JPH08281036A - Honeycomb structure and manufacture therefor - Google Patents
Honeycomb structure and manufacture thereforInfo
- Publication number
- JPH08281036A JPH08281036A JP7087003A JP8700395A JPH08281036A JP H08281036 A JPH08281036 A JP H08281036A JP 7087003 A JP7087003 A JP 7087003A JP 8700395 A JP8700395 A JP 8700395A JP H08281036 A JPH08281036 A JP H08281036A
- Authority
- JP
- Japan
- Prior art keywords
- honeycomb structure
- volume
- pore
- porous wall
- particle size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 239000011148 porous material Substances 0.000 claims abstract description 64
- 239000002245 particle Substances 0.000 claims abstract description 44
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 24
- 238000010438 heat treatment Methods 0.000 claims abstract description 10
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 8
- 238000009826 distribution Methods 0.000 claims abstract description 6
- 239000010419 fine particle Substances 0.000 claims description 27
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 14
- 238000005245 sintering Methods 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 7
- 239000000843 powder Substances 0.000 claims description 7
- 230000001590 oxidative effect Effects 0.000 claims description 5
- 230000001186 cumulative effect Effects 0.000 claims description 3
- 238000005336 cracking Methods 0.000 abstract description 4
- 230000008646 thermal stress Effects 0.000 abstract description 4
- 230000003628 erosive effect Effects 0.000 abstract 1
- 230000002349 favourable effect Effects 0.000 abstract 1
- 230000033458 reproduction Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 24
- 238000009423 ventilation Methods 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 239000005995 Aluminium silicate Substances 0.000 description 2
- 235000012211 aluminium silicate Nutrition 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000002459 porosimetry Methods 0.000 description 2
- 239000004071 soot Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 238000007088 Archimedes method Methods 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229940100486 rice starch Drugs 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B3/00—Engines characterised by air compression and subsequent fuel addition
- F02B3/06—Engines characterised by air compression and subsequent fuel addition with compression ignition
Landscapes
- Processes For Solid Components From Exhaust (AREA)
- Filtering Of Dispersed Particles In Gases (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、排気ガスから煤などの
可燃性微粒子を捕集し、加熱焼却して再生するハニカム
構造体に関し、特にディーゼルエンジンから排出される
可燃性微粒子を捕集し、捕集した可燃性微粒子を加熱焼
却することによって再生するハニカム構造体及びこれを
用いてなるディーゼルパティキュレートフィルタに関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a honeycomb structure which collects combustible fine particles such as soot from exhaust gas, heats and incinerates the same, and particularly collects combustible fine particles discharged from a diesel engine. The present invention relates to a honeycomb structure which is regenerated by heating and incinerating the collected combustible fine particles, and a diesel particulate filter using the honeycomb structure.
【0002】[0002]
【従来の技術】従来、排気ガスから煤などの有害物質を
可燃性微粒子を捕集するフィルタ、例えば、ディーゼル
エンジンから排出される可燃性微粒子を補集するフィル
タは、低熱膨張性のコーディエライトセラミックや高熱
伝導性の炭化珪素セラミックを主体とした多孔質壁から
なるハニカム構造体が適用されている。このようなハニ
カム構造体のフィルタは入口端面と出口端面との間で長
手方向に多孔質薄壁を介して蜂の巣状に連なる無数の貫
通孔を有し、貫通孔の入口端面と出口端面は交互に封止
材によって封止された構造となっており、入口端面が封
止された貫通孔は出口端面で開放され、入口端面が開放
された貫通孔は出口端面で封止されている。このような
ハニカム構造体のフィルタは、特にディーゼル機関の排
気ガスの可燃性微粒子を補集する点において好適に用い
られるが、排気ガス系統の一部として取り付けられ、開
放された入口端面の貫通孔から流入する可燃性微粒子を
含む排ガスは、完全に多孔質壁を通過することによっ
て、可燃性微粒子の殆どまたは全てが多孔質壁に捕集さ
れるため、可燃性微粒子を殆どまたは全く含まない排ガ
スが出口端面の開放された貫通孔から流出する。従っ
て、排ガスが通過する多孔質壁の気孔特性としては、可
燃性微粒子を含む排ガスが容易に壁を通して流れること
を可能とし、可燃性微粒子の殆どまたは全てが多孔質壁
によって捕集されるのに適した気孔径及び気孔率を有す
る必要がある。2. Description of the Related Art Conventionally, a filter for collecting combustible fine particles from exhaust gas such as soot and the like, for example, a filter for collecting combustible fine particles discharged from a diesel engine is a cordierite having a low thermal expansion coefficient. A honeycomb structure having porous walls mainly made of ceramics or silicon carbide ceramics having high thermal conductivity is applied. A filter of such a honeycomb structure has innumerable through-holes connected in a honeycomb shape in the longitudinal direction between the inlet end face and the outlet end face through a porous thin wall, and the inlet end face and the outlet end face of the through holes are alternated. The through hole having the inlet end face sealed is opened at the outlet end face, and the through hole having the inlet end face opened is sealed at the outlet end face. Such a filter having a honeycomb structure is preferably used particularly for collecting combustible fine particles of exhaust gas of a diesel engine, but it is attached as a part of an exhaust gas system, and a through hole of an open inlet end surface is used. Exhaust gas containing combustible particles that flows in from the exhaust gas containing almost no combustible particles because most or all of the combustible particles are collected in the porous wall by completely passing through the porous wall. Flows out of the through hole opened at the outlet end face. Therefore, the pore characteristics of the porous wall through which the exhaust gas passes are such that exhaust gas containing combustible particles can easily flow through the wall, and most or all of the combustible particles can be collected by the porous wall. It must have a suitable pore size and porosity.
