JP2010001184A - Method for manufacturing exhaust gas filter - Google Patents

Method for manufacturing exhaust gas filter Download PDF

Info

Publication number
JP2010001184A
JP2010001184A JP2008161250A JP2008161250A JP2010001184A JP 2010001184 A JP2010001184 A JP 2010001184A JP 2008161250 A JP2008161250 A JP 2008161250A JP 2008161250 A JP2008161250 A JP 2008161250A JP 2010001184 A JP2010001184 A JP 2010001184A
Authority
JP
Japan
Prior art keywords
temperature
oxygen
exhaust gas
gas filter
aluminum titanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008161250A
Other languages
Japanese (ja)
Inventor
Tomohiko Nakanishi
友彦 中西
Takumi Suzawa
匠 須沢
Mitsunori Ota
光紀 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2008161250A priority Critical patent/JP2010001184A/en
Publication of JP2010001184A publication Critical patent/JP2010001184A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Filtering Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress cracking caused by thermal stress and collapse caused by deterioration of strength by controlling combustion of a pore forming material and an organic binder and heat generation resulting from it in a process for firing a porous aluminum titanate sintered body which composes an exhaust gas filter. <P>SOLUTION: In a method for manufacturing an exhaust gas filter composed of a ceramic honeycomb structure having a large number of cells partitioned by porous partition walls by shaping a body obtained by adding a pore forming material and an auxiliary agent into a ceramic raw material powder and kneading into a honeycomb and firing the obtained honeycomb-shaped body, the ceramic honeycomb structure is composed of aluminum titanate as a substrate and a thermoplastic resin having a pyrolysis starting temperature of ≤400°C is used as the pore forming material. In the firing process, aluminum titanate is sintered by keeping a low oxygen atmosphere in which an oxygen concentration is 2% or below from the start of temperature elevation up to a predetermined oxygen introducing temperature of ≤1,100°C and introducing oxygen so that the oxygen concentration becomes 2% or above at the oxygen introducing temperature or above. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内燃機関の排ガスフィルタとして用いられ、チタン酸アルミニウム焼結体からなるハニカム構造の排ガスフィルタを製造する方法に関する。   The present invention relates to a method of manufacturing a honeycomb-structured exhaust gas filter made of an aluminum titanate sintered body, which is used as an exhaust gas filter of an internal combustion engine.

内燃機関、特にディーゼルエンジンから排出される微粒子の処理が問題となっており、排気通路に排ガスフィルタを設置して排気微粒子を捕集することが行われている。排ガスフィルタは、流路方向に多数のセルを有するセラミックハニカム構造体からなり、セルを区画する多孔質のセラミック壁に排ガスを流通させて、排気微粒子を捕集可能としている。   Treatment of fine particles discharged from an internal combustion engine, particularly a diesel engine, has become a problem, and an exhaust gas filter is installed in the exhaust passage to collect the exhaust fine particles. The exhaust gas filter is made of a ceramic honeycomb structure having a large number of cells in the flow path direction, and exhaust gas is circulated through a porous ceramic wall partitioning the cells so that exhaust particulates can be collected.

排ガスフィルタ用のセラミック材料には、従来より、低熱膨張性と耐熱衝撃性を有するコージェライト(2MgO・2Al23 ・5SiO2)が広く使用されている(例えば、特許文献1等)。また、近年、同等の低い熱膨張係数を有し、耐熱衝撃性にも優れる他の材料として、チタン酸アルミニウム(Al23 ・TiO2)が着目されている(例えば、特許文献2、3等)。チタン酸アルミニウムは、コージェライトより高融点であることから、再生時に排気微粒子の燃焼熱で高温となる排ガスフィルタの耐熱性を高めることが期待される。 Conventionally, cordierite (2MgO · 2Al 2 O 3 · 5SiO 2 ) having low thermal expansion and thermal shock resistance has been widely used as a ceramic material for exhaust gas filters (for example, Patent Document 1). In recent years, aluminum titanate (Al 2 O 3 · TiO 2 ) has attracted attention as another material having an equivalent low thermal expansion coefficient and excellent thermal shock resistance (for example, Patent Documents 2 and 3). etc). Since aluminum titanate has a higher melting point than cordierite, it is expected to improve the heat resistance of the exhaust gas filter that is heated to high temperature by the combustion heat of exhaust particulates during regeneration.

特表2001−524451号公報Special table 2001-524451 gazette 特開平8−215522号公報JP-A-8-215522 特許第3185960号Japanese Patent No. 3185960 特開平8−323123号公報JP-A-8-323123

排ガスフィルタを製造する工程は、一般に、フィルタ基材となるセラミック材料の粉末を、造孔材や有機結合剤と混合、混練する工程と、押出成形して、所定形状の成形体とする工程と、成形体を焼成する工程とからなる(例えば、特許文献4等)。造孔材は、ハニカム構造体を多孔質化するもので、カーボン等の炭素質材料を添加して大気中で焼成する方法が一般的に用いられ、ハニカム構造体のセル壁に排ガスが流通可能な気孔を形成する。   The process for producing an exhaust gas filter generally includes a step of mixing and kneading ceramic material powder as a filter base material with a pore former and an organic binder, a step of extrusion molding to form a molded body of a predetermined shape, And a step of firing the molded body (for example, Patent Document 4). The pore former is used to make the honeycomb structure porous, and a method of adding a carbonaceous material such as carbon and firing in the air is generally used, and exhaust gas can be distributed to the cell walls of the honeycomb structure. Form pores.

チタン酸アルミニウム用の造孔材として、特許文献2には、活性炭、コークス、グラファイト等のカーボン粉末の他、ポリエチレン、ポリスチレン、ポリオレフィン等の合成樹脂粉末、澱粉、木粉といった有機物粉末を用い、所定粒径・アスペクト比として気孔径を調整することが、特許文献3には、なかでも粒径の調整が容易なカーボン粉末が好適に使用されることが記載されている。   As a pore-forming material for aluminum titanate, Patent Document 2 uses carbon powder such as activated carbon, coke, and graphite, synthetic resin powder such as polyethylene, polystyrene, and polyolefin, and organic powder such as starch and wood powder. It is described in Patent Document 3 that a carbon powder that can easily adjust the particle diameter is suitably used to adjust the pore diameter as the particle diameter / aspect ratio.

ところで、排ガスフィルタは、通常、原料粒径や造孔材の添加量を調整することによって所望の気孔率としている。ところが、気孔率を高めるために造孔材を増量すると、ハニカム構造体の強度が低下しやすく、また、燃焼時に大量に発熱する問題が生じる。成形用に添加される有機結合剤にも、同様の問題があり、これらの発熱によって生じる熱応力が原因で、ハニカム構造体に割れが発生する不具合が多数生じていた。   By the way, the exhaust gas filter usually has a desired porosity by adjusting the raw material particle size and the amount of pore-forming material added. However, when the amount of the pore former is increased in order to increase the porosity, the strength of the honeycomb structure is liable to be reduced, and there is a problem that a large amount of heat is generated during combustion. The organic binder added for molding also has the same problem, and many defects that cause cracks in the honeycomb structure have occurred due to the thermal stress generated by these heat generations.

一方、特許文献1には、コージェライトハニカム構造体の焼成を制御する方法として、低酸素ガス、例えば窒素ガスを焼成炉に導入しながら、大気より低い酸素雰囲気で有機結合剤のような炭素質材料を放出させることが開示されている。また、特許文献4には、排ガスフィルタの製造において、セラミック基材に添加される造孔剤を、120℃以下で軟化するエチレン系樹脂粉末として、流動性を高め、添加量を変えずにセル壁表面の気孔を大きくすることが記載されている。   On the other hand, in Patent Document 1, as a method for controlling the firing of the cordierite honeycomb structure, a carbonaceous material such as an organic binder in an oxygen atmosphere lower than the atmosphere while introducing a low oxygen gas, for example, nitrogen gas, into a firing furnace. Release of the material is disclosed. Patent Document 4 discloses that in the production of an exhaust gas filter, the pore-forming agent added to the ceramic substrate is an ethylene-based resin powder that softens at 120 ° C. or less, thereby improving fluidity and changing the amount of the cell without changing the addition amount. It is described that the pores on the wall surface are enlarged.

しかしながら、チタン酸アルミニウムハニカム構造体については、造孔材や有機結合剤の焼成工程における挙動が十分判明しているとはいえず、大量発熱による割れ、崩れの発生による品質低下のおそれがある。特許文献3には、成形体を非酸化性雰囲気下で焼成した後、焼成温度以下の酸化性雰囲気にて熱処理して、カーボン等の造孔材を燃焼させる方法が提案されているが、内部にカーボンが残留して燃焼が不十分となったり、逆に一気に燃焼したりする懸念があり、燃焼の制御が容易でない。割れ対策としては、例えば焼成速度を遅くして熱応力を低下させる方法が知られているが、昇温温度の管理が必要であり、焼成に時間がかかるために、コストが高くなる要因となっていた。   However, regarding the aluminum titanate honeycomb structure, it cannot be said that the behavior of the pore former and the organic binder in the firing process is sufficiently known, and there is a risk of quality deterioration due to generation of cracks and collapse due to large-scale heat generation. Patent Literature 3 proposes a method in which a molded body is fired in a non-oxidizing atmosphere and then heat-treated in an oxidizing atmosphere at a firing temperature or lower to burn a pore former such as carbon. In addition, there is a concern that carbon may remain and combustion may be insufficient, or conversely, combustion may occur at once, and control of combustion is not easy. As a countermeasure against cracking, for example, a method of reducing the thermal stress by slowing the firing rate is known, but it is necessary to control the temperature rise, and it takes time for firing, which is a factor that increases costs. It was.

