす可能性がある。   The pores observed on the cut surface of the ceramic body in the direction perpendicular to the axial direction of the columnar pores have a roundness (La / Lb) of 2 consisting of the major axis (La) / minor axis (Lb) of the pore diameter. It is suitable that it is 0.0-1.0. When the roundness exceeds 2.0, that is, when an ellipse far from the perfect circle is observed, the degree of parallelism of the pores is low, or the pores are greatly curved. If the degree of parallelism of the pores is low, two or more pores may be bonded to each other, and the size of the pores cannot be controlled, which may cause a decrease in filter performance or catalyst support performance.

本発明の陶磁器体の吸水率は5.0wt%以上が好適である。5.0wt%を下回ると多孔質材料としての性能を満足しない場合がある。   The water absorption of the ceramic body of the present invention is preferably 5.0 wt% or more. If it is less than 5.0 wt%, the performance as a porous material may not be satisfied.

ここで吸水率とは被測定物を105℃で2時間乾燥し恒量状態となった被測定物の重量(Ma)と該測定物を純水中に24時間含浸し、表面の水分を拭き取った後の重量(Mb)から下記式1にて算出するものである。   Here, the water absorption refers to the weight (Ma) of the object to be measured which has been dried at 105 ° C. for 2 hours to become a constant weight state, and the object to be measured is impregnated in pure water for 24 hours to wipe off the water on the surface. It is calculated by the following formula 1 from the subsequent weight (Mb).

吸水率=(Mb−Ma)/Ma×100・・・(式1)
本発明の陶磁器体は海構造に窯業用坏土、島構造に繊維を含有する海島状原料を酸化性ガス雰囲気下で焼結することにより得られる。
Water absorption rate = (Mb−Ma) / Ma × 100 (Equation 1)
The ceramic body of the present invention can be obtained by sintering a sea-island raw material containing a ceramic clay for a sea structure and fibers for an island structure in an oxidizing gas atmosphere.

本発明の窯業用坏土は、窯業用一般に用いられているものであれば良く、例えば珪藻土、珪砂、珪岩、カオリン鉱物、蛇紋石、粘土、リザーダイト、クリソタイル、雲母鉱物、バーミキュライト、スメクタイト、発泡シラス、真珠岩、黒曜石、ヒル石、頁石、砂姿、キラ、長石、ガラス、アルミナ、フライアッシュ、石英、角閃石等のうち少なくとも1種または複数の混合材料を用いることが可能である。   The clay for ceramics of the present invention may be any material generally used for ceramics, for example, diatomaceous earth, silica sand, quartzite, kaolin mineral, serpentine, clay, lizardite, chrysotile, mica mineral, vermiculite, smectite, foamed shirasu. , Perlite, obsidian, leechite, shale, sand figure, glitter, feldspar, glass, alumina, fly ash, quartz, amphibole, and the like can be used.

窯業用坏土の平均粒度は0.01μm〜1000μmの範囲にあることが好ましい。平均粒度が1000μmを超える場合、水による結合力が弱くなり可塑性が落ちるなどの問題を生じる場合がある。   The average particle size of the clay for ceramics is preferably in the range of 0.01 μm to 1000 μm. When the average particle size exceeds 1000 μm, there may be a problem that the bonding force by water becomes weak and the plasticity is lowered.

本発明に用いる繊維はナイロン・ポリエステル・アクリルなどの有機合成繊維もしくは木綿・絹などの繊維を用いることができるが、坏土との混練性・加熱減量特性・焼結時の発生ガスや形成される気孔の清浄性を鑑みると炭素繊維束やチョップ・ミルド糸を好適に用いることができる。   The fibers used in the present invention may be organic synthetic fibers such as nylon, polyester and acrylic, or fibers such as cotton and silk, but they are kneadable with clay, heat loss characteristics, and gas generated and formed during sintering. In view of the cleanliness of pores, carbon fiber bundles and chopped and milled yarns can be suitably used.

本発明における押出し成型法に用いる炭素繊維について詳述する。   The carbon fiber used for the extrusion molding method in this invention is explained in full detail.

本発明に用いる炭素繊維はアクリル系・ピッチ系のいずれでも良く、その力学的特性は限定されない。有機元素分析で得られる炭素含有量が90wt%以上、その灰分が1wt%以下であることが好ましい。灰分が多いと形成気孔内にタール等の残留物が残ることがある。また、陶磁器体の異常な発色を防止するためには、鉄やアルカリ金属の誘導体の含有量が1wt%以下であることが好ましい。   The carbon fiber used in the present invention may be either acrylic or pitch, and its mechanical properties are not limited. The carbon content obtained by organic elemental analysis is preferably 90 wt% or more and the ash content is 1 wt% or less. When there is much ash, residues such as tar may remain in the pores formed. In order to prevent abnormal color development of the ceramic body, the content of iron or alkali metal derivative is preferably 1 wt% or less.