【0003】そこで特公平 5ー77442号公報では、ハニカ
ム構造体の多孔質壁において、オープンポロシティの容
積及びオープンポロシティを形成する気孔の平均直径
が、座標上において点1-G-5-2-3-4(但し、点1;オープン
ポロシティ58.5% ,平均気孔径1μm 、点G;オープンポ
ロシティ46.8% ,平均気孔径12μm 、点5;オープンポロ
シティ39.5% ,平均気孔径15μm 、点2;オープンポロシ
ティ33.0% ,平均気孔径15μm 、点3;オープンポロシテ
ィ52.5% ,平均気孔径20μm 、点4;オープンポロシティ
90.0% ,平均気孔径 1μm を有する) を結ぶ境界線によ
って限定される帯域内にあるディーゼル機関排気ガス系
用粒状物濾過器を開示している。In Japanese Patent Publication No. 5-77442, therefore, in the porous wall of the honeycomb structure, the volume of open porosity and the average diameter of the pores forming the open porosity are point 1-G-5-2- on the coordinates. 3-4 (However, point 1; open porosity 58.5%, average pore diameter 1 μm, point G; open porosity 46.8%, average pore diameter 12 μm, point 5; open porosity 39.5%, average pore diameter 15 μm, point 2; open porosity 33.0%, average pore size 15μm, point 3; open porosity 52.5%, average pore size 20μm, point 4; open porosity
90.0%, having an average pore diameter of 1 μm), a particulate filter for a diesel engine exhaust gas system within a zone defined by a boundary line connecting the two is disclosed.
【0004】また、特開昭61-83689号公報は、薄い隔壁
を隔てて軸方向に多数の貫通孔が隣接している炭化珪素
質ハニカム構造体において、該隔壁が平均アスペクト比
2〜50の範囲内に板状結晶を主体として構成される三次
元の網目構造を有する多孔質体からなることを開示して
いる。Further, JP-A-61-83689 discloses that in a silicon carbide honeycomb structure in which a large number of through holes are adjacent to each other in the axial direction with thin partition walls, the partition walls have an average aspect ratio.
It is disclosed that the porous body has a three-dimensional network structure mainly composed of plate crystals within the range of 2 to 50.
【0005】このようにハニカム構造体は、有効比表面
積が大きく、単位容積あたりの可燃性微粒子の捕集量が
高いため、多孔質壁の気孔径及び気孔率を適宜、選定す
ることによって優れた捕集性能を有する特徴がある。し
かし、ある一定量の可燃性微粒子を捕集すると、多孔質
壁が目詰まりし、通気抵抗が増大するため、定期的に捕
集した可燃性微粒子を焼却、再生する必要がある。この
再生は、主にバーナの燃焼ガスをフィルタに噴射し焼却
する方法、ニクロム線ヒータあるいは発熱金属層をフィ
ルタと組み合わせて外部ヒータにより加熱、焼却する方
法、あるいはフィルタにヒーター性能を有する材質を適
用し、フィルタ自体の通電発熱によって均一に加熱焼却
する方法等、様々な方法が適用されている。As described above, since the honeycomb structure has a large effective specific surface area and a large amount of the combustible fine particles collected per unit volume, it is excellent by appropriately selecting the pore diameter and porosity of the porous wall. It has a characteristic of having a collection performance. However, when a certain amount of combustible particles are collected, the porous wall is clogged and the ventilation resistance increases, so it is necessary to incinerate and regenerate the collected combustible particles at regular intervals. This regeneration is mainly performed by injecting burner combustion gas into a filter to incinerate it, combining a nichrome wire heater or a heating metal layer with a filter to heat and incinerate it with an external heater, or applying a material having heater performance to the filter. However, various methods such as a method of uniformly heating and incinerating by energization heat generation of the filter itself are applied.
【0006】しかしながら、従来のハニカム構造体の多
孔質壁は、ほとんどが50μm 以下の微細気孔で構成され
ているため、可燃性微粒子の目詰まりが生じやすく、排
ガスの通気抵抗が短時間で上昇し、加熱焼却による再生
を頻繁に繰り返す必要があった。従って、捕集時間を長
くするために、気孔率を過度に高くしたり、フィルタを
大型化して対応せざるを得ず、強度が低下したり可燃性
微粒子の焼却に際し不均一な温度分布が生じやすくな
り、フィルタの溶損、あるいは加熱焼却によるヒートサ
イクルによって熱応力割れ等が発生し易いという問題が
あった。However, since most of the porous walls of the conventional honeycomb structure are composed of fine pores of 50 μm or less, the combustible fine particles are likely to be clogged, and the ventilation resistance of exhaust gas increases in a short time. , It was necessary to frequently repeat the regeneration by heating and incineration. Therefore, in order to lengthen the collection time, it is unavoidable to increase the porosity excessively or to cope with the filter by enlarging it, resulting in a decrease in strength and an uneven temperature distribution when incinerating combustible particles. There is a problem in that thermal stress cracking or the like is likely to occur due to melting loss of the filter or a heat cycle due to heat incineration.
【0007】[0007]
【本発明が解決しようとする課題】本発明は以上の状況
に鑑がみてなされたものであり、多孔質の可燃性微粒子
の目詰まりが生じにくく、排気ガスの通気抵抗が上昇し
にくく、強度が高く、従って再生を頻繁に繰り返す必要
がないコンパクトで均一に加熱することができ、フィル
タの溶損やヒートサイクルによる熱応力や割れ等が発生
しにくいハニカム構造体を提供することを目的とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above situation, and it is difficult for porous combustible fine particles to be clogged, exhaust gas ventilation resistance is unlikely to increase, and strength is improved. Therefore, it is an object of the present invention to provide a honeycomb structure that is compact and does not need to be repeatedly regenerated, can be uniformly heated, and is unlikely to cause thermal stress or cracking due to filter melting loss or heat cycle. .