また、近年、排ガスフィルタを大型化する要求があり、さらに熱容量を低減する目的で、ハニカム構造体のセル壁が薄肉化する傾向にある。これらにより、基材強度を維持しながら、造孔材や有機結合剤を燃焼除去し、生産性よく高品質のチタン酸アルミニウム焼結体を得ることは、容易でない。   Further, in recent years, there is a demand for increasing the size of the exhaust gas filter, and the cell walls of the honeycomb structure tend to be thinned for the purpose of reducing the heat capacity. Accordingly, it is not easy to obtain a high-quality aluminum titanate sintered body with high productivity by burning and removing the pore former and the organic binder while maintaining the substrate strength.

本発明は上記実情に基づいてなされたものであり、排ガスフィルタを構成する多孔質チタン酸アルミニウム焼結体を焼成する過程において、造孔材や有機結合剤の燃焼やそれに伴う発熱を制御して、熱応力による割れや強度低下による崩れを抑制し、焼成に要する時間を増大させることなく、高品質な排ガスフィルタを生産性よく製造する方法を提供することを目的とするものである。   The present invention has been made on the basis of the above circumstances, and in the process of firing the porous aluminum titanate sintered body constituting the exhaust gas filter, the combustion of the pore former and the organic binder and the accompanying heat generation are controlled. An object of the present invention is to provide a method for producing a high-quality exhaust gas filter with high productivity without suppressing cracking due to thermal stress or collapse due to strength reduction and without increasing the time required for firing.

上記課題を解決するための請求項1の発明は、
セラミック原料粉末に造孔材および助剤を添加、混練して得た坏土をハニカム状に成形し、得られたハニカム成形体を焼成して、多孔質隔壁で区画された多数のセルを有するセラミックハニカム構造体からなる排ガスフィルタを製造する方法であって、
上記セラミックハニカム構造体が、チタン酸アルミニウムを基材とし、
上記造孔材に、熱分解開始温度が400℃以下である熱可塑樹脂を使用するとともに、
上記ハニカム成形体を焼成温度まで温度上昇させる工程において、昇温開始から1100℃以下の所定の酸素導入温度までは、酸素濃度が2%以下の低酸素雰囲気に保持し、酸素導入温度以上では、酸素濃度が2%より大きくなるように酸素を導入して、チタン酸アルミニウムを焼結させることを特徴とする。
The invention of claim 1 for solving the above-mentioned problem is
A clay obtained by adding a pore former and an auxiliary agent to a ceramic raw material powder and kneading is formed into a honeycomb shape, and the obtained honeycomb formed body is fired to have a large number of cells partitioned by porous partition walls. A method for producing an exhaust gas filter comprising a ceramic honeycomb structure,
The ceramic honeycomb structure is based on aluminum titanate,
While using a thermoplastic resin having a pyrolysis start temperature of 400 ° C. or lower for the pore former,
In the step of raising the temperature of the honeycomb formed body to the firing temperature, the oxygen concentration is maintained in a low oxygen atmosphere of 2% or less from the start of temperature rise to a predetermined oxygen introduction temperature of 1100 ° C. or lower. Oxygen is introduced so that the oxygen concentration is greater than 2% to sinter aluminum titanate.

造孔材として使用する、熱分解開始温度が400℃以下である熱可塑樹脂は、雰囲気による焼成時の反応が大きく異なる。大気雰囲気では、樹脂の分解による吸熱反応と分解ガスの燃焼による発熱反応が複雑な反応になっており、この反応がハニカム成形体の壁内で発生した時には、熱応力が発生し割れにつながると推測される。これに対し、本発明の低酸素雰囲気にて昇温を開始すると、樹脂の分解による吸熱反応だけが発生するため、発熱に伴う熱応力の発生がなく、焼成割れを防止できる。   A thermoplastic resin having a thermal decomposition start temperature of 400 ° C. or lower used as a pore former is greatly different in reaction during firing in an atmosphere. In the air atmosphere, the endothermic reaction due to the decomposition of the resin and the exothermic reaction due to the combustion of the decomposition gas are complex reactions, and when this reaction occurs in the wall of the honeycomb molded body, thermal stress is generated and leads to cracking. Guessed. On the other hand, when the temperature rise is started in the low oxygen atmosphere of the present invention, only an endothermic reaction due to the decomposition of the resin occurs, so that no thermal stress is generated due to heat generation, and firing cracks can be prevented.

また、チタン酸アルミニウムの反応が開始する1100℃以上では、酸素が必要であるため、1100℃以下の所定の酸素導入温度にて、酸素の導入を開始することで、チタン酸アルミニウムを焼結させることができ、温度管理が容易で焼成に要する時間を短縮できる。よって、高品質な多孔質チタン酸アルミニウム焼結体よりなる排ガスフィルタを、生産性よく製造することができる。   In addition, since oxygen is required at 1100 ° C. or higher where the reaction of aluminum titanate starts, the introduction of oxygen is started at a predetermined oxygen introduction temperature of 1100 ° C. or lower to sinter aluminum titanate. Temperature control is easy and the time required for firing can be shortened. Therefore, an exhaust gas filter made of a high-quality porous aluminum titanate sintered body can be manufactured with high productivity.

請求項2の発明では、上記助剤が、有機結合剤を含み、上記酸素導入温度が、1100℃以下で、かつ上記造孔材および助剤の熱分解完了温度より高い所定の温度に設定される。   In the invention of claim 2, the auxiliary agent includes an organic binder, the oxygen introduction temperature is set to a predetermined temperature which is not higher than 1100 ° C. and higher than the thermal decomposition completion temperature of the pore former and auxiliary agent. The

通常のハニカム成形用の有機結合剤は、焼成工程で、熱分解が完了する温度が400℃以上であり、造孔材となる熱可塑樹脂が熱分解を開始する400℃以下の時点では、少なくとも一部が成形体内に存在する。したがって、造孔材および助剤の熱分解完了温度まで、低酸素雰囲気とすることで、発熱を抑制しつつ、有機結合剤の形状保持機能により、熱分解による強度低下を抑制して、割れや崩れを防止することができる。   The organic binder for ordinary honeycomb forming has a temperature at which the thermal decomposition is completed at 400 ° C. or higher in the firing step, and at least at a time of 400 ° C. or lower at which the thermoplastic resin as the pore former starts thermal decomposition. A part exists in the molded body. Therefore, by setting a low oxygen atmosphere up to the thermal decomposition completion temperature of the pore former and the auxiliary agent, while suppressing heat generation, the shape retention function of the organic binder suppresses strength reduction due to thermal decomposition, and cracks and Collapse can be prevented.

請求項3の製造方法では、上記酸素導入温度以上では、酸素濃度が5%以上となるように酸素を導入する。   In the manufacturing method of Claim 3, oxygen is introduce | transduced so that oxygen concentration may become 5% or more above the said oxygen introduction temperature.

好適には、酸素導入後の雰囲気における酸素濃度を5%以上とすることで、焼成に必要な酸素を十分供給して、高品質のチタン酸アルミニウム焼結体を得ることができる。   Preferably, by setting the oxygen concentration in the atmosphere after introducing oxygen to 5% or more, oxygen necessary for firing can be sufficiently supplied to obtain a high-quality aluminum titanate sintered body.

請求項4の製造方法では、上記酸素導入温度以上では、酸素濃度が20%以下となるように酸素を導入する。   In the manufacturing method of Claim 4, oxygen is introduce | transduced so that oxygen concentration may become 20% or less above the said oxygen introduction temperature.

好適には、酸素導入後の雰囲気における酸素濃度を20%以下とすることで、必要以上に酸素濃度を高くすることなく、焼成に必要な酸素を十分供給して、高品質のチタン酸アルミニウム焼結体を得ることができる。   Preferably, by setting the oxygen concentration in the atmosphere after introducing oxygen to 20% or less, the oxygen concentration necessary for firing is sufficiently supplied without increasing the oxygen concentration more than necessary, and high-quality aluminum titanate firing is performed. A ligation can be obtained.

請求項5の製造方法では、上記酸素導入温度が、750℃以上1100℃以下の所定温度に設定される。   In the manufacturing method of Claim 5, the said oxygen introduction temperature is set to the predetermined temperature of 750 degreeC or more and 1100 degrees C or less.

好適には、酸素導入温度が750℃以上1100℃以下であれば、造孔材となる熱可塑樹脂や、有機結合剤等の助剤の熱分解が完了する温度より十分高く、かつチタン酸アルミニウムの反応が開始する温度以下で、酸素の導入が開始されるので、熱分解および焼成を良好に制御して、高品質のチタン酸アルミニウム焼結体を得ることができる。   Preferably, if the oxygen introduction temperature is not lower than 750 ° C. and not higher than 1100 ° C., the temperature is sufficiently higher than the temperature at which the thermal decomposition of the auxiliary agent such as the thermoplastic resin or organic binder as the pore former is completed, and aluminum titanate Since the introduction of oxygen is started below the temperature at which the above reaction starts, it is possible to obtain a high-quality aluminum titanate sintered body by controlling the thermal decomposition and firing well.

請求項6の製造方法では、上記造孔材に、熱分解開始温度が300℃以下の熱可塑性樹脂を使用する。   In the manufacturing method of Claim 6, the thermoplastic resin whose thermal decomposition start temperature is 300 degrees C or less is used for the said pore former.