また、空気条件下での加熱減量が始まる温度が200℃を下回らないものが好適である。   Moreover, the temperature at which the heating loss under air condition does not fall below 200 ° C is suitable.

加熱減量が200℃を下回る温度で始まると、窯業用坏土中の結合水の蒸発と粘土粒子同士の接着による陶磁器体の基本骨格形成が始まる前に炭素繊維が消失し、多孔質構造が不均一化する場合があり好ましくない。   When heating loss starts at a temperature below 200 ° C., the carbon fiber disappears before the formation of the basic skeleton of the ceramic body due to the evaporation of the bound water in the clay for ceramics and the adhesion of the clay particles, and the porous structure is lost. It may be uniform and is not preferable.

炭素繊維の繊維直径は特に限定されないが、例えば、通常のポリアクリロニトリル系炭素繊維を用いる場合直径10μm以下である。   The fiber diameter of the carbon fiber is not particularly limited. For example, when a normal polyacrylonitrile-based carbon fiber is used, the diameter is 10 μm or less.

繊維長は10mm以下であることが好ましい。炭素繊維の繊維長が10mmを超えると、混練時の粘土中での炭素繊維の分散性が悪くなる。そのため、陶磁器内部に炭素繊維が局在化し、気孔の配向性の制御が難しくなり、さらに後の押し出し成形時の成形性が悪化する。   The fiber length is preferably 10 mm or less. If the fiber length of the carbon fiber exceeds 10 mm, the dispersibility of the carbon fiber in the clay during kneading deteriorates. For this reason, carbon fibers are localized inside the ceramic, making it difficult to control the orientation of the pores, and the formability during subsequent extrusion molding is deteriorated.

一方、炭素繊維の繊維長が100μmを下回ると混練性は向上するものの、後の押し出し成型時に島構造の炭素繊維の配向性が失われることがあり、制御された多孔質体を得ることが出来なくなるため好ましくない。   On the other hand, when the fiber length of the carbon fiber is less than 100 μm, the kneadability is improved, but the orientation of the island-structured carbon fiber may be lost during subsequent extrusion molding, and a controlled porous body can be obtained. It is not preferable because it disappears.

また炭素繊維の添加量は、かかる窯業用原料100重量部に対して50重量部以下であることが好適である。   The amount of carbon fiber added is preferably 50 parts by weight or less with respect to 100 parts by weight of the ceramic material.

炭素繊維が50重量部を超えると、乾燥後の寸法変化が大きくなったり、俗にいう粘り気が無くなり坏土の可塑性が低下したり、押出し機の内部での詰まりや乾燥工程中のひび割れが発生するため、好ましくない。   If the amount of carbon fiber exceeds 50 parts by weight, the dimensional change after drying will increase, the common stickiness will disappear, the plasticity of the clay will decrease, clogging inside the extruder and cracking during the drying process will occur Therefore, it is not preferable.

50重量部以下であれば、所望の気孔密度に合わせて炭素繊維添加量を調整することが可能であり、可塑性や気孔形成に影響がない程度であれば、所望の機能を有するフィラーなどの粉末を混ぜることもできる。また、炭素繊維の混練成型方法では通常の混練機を用いれば良く、特に限定されない。   If it is 50 parts by weight or less, it is possible to adjust the amount of carbon fiber added in accordance with the desired pore density, and if it does not affect the plasticity or pore formation, a powder such as a filler having a desired function Can also be mixed. In addition, the carbon fiber kneading and forming method may use a normal kneading machine, and is not particularly limited.

次に、本発明の鋳込み成型法に用いる炭素繊維について詳述する。   Next, the carbon fiber used for the casting method of the present invention will be described in detail.

本発明に用いる炭素繊維は、アクリル系・ピッチ系のいずれでも良く、その力学的特性は限定されない。有機元素分析で得られる炭素含有量が90wt%以上、その灰分が1wt%以下であることが好ましい。灰分が多いと形成気孔内にタール等の残留物が残ることがある。陶磁器体の異常な発色を防止するためには、鉄やアルカリ金属の誘導体の含有量が1wt%以下であることが好ましく、押出し成型法に用いるものと同様の性質をもつものが好適である。   The carbon fiber used in the present invention may be either acrylic or pitch, and its mechanical properties are not limited. The carbon content obtained by organic elemental analysis is preferably 90 wt% or more and the ash content is 1 wt% or less. When there is much ash, residues such as tar may remain in the pores formed. In order to prevent abnormal color development of the ceramic body, the content of iron or alkali metal derivatives is preferably 1 wt% or less, and those having the same properties as those used in the extrusion molding method are suitable.