【0008】[0008]
【課題を解決するための手段】すなわち、本発明の特徴
は、可燃性微粒子を多孔質壁で捕集し、捕集した可燃性
微粒子を加熱焼却することによって再生するハニカム構
造体であって、多孔質壁の全気孔容積に対して気孔径50
〜70μm の気孔が占める割合が30〜50体積%であるハニ
カム構造体である。また、このハニカム構造体の多孔質
壁の気孔率が40%以上で平均気孔径が 5〜40μm である
ものがより好ましく、また、このハニカム構造体の材質
が炭化珪素を主成分とするものがより好ましい。またこ
のハニカム構造体の製造方法の特徴は、平均粒子径 5〜
50 μm、粒度分布の累積粒度において 10%の径(D10)
と 50%径(D50)の粒径比(D10/D50)が 0.2以上の炭化珪
素粉末に内割りで10体積% 以下の焼結促進剤を添加した
粉末 100体積部に平均粒子径 40 〜 100μmの造孔剤を
15 〜 25 体積部配合し成形した後、1600℃以上の非酸
化性雰囲気で焼成することである。さらに、本発明の特
徴は、これらのハニカム構造体を使用したディーゼルパ
ティキュレートフィルタである。That is, a feature of the present invention is a honeycomb structure in which flammable fine particles are collected by a porous wall and the collected combustible fine particles are regenerated by heating and incineration. 50 pore size for the total pore volume of the porous wall
The honeycomb structure has a proportion of pores of ˜70 μm of 30 to 50% by volume. Further, it is more preferable that the porosity of the porous wall of the honeycomb structure is 40% or more and the average pore diameter is 5 to 40 μm, and that the material of the honeycomb structure is mainly composed of silicon carbide. More preferable. The characteristic of the manufacturing method of this honeycomb structure is that the average particle diameter is 5 to
50 μm, 10% diameter (D 10 ) in cumulative particle size distribution
And 50% diameter (D 50 ) particle diameter ratio (D 10 / D 50 ) of 0.2 or more silicon carbide powder with 10% by volume or less of the sintering accelerator added to 100 parts by volume of the average particle diameter 40 to 100 μm pore former
After mixing 15 to 25 parts by volume and molding, it is fired in a non-oxidizing atmosphere at 1600 ° C or higher. Further, a feature of the present invention is a diesel particulate filter using these honeycomb structures.
【0009】以下、本発明についてさらに詳しく説明す
る。The present invention will be described in more detail below.
【0010】本発明のハニカム構造体は、例えばディー
ゼルエンジンなどの排気ガス中に含まれる可燃性微粒子
を多孔質壁で捕集し、捕集した可燃性微粒子を加熱焼却
することによって再生するハニカム構造体のフィルタで
あって、多孔質壁の全気孔容積に対して気孔径 50 〜70
μm の気孔が占める割合が30〜50体積%である。The honeycomb structure of the present invention has a honeycomb structure in which combustible fine particles contained in exhaust gas of, for example, a diesel engine are collected by a porous wall, and the collected combustible fine particles are regenerated by incineration by heating. A body filter with a pore size of 50-70 relative to the total pore volume of the porous wall.
The proportion of pores of μm is 30 to 50% by volume.
【0011】本発明のハニカム構造体は、例えばディー
ゼルパティキュレートフィルタ用ハニカム構造体の場
合、排気ガスが多孔質壁の気孔を通過する時に、排気ガ
ス中に含まれる可燃性微粒子がこの多孔質壁によって補
集される構造となっている。多孔質壁の全気孔容積に対
して、気孔径 50 〜70μm の気孔が占める割合が30〜50
体積%必要である理由は、可燃性微粒子の捕集による目
詰まりを抑制するためで、50μm 未満の気孔は可燃性微
粒子をほぼ完全に捕集するのに適し、フィルタ性能とし
て捕集効率を極めて高くすることができるが、可燃性微
粒子が容易に堆積し目詰まりする問題がある。一方、70
μm より大きな気孔は、可燃性微粒子をほとんど捕集す
ることができないため、捕集効率が著しく低下する。従
って、捕集効率を損なわずに、多孔質壁に含ませること
ができる気孔径50〜70μm の割合は、全気孔容積の30〜
50体積%の範囲で、30体積%未満では可燃性微粒子が目
詰まりしやすく、排ガスの通気抵抗が短時間で上昇し、
50体積%を越えると捕集効率が低下するとともに、ハニ
カム自体の強度が低下する。また、100 μmより大きな
気孔が 5体積%より多く存在すると同様に捕集効率が低
下するとともに、ハニカム自体の強度が低下する。ここ
で言う気孔径とは、実施例にその測定法を詳細に述べる
が水銀圧入法により求めたものを言う。The honeycomb structure of the present invention is, for example, in the case of a honeycomb structure for a diesel particulate filter, when the exhaust gas passes through the pores of the porous wall, the combustible fine particles contained in the exhaust gas are contained in the porous wall. The structure is collected by. The ratio of pores with a pore size of 50-70 μm to the total pore volume of the porous wall is 30-50.
The reason why the volume% is necessary is to prevent clogging due to the collection of the combustible particles, and the pores of less than 50 μm are suitable for collecting the combustible particles almost completely. Although it can be increased, there is a problem that combustible fine particles are easily deposited and clogged. Meanwhile, 70
The pores larger than μm can hardly collect the combustible fine particles, so that the collection efficiency is significantly reduced. Therefore, the ratio of pore size 50 to 70 μm that can be included in the porous wall without impairing the collection efficiency is 30 to 30% of the total pore volume.
In the range of 50% by volume, if it is less than 30% by volume, combustible fine particles are likely to be clogged, and the ventilation resistance of exhaust gas increases in a short time.
When it exceeds 50% by volume, the collection efficiency is lowered and the strength of the honeycomb itself is lowered. If more than 5% by volume of pores larger than 100 μm are present, the collection efficiency is also reduced and the strength of the honeycomb itself is reduced. The term "pore size" as used herein refers to that determined by mercury porosimetry, which will be described in detail in the examples.
【0012】そして、本発明の多孔質壁の気孔率は40%
以上、好ましくは50〜70% 、より好ましくは 45%〜 65%
であり、40% より低いと通気抵抗が高く、70% を越える
と機械的強度が低下する。また、平均気孔径は5 〜40μ
m の範囲で、5 μm より小さいと可燃性微粒子が目詰ま
りしやすく、短時間で排ガスの通気抵抗が高くなる。ま
た、平均気孔径が40μm を越えると、捕集効率が低下し
フィルター性能が低下する。The porosity of the porous wall of the present invention is 40%.
Or more, preferably 50 to 70%, more preferably 45% to 65%
If it is less than 40%, the ventilation resistance is high, and if it exceeds 70%, the mechanical strength is reduced. The average pore size is 5-40μ.