好適には、熱分解開始温度が300℃以下であれば、通常のハニカム成形用の有機結合剤の熱分解完了温度よりも十分低いので、造孔材の熱分解で空隙が発生した時に、成形体内に存在する有機結合剤の作用で形状の保持が可能であり、崩れを防止する効果が高まる。   Preferably, if the thermal decomposition start temperature is 300 ° C. or lower, the temperature is sufficiently lower than the thermal decomposition completion temperature of the ordinary organic binder for forming a honeycomb. The shape can be maintained by the action of the organic binder present in the body, and the effect of preventing collapse is enhanced.

請求項7の製造方法では、上記熱分解開始温度が300℃以下の熱可塑性樹脂が、メタクリル系樹脂、アクリル系樹脂、ポリエチレン系樹脂、PET系樹脂、ポリスチレン系樹脂から選ばれる少なくとも1種である。   In the manufacturing method according to claim 7, the thermoplastic resin having a thermal decomposition start temperature of 300 ° C. or lower is at least one selected from a methacrylic resin, an acrylic resin, a polyethylene resin, a PET resin, and a polystyrene resin. .

具体的には、これらの熱可塑性樹脂を造孔材とすることで、上記効果を容易に得ることができる。   Specifically, the above effects can be easily obtained by using these thermoplastic resins as pore formers.

以下、本発明の実施形態を図面に基づいて詳細に説明する。図1(b)、(c)は、本発明を適用した排ガスフィルタ1の概略構成図であり、例えばディーゼルエンジンの排気通路に設置されて排気微粒子(パティキュレート)を捕集するディーゼルパティキュレートフィルタ(DPF)として使用することができる。図中、排ガスフィルタ1は、多孔質のセラミックハニカム構造体2により構成されており、図1(b)に示すように、円筒形の筒壁内を多孔質隔壁21で区画して形成される多数のセル22を有している。図1(c)に示すように、多数のセル22は、排ガスの流れ方向(図の矢印の方向)に平行に設けられて内部が排ガス流路となり、各セル22は一端側(入口側または出口側のいずれか一方)のみが開口し、多端側には目封じ材11が詰めてある。この時、セラミックハニカム構造体2の軸方向の両端面において、多数のセル22が互い違いに目封じされて、排ガスの入口または出口となり、多数の気孔を有する多孔質隔壁21を介して、隣合うセル22間を排ガスが流通するフィルタ構造となる。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIGS. 1B and 1C are schematic diagrams of an exhaust gas filter 1 to which the present invention is applied. For example, a diesel particulate filter that is installed in an exhaust passage of a diesel engine and collects exhaust particulates (particulates). (DPF) can be used. In the figure, the exhaust gas filter 1 is composed of a porous ceramic honeycomb structure 2 and is formed by partitioning a cylindrical wall with a porous partition wall 21 as shown in FIG. It has a large number of cells 22. As shown in FIG.1 (c), many cells 22 are provided in parallel with the flow direction (direction of the arrow of a figure) of waste gas, and an inside becomes a waste gas flow path, and each cell 22 is one end side (inlet side or Only one of the outlet side) is open, and the sealing material 11 is packed on the multi-end side. At this time, a large number of cells 22 are alternately plugged on both end faces in the axial direction of the ceramic honeycomb structure 2 to become exhaust gas inlets or outlets, and are adjacent to each other via a porous partition wall 21 having a large number of pores. A filter structure in which exhaust gas flows between the cells 22 is obtained.

排ガスフィルタ1を構成するセラミックハニカム構造体2は、チタン酸アルミニウムを主として含有する多孔質の焼結体からなる。基材となるチタン酸アルミニウム(Al23 ・TiO2)は、低熱膨張係数(3×10−6/℃以下)で耐熱衝撃性があり、温度変化の大きい排ガスフィルタ用として好適に使用される。また、チタン酸アルミニウムの融点(1850℃)は、コーディエライトの融点(1450℃)より高いことから、再生時の燃焼熱による破損や溶損のおそれが小さく、排ガスフィルタ1の耐久性を向上させる。セラミックハニカム構造体2の端面に詰める目封じ材11にも、通常、基材と同じチタン酸アルミニウムが用いられるが、その他、チタン酸アルミニウムマグネシウム等を用いることもできる。 The ceramic honeycomb structure 2 constituting the exhaust gas filter 1 is made of a porous sintered body mainly containing aluminum titanate. Aluminum titanate (Al 2 O 3 · TiO 2 ) used as a base material has a low thermal expansion coefficient (3 × 10 −6 / ° C. or less), has a thermal shock resistance, and is suitably used as an exhaust gas filter having a large temperature change. The Moreover, since the melting point (1850 ° C.) of aluminum titanate is higher than the melting point (1450 ° C.) of cordierite, there is little risk of damage or melting due to combustion heat during regeneration, and the durability of the exhaust gas filter 1 is improved. Let The same aluminum titanate as that of the base material is usually used for the plugging material 11 to be packed on the end face of the ceramic honeycomb structure 2, but aluminum magnesium titanate or the like can also be used.

排ガスフィルタ1となる多孔質チタン酸アルミニウム焼結体の気孔率は、通常、20%〜70%、好ましくは、30%〜60%程度とするのがよい。気孔率が大きいほど圧損を低減する効果があるが、捕集効率や隔壁強度は逆に低下する傾向があり、両者を考慮して所望の特性が得られるように設定される。この気孔率および気孔径は、後述するセラミック原料粉末の粒径や、造孔材の粒径、添加量によって調整することができる。   The porosity of the porous aluminum titanate sintered body to be the exhaust gas filter 1 is usually 20% to 70%, preferably about 30% to 60%. The larger the porosity, the more effective the pressure loss is reduced. However, the collection efficiency and the partition wall strength tend to decrease, and the both are set so that desired characteristics can be obtained. This porosity and pore diameter can be adjusted by the particle size of the ceramic raw material powder, the particle size of the pore former, and the amount added, which will be described later.

本発明の排ガスフィルタ1の製造方法について説明する。セラミックハニカム構造体2の基材原料には、通常公知の方法で調整されたチタン酸アルミニウム粉末を用いることができる。チタン酸アルミニウム粉末は、原料となるTiO2とAl23とを予め所定のモル比率となるように混合して焼成したもので、均質な材料が得られ、粒径の調整も容易である。チタン酸アルミニウム粉末の粒径は、特に限定されないが、例えば、1〜50μmの範囲で適宜選択することができる。本発明では、このチタン酸アルミニウム粉末に、造孔材および助剤を添加、混練して坏土とする混合工程と、この坏土を用いてハニカム状の成形体とする成形工程と、ハニカム成形体を焼成する焼成工程によって、多孔質化したチタン酸アルミニウム焼結体からなる排ガスフィルタ1を製造する。 A method for manufacturing the exhaust gas filter 1 of the present invention will be described. As the base material of the ceramic honeycomb structure 2, aluminum titanate powder prepared by a generally known method can be used. The aluminum titanate powder is obtained by mixing TiO 2 and Al 2 O 3 as raw materials in advance so as to have a predetermined molar ratio and firing, so that a homogeneous material can be obtained and the particle size can be easily adjusted. . The particle size of the aluminum titanate powder is not particularly limited, but can be appropriately selected within a range of 1 to 50 μm, for example. In the present invention, the aluminum titanate powder is mixed with a pore former and an auxiliary agent, kneaded to form a clay, a molding process using the clay to form a honeycomb-shaped body, and honeycomb molding The exhaust gas filter 1 made of a porous aluminum titanate sintered body is produced by a firing step of firing the body.

混合工程において、セラミック原料粉末であるチタン酸アルミニウム粉末には、セラミックハニカム構造体2を多孔質化するための造孔材と、有機結合剤および潤滑剤を含む助剤が添加される。有機結合剤および潤滑剤は、成形時の保形性や流動性を向上させる目的で添加される助剤で、有機結合剤としては、一般に、メチルセルロース、カルボキシメチルセルロース等のメチルセルロース系バインダ、ポリビニルアルコール等が挙げられ、グリース等の潤滑剤とともに使用される。その他、通常公知の成形助剤を添加することもできる。これら助剤は、焼成初期の形状保持に寄与するが、その後の温度上昇によって燃焼し、除去される。例えば、メチルセルロースは300℃前後で熱分解を開始し、400℃を超えると有機結合剤としての機能が大きく低下する。   In the mixing step, a pore former for making the ceramic honeycomb structure 2 porous, and an auxiliary agent including an organic binder and a lubricant are added to the aluminum titanate powder, which is a ceramic raw material powder. Organic binders and lubricants are auxiliary agents added for the purpose of improving shape retention and fluidity during molding. As organic binders, generally, methylcellulose binders such as methylcellulose and carboxymethylcellulose, polyvinyl alcohol, etc. And used together with a lubricant such as grease. In addition, a conventionally known molding aid can be added. These auxiliaries contribute to shape retention at the initial stage of firing, but are burned and removed by the subsequent temperature increase. For example, methylcellulose starts thermal decomposition at around 300 ° C., and when it exceeds 400 ° C., the function as an organic binder is greatly reduced.