空気条件下での加熱減量が始まる温度が200℃を下回らないものが好適である。   It is preferable that the temperature at which heating loss under air conditions begins does not fall below 200 ° C.

加熱減量が200℃を下回る温度で始まると、窯業用坏土中の結合水蒸発および粘土粒子同士の接着による陶磁器体の基本骨格形成が始まる前に炭素繊維が消失し、多孔質構造が不均一化する場合があり好ましくない。   When heating loss starts at a temperature below 200 ° C, the carbon fiber disappears before the formation of the basic skeleton of the ceramic body by bonding water evaporation in the clay for ceramics and adhesion of clay particles, and the porous structure is uneven. This is not preferable.

炭素繊維の繊維直径は特に限定されないが、例えば、通常のポリアクリロニトリル系炭素繊維を用いる場合の直径は10μm以下である。   Although the fiber diameter of carbon fiber is not specifically limited, For example, the diameter in the case of using a normal polyacrylonitrile-type carbon fiber is 10 micrometers or less.

鋳込み成型法に用いる炭素繊維はストランド状の連続繊維が好適である。繊維長は通常の鋳込み成型用の鋳型にストランドを設置して泥漿を鋳込むか、もしくは泥漿中を通過させ、泥漿を炭素繊維の単糸間に含浸付与をさせることが出来ればよいため、100mm以上が好適である。   The carbon fiber used for the casting method is preferably a strand-like continuous fiber. The fiber length is 100 mm as long as it is possible to cast strands by placing a strand in a normal casting mold, or to pass through the slurry and impregnate the slurry between carbon fiber single yarns. The above is preferable.

泥漿をストランドの単糸間に十分鋳込むためには、ストランドあたりの構成本数は100〜50000/本であることが好ましい。   In order to sufficiently cast the slurry between single strands of strands, the number of constituents per strand is preferably 100 to 50000 / piece.

本発明の陶磁器体の製造は、押出し成型法、鋳込み成型法のいずれの成型法を用いても良い。   For the production of the ceramic body of the present invention, any of an extrusion molding method and a casting molding method may be used.

押出し成型法の場合は、粘土に炭素繊維を混練する工程と、押出し成型する工程と、成型後の乾燥工程、乾燥して得られた成型品を素焼きする工程、さらに必要に応じた本焼き工程からなる。   In the case of the extrusion molding method, a process of kneading carbon fibers into clay, a process of extrusion molding, a drying process after molding, a process of unbaking a molded product obtained by drying, and a main baking process as required Consists of.

押出し成型に用いる粘土に炭素繊維を混練する工程では、通常の土練機を用いることができ、水分量は坏土に対して、20wt%〜30wt%が好適である。   In the step of kneading carbon fiber with clay used for extrusion molding, a normal clay kneader can be used, and the water content is preferably 20 wt% to 30 wt% with respect to the clay.

押出し成型する工程では、通常の陶磁器の成形に用いる真空押出し成形機を用いることができる。エクストルーダータイプの押し出し方式が好適であり、その真空度は0.1kPa以上であることが好ましく、目詰まりしない程度の多孔板を押出し部に挿入できる。   In the process of extrusion molding, a vacuum extrusion molding machine used for ordinary ceramic molding can be used. An extruder type extrusion method is suitable, and the degree of vacuum is preferably 0.1 kPa or more, and a perforated plate that does not clog can be inserted into the extruded portion.

押し出し金型は多角形、矩形、菱形、楕円型、円形などいずれでもよい。成型体の厚みは200mm以下が好ましい。この押し出し成形により、粘土を海構造に、炭素繊維を島構造に有する成形体を得ることが出来る。焼結前の成型体の一例を図1および図2に示した。   The extrusion die may be any of a polygon, a rectangle, a diamond, an ellipse, and a circle. The thickness of the molded body is preferably 200 mm or less. By this extrusion molding, a molded body having a clay in a sea structure and a carbon fiber in an island structure can be obtained. An example of the molded body before sintering is shown in FIGS.

鋳込み成型法では、炭素繊維ストランドに泥漿を鋳込む工程もしくは泥漿に含浸させる成型工程、成型後の乾燥工程、乾燥した成型品を素焼きする工程、さらに必要に応じた本焼き工程からなる。   The casting molding method includes a step of casting slurry into carbon fiber strands, a molding step of impregnating slurry, a drying step after molding, a step of baking the dried molded product, and a main baking step as necessary.

成型に用いる鋳型は成型体の最大厚みが200mm以下であれば、特に限定されない。
炭素繊維のストランドに1kg/st程度の張力をかけることにより、単糸の並行性を維持することができる。
The mold used for molding is not particularly limited as long as the maximum thickness of the molded body is 200 mm or less.
By applying a tension of about 1 kg / st to the carbon fiber strand, the parallelism of the single yarn can be maintained.