If the particle size is less than 5 μm in the m range, combustible fine particles are likely to be clogged, and the ventilation resistance of exhaust gas increases in a short time. On the other hand, if the average pore diameter exceeds 40 μm, the collection efficiency is lowered and the filter performance is lowered.
【0013】また、ハニカム構造体の材質は、金属、セ
ラミックス、或いはこれらの複合材料が使用できるが、
ハニカム構造体内を通過する排気ガス中の可燃性微粒子
を効率よく補集するには、多孔質壁表面の表面粗さが粗
い方が良く、材質としてはセラミックス材料が好まし
い。特に炭化珪素を主成分とするものは結晶粒子の間隙
が大きいので表面粗度が高く、排気ガスを多孔質壁内に
取り込み易く、さらに多孔質壁内部の気孔構造が結晶粒
子が複雑に絡み合った状態の間隙で、連通気孔が形成さ
れているため、強度が高く、50〜 70 μmの気孔を特定
量含有することによって、可燃性微粒子の補集効率が高
い。ここでいう炭化珪素を主成分とするものとは、炭化
珪素の含有量が 80 重量% 以上、好ましくは 90 重量%
以上、より好ましくは、95重量% 以上のものである。ま
た、主成分となる炭化珪素以外の成分としては、Al,F
e,Cr 等の金属単体及びこれらの酸化物、炭化物、窒化
物等、他の無機材料を含んでもよい。As the material of the honeycomb structure, metal, ceramics, or a composite material thereof can be used.
In order to efficiently collect the combustible fine particles in the exhaust gas passing through the honeycomb structure, it is preferable that the surface roughness of the porous wall surface is rough, and a ceramic material is preferable as the material. In particular, those containing silicon carbide as a main component have a high surface roughness because the gaps between the crystal particles are large, and it is easy to take the exhaust gas into the porous wall, and the pore structure inside the porous wall is complicatedly entangled with the crystal particles. Since the continuous air holes are formed in the gaps in the state, the strength is high, and the inclusion efficiency of the combustible fine particles is high by containing a specific amount of pores of 50 to 70 μm. The term "mainly containing silicon carbide" means that the content of silicon carbide is 80% by weight or more, preferably 90% by weight.
Above, more preferably, 95 wt% or more. Further, as components other than silicon carbide, which is the main component, Al, F
Elementary metals such as e and Cr and other inorganic materials such as oxides, carbides and nitrides thereof may be included.
【0014】このような多孔質壁を有するハニカム構造
体を使用したディーゼルパティキュレートフィルタは、
上述したように多孔質壁の気孔特性において、特定の割
合で気孔径50〜70μm の気孔を含み、また適当な平均気
孔径及び気孔率を有するので、ディーゼルエンジンの排
ガス中に含まれる可燃性微粒子を多孔質壁で捕集するこ
とができ、かつこの際、捕集された可燃性微粒子による
多孔質壁の目詰まりによる通気抵抗の上昇を適当に抑制
することができる。また、材質を炭化珪素を主成分とし
たものは、その気孔構造は結晶粒が複雑な状態で絡みあ
った間隙が気孔となることから、強度が高く、特に良好
な捕集効率を示す。従って、可燃性微粒子の捕集時間が
長く、フィルタのコンパクト化が可能なディーゼルパテ
ィキュレートフィルタを得ることができる。A diesel particulate filter using a honeycomb structure having such a porous wall is
As described above, in the pore characteristics of the porous wall, the combustible fine particles contained in the exhaust gas of the diesel engine have a specific proportion of pores having a pore diameter of 50 to 70 μm and have an appropriate average pore diameter and porosity. Can be collected by the porous wall, and at this time, increase in ventilation resistance due to clogging of the porous wall due to the collected combustible fine particles can be appropriately suppressed. Further, the material containing silicon carbide as the main component has a high pore strength because the pore structure is pores formed by entangled crystal grains in a complicated state, and exhibits particularly good collection efficiency. Therefore, it is possible to obtain a diesel particulate filter which has a long collection time of the combustible particles and enables the filter to be made compact.
【0015】次に、本発明のディーゼルパティキュレー
トフィルタ用ハニカム構造体の製造方法に関して説明す
る。まず、平均粒径が 5〜 50 μmであり、累積粒度で
10%径と50 %径の粒径比(D10/D50)が 0.2以上、好まし
くは 0.3以上、より好ましくは 0.4以上の粒度分布を有
する炭化珪素の粉末を主原料として使用する。この粒径
比(D10/D50)は、上述のとおり高い方が好ましいが、0.
5 以上の粒度を調節するのは工業的に難しくなる。この
炭化珪素粉末に混合後の全体積の 10 体積%以下の焼結
促進剤を加えて混合する。焼結促進剤としては、Si, A
l, Fe, Cr等の各種金属粉末、或いはこれらの酸化物、
窒化物、炭化物等が使用できる。この炭化珪素粉末の焼
結は、焼結促進剤を加えない場合でも可能であるので、
これらの焼結促進剤を添加しなくてもよいが、焼結促進
剤を添加した場合の方が高い強度のものが得られる。Next, a method for manufacturing the honeycomb structure for a diesel particulate filter of the present invention will be described. First, the average particle size is 5 to 50 μm
A powder of silicon carbide having a particle size distribution of a 10% diameter and a 50% diameter (D 10 / D 50 ) of 0.2 or more, preferably 0.3 or more, more preferably 0.4 or more is used as a main raw material. This particle size ratio (D 10 / D 50 ) is preferably higher as described above,
It is industrially difficult to control the particle size of 5 or more. A sintering accelerator of 10% by volume or less of the total volume after mixing is added to this silicon carbide powder and mixed. As the sintering promoter, Si, A
Various metal powders such as l, Fe and Cr, or oxides of these,
Nitride, carbide, etc. can be used. Since sintering of this silicon carbide powder is possible even without adding a sintering accelerator,
It is not necessary to add these sintering accelerators, but when a sintering accelerator is added, one having higher strength can be obtained.