造孔材は、本発明の特徴の1つであり、熱分解開始温度が400℃以下、好ましくは300℃以下である熱可塑性樹脂が用いられる。造孔材は、焼成工程における温度上昇過程で熱分解を開始し、気孔となる空隙を形成してセラミックハニカム構造体2を多孔質化する。一方、この空隙の発生によって全体の強度が低下するため、形状保持が難しくなる。本発明は、造孔材の熱分解開始温度が400℃以下であれば、焼成工程で有機結合剤が焼失する前に、熱分解を開始させて、保持力を維持できることを見出したものである。好ましくは、有機結合剤がより多く存在している間に、熱分解を開始するのがよく、より低い300℃以下で熱分解を開始する造孔材を用いれば、保形性が向上する。   The pore former is one of the characteristics of the present invention, and a thermoplastic resin having a thermal decomposition start temperature of 400 ° C. or lower, preferably 300 ° C. or lower is used. The pore former starts thermal decomposition in the temperature rising process in the firing step, forms voids that become pores, and makes the ceramic honeycomb structure 2 porous. On the other hand, since the overall strength is reduced by the generation of the voids, it is difficult to maintain the shape. The present invention has been found that if the thermal decomposition starting temperature of the pore former is 400 ° C. or lower, the thermal decomposition is started and the holding power can be maintained before the organic binder is burned out in the firing step. . Preferably, thermal decomposition should be started while more organic binder is present. If a pore former that starts thermal decomposition at a lower temperature of 300 ° C. or lower is used, shape retention is improved.

好適には、造孔材の熱分解による重量変化が、400℃までに50%以上、好ましくは90%となるような熱可塑性樹脂であると、有機結合剤の機能を効果的に利用することができる。具体的には、メタクリル系樹脂、アクリル系樹脂、ポリエチレン系樹脂、ポリエチレンテレフタレート系樹脂、ポリスチレン系樹脂等の熱可塑性樹脂が挙げられ、これら樹脂の少なくとも1種、または複数を組み合わせて、造孔材とする。   Preferably, the function of the organic binder is effectively used when the thermoplastic resin has a weight change due to thermal decomposition of the pore former of 50% or more, preferably 90% by 400 ° C. Can do. Specific examples include thermoplastic resins such as methacrylic resins, acrylic resins, polyethylene resins, polyethylene terephthalate resins, polystyrene resins, and the like. And

表1に、このような特性を有する熱可塑性樹脂の例として、メタクリル系樹脂であるポリメチルメタクリレート(PMMA)樹脂、アクリル系樹脂、ポリエチレン(PE)樹脂、ポリエチレンテレフタレート(PET)樹脂、ポリスチレン樹脂の熱分解温度範囲を示す。   Table 1 shows examples of thermoplastic resins having such characteristics such as polymethyl methacrylate (PMMA) resin, acrylic resin, polyethylene (PE) resin, polyethylene terephthalate (PET) resin, and polystyrene resin, which are methacrylic resins. The thermal decomposition temperature range is shown.

Figure 2010001184
Figure 2010001184

なお、表1に併記されるフェノール樹脂は、熱硬化性樹脂であり、熱分解温度範囲が本発明の造孔材に比べて高温側にある。また、後述する本発明の熱分解雰囲気(低酸素雰囲気)では分解しないために、セラミックハニカム構造体2内に残留し、酸素導入後の燃焼により発熱して割れ発生の原因となる。従来の造孔材であるカーボンも分解温度が高く、同様の挙動を示すため、本発明では併用しない。   In addition, the phenol resin written together in Table 1 is a thermosetting resin, and the thermal decomposition temperature range exists in the high temperature side compared with the pore former of this invention. In addition, since it does not decompose in the pyrolysis atmosphere (low oxygen atmosphere) of the present invention described later, it remains in the ceramic honeycomb structure 2 and generates heat due to combustion after the introduction of oxygen, causing cracks. Since carbon, which is a conventional pore former, has a high decomposition temperature and exhibits the same behavior, it is not used in the present invention.

造孔材の添加量は、セラミック原料粉末の重量に対し、通常、5〜50%の範囲に設定される。添加量が5%より少ないと、気孔率が小さくなって排ガスフィルタ1の機能が低下し、50%より大きいと、気孔率が大きくなって焼成時の形状保持が困難になる。好ましくは、造孔材の添加量を、10〜30%の範囲とし、所望の気孔率と形状保持性が得られるように、適宜選択することができる。造孔材の粒径は、気孔となる空隙の大きさを決定するもので、通常は、10〜40μmの範囲で適宜設定され、粒径が小さいほど気孔径も小さくなる。   The addition amount of the pore former is usually set in the range of 5 to 50% with respect to the weight of the ceramic raw material powder. If the added amount is less than 5%, the porosity is reduced and the function of the exhaust gas filter 1 is deteriorated. If it is more than 50%, the porosity is increased and it is difficult to maintain the shape during firing. Preferably, the amount of pore-forming material added is in the range of 10 to 30%, and can be appropriately selected so that desired porosity and shape retention can be obtained. The particle size of the pore former determines the size of the voids that become pores, and is usually set appropriately in the range of 10 to 40 μm. The smaller the particle size, the smaller the pore size.

混合工程では、セラミック原料粉末であるチタン酸アルミニウム粉末に、上述した造孔材、有機結合剤および潤滑剤等の助剤と、水を添加して混合し、公知の混練機を用いて混練することにより、成形用の坏土とする。次に、成形工程において、得られた坏土を、公知の押出成形機を用いてハニカム形状に押出成形し、所定形状のハニカム成形体とする。その後、公知のマイクロ波乾燥機、熱風乾燥機等を用いて、加熱乾燥させる。   In the mixing step, the above-described pore former, organic binder, lubricant and other auxiliary agents are added to and mixed with the aluminum titanate powder, which is the ceramic raw material powder, and kneaded using a known kneader. By doing so, it becomes a clay for molding. Next, in the forming step, the obtained kneaded material is extruded into a honeycomb shape using a known extruder to obtain a honeycomb formed body having a predetermined shape. Then, it heat-drys using a well-known microwave dryer, a hot air dryer, etc.

図1(a)に、本発明の焼成工程における雰囲気と温度制御の一例を示す。焼成工程は、本発明の特徴部分であり、まず、乾燥させたハニカム成形体を、所定の低酸素雰囲気(第1の雰囲気)にした焼成炉中に載置して昇温を開始し、ハニカム成形体中の造孔材、有機結合剤および潤滑剤等の助剤を熱分解させる。この低酸素雰囲気を、1100℃以下で予め設定した酸素導入温度まで保持し、所定の酸素導入温度となった時点で、酸素を導入して所定雰囲気(第2の雰囲気)とし、所定の焼成温度に昇温して保持することにより、チタン酸アルミニウムを焼結させる。   FIG. 1A shows an example of the atmosphere and temperature control in the firing step of the present invention. The firing step is a characteristic part of the present invention. First, the dried honeycomb formed body is placed in a firing furnace having a predetermined low oxygen atmosphere (first atmosphere), and the temperature rise is started. Auxiliaries such as pore formers, organic binders and lubricants in the molded body are thermally decomposed. This low oxygen atmosphere is maintained at a pre-set oxygen introduction temperature of 1100 ° C. or lower, and when a predetermined oxygen introduction temperature is reached, oxygen is introduced to form a predetermined atmosphere (second atmosphere), and a predetermined firing temperature. The aluminum titanate is sintered by raising the temperature to and holding.

焼成工程の第1の雰囲気は、酸素濃度が体積割合で2%以下の低酸素雰囲気であり、酸素以外の雰囲気ガスとしては、例えば窒素ガスを使用することができる。2%以下の酸素濃度が低い雰囲気では、上述した熱可塑性樹脂よりなる本発明の造孔材の酸化が抑制され、吸熱反応である熱分解のみが進行する。好適には、1.5%以下の低酸素雰囲気とするのがよく、酸素導入温度までは発熱に伴う熱応力がないので、焼成割れを生じることがない。   The first atmosphere in the firing step is a low oxygen atmosphere having an oxygen concentration of 2% or less by volume, and as an atmosphere gas other than oxygen, for example, nitrogen gas can be used. In an atmosphere having a low oxygen concentration of 2% or less, oxidation of the pore former of the present invention made of the above-described thermoplastic resin is suppressed, and only thermal decomposition that is an endothermic reaction proceeds. Preferably, a low oxygen atmosphere of 1.5% or less is preferable, and since there is no thermal stress accompanying heat generation up to the oxygen introduction temperature, firing cracks do not occur.

低酸素雰囲気では、有機結合剤も、同様の挙動を示す。このため、本発明では、酸素導入温度を、チタン酸アルミニウムが反応を開始する1100℃以下、好ましくは、造孔材および有機結合剤の熱分解完了温度以上の所定温度とし、造孔材と有機結合剤の熱分解が完了するまでは、低酸素雰囲気(第1の雰囲気)として、発熱を抑制する。具体的には、造孔材の熱分解完了温度は、表1に示した通り、400℃〜500℃程度であり、有機結合剤として一般的に使用されるメチルセルロースは、450℃〜500℃程度で、熱分解がほぼ完了するので、酸素導入温度を450℃より高い温度、通常は、500℃〜1100℃の所定温度とするとよい。この時、酸素導入温度が低いと、熱分解して残った有機物(残留カーボン)が一気に燃焼して割れが生じるおそれがあり、好適には、酸素導入温度を750℃〜1100℃の所定温度とすると、上記効果が容易に得られる。   In a low oxygen atmosphere, organic binders behave similarly. For this reason, in the present invention, the oxygen introduction temperature is set to 1100 ° C. or lower at which aluminum titanate starts the reaction, preferably a predetermined temperature that is equal to or higher than the thermal decomposition completion temperature of the pore former and the organic binder. Until the thermal decomposition of the binder is completed, heat generation is suppressed as a low oxygen atmosphere (first atmosphere). Specifically, as shown in Table 1, the thermal decomposition completion temperature of the pore former is about 400 ° C. to 500 ° C., and methyl cellulose generally used as an organic binder is about 450 ° C. to 500 ° C. Since the thermal decomposition is almost completed, the oxygen introduction temperature is preferably set to a temperature higher than 450 ° C., usually 500 ° C. to 1100 ° C. At this time, if the oxygen introduction temperature is low, the organic matter (residual carbon) remaining after thermal decomposition may burn at a time and cracks may occur. Preferably, the oxygen introduction temperature is set to a predetermined temperature of 750 ° C. to 1100 ° C. Then, the above effect can be easily obtained.