含浸方法は、圧力方式、屈曲ローラー方式、曲面ローラー方式、固定ガイド方式などを用いることができるが、これらに限定されるものではない。   As the impregnation method, a pressure method, a bending roller method, a curved roller method, a fixed guide method, and the like can be used, but the method is not limited thereto.

それぞれの成型方法で得られた成型品の乾燥は通常の陶磁器体の乾燥と同様に、室温で1週間程度乾燥すれば良いが、水分を多く含む場合はそれ以上の長い期間乾燥しても良い。   The molded product obtained by each molding method can be dried for about a week at room temperature, as in the case of ordinary ceramics, but if it contains a lot of moisture, it may be dried for a longer period of time. .

乾燥して得られた成型品を素焼きする工程は、酸化性条件下で800℃〜1300℃の温度で8〜20時間程度実施することが好ましい。   The step of baking the molded product obtained by drying is preferably performed at a temperature of 800 ° C. to 1300 ° C. for about 8 to 20 hours under oxidizing conditions.

ここで酸化性条件とは、少なくとも酸素を含む雰囲気のことである。かかる焼結工程での昇温速度は、通常の陶磁器の製法と同様に、100℃/hr〜200℃/hrが好ましいが、特に限定されるものではない。かかる酸化条件下で焼結することにより、粘土中の結合水が放出された後、炭素繊維が消失することにより、炭素繊維が存在していた島構造には直径5〜30μm、長さ100μm以上の細孔構造を有する陶磁器体を得ることができる。   Here, the oxidizing condition is an atmosphere containing at least oxygen. The temperature increase rate in the sintering step is preferably 100 ° C./hr to 200 ° C./hr, but is not particularly limited, as in the usual method for producing ceramics. By sintering under such oxidizing conditions, the bonded water in the clay is released, and then the carbon fibers disappear, so that the island structure where the carbon fibers existed has a diameter of 5 to 30 μm and a length of 100 μm or more. It is possible to obtain a ceramic body having the following pore structure.

炭素繊維の消失温度と条件を調整するために、酸化焼結の前後もしくは中途に不活性ガス、例えば窒素・一酸化炭素・アルゴンを含む焼結方法を組み合わせることも可能である。   In order to adjust the disappearance temperature and conditions of the carbon fibers, it is possible to combine sintering methods including an inert gas such as nitrogen, carbon monoxide, and argon before, during or after oxidation sintering.

かかる焼結工程での昇温速度は、通常の陶磁器の製法と同様であり、100℃/hr〜200℃/hrである。得られた素焼き品には、絵付け・釉薬などを塗布して本焼きを実施しても良く、その方法は通常の陶磁器と同様でよい。   The temperature increase rate in this sintering process is the same as that of a normal ceramic manufacturing method, and is 100 ° C./hr to 200 ° C./hr. The obtained unglazed product may be subjected to main baking after painting or glaze application, and the method may be the same as that for ordinary ceramics.

かくして得られた陶磁器体は、ダイアモンドカッター等を用いて、円柱状気孔の軸方向に対して垂直な方向に切断することにより、気孔の配列状態と配列方向を観察することが出来る。円柱状気孔の軸方向に対して垂直な方向とは、たとえば押出し成型法の場合は、成型体の押出し方向に対して垂直な方向であり、鋳込み成型法では焼結前の炭素繊維ストランド繊維長さ方向に対して垂直な方向である。該陶磁器切断面を電子顕微鏡で観察(×400倍)し、10撮影野(250μm×300μm)に確認された孔数と孔の長軸・短軸をそれぞれ測定する。電子顕微鏡撮影した一例を図5に示した。   The porcelain body thus obtained can be observed in an array state and an array direction of the pores by cutting in a direction perpendicular to the axial direction of the columnar pores using a diamond cutter or the like. The direction perpendicular to the axial direction of the columnar pore is, for example, in the case of the extrusion molding method, the direction perpendicular to the extrusion direction of the molded body. In the casting molding method, the carbon fiber strand fiber length before sintering The direction perpendicular to the vertical direction. The ceramic cut surface is observed with an electron microscope (× 400 times), and the number of holes confirmed in 10 shooting fields (250 μm × 300 μm) and the major axis and minor axis of each hole are measured. An example taken with an electron microscope is shown in FIG.

かくして得られた陶磁器体は粒子状物質の除去フィルター、建材、水質浄化材、碍子、
絶縁版、動植物の育成基盤、土壌改質材や耐火材などに好適に利用できる。
The ceramic body thus obtained is a particulate matter removal filter, building material, water purification material, insulator,
It can be suitably used for insulation plates, animal and plant growth bases, soil modifiers and fireproof materials.