【0016】炭化珪素の平均粒径が 5μmより小さい場
合、または累積粒度分布の粒径比(D10/D50)が 0.2未満
の場合、多孔質壁の気孔径が 5μm以下の微細な気孔が
多くなるため、平均気孔径が小さくなる。一方、炭化珪
素の平均粒径が 50 μmを越えると焼結性が低下し、ハ
ニカム自体の強度が低下するので好ましくない。When the average particle size of silicon carbide is smaller than 5 μm or the particle size ratio (D 10 / D 50 ) of the cumulative particle size distribution is less than 0.2, fine pores having a pore diameter of 5 μm or less are formed on the porous wall. Since the number increases, the average pore diameter decreases. On the other hand, if the average particle diameter of silicon carbide exceeds 50 μm, the sinterability is lowered and the strength of the honeycomb itself is lowered, which is not preferable.
【0017】次に、気孔を形成する方法として、前記原
料粉末に平均粒子径 40 〜 100μmのポリスチレン、ポ
リエチレン等の有機樹脂粒子、あるいは黒鉛、澱粉、籾
殻、木屑等、熱処理によって焼失あるいは炭化する粉末
を造孔剤として添加する。多孔質壁の50〜70μm の気孔
径及び気孔率は、上記造孔剤粉末の粒度及び充填量等を
調節することにより制御することが可能である。造孔剤
の平均粒子径が 40 μmより小さいと 50 μmμm以上
の気孔を形成することが困難になり、平均粒子径が 100
μmを越えると粗大気孔の割合が多くなる。造孔剤の添
加量は、炭化珪素粉又は炭化珪素粉と焼結促進剤の混合
物 100体積部に対して、 15 〜 25 体積部がよく、15体
積部未満では、50〜 70 μmの気孔量が少なくなり、25
体積部を越えると多すぎるため、補集効率、機械的強度
等が低下する。Next, as a method for forming pores, organic resin particles such as polystyrene and polyethylene having an average particle diameter of 40 to 100 μm, or graphite, starch, rice husks, wood chips, etc., which are burned or carbonized by heat treatment, in the raw material powder Is added as a pore-forming agent. The pore diameter and porosity of 50 to 70 μm of the porous wall can be controlled by adjusting the particle size and the filling amount of the pore-forming agent powder. If the average particle size of the pore-forming agent is smaller than 40 μm, it becomes difficult to form pores of 50 μm μm or more, and the average particle size is 100 μm.
If it exceeds μm, the ratio of coarse air holes increases. The amount of the pore-forming agent added is preferably 15 to 25 parts by volume with respect to 100 parts by volume of the silicon carbide powder or the mixture of the silicon carbide powder and the sintering accelerator. Below 15 parts by volume, the porosity is 50 to 70 μm. Is reduced to 25
If it exceeds the volume part, the amount is too large, so that the collection efficiency, the mechanical strength and the like are lowered.
【0018】これら原料粉末の混合は、乾式、湿式等、
均一に混合できる方法であれば何れの方法でも適用する
ことが可能である。また、混合原料の成形では、メチル
セルロース、ポリビニルアルコール等の有機バインダー
を添加し、押出成形等によってハニカム状に成形するこ
とができる。Mixing of these raw material powders can be carried out by dry type, wet type, etc.
Any method can be applied as long as it can be uniformly mixed. Further, in the molding of the mixed raw material, it is possible to add an organic binder such as methyl cellulose or polyvinyl alcohol, and form the honeycomb by extrusion molding or the like.
【0019】次に、得られたハニカム状の成形体の入口
端面と出口端面の貫通孔は、母材となる炭化珪素を主成
分とする封止材料によって交互に目封じし、1600℃以
上、好ましくは1700〜2300℃のAr,N2,真空等の非酸化性
の雰囲気で焼成する。また、造孔剤として添加する粉末
が非酸化性の雰囲気で1600℃以上の温度での焼成で焼失
しない場合は、残存する炭素質成分を除去するため 500
℃〜1000℃の酸化性雰囲気で熱処理する必要がある。Next, the through-holes on the inlet end face and the outlet end face of the obtained honeycomb-shaped molded body are alternately plugged with a sealing material containing silicon carbide as a base material as a base material, and the temperature is 1600 ° C. or higher. The firing is preferably performed in a non-oxidizing atmosphere such as Ar, N2, and vacuum at 1700 to 2300 ° C. If the powder to be added as a pore-forming agent is not burned out by firing at a temperature of 1600 ° C or higher in a non-oxidizing atmosphere, the residual carbonaceous component will be removed by 500
It is necessary to perform heat treatment in an oxidizing atmosphere at ℃ to 1000 ℃.
【0020】[0020]
【実施例】以下、実施例、比較例を挙げてさらに具体的
に本発明を説明する。EXAMPLES The present invention will be described more specifically with reference to Examples and Comparative Examples.
【0021】(実施例1〜5比較例1〜3)出発原料と
して、表1記載の平均粒径 5〜70μm の炭化珪素粉末 1
00体積部に対して、造孔剤として平均粒径 20 〜 100μ
m のスチレン又は黒鉛粉末を表1記載のように添加し、
さらに、これら混合粉末に水20重量%、バインダーとし
てメチルセルロース8.0 重量%を混合した後、ヘンシェ
ル混合機で10分間混合した。次いでニーダ式混練機を用
いて30分間混練し、高圧真空押出成形機を用いて、成形
圧力60kg/cm2で外径寸法□ 100mm、セルピッチ2.0mm 、
壁厚 0.4 mm のハニカム形状に押出成形した。得られた
成形体は、長さ 100mmに切断し、乾燥後、入口端面と出
口端面を交互に目封じするため、平均粒径 1.0μmの炭
化珪素粉末を主成分とする固形分 80%のスラリーを、そ
れぞれの端面から深さ10mm程度まで流し込み、乾燥固化
後、2100℃×1hr 、Ar雰囲気で焼成した。そのうち、実
施例3、4、実施例1、2、5及び比較例1、2につい
ては、得られた焼結体をさらに大気中 900℃×3hの酸化
処理を行い残存する黒鉛を焼却した。(Examples 1 to 5 Comparative Examples 1 to 3) As a starting material, a silicon carbide powder having an average particle size of 5 to 70 μm shown in Table 1 1
Average particle size of 20 to 100μ
m styrene or graphite powder was added as shown in Table 1,
Further, 20% by weight of water and 8.0% by weight of methyl cellulose as a binder were mixed with these mixed powders, and then mixed with a Henschel mixer for 10 minutes. Then, kneading for 30 minutes using a kneader type kneader, using a high-pressure vacuum extrusion molding machine, at a molding pressure of 60 kg / cm 2 outer diameter dimension □ 100 mm, cell pitch 2.0 mm,
It was extruded into a honeycomb shape with a wall thickness of 0.4 mm. The obtained compact is cut to a length of 100 mm, and after drying, the inlet end face and the outlet end face are alternately plugged, so a slurry containing silicon carbide powder with an average particle size of 1.0 μm and a solid content of 80% is the main component. Were poured from each end face to a depth of about 10 mm, dried and solidified, and then baked at 2100 ° C. for 1 hr in an Ar atmosphere. Among them, in Examples 3 and 4, Examples 1, 2 and 5, and Comparative Examples 1 and 2, the obtained sintered bodies were further oxidized in the atmosphere at 900 ° C. for 3 hours to incinerate the remaining graphite.