焼成工程の第2の雰囲気は、酸素濃度が体積割合で2%より大きく、好ましくは5%以上の酸素導入雰囲気であり、所定の酸素濃度となるように、焼成炉内に大気等の酸素含有ガスを導入する。酸素濃度が2%より大きければ、残留カーボンの燃焼、1100℃からのチタン酸アルミニウムの反応に必要な酸素が供給可能であり、好適には5%以上の酸素濃度とすれば、十分な酸素を供給してチタン酸アルミニウムの焼結を促進することができる。この時、大気雰囲気(酸素濃度21%)とすることもできるが、酸素濃度が高いと残留カーボンの燃焼で大量の発熱が生じるおそれがあり、好適には、大気雰囲気より低い酸素濃度となるように調整するのがよい。   The second atmosphere of the firing step is an oxygen introduction atmosphere having an oxygen concentration of greater than 2% by volume, preferably 5% or more, and contains oxygen such as air in the firing furnace so that a predetermined oxygen concentration is obtained. Introduce gas. If the oxygen concentration is greater than 2%, oxygen necessary for the combustion of residual carbon and the reaction of aluminum titanate from 1100 ° C. can be supplied, and if the oxygen concentration is preferably 5% or more, sufficient oxygen can be supplied. Supplying can promote the sintering of aluminum titanate. At this time, an atmospheric atmosphere (oxygen concentration of 21%) can be used. However, if the oxygen concentration is high, there is a risk that a large amount of heat is generated due to the combustion of residual carbon. Preferably, the oxygen concentration is lower than that of the atmospheric atmosphere. It is good to adjust to.

昇温速度は、特に制限はなく、熱分解が生じる第1の雰囲気では、例えば、10〜20℃/時間程度の比較的遅い速度で昇温して、熱分解を徐々に進行させるのがよいが、熱分解完了温度を超えたら、昇温速度を大きくして昇温に要する時間を短縮することができる。酸素導入温度以降の第2の雰囲気でも、従来のように造孔材や助剤等の燃焼による大量の発熱は生じないので、昇温速度を大きくして、速やかに焼成温度まで昇温することができる。焼成温度は、通常、1200℃〜1500℃の範囲とし、所定の時間保持することで本発明の排ガスフィルタ1となる多孔質チタン酸アルミニウム焼結体を得る。   The temperature raising rate is not particularly limited, and in the first atmosphere in which thermal decomposition occurs, it is preferable to raise the temperature at a relatively slow rate of, for example, about 10 to 20 ° C./hour and gradually advance the thermal decomposition. However, if the thermal decomposition completion temperature is exceeded, the rate of temperature increase can be shortened by increasing the rate of temperature increase. Even in the second atmosphere after the oxygen introduction temperature, a large amount of heat generation due to combustion of the pore former or auxiliary agent does not occur as in the prior art, so the temperature rise rate should be increased and the temperature raised quickly to the firing temperature. Can do. The firing temperature is usually in the range of 1200 ° C. to 1500 ° C., and is retained for a predetermined time to obtain a porous aluminum titanate sintered body that becomes the exhaust gas filter 1 of the present invention.

次に、本発明の効果を確認するための具体的な実施例を示す。
表1に本発明の造孔材として例示した熱可塑性樹脂のうち、ポリメチルメタクリレート(PMMA)樹脂の熱分解特性を調べた。従来の大気雰囲気中において昇温した場合の、吸発熱と重量変化を図2(a)に、本発明の低酸素雰囲気中において昇温した場合の、吸発熱と重量変化を図2(b)に示す。測定は、公知の示差熱分析装置を用いて行い、下記の条件で評価した熱分解特性(TG−DTA)を、それぞれ温度を横軸とする概略図に示した。
評価項目:TG(示差熱天秤)およびDTA(示差熱分析)
雰囲気:大気雰囲気中、低酸素雰囲気中(酸素濃度:1%)
評価温度範囲:0℃から500℃
Next, specific examples for confirming the effects of the present invention will be shown.
Among the thermoplastic resins exemplified in Table 1 as the pore former of the present invention, the thermal decomposition characteristics of polymethyl methacrylate (PMMA) resin were examined. FIG. 2 (a) shows the endothermic heat generation and weight change when the temperature is increased in a conventional air atmosphere, and FIG. 2 (b) shows the endothermic heat generation and weight change when the temperature is increased in the low oxygen atmosphere of the present invention. Shown in The measurement was performed using a known differential thermal analyzer, and the thermal decomposition characteristics (TG-DTA) evaluated under the following conditions are shown in a schematic diagram with the temperature as the horizontal axis.
Evaluation items: TG (differential thermal balance) and DTA (differential thermal analysis)
Atmosphere: Air atmosphere, low oxygen atmosphere (oxygen concentration: 1%)
Evaluation temperature range: 0 ° C to 500 ° C

図2(a)、(b)を比較して明らかなように、本発明の造孔材として使用されるPMMA樹脂は、雰囲気により反応が大きく異なる。図2(a)に示す従来の大気雰囲気では、樹脂の分解による吸熱反応と、分解ガスの燃焼による発熱反応が複雑な反応になっている。この反応が、セラミックハニカム構造体2の壁内で発生した時には、熱応力が発生し割れにつながることになる。一方、図2(b)に示す本発明の低酸素雰囲気では、樹脂の分解による吸熱反応のみが進行しており、400℃で熱分解が完了している。したがって、この反応がセラミックハニカム構造体2の壁内で進行しても、熱応力による割れは生じない。   As is clear from comparison between FIGS. 2A and 2B, the reaction of the PMMA resin used as the pore former of the present invention varies greatly depending on the atmosphere. In the conventional air atmosphere shown in FIG. 2A, the endothermic reaction due to the decomposition of the resin and the exothermic reaction due to the combustion of the decomposition gas are complicated reactions. When this reaction occurs in the wall of the ceramic honeycomb structure 2, thermal stress is generated and leads to cracking. On the other hand, in the low oxygen atmosphere of the present invention shown in FIG. 2 (b), only the endothermic reaction by the decomposition of the resin proceeds, and the thermal decomposition is completed at 400 ° C. Therefore, even if this reaction proceeds in the wall of the ceramic honeycomb structure 2, cracks due to thermal stress do not occur.

図3(a)、(b)は、同様の測定方法で、有機結合剤であるメチルセルロースの熱分解特性(TG−DTA)を調べた結果である。従来の大気雰囲気中において0〜500℃まで昇温した場合の、吸発熱と重量変化を図3(a)に、本発明の低酸素雰囲気中(酸素濃度:1%)において0〜500℃まで昇温した場合の、吸発熱と重量変化を図3(b)に示す。   3 (a) and 3 (b) show the results of examining the thermal decomposition characteristics (TG-DTA) of methyl cellulose, which is an organic binder, using the same measurement method. FIG. 3 (a) shows the endothermic heat generation and weight change when the temperature is raised to 0 to 500 ° C. in a conventional air atmosphere, up to 0 to 500 ° C. in the low oxygen atmosphere of the present invention (oxygen concentration: 1%). FIG. 3B shows the heat absorption and heat change and the weight change when the temperature is raised.

図2、3を比較して明らかなように、有機結合剤であるメチルセルロースも、本発明の造孔材であるPMMA樹脂と、同様の挙動を示し、本発明の低酸素雰囲気とすることで、樹脂の分解による吸熱反応を進行させ、発熱反応を抑制できることが分かる。また、メチルセルロースが存在している間に、PMMA樹脂の熱分解が終了するので、熱分解により空隙が発生しても、形状保持が可能で、強度低下による崩壊を抑制することができる。   As is apparent from a comparison of FIGS. 2 and 3, methyl cellulose, which is an organic binder, also exhibits the same behavior as the PMMA resin, which is the pore-forming material of the present invention. It can be seen that the endothermic reaction due to the decomposition of the resin proceeds to suppress the exothermic reaction. Further, since the thermal decomposition of the PMMA resin is completed while methylcellulose is present, the shape can be maintained even if voids are generated by the thermal decomposition, and the collapse due to the strength reduction can be suppressed.

図4、5は、さらに、同様の測定方法で、本発明の造孔材の例として表1に示した熱可塑性樹脂のうち、ポリエチレン(PE)樹脂、ポリエチレンテレフタレート(PET)樹脂、アクリル系樹脂の熱分解特性(TG−DTA)を調べた結果である。それぞれについて、本発明の低酸素雰囲気中(酸素濃度:1%)において0〜500℃まで昇温した場合の、吸発熱と重量変化を、図4(a)〜(c)に示した。また、図5(a)〜(c)に、従来の大気雰囲気中において0〜500℃まで昇温した場合の、吸発熱と重量変化を、それぞれ示した。   4 and 5 are the same measurement methods, and among the thermoplastic resins shown in Table 1 as examples of the pore former of the present invention, polyethylene (PE) resin, polyethylene terephthalate (PET) resin, acrylic resin It is the result of investigating the thermal decomposition characteristic (TG-DTA) of. For each, the endothermic heat generation and weight change when the temperature is raised to 0 to 500 ° C. in the low oxygen atmosphere (oxygen concentration: 1%) of the present invention are shown in FIGS. Further, FIGS. 5A to 5C show the endothermic heat generation and weight change when the temperature is raised to 0 to 500 ° C. in a conventional air atmosphere.