以下、実施例により具体的に本発明を説明する。なお実施例において、各特性値は以下の方法により測定した。
<吸水率>
被測定物を105℃で2時間乾燥し恒量状態となった被測定物の重量(Ma)と該測定体を純水中に24時間含浸し、表面の水分を拭き取った後の重量(Mb)から下記式1にて算出するものである。
Hereinafter, the present invention will be described specifically by way of examples. In the examples, each characteristic value was measured by the following method.
<Water absorption rate>
The weight (Ma) of the object to be measured which was dried at 105 ° C. for 2 hours to be in a constant weight state and the weight (Mb) after the measurement body was impregnated in pure water for 24 hours and the moisture on the surface was wiped off Is calculated by the following formula 1.

吸水率=(Mb−Ma)/Ma×100・・・(式1)
<孔密度>
陶磁器体の中央部を円柱状気孔の軸方向に対して垂直方向にダイアモンドカッターで切断し、日本電子社製電子顕微鏡を用いて400倍に拡大し、10撮影野(250μm×300μm)のSEM撮影をした。該画像の孔数をカウントし、その平均値(個/mm)を孔密度とした。
<平均孔径・真円度>
陶磁器体の中央部を円柱状気孔の軸方向に対して垂直方向にダイアモンドカッターで切断し、日本電子社製電子顕微鏡を用いて400倍に拡大し、250μm×300μmのSEM撮影を実施する。1断面あたり5撮影野実施し、これを2回繰り返す。該画像上の気孔の長軸(La)および短軸(Lb)を測定し、それらの平均値を平均孔径とする。撮影野に観察された全ての真円度は長軸(La)を短軸(Lb)で除することにより算出した。
Water absorption rate = (Mb−Ma) / Ma × 100 (Equation 1)
<Pore density>
The central part of the ceramic body is cut with a diamond cutter in a direction perpendicular to the axial direction of the columnar pores, magnified 400 times using an electron microscope manufactured by JEOL Ltd., and SEM image of 10 fields (250 μm × 300 μm) Did. The number of holes in the image was counted, and the average value (pieces / mm 2 ) was defined as the hole density.
<Average pore diameter and roundness>
The central part of the ceramic body is cut with a diamond cutter in a direction perpendicular to the axial direction of the columnar pores, magnified 400 times using an electron microscope manufactured by JEOL Ltd., and SEM photography of 250 μm × 300 μm is performed. Perform 5 fields per cross section and repeat this twice. The major axis (La) and minor axis (Lb) of the pores on the image are measured, and the average value thereof is taken as the average pore diameter. All roundness values observed in the field were calculated by dividing the major axis (La) by the minor axis (Lb).

<実施例1>
平均粒度100μmからなる粘土(さぬき土60wt%、五味土40wt%)約5kgに東レ株式会社製炭素繊維(MLD−300,平均繊維長300μm)1kgを投入し、水を加えながら20分間攪拌混練し、炭素繊維を17wt%含む粘土を得た。この粘土を、さらに真空押出し成形機を用いて成形体を得た。1週間風乾した後、電気釜を用いて200℃/hrで昇温し、最高温度が1100℃に達した時点で1hr温度を維持した後、自然降温し、炉内温度が100℃を下回った時点で陶磁器体1を採取した。陶磁器体の寸法は縦120mm×横50mm×厚み15mmであった。
<Example 1>
1 kg of carbon fiber (MLD-300, average fiber length 300 μm) manufactured by Toray Industries, Inc. is added to about 5 kg of clay (sanuki soil 60 wt%, godomi soil 40 wt%) having an average particle size of 100 μm, and stirred and kneaded for 20 minutes while adding water. A clay containing 17 wt% carbon fiber was obtained. This clay was further obtained by using a vacuum extrusion molding machine. After air-drying for 1 week, the temperature was raised at 200 ° C./hr using an electric kettle, and when the maximum temperature reached 1100 ° C., the temperature was maintained for 1 hr, and then the temperature naturally decreased, and the furnace temperature fell below 100 ° C. At that time, the ceramic body 1 was collected. The dimensions of the ceramic body were 120 mm long × 50 mm wide × 15 mm thick.

平均孔径、孔密度、真円度、吸水率をそれぞれ測定した結果を表1に示す。   Table 1 shows the results of measuring the average pore diameter, pore density, roundness, and water absorption rate.