【0022】このようにして得られたディーゼルパティ
キュレートフィルタ用ハニカム構造体については以下の
特性を測定し、その結果を表2、表3に示した。 (1) 気孔率:アルキメデス法。 (2) 気孔径:水銀圧入法により、気孔が円筒形であると
仮定して、全細孔容積を細孔比表面積によって割算する
ことにより求めた気孔径の平均値及び全細孔容積におけ
る気孔径50〜70μm の気孔の占める割合を測定した。 (3) 機械的強度:ハニカム構造体を□10×10mmに切断
し、目封じされていない部分の入口端面と出口端面の貫
通孔に対して水平方向の圧縮強度を測定した。 (4) 可燃性微粒子の捕集性能:□ 100×100mm 形状のデ
ィーゼルパティキュレートフィルタとして、ディーゼル
エンジンから排出される排ガス成分において、可燃性微
粒子濃度が 0.15g/Nm3、排ガス流速10 Nm3/min、温度 2
50℃の条件で捕集試験を行い、初期の圧力損失が可燃性
微粒子の捕集によって 150mm Hg まで到達する時間を測
定した。また、ハニカム構造体の出口端部にペーパーフ
ィルタを取り付け、付着する可燃性微粒子の重量からフ
ィルタの捕集効率を算出した。The following characteristics of the honeycomb structure for a diesel particulate filter thus obtained were measured, and the results are shown in Tables 2 and 3. (1) Porosity: Archimedes method. (2) Pore diameter: By mercury porosimetry, assuming that the pores are cylindrical, the average value of the pore diameter and the total pore volume in the total pore volume obtained by dividing the total pore volume by the pore specific surface area. The proportion of pores having a pore diameter of 50 to 70 μm was measured. (3) Mechanical strength: The honeycomb structure was cut into □ 10 × 10 mm, and the compressive strength in the horizontal direction was measured with respect to the through-holes in the inlet end face and the outlet end face of the unsealed portion. (4) Capability of collecting combustible particles: □ 100 × 100 mm diesel particulate filter, exhaust gas components emitted from diesel engine have combustible particle concentration of 0.15 g / Nm 3 , exhaust gas flow rate of 10 Nm 3 / min, temperature 2
A collection test was performed under the condition of 50 ° C, and the time required for the initial pressure loss to reach 150 mm Hg due to collection of combustible particles was measured. Further, a paper filter was attached to the exit end of the honeycomb structure, and the collection efficiency of the filter was calculated from the weight of the combustible fine particles attached.
【0023】[0023]
【表1】 [Table 1]
【0024】[0024]
【表2】 [Table 2]
【0025】[0025]
【表3】 [Table 3]
【0026】(実施例6〜8及び比較例6〜8)出発原
料として、平均粒径 5〜 70 μmの炭化珪素粉末を用
い、内割りで10体積%以下の焼結促進剤を添加した以外
は、実施例1〜5と同様の操作で表4に記載した配合と
し、ハニカム形状に成形した。そして、両端部を前記炭
化珪素スラリーを用いて同様に目封じした後、2000℃×
1 hr、Ar雰囲気で焼結した。これらのうち、実施例7、
8及び比較例5については、得られた焼結体をさらに大
気中900℃×3hの酸化処理を行い残存する黒鉛を焼却し
た。このようにして得られたハニカム構造体について
は、実施例1〜5と同様の方法で各物性を測定した。そ
の結果を表4、表5、表6に示した。(Examples 6 to 8 and Comparative Examples 6 to 8) Silicon carbide powder having an average particle size of 5 to 70 μm was used as a starting material, and 10% by volume or less of a sintering accelerator was added as an internal component. Was blended as shown in Table 4 by the same operation as in Examples 1 to 5 to form a honeycomb shape. Then, both ends were similarly plugged with the silicon carbide slurry, and then 2000 ° C ×
Sintered for 1 hr in Ar atmosphere. Of these, Example 7,
Regarding 8 and Comparative Example 5, the obtained sintered body was further subjected to an oxidation treatment in the atmosphere at 900 ° C. for 3 hours to incinerate the remaining graphite. With respect to the honeycomb structure thus obtained, each physical property was measured by the same method as in Examples 1 to 5. The results are shown in Tables 4, 5, and 6.