図4、5を比較して明らかなように、本発明の造孔材として表1の他の熱可塑性樹脂を用いた場合も、PMMA樹脂と、同様の挙動を示し、本発明の低酸素雰囲気とすることで、樹脂の分解による吸熱反応を進行させ、発熱反応を抑制できることが分かる。また、メチルセルロースが存在している間に、造孔材となる熱可塑性の熱分解がほぼ終了するので、熱分解により空隙が発生しても、形状保持が可能で、強度低下による崩壊を抑制することができる。   4 and 5, when other thermoplastic resin of Table 1 is used as the pore former of the present invention, it shows the same behavior as PMMA resin, and the low oxygen atmosphere of the present invention. Thus, it can be seen that the endothermic reaction due to the decomposition of the resin proceeds and the exothermic reaction can be suppressed. In addition, the thermoplastic pyrolysis that becomes the pore-forming material is almost completed while methylcellulose is present, so even if voids are generated by pyrolysis, the shape can be maintained and the collapse due to the decrease in strength is suppressed. be able to.

次に、実施例1として、上述した製造方法で、本発明の排ガスフィルタ1となるセラミックハニカム構造体2を試作した。まず、セラミック原料粉末であるチタン酸アルミニウム粉末100重量部に対し、本発明の造孔材であるPMMA樹脂20重量%と、有機結合剤であるメチルセルロース12重量%と、市販の潤滑剤(ユニルーブ:日本油脂(株)製、商品名)2.8重量%を添加し、水を加えて混合した。この混合物を、公知の混練機を用いて混練して成形用の坏土とし、得られた坏土を、公知の押出成形機を用いて図1(b)に示すハニカム形状に押出成形して、所定形状のハニカム成形体とした。その後、公知のマイクロ波乾燥機を用いて、加熱乾燥させた。   Next, as Example 1, a ceramic honeycomb structure 2 to be an exhaust gas filter 1 of the present invention was prototyped by the manufacturing method described above. First, with respect to 100 parts by weight of the aluminum titanate powder as the ceramic raw material powder, 20% by weight of the PMMA resin as the pore former of the present invention, 12% by weight of methyl cellulose as the organic binder, and a commercially available lubricant (Unilube: 2.8 wt% of Nippon Oil & Fats Co., Ltd., trade name) was added, and water was added and mixed. This mixture is kneaded using a known kneader to form a molding clay, and the obtained clay is extruded into a honeycomb shape shown in FIG. 1 (b) using a known extruder. A honeycomb formed body having a predetermined shape was obtained. Then, it heat-dried using the well-known microwave dryer.

このハニカム成形体を、表2に示す条件で焼成した。昇温プロセスは、図1(a)に示すように制御した。まず、ハニカム成形体を、酸素濃度1.5%の低酸素雰囲気とした焼成炉中に載置し、酸素導入温度である750℃まで昇温した。この時、昇温開始から、ハニカム成形体中の造孔材、有機結合剤および潤滑剤の熱分解がほぼ完了する500℃までは、一定の昇温速度(15℃/h)とし、500℃以上では、昇温速度を増大させた。750℃に到達したら、酸素濃度が10%となるように酸素含有ガスである大気を導入し、焼成温度である1400℃まで昇温させた。酸素濃度を維持しながら焼成温度で約10時間保持し、多孔質チタン酸アルミニウム焼結体とした。   This honeycomb formed body was fired under the conditions shown in Table 2. The temperature raising process was controlled as shown in FIG. First, the honeycomb formed body was placed in a firing furnace having a low oxygen atmosphere with an oxygen concentration of 1.5%, and the temperature was raised to 750 ° C. which is an oxygen introduction temperature. At this time, from the start of the temperature increase to 500 ° C. at which the thermal decomposition of the pore former, the organic binder and the lubricant in the honeycomb molded body is almost completed, a constant temperature increase rate (15 ° C./h) is set. In the above, the temperature rising rate was increased. When the temperature reached 750 ° C., air as an oxygen-containing gas was introduced so that the oxygen concentration was 10%, and the temperature was raised to 1400 ° C., which is the firing temperature. While maintaining the oxygen concentration, the sintered body was held at the firing temperature for about 10 hours to obtain a porous aluminum titanate sintered body.

Figure 2010001184
Figure 2010001184

図6(a)は、このようにして得られた多孔質チタン酸アルミニウム焼結体よりなるセラミックハニカム構造体2の状態を示す概略図で、良好な外観を有し、内部にも割れや崩れは見られなかった。なお、図6(b)は、従来のカーボンを造孔材として大気中で焼成することにより得られた多孔質チタン酸アルミニウム焼結体よりなるセラミックハニカム構造体2の状態を示す概略図であり、外表面や内部に至る複数のクラックがあり、外観不良が発生していることがわかる。   FIG. 6 (a) is a schematic view showing the state of the ceramic honeycomb structure 2 made of the porous aluminum titanate sintered body obtained in this manner, having a good appearance, and being cracked or broken inside. Was not seen. FIG. 6B is a schematic diagram showing a state of the ceramic honeycomb structure 2 made of a porous aluminum titanate sintered body obtained by firing in the air using conventional carbon as a pore-forming material. It can be seen that there are a plurality of cracks extending to the outer surface and the inside, and appearance defects have occurred.

本発明により得られるセラミックハニカム構造体2は、隔壁22の壁厚が例えば0.1〜1.0mm、好ましくは0.2〜0.5mm、セル密度が例えば25〜500セル/inch2、好ましくは200〜400セル/inch2、気孔率が例えば20〜70%、好ましくは30〜60%の多孔質チタン酸アルミニウム焼結体よりなる。多孔質チタン酸アルミニウム焼結体は、平均細孔径が例えば5〜30μm、好ましくは10〜20μm、熱膨張係数は例えば3.0×10-6/℃以下、好ましくは 1×10-6/℃以下である。 In the ceramic honeycomb structure 2 obtained by the present invention, the wall thickness of the partition wall 22 is, for example, 0.1 to 1.0 mm, preferably 0.2 to 0.5 mm, and the cell density is, for example, 25 to 500 cells / inch 2 , preferably Is made of a porous aluminum titanate sintered body having a porosity of 200 to 400 cells / inch 2 and a porosity of, for example, 20 to 70%, preferably 30 to 60%. The porous aluminum titanate sintered body has an average pore diameter of, for example, 5 to 30 μm, preferably 10 to 20 μm, and a thermal expansion coefficient of, for example, 3.0 × 10 −6 / ° C. or less, preferably 1 × 10 −6 / ° C. It is as follows.

また、同様の方法で、表2に示すように、酸素導入温度、第1の雰囲気における酸素濃度、あるいは酸素導入後の第2の雰囲気における酸素濃度、といった条件を変更して、ハニカム成形体を焼成し、多孔質チタン酸アルミニウム焼結体を得た。これらの条件と得られたセラミックハニカム構造体2の状態を、実施例2〜4、比較例1〜5として、実施例1の結果とともに表2に示した。   Further, in the same manner, as shown in Table 2, the conditions such as the oxygen introduction temperature, the oxygen concentration in the first atmosphere, or the oxygen concentration in the second atmosphere after the oxygen introduction were changed, and the honeycomb molded body was changed. Firing was performed to obtain a porous aluminum titanate sintered body. The conditions and the state of the obtained ceramic honeycomb structure 2 are shown in Table 2 together with the results of Example 1 as Examples 2 to 4 and Comparative Examples 1 to 5.

表2に明らかなように、酸素導入温度が750℃または1100℃であり、第1の雰囲気における酸素濃度が1.5%、第2の雰囲気の酸素濃度が2.0%より大きく10.0%以下の実施例1〜4では、いずれも図6(a)のように良好な状態のセラミックハニカム構造体2が得られた。一方、酸素導入温度が750℃または1100℃であっても、第2の雰囲気の酸素濃度が2.0%または1.5%である比較例1、2では、必要な酸素が供給できずにチタン酸アルミニウムが焼結体とならなかった。また、酸素導入温度が400℃であり、その後の第2の雰囲気の酸素濃度が10.0%の比較例3では、常温から大気中で焼成した比較例4と同様に、発熱による焼成割れ、崩れが見られた。また、酸素導入温度を、チタン酸アルミニウムの反応が開始する温度より高い1300℃とし、その後大気中で焼成した比較例5は、全体がチタン酸アルミウム焼結体とはならなかった。   As is apparent from Table 2, the oxygen introduction temperature is 750 ° C. or 1100 ° C., the oxygen concentration in the first atmosphere is 1.5%, and the oxygen concentration in the second atmosphere is greater than 2.0% and 10.0%. % In Examples 1-4, the ceramic honeycomb structure 2 in a good state as shown in FIG. 6A was obtained. On the other hand, even if the oxygen introduction temperature is 750 ° C. or 1100 ° C., in Comparative Examples 1 and 2 in which the oxygen concentration of the second atmosphere is 2.0% or 1.5%, necessary oxygen cannot be supplied. Aluminum titanate did not become a sintered body. Further, in Comparative Example 3 in which the oxygen introduction temperature is 400 ° C. and the oxygen concentration of the second atmosphere thereafter is 10.0%, as in Comparative Example 4 baked in the atmosphere from room temperature, firing cracks due to heat generation, Collapse was seen. Moreover, the oxygen introduction temperature was set to 1300 ° C., which is higher than the temperature at which the reaction of aluminum titanate starts, and then the comparative example 5 fired in the air did not become an aluminum titanate sintered body as a whole.