<実施例2>
平均粒度100μmからなる粘土(さぬき土60wt%、五味土40wt%)5kgに東レ株式会社製炭素繊維(MLD−300,平均繊維長300μm)0.5kgを投入し、水を加えながら20分間攪拌混練し、炭素繊維を8wt%含む粘土を得た。この粘土を実施例1と同様の成形・焼結を実施し、陶磁器体2を得た。
<Example 2>
Carbon fiber (MLD-300, average fiber length 300 μm) 0.5 kg made by Toray Co., Ltd. is put into 5 kg of clay (sanuki soil 60 wt%, gomi clay 40 wt%) having an average particle size of 100 μm, and stirred and kneaded for 20 minutes while adding water. As a result, a clay containing 8 wt% of carbon fibers was obtained. This clay was molded and sintered in the same manner as in Example 1 to obtain a ceramic body 2.

実施例1に準じ、平均孔径、孔密度、真円度、吸水率をそれぞれ測定した結果を表1に示した。   The results of measuring the average pore diameter, pore density, roundness, and water absorption rate according to Example 1 are shown in Table 1.

<実施例3>
平均粒度100μmからなる粘土(さぬき土60wt%、五味土40wt%)5kgに東レ株式会社製炭素繊維(チョップド糸:平均繊維長6mm)0.5kgを投入し、水を加えながら20分間攪拌混練し、炭素繊維を8wt%含む粘土を得た。この粘土を実施例1と同様の成形・焼結を実施し、陶磁器体3を得た。
<Example 3>
0.5kg of carbon fiber (chopped yarn: average fiber length 6mm) made by Toray Industries, Inc. is put into 5kg of clay (sanuki soil 60wt%, gomi soil 40wt%) with an average particle size of 100μm, and stirred and kneaded for 20 minutes while adding water. A clay containing 8 wt% carbon fiber was obtained. This clay was molded and sintered in the same manner as in Example 1 to obtain a ceramic body 3.

実施例1に準じ、平均孔径、孔密度、真円度、吸水率をそれぞれ測定した結果を表1に示した。   The results of measuring the average pore diameter, pore density, roundness, and water absorption rate according to Example 1 are shown in Table 1.

<実施例4>
平均粒度100μmからなる粘土(さぬき土60wt%、五味土40wt%)1kgに水ガラスを2wt%加え、攪拌し泥漿を得た。角状鋳型に東レ株式会社製炭素繊維(T300−3K)を幅2cmに拡幅し、1.0kg/stの張力をかけて設置した。鋳込み成型機に設置し、20分間鋳込みを実施し、成形体を得た。1週間風乾した後、電気釜を用いて200℃/hrで昇温し、最高温度が1100℃に達した時点で1hr温度を維持した後、自然降温し、炉内温度が100℃を下回った時点で陶磁器体4を採取した。その寸法は、縦100mm×横25mm×厚み10mmであった。
<Example 4>
2 kg of water glass was added to 1 kg of clay having a mean particle size of 100 μm (60 wt. A carbon fiber (T300-3K) manufactured by Toray Industries, Inc. was expanded to a width of 2 cm on a square mold, and placed with a tension of 1.0 kg / st. It was installed in a casting molding machine, and casting was performed for 20 minutes to obtain a molded body. After air-drying for 1 week, the temperature was raised at 200 ° C./hr using an electric kettle, and when the maximum temperature reached 1100 ° C., the temperature was maintained for 1 hr, and then the temperature naturally decreased, and the furnace temperature fell below 100 ° C. At that time, the ceramic body 4 was collected. The dimensions were length 100 mm × width 25 mm × thickness 10 mm.

実施例1に準じ、平均孔径、孔密度、真円度、吸水率をそれぞれ測定した結果を表1に示した。   The results of measuring the average pore diameter, pore density, roundness, and water absorption rate according to Example 1 are shown in Table 1.

<比較例1>
平均粒度100μmからなる粘土(さぬき土60wt%、五味土40wt%)のみを真空押出し成形機を用いて実施例1と同様の成形・焼結を実施し、陶磁器体5を得た。
<Comparative Example 1>
Only a clay having a mean particle size of 100 μm (Sanuki soil 60 wt%, turquoise soil 40 wt%) was molded and sintered in the same manner as in Example 1 using a vacuum extrusion molding machine to obtain a ceramic body 5.

実施例1に準じ、平均孔径、孔密度、真円度、吸水率をそれぞれ測定した結果を表1に示す。結果を表1に示す。   Table 1 shows the results of measuring the average pore diameter, pore density, roundness, and water absorption rate according to Example 1. The results are shown in Table 1.