【0027】[0027]
【表4】 [Table 4]
【0028】[0028]
【表5】 [Table 5]
【0029】[0029]
【表6】 [Table 6]
【0030】(実施例9〜11、比較例7〜9)タル
ク、カオリン、仮焼カオリン及びアルミナを出発原料と
し、造孔剤として平均粒径 50 〜 100μmの黒鉛粉末又
はスチレンを表7に記載したように配合し、実施例1〜
4と同様の操作でハニカム形状に押出成形した。そし
て、それぞれのハニカム成形体の出発原料と同じ組成の
スラリーを作製し、これによりハニカム形状の両端面を
交互に目封じし、大気中、1400℃×1 Hr焼結した。得ら
れたハニカム構造体については、実施例1〜5と同様に
各物性を測定した。その結果を表7表、表8、表9に示
した。(Examples 9 to 11, Comparative Examples 7 to 9) Table 7 shows talc, kaolin, calcined kaolin and alumina as starting materials, and a graphite powder or styrene having a mean particle size of 50 to 100 μm as a pore forming agent. Formulated as described above, Example 1
By the same operation as in 4, extrusion molding was performed into a honeycomb shape. Then, a slurry having the same composition as the starting material of each honeycomb formed body was prepared, whereby both end faces of the honeycomb shape were alternately plugged and sintered in the atmosphere at 1400 ° C. × 1 Hr. The physical properties of the obtained honeycomb structure were measured in the same manner as in Examples 1 to 5. The results are shown in Table 7, Table 8 and Table 9.
【0031】[0031]
【表7】 [Table 7]
【0032】[0032]
【表8】 [Table 8]
【0033】[0033]
【表9】 [Table 9]
【0034】表1〜9で明らかなように、実施例1〜9
のハニカム構造体は、圧縮強度が強く、ディーゼルエン
ジンから排出される排気ガス中に含まれる可燃性微粒子
の補集効率がよく、しかもハニカムの多孔質壁の目詰ま
りによる通気抵抗の上昇を抑制することができ捕集時間
が長く、ディーゼルパティキュレートフィルタ用ハニカ
ム構造体として好適であるこがわかった。As can be seen in Tables 1-9, Examples 1-9
The honeycomb structure of has a high compressive strength, has a good collection efficiency of combustible fine particles contained in the exhaust gas discharged from the diesel engine, and suppresses an increase in ventilation resistance due to the clogging of the porous wall of the honeycomb. Therefore, it was found that the collection time is long and the honeycomb structure is suitable for a diesel particulate filter.
【0035】[0035]
【発明の効果】本発明のハニカム構造体は、強度が強
く、それを構成する多孔質壁の可燃性微粒子の目詰まり
が生じにくく、排気ガスの通気抵抗が上昇しにくく、再
生を頻繁に繰り返す必要がないコンパクトで均一に加熱
することができ、ハニカム構造体の溶損やヒートサイク
ルによる熱応力割れが発生しにくい。従って、各種、排
気ガス用フィルタとして優れ、特にディーゼルパティキ
ュレートフィルタとして優れたものである。EFFECTS OF THE INVENTION The honeycomb structure of the present invention has high strength, the combustible fine particles forming the porous wall are less likely to be clogged, the ventilation resistance of exhaust gas is unlikely to increase, and regeneration is frequently repeated. It is unnecessary and compact and can be heated uniformly, and it is difficult for melt damage of the honeycomb structure and thermal stress cracking due to heat cycle to occur. Therefore, it is excellent as a filter for various kinds of exhaust gas, particularly as a diesel particulate filter.
Claims (5)
した可燃性微粒子を加熱焼却することによって再生する
ハニカム構造体において、多孔質壁の全気孔容積に対す
る気孔径50〜70μm の気孔が占める割合が30〜50体積%
であることを特徴とするハニカム構造体。1. A honeycomb structure in which flammable fine particles are collected by a porous wall, and the collected combustible fine particles are regenerated by heating and incineration, and a pore diameter of 50 to 70 μm with respect to the total pore volume of the porous wall. 30-50% by volume of pores
And a honeycomb structure.
が40%以上、平均気孔径が 5〜40μm である請求項1記
載のハニカム構造体。2. The honeycomb structure according to claim 1, wherein the porous wall of the honeycomb structure has a porosity of 40% or more and an average pore diameter of 5 to 40 μm.
主成分とするものである請求項1記載のハニカム構造
体。3. The honeycomb structure according to claim 1, wherein the material of the honeycomb structure is mainly composed of silicon carbide.
粒度において 10%の径(D10) と50% 径(D50) の粒径比(D
10/D50)が 0.2以上の炭化珪素粉末に内割りで10体積%
以下の焼結促進剤を添加した粉末 100体積部に平均粒子
径 40 〜 100μmの造孔剤を 15 〜 25 体積部配合し成
形した後、1600℃以上の非酸化性雰囲気で焼成すること
を特徴とする請求項1、請求項2又は請求項3記載のハ
ニカム構造体の製造方法。4. The average particle size is 5 to 50 μm, and the particle size ratio (D 10 ) of the 10% size (D 10 ) and the 50% size (D 50 ) in the cumulative particle size distribution (D
10 / D 50) is 10% by volume at an internal split in 0.2 or more silicon carbide powder
Characteristic is that 100 parts by volume of powder containing the following sintering accelerator is mixed with 15 to 25 parts by volume of a pore-forming agent having an average particle size of 40 to 100 μm, molded, and then fired in a non-oxidizing atmosphere at 1600 ° C or higher The method for manufacturing a honeycomb structure according to claim 1, claim 2, or claim 3.