以上の結果より、造孔材と有機結合剤の熱分解を制御するために、酸素導入温度を400℃より高く1100℃以下、好ましくは750℃〜1100℃の範囲に設定し、酸素導入温度までは2%以下の低酸素濃度、好ましくは1.5%以下の低酸素雰囲気とし、酸素導入後は2%より大きい酸素濃度、好ましくは2%より大きく10%以下の酸素濃度とした雰囲気にて焼成することで割れ、崩れのない排ガスフィルタ1を得ることができる。   From the above results, in order to control the thermal decomposition of the pore former and the organic binder, the oxygen introduction temperature is set to be higher than 400 ° C. and not higher than 1100 ° C., preferably 750 ° C. to 1100 ° C. In a low oxygen atmosphere of 2% or less, preferably 1.5% or less, and after introduction of oxygen, in an atmosphere having an oxygen concentration of greater than 2%, preferably greater than 2% and 10% or less. By firing, the exhaust gas filter 1 without cracking or collapsing can be obtained.

ここで、酸素導入後の酸素濃度が、セラミックハニカム構造体2に与える影響を、表3に示す。表2に示したように、実施例2および比較例1は、酸素導入後の第2の雰囲気における酸素濃度を、それぞれ5%、1.5%とした以外は、いずれも同じ条件で焼成したものである(酸素導入温度750℃、酸素導入温度までの酸素濃度1.5%)。それぞれの条件で焼成したセラミックハニカム構造体2について、X線回折法による結晶構造解析の結果と、電子顕微鏡による結晶構造観察の結果を、表3中に、セラミックハニカム構造体2の外周部と中央部とに分けて示した。   Here, Table 3 shows the influence of the oxygen concentration after the introduction of oxygen on the ceramic honeycomb structure 2. As shown in Table 2, both Example 2 and Comparative Example 1 were fired under the same conditions except that the oxygen concentration in the second atmosphere after introducing oxygen was 5% and 1.5%, respectively. (Oxygen introduction temperature 750 ° C., oxygen concentration up to oxygen introduction temperature 1.5%). Regarding the ceramic honeycomb structure 2 fired under each condition, the results of the crystal structure analysis by the X-ray diffraction method and the results of the crystal structure observation by the electron microscope are shown in Table 3. It was divided into parts.

表3に明らかなように、実施例2では、セラミックハニカム構造体2の外周部と中央部のいずれも、チタン酸アルミニウムの結晶成長が確認された。これに対し、比較例1は、セラミックハニカム構造体2の外周部では、チタン酸アルミニウムの結晶が確認されたものの、中央部では、チタニア(TiO2)、アルミナ(Al23)の微細粒子が混在する構造であり、酸素濃度が低いとチタン酸アルミニウムの反応が内部まで進行しないことが分かる。 As apparent from Table 3, in Example 2, the crystal growth of aluminum titanate was confirmed in both the outer peripheral portion and the central portion of the ceramic honeycomb structure 2. On the other hand, in Comparative Example 1, although the crystal of aluminum titanate was confirmed in the outer peripheral portion of the ceramic honeycomb structure 2, fine particles of titania (TiO 2 ) and alumina (Al 2 O 3 ) were observed in the central portion. It can be seen that the reaction of aluminum titanate does not proceed to the inside when the oxygen concentration is low.

Figure 2010001184
Figure 2010001184

以上のように、本発明によれば、焼成時の熱分解反応を制御し、有機結合剤の存在下で造孔材を熱分解させて形状保持性を向上させ、高い品質を実現するとともに、焼成時間を短縮して、生産性を向上できる。   As described above, according to the present invention, the thermal decomposition reaction during firing is controlled, the pore former is thermally decomposed in the presence of an organic binder to improve shape retention, and high quality is achieved. Productivity can be improved by shortening the firing time.

(a)は、本発明の製造方法において、焼成時の昇温と雰囲気の制御について説明するための図であり、(b)、(c)は、それぞれ、本発明方法により製造される排ガスフィルタの全体斜視図、全体概略断面図である。(A) is a figure for demonstrating the temperature rising at the time of baking, and control of atmosphere in the manufacturing method of this invention, (b), (c) is an exhaust gas filter manufactured by this invention method, respectively. It is the whole perspective view and whole schematic sectional drawing. (a)は、造孔材であるPMMA樹脂の大気雰囲気における温度特性を示す図、(b)は低酸素雰囲気における温度特性を示す図である。(A) is a figure which shows the temperature characteristic in the air atmosphere of PMMA resin which is a pore making material, (b) is a figure which shows the temperature characteristic in a low oxygen atmosphere. (a)は、有機結合剤であるメチルセルロースの大気雰囲気における温度特性を示す図、(b)は低酸素雰囲気における温度特性を示す図である。(A) is a figure which shows the temperature characteristic in the air atmosphere of the methylcellulose which is an organic binder, (b) is a figure which shows the temperature characteristic in a low oxygen atmosphere. (a)、(b)、(c)は、それぞれ、造孔材であるPE樹脂、PET樹脂、アクリル系樹脂の低酸素雰囲気における温度特性を示す図である。(A), (b), (c) is a figure which shows the temperature characteristic in the low oxygen atmosphere of PE resin, PET resin, and acrylic resin which are pore forming materials, respectively. (a)、(b)、(c)は、それぞれ、造孔材であるPE樹脂、PET樹脂、アクリル系樹脂の大気雰囲気における温度特性を示す図である。(A), (b), (c) is a figure which shows the temperature characteristic in the air atmosphere of PE resin, PET resin, and acrylic resin which are pore forming materials, respectively. (a)は、本発明方法により製造された排ガスフィルタの外観を示す概略構成図、(b)は、従来の方法により製造された排ガスフィルタの外観を示す概略構成図である。(A) is a schematic block diagram which shows the external appearance of the exhaust gas filter manufactured by the method of this invention, (b) is a schematic block diagram which shows the external appearance of the exhaust gas filter manufactured by the conventional method.

符号の説明Explanation of symbols

1 排ガスフィルタ
11 目封じ材
2 セラミックハニカム構造体
21 多孔性隔壁
22 セル
DESCRIPTION OF SYMBOLS 1 Exhaust gas filter 11 Sealing material 2 Ceramic honeycomb structure 21 Porous partition 22 Cell

Claims (7)

セラミック原料粉末に造孔材および助剤を添加、混練して得た坏土をハニカム状に成形し、得られたハニカム成形体を焼成して、多孔質隔壁で区画された多数のセルを有するセラミックハニカム構造体からなる排ガスフィルタを製造する方法であって、
上記セラミックハニカム構造体が、チタン酸アルミニウムを基材とし、
上記造孔材に、熱分解開始温度が400℃以下である熱可塑樹脂を使用するとともに、
上記ハニカム成形体を焼成温度まで温度上昇させる工程において、昇温開始から1100℃以下の所定の酸素導入温度までは、酸素濃度が2%以下の低酸素雰囲気に保持し、酸素導入温度以上では、酸素濃度が2%より大きくなるように酸素を導入して、チタン酸アルミニウムを焼結させることを特徴とする排ガスフィルタの製造方法。
A clay obtained by adding a pore former and an auxiliary agent to a ceramic raw material powder and kneading is formed into a honeycomb shape, and the obtained honeycomb formed body is fired to have a large number of cells partitioned by porous partition walls. A method for producing an exhaust gas filter comprising a ceramic honeycomb structure,
The ceramic honeycomb structure is based on aluminum titanate,
While using a thermoplastic resin having a pyrolysis start temperature of 400 ° C. or lower for the pore former,
In the step of raising the temperature of the honeycomb formed body to the firing temperature, the oxygen concentration is maintained in a low oxygen atmosphere of 2% or less from the start of temperature rise to a predetermined oxygen introduction temperature of 1100 ° C. or lower. A method for producing an exhaust gas filter, wherein oxygen is introduced so that the oxygen concentration is greater than 2% to sinter aluminum titanate.
上記助剤が、有機結合剤を含み、
上記酸素導入温度が、1100℃以下で、かつ上記造孔材および上記有機結合剤の熱分解完了温度より高い所定の温度に設定される請求項1記載の排ガスフィルタの製造方法。
The auxiliary agent includes an organic binder,
The method for producing an exhaust gas filter according to claim 1, wherein the oxygen introduction temperature is set to a predetermined temperature that is 1100 ° C or lower and is higher than a thermal decomposition completion temperature of the pore former and the organic binder.
上記酸素導入温度以上では、酸素濃度が5%以上となるように酸素を導入する請求項1または2記載の排ガスフィルタの製造方法。   The method for producing an exhaust gas filter according to claim 1 or 2, wherein oxygen is introduced so that the oxygen concentration is 5% or more at the oxygen introduction temperature or higher. 上記酸素導入温度以上では、酸素濃度が20%以下となるように酸素を導入する請求項1ないし3のいずれか記載の排ガスフィルタの製造方法。   The method for producing an exhaust gas filter according to any one of claims 1 to 3, wherein oxygen is introduced so that the oxygen concentration is 20% or less above the oxygen introduction temperature. 上記酸素導入温度が、750℃以上1100℃以下の所定温度に設定される請求項1ないし4のいずれか1項に記載の排ガスフィルタの製造方法。   The method for producing an exhaust gas filter according to any one of claims 1 to 4, wherein the oxygen introduction temperature is set to a predetermined temperature of 750 ° C or higher and 1100 ° C or lower. 上記造孔材に、熱分解開始温度が300℃以下の熱可塑性樹脂を使用する請求項1ないし5のいずれか記載の排ガスフィルタの製造方法。   The method for producing an exhaust gas filter according to any one of claims 1 to 5, wherein a thermoplastic resin having a thermal decomposition start temperature of 300 ° C or lower is used for the pore former. 上記熱分解開始温度が300℃以下の熱可塑性樹脂が、メタクリル系樹脂、アクリル系樹脂、ポリエチレン系樹脂、PET系樹脂、ポリスチレン系樹脂から選ばれる少なくとも1種である請求項6記載の排ガスフィルタの製造方法。   The exhaust gas filter according to claim 6, wherein the thermoplastic resin having a thermal decomposition start temperature of 300 ° C or lower is at least one selected from a methacrylic resin, an acrylic resin, a polyethylene resin, a PET resin, and a polystyrene resin. Production method.
JP2008161250A 2008-06-20 2008-06-20 Method for manufacturing exhaust gas filter Withdrawn JP2010001184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008161250A JP2010001184A (en) 2008-06-20 2008-06-20 Method for manufacturing exhaust gas filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008161250A JP2010001184A (en) 2008-06-20 2008-06-20 Method for manufacturing exhaust gas filter