<比較例2>
平均粒度100μmからなる粘土(さぬき土60wt%、五味土40wt%)5kgに東レ株式会社製炭素繊維(MLD−300,平均繊維長300μm)0.5kgを投入し、水を加えながら20分間攪拌混練し、炭素繊維を8wt%含む粘土を得た。この粘土を縦100mm×横25mm×厚み10mmの成型ダイスに入れ、プレス成型し、実施例1と同様の乾燥・焼結を実施し、陶磁器体6を得た。
<Comparative example 2>
Carbon fiber (MLD-300, average fiber length 300 μm) 0.5 kg made by Toray Co., Ltd. is put into 5 kg of clay (sanuki soil 60 wt%, gomi clay 40 wt%) having an average particle size of 100 μm, and stirred and kneaded for 20 minutes while adding water. As a result, a clay containing 8 wt% of carbon fibers was obtained. This clay was placed in a molding die having a length of 100 mm × width of 25 mm × thickness of 10 mm, press-molded, and dried and sintered in the same manner as in Example 1 to obtain a ceramic body 6.

実施例1に準じ、平均孔径、孔密度、真円度、吸水率をそれぞれ測定した結果を表1に示す。
<比較例3>
平均粒度100μmからなる粘土(さぬき土60wt%、五味土40wt%)5kgに東レ株式会社製炭素繊維(平均繊維長20mm)0.5kgを投入し、水を加えながら20分間攪拌混練し、炭素繊維を8wt%含む粘土を得た。この坏土を押出し成型機に投入したところ、スリット詰まりを起こし、成型体を得ることが出来なかった。
Table 1 shows the results of measuring the average pore diameter, pore density, roundness, and water absorption rate according to Example 1.
<Comparative Example 3>
Carbon fiber (average fiber length 20mm) 0.5kg made by Toray Co., Ltd. is put into 5kg of clay with average particle size of 100μm (Sanuki soil 60wt%, Gomi soil 40wt%), carbon fiber is stirred and kneaded for 20 minutes while adding water. A clay containing 8 wt% was obtained. When this clay was put into an extrusion molding machine, slit clogging occurred and a molded body could not be obtained.

Figure 2006176347
Figure 2006176347

焼結後多孔質体(閉気孔)の概略図である。It is the schematic of a porous body (closed pore) after sintering. 焼結前成型体の概略図である。It is the schematic of a pre-sintering molded object.

符号の説明Explanation of symbols

1 円柱状気孔部
2 焼結部
3 円柱状気孔の軸方向に対して垂直な線の一例 (A−A‘)
4 炭素繊維部 (島構造)
5 粘土(坏土)部 (海構造)
1 Cylindrical pore part 2 Sintered part
3 An example of a line perpendicular to the axial direction of the cylindrical pore (AA ′)
4 Carbon fiber part (island structure)
5 Clay (Midori) part (Sea structure)

Claims (10)

陶磁器内に平均孔径5〜30μmの円柱状開気孔もしくは閉気孔を有する多孔質陶磁器。 Porous ceramics having cylindrical open pores or closed pores having an average pore diameter of 5 to 30 μm in the ceramics. 円柱状気孔の軸方向に対して垂直な方向で切断した陶磁器断面の孔密度が10個/mm以上〜10000個/mm以下であることを特徴とする請求項1記載の多孔質陶磁器。 2. The porous ceramic according to claim 1, wherein the pore density of the ceramic section cut in a direction perpendicular to the axial direction of the columnar pores is 10 / mm 2 or more and 10000 / mm 2 or less. 円柱状気孔の軸方向に対して垂直な方向で切断した陶磁器断面の気孔の長軸(La)と短軸(Lb)からなる真円度(La/Lb)が2.0以下である請求項1もしくは2記載の多孔質陶磁器。 The roundness (La / Lb) composed of a major axis (La) and a minor axis (Lb) of a ceramic section cut in a direction perpendicular to the axial direction of the cylindrical pore is 2.0 or less. Porous ceramics according to 1 or 2. 吸水率が5.0wt%以上である請求項1〜3記載の多孔質陶磁器。 The porous ceramic according to claim 1, wherein the water absorption is 5.0 wt% or more. 海構造に窯業用坏土、島構造に繊維を含有する海島状成型体を酸化性ガス雰囲気下で焼結する多孔質陶磁器の製造方法。 A method for producing porous ceramics, in which a sea-island-shaped molded body containing ceramic clay for the sea structure and fibers for the island structure is sintered in an oxidizing gas atmosphere. 島構造に用いる繊維が炭素繊維であることを特徴とする請求項5記載の多孔質陶磁器の製造方法。 6. The method for producing a porous ceramic according to claim 5, wherein the fiber used for the island structure is a carbon fiber. 炭素繊維を混練した坏土を押出し法で成型し、海島構造を形成した後焼結することを特徴とする請求項6記載の多孔質陶磁器の製造方法。 7. The method for producing a porous ceramic according to claim 6, wherein the clay kneaded with carbon fibers is molded by an extrusion method to form a sea-island structure and then sintered. 島構造を形成する炭素繊維の繊維長が10mm以下の短繊維からなることを特徴とする請求項7記載の多孔質陶磁器の製造方法。 The method for producing a porous ceramic according to claim 7, wherein the carbon fiber forming the island structure is made of short fibers having a fiber length of 10 mm or less. 鋳込み成型もしくは含浸成型法により海構造に坏土、島構造に炭素繊維ストランドを形成した後焼結することを特徴とする請求項6記載の多孔質陶磁器の製造方法。 7. The method for producing a porous ceramic according to claim 6, wherein a carbon fiber strand is formed on the sea structure and the island structure is formed by casting or impregnation molding, followed by sintering. 島構造を形成する炭素繊維の繊維長が100mm以上であり、構成本数が100本〜50000本の炭素繊維ストランドからなることを特徴とする請求項9記載の多孔質陶磁器の製造方法。
The method for producing a porous ceramic according to claim 9, wherein the carbon fiber forming the island structure has a fiber length of 100 mm or more and is composed of 100 to 50,000 carbon fiber strands.
JP2004369261A 2004-12-21 2004-12-21 Porous ceramic Pending JP2006176347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004369261A JP2006176347A (en) 2004-12-21 2004-12-21 Porous ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004369261A JP2006176347A (en) 2004-12-21 2004-12-21 Porous ceramic