Publications (1)

Publication Number Publication Date
JP2010001184A true JP2010001184A (en) 2010-01-07

Family

ID=41583214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008161250A Withdrawn JP2010001184A (en) 2008-06-20 2008-06-20 Method for manufacturing exhaust gas filter

Country Status (1)

Country Link
JP (1) JP2010001184A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023617A1 (en) 2010-08-19 2012-02-23 日立金属株式会社 Manufacturing method for ceramic honeycomb structure
JP2012091350A (en) * 2010-10-25 2012-05-17 Sumitomo Chemical Co Ltd Green honeycomb molded body, method for manufacturing the same, and method for manufacturing honeycomb structure
EP2484654A1 (en) * 2009-10-01 2012-08-08 Sumitomo Chemical Co., Ltd Method for producing aluminum titanate ceramic fired body
CN104603053A (en) * 2012-09-03 2015-05-06 学校法人早稻田大学 Sludge recovery method and granular material
US9376347B2 (en) 2013-05-20 2016-06-28 Corning Incorporated Porous ceramic article and method of manufacturing the same
US9623360B2 (en) 2013-05-20 2017-04-18 Corning Incorporated Porous ceramic article and method of manufacturing the same
US9908260B2 (en) 2013-05-20 2018-03-06 Corning Incorporated Porous ceramic article and method of manufacturing the same
JP6751831B1 (en) * 2020-03-09 2020-09-09 三井金属鉱業株式会社 Exhaust gas purification catalyst
CN112047720A (en) * 2020-09-18 2020-12-08 常州浩蔚环保科技有限公司 Preparation method of high-porosity particle catcher
WO2021029098A1 (en) * 2019-08-09 2021-02-18 三井金属鉱業株式会社 Exhaust gas purification catalyst and production method therefor
CN112624764A (en) * 2020-12-30 2021-04-09 巴中意科碳素股份有限公司 Method for preventing isostatic pressing graphite from sintering and cracking
CN112973371A (en) * 2019-12-16 2021-06-18 株式会社西部技研 Organic solvent concentration device and method for determining deterioration of organic solvent concentration device
US11229902B2 (en) 2016-05-31 2022-01-25 Corning Incorporated Porous article and method of manufacturing the same
US11447422B2 (en) 2017-10-31 2022-09-20 Corning Incorporated Batch compositions comprising spheroidal pre-reacted inorganic particles and spheroidal pore-formers and methods of manufacture of honeycomb bodies therefrom

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2484654A1 (en) * 2009-10-01 2012-08-08 Sumitomo Chemical Co., Ltd Method for producing aluminum titanate ceramic fired body
EP2484654A4 (en) * 2009-10-01 2013-03-27 Sumitomo Chemical Co Method for producing aluminum titanate ceramic fired body
US9272957B2 (en) 2009-10-01 2016-03-01 Sumitomo Chemical Company, Limited Process for producing aluminum titanate-based ceramics fired body
WO2012023617A1 (en) 2010-08-19 2012-02-23 日立金属株式会社 Manufacturing method for ceramic honeycomb structure
US9085091B2 (en) 2010-08-19 2015-07-21 Hitachi Metals, Ltd. Production method of ceramic honeycomb structure
JP2012091350A (en) * 2010-10-25 2012-05-17 Sumitomo Chemical Co Ltd Green honeycomb molded body, method for manufacturing the same, and method for manufacturing honeycomb structure
CN104603053A (en) * 2012-09-03 2015-05-06 学校法人早稻田大学 Sludge recovery method and granular material
US9376347B2 (en) 2013-05-20 2016-06-28 Corning Incorporated Porous ceramic article and method of manufacturing the same
US9623360B2 (en) 2013-05-20 2017-04-18 Corning Incorporated Porous ceramic article and method of manufacturing the same
US9908260B2 (en) 2013-05-20 2018-03-06 Corning Incorporated Porous ceramic article and method of manufacturing the same
US11229902B2 (en) 2016-05-31 2022-01-25 Corning Incorporated Porous article and method of manufacturing the same
US11447422B2 (en) 2017-10-31 2022-09-20 Corning Incorporated Batch compositions comprising spheroidal pre-reacted inorganic particles and spheroidal pore-formers and methods of manufacture of honeycomb bodies therefrom
US11591265B2 (en) 2017-10-31 2023-02-28 Corning Incorporated Batch compositions comprising pre-reacted inorganic particles and methods of manufacture of green bodies therefrom
US11433377B2 (en) 2019-08-09 2022-09-06 Mitsui Mining & Smelting Co., Ltd. Exhaust gas purification catalyst and production method therefor
JP6876876B1 (en) * 2019-08-09 2021-05-26 三井金属鉱業株式会社 Exhaust gas purification catalyst and its manufacturing method
WO2021029098A1 (en) * 2019-08-09 2021-02-18 三井金属鉱業株式会社 Exhaust gas purification catalyst and production method therefor
CN112973371A (en) * 2019-12-16 2021-06-18 株式会社西部技研 Organic solvent concentration device and method for determining deterioration of organic solvent concentration device
JP2021096096A (en) * 2019-12-16 2021-06-24 株式会社西部技研 Organic solvent concentration device and deterioration determination method of organic solvent concentration device
JP7347795B2 (en) 2019-12-16 2023-09-20 株式会社西部技研 Organic solvent concentrator and method for determining deterioration of organic solvent concentrator
CN112973371B (en) * 2019-12-16 2024-05-31 株式会社西部技研 Organic solvent concentration device and degradation determination method for organic solvent concentration device
WO2021181487A1 (en) * 2020-03-09 2021-09-16 三井金属鉱業株式会社 Exhaust gas purification catalyst
JP6751831B1 (en) * 2020-03-09 2020-09-09 三井金属鉱業株式会社 Exhaust gas purification catalyst
US11745172B2 (en) 2020-03-09 2023-09-05 Mitsui Mining & Smelting Co., Ltd. Exhaust gas purification catalyst
CN112047720A (en) * 2020-09-18 2020-12-08 常州浩蔚环保科技有限公司 Preparation method of high-porosity particle catcher
CN112624764B (en) * 2020-12-30 2022-07-29 巴中意科碳素股份有限公司 Method for preventing isostatic pressing graphite from sintering and cracking
CN112624764A (en) * 2020-12-30 2021-04-09 巴中意科碳素股份有限公司 Method for preventing isostatic pressing graphite from sintering and cracking

Similar Documents

Publication Publication Date Title
JP2010001184A (en) Method for manufacturing exhaust gas filter
JP4266103B2 (en) Method for producing porous ceramic body
KR100607481B1 (en) Porous material and method for production thereof
JP5267131B2 (en) Method for manufacturing aluminum titanate ceramic honeycomb structure
EP1364928B1 (en) Honeycomb structure
JP2013514966A (en) Fiber reinforced porous substrate
JP2007001836A (en) Method of manufacturing honeycomb structure
JP2012507464A (en) Fibrous aluminum titanate substrate and method for producing the same
JP2009532195A (en) Peroxide-containing compounds as pore formers in the manufacture of ceramic articles
JP4774445B2 (en) Method for producing aluminum titanate ceramics
WO2009118862A1 (en) Process for producing honeycomb structure
JP2008037722A (en) Method of manufacturing honeycomb structure
JP2007021483A (en) Honeycomb structure
JP7153684B2 (en) Manufacturing method of honeycomb structure containing silicon carbide
JP2007045686A (en) Method for manufacturing porous ceramic structure
JP7232908B2 (en) Cordierite-containing ceramic bodies, batch composition mixtures, and methods of making cordierite-containing ceramic bodies
JP2009143763A (en) Silicon carbide-based porous body
JPWO2005068396A1 (en) Honeycomb structure and manufacturing method thereof
JPH08281036A (en) Honeycomb structure and manufacture therefor
US20080277819A1 (en) Method for producing composite material
JP2009256175A (en) Method for producing honeycomb structure
JP4476896B2 (en) Method for producing porous ceramic structure
US9133062B2 (en) Method of firing cordierite bodies
JP2022128501A (en) Ceramics madreporite and manufacturing method thereof, and filter for dust collection
JP4825845B2 (en) Method for manufacturing porous honeycomb structure

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110906