Publications (1)

Publication Number Publication Date
JP2006176347A true JP2006176347A (en) 2006-07-06

Family

ID=36730813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004369261A Pending JP2006176347A (en) 2004-12-21 2004-12-21 Porous ceramic

Country Status (1)

Country Link
JP (1) JP2006176347A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013220960A (en) * 2012-04-13 2013-10-28 Komatsu Seiren Co Ltd Porous ceramic sintered compact
JP2016527174A (en) * 2013-07-26 2016-09-08 コーニング インコーポレイテッド Rapid firing method for porous ceramics
JP2016534005A (en) * 2013-07-26 2016-11-04 コーニング インコーポレイテッド Rapid firing method for porous ceramics
KR101827802B1 (en) * 2017-05-04 2018-02-09 장성국 The water purification ceramic filter using waste pottery and the method for manufacturing it
WO2022018521A3 (en) * 2020-07-23 2022-03-17 Hochschule Wismar Clay body and method for producing a fired clay body with a high hydraulic conductivity

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013220960A (en) * 2012-04-13 2013-10-28 Komatsu Seiren Co Ltd Porous ceramic sintered compact
JP2016527174A (en) * 2013-07-26 2016-09-08 コーニング インコーポレイテッド Rapid firing method for porous ceramics
JP2016534005A (en) * 2013-07-26 2016-11-04 コーニング インコーポレイテッド Rapid firing method for porous ceramics
KR101827802B1 (en) * 2017-05-04 2018-02-09 장성국 The water purification ceramic filter using waste pottery and the method for manufacturing it
WO2022018521A3 (en) * 2020-07-23 2022-03-17 Hochschule Wismar Clay body and method for producing a fired clay body with a high hydraulic conductivity

Similar Documents

Publication Publication Date Title
EP1364928B1 (en) Honeycomb structure
US4518704A (en) Activated carbon formed body and method of producing the same
US6251822B1 (en) Method of making activated carbon derived from pitches
US6593261B2 (en) Silicon nitride porous body and its production process
US4582677A (en) Method for producing honeycomb-shaped metal moldings
JPH06100381A (en) Porous mullite article resistive to heat shock and creep produced from topaz and method of producing the same
WO2009118862A1 (en) Process for producing honeycomb structure
EP0774296B1 (en) Method of making activated carbon bodies having improved adsorption properties
US6838026B2 (en) Method for producing a silicon nitride filter
JP2006176347A (en) Porous ceramic
EP1284251A1 (en) Silicon carbide-based, porous, lightweight, heat-resistant structural material and manufacturing method therefor
US20050023735A1 (en) Method for producing a silicon nitride filter
JP3610208B2 (en) Activated carbon honeycomb structure
JP2005272192A (en) Method of manufacturing porous structure
CN113754453A (en) Carbon fiber gain ceramic atomizing core and preparation method thereof
JP2851106B2 (en) Method for producing porous silicon carbide sintered body
EP2479158B1 (en) Method of preparing a silicon carbide honeycomb
JP2005146392A (en) Metal-based composite material, and its production method
JPH07215777A (en) Porous ceramics and its production
JP2792595B2 (en) Inorganic fiber sintered body and method for producing the same
EP1502904A1 (en) Method for producing a silicon nitride honeycomb filter
JP2005336539A (en) Porous sintered compact and its production method
KR100310628B1 (en) Ceramic Micro-organism Container and Method for Manufacturing the Same
KR101356382B1 (en) Method for fabrication cordierite/zirconia ceramic honeycomb
EP4215073A1 (en) Carbon fiber gain ceramic atomization core and preparation method therefor