ハニカム構造体を使用してなるディーゼルパティキュレ
ートフィルタ。5. A diesel particulate filter using the honeycomb structure according to claim 1, claim 2, or claim 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08700395A JP3461615B2 (en) | 1995-04-12 | 1995-04-12 | Honeycomb structure and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08700395A JP3461615B2 (en) | 1995-04-12 | 1995-04-12 | Honeycomb structure and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08281036A true JPH08281036A (en) | 1996-10-29 |
JP3461615B2 JP3461615B2 (en) | 2003-10-27 |
Family
ID=13902730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08700395A Expired - Lifetime JP3461615B2 (en) | 1995-04-12 | 1995-04-12 | Honeycomb structure and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3461615B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1170270A1 (en) * | 2000-01-17 | 2002-01-09 | Ngk Insulators, Ltd. | Honeycomb structure and method for manufacture thereof |
EP1277714A1 (en) * | 2000-04-14 | 2003-01-22 | Ngk Insulators, Ltd. | Honeycomb structure and method for its manufacture |
FR2828115A1 (en) * | 2001-08-06 | 2003-02-07 | Denso Corp | EXHAUST GAS CLEANER FILTER |
EP1340735A1 (en) * | 2000-11-17 | 2003-09-03 | Ngk Insulators, Ltd. | Silicon carbide based porous article and method for preparing the same |
EP1364930A1 (en) | 2001-02-02 | 2003-11-26 | Ngk Insulators, Ltd. | Honeycomb structure and method for preparation thereof |
US6827754B2 (en) | 2001-09-13 | 2004-12-07 | Hitachi Metals, Ltd. | Ceramic honeycomb filter |
US7438967B2 (en) | 2005-02-04 | 2008-10-21 | Ibiden Co., Ltd. | Ceramic honeycomb structural body |
JP2009517207A (en) * | 2005-11-30 | 2009-04-30 | サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン | Silicon carbide based gas filtration structure with controlled wall surface porosity |
DE102011114465A1 (en) | 2010-09-30 | 2012-04-05 | SAINT-GOBAIN CENTRE DE RECHERCHES ET D'ETUDES EUROPéEN | Honeycomb structure useful for filtering exhaust gases in internal combustion engine or in heat exchangers, comprises several channels, which opens at inlet- and outlet surfaces, made of ceramic material comprising sintered grains |
DE112010001885T5 (en) | 2009-04-02 | 2012-09-13 | SAINT-GOBAIN CENTRE DE RECHERCHES ET D'ETUDES EUROPéEN | SiC filter structure with improved thermomechanical properties |
JP2014144896A (en) * | 2013-01-30 | 2014-08-14 | Kyocera Corp | Ceramic powder, ceramic porous body using the same, honeycomb structure and gas treatment equipment |
CN117142874A (en) * | 2023-11-01 | 2023-12-01 | 山东奥福环保科技股份有限公司 | Thin-wall silicon carbide honeycomb ceramic carrier and preparation method and application thereof |
-
1995
- 1995-04-12 JP JP08700395A patent/JP3461615B2/en not_active Expired - Lifetime
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1170270A1 (en) * | 2000-01-17 | 2002-01-09 | Ngk Insulators, Ltd. | Honeycomb structure and method for manufacture thereof |
EP1170270A4 (en) * | 2000-01-17 | 2006-02-22 | Ngk Insulators Ltd | Honeycomb structure and method for manufacture thereof |
EP1277714A1 (en) * | 2000-04-14 | 2003-01-22 | Ngk Insulators, Ltd. | Honeycomb structure and method for its manufacture |
EP1277714A4 (en) * | 2000-04-14 | 2006-02-22 | Ngk Insulators Ltd | Honeycomb structure and method for its manufacture |
EP1340735A4 (en) * | 2000-11-17 | 2006-02-22 | Ngk Insulators Ltd | Silicon carbide based porous article and method for preparing the same |
EP1340735A1 (en) * | 2000-11-17 | 2003-09-03 | Ngk Insulators, Ltd. | Silicon carbide based porous article and method for preparing the same |
EP1364930A1 (en) | 2001-02-02 | 2003-11-26 | Ngk Insulators, Ltd. | Honeycomb structure and method for preparation thereof |
FR2828115A1 (en) * | 2001-08-06 | 2003-02-07 | Denso Corp | EXHAUST GAS CLEANER FILTER |
US6827754B2 (en) | 2001-09-13 | 2004-12-07 | Hitachi Metals, Ltd. | Ceramic honeycomb filter |
US7438967B2 (en) | 2005-02-04 | 2008-10-21 | Ibiden Co., Ltd. | Ceramic honeycomb structural body |
JP2009517207A (en) * | 2005-11-30 | 2009-04-30 | サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン | Silicon carbide based gas filtration structure with controlled wall surface porosity |
DE112010001885T5 (en) | 2009-04-02 | 2012-09-13 | SAINT-GOBAIN CENTRE DE RECHERCHES ET D'ETUDES EUROPéEN | SiC filter structure with improved thermomechanical properties |
DE102011114465A1 (en) | 2010-09-30 | 2012-04-05 | SAINT-GOBAIN CENTRE DE RECHERCHES ET D'ETUDES EUROPéEN | Honeycomb structure useful for filtering exhaust gases in internal combustion engine or in heat exchangers, comprises several channels, which opens at inlet- and outlet surfaces, made of ceramic material comprising sintered grains |
JP2014144896A (en) * | 2013-01-30 | 2014-08-14 | Kyocera Corp | Ceramic powder, ceramic porous body using the same, honeycomb structure and gas treatment equipment |
CN117142874A (en) * | 2023-11-01 | 2023-12-01 | 山东奥福环保科技股份有限公司 | Thin-wall silicon carbide honeycomb ceramic carrier and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3461615B2 (en) | 2003-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4246425B2 (en) | Honeycomb filter | |
US7141089B2 (en) | Magnesium aluminum silicate structures for DPF applications | |
JP4136319B2 (en) | Honeycomb structure and manufacturing method thereof | |
JP2578176B2 (en) | Porous ceramic honeycomb filter and method for producing the same | |
JP4954705B2 (en) | Porous honeycomb filter | |
JP4516017B2 (en) | Ceramic honeycomb structure | |
JP2938740B2 (en) | Cordierite-based ceramic filter and method of manufacturing the same | |
EP1364928B1 (en) | Honeycomb structure | |
JP4495152B2 (en) | Honeycomb structure and manufacturing method thereof | |
US6699429B2 (en) | Method of making silicon nitride-bonded silicon carbide honeycomb filters | |
EP2106835A1 (en) | Ceramic honeycomb filter and method for manufacturing the same | |
JP3927038B2 (en) | Si-containing honeycomb structure and manufacturing method thereof | |
JP2007525612A (en) | Cordierite filter with reduced pressure loss | |
JP2013514966A (en) | Fiber reinforced porous substrate | |
EP1453587A1 (en) | Composite cordierite filters | |
JPWO2008078716A1 (en) | Ceramic honeycomb filter and manufacturing method thereof | |
WO2006041174A1 (en) | Ceramic honeycomb structure | |
JP2004270569A (en) | Honeycomb structure | |
JP3461615B2 (en) | Honeycomb structure and manufacturing method thereof | |
WO2009118862A1 (en) | Process for producing honeycomb structure | |
JP6059954B2 (en) | Honeycomb filter | |
JP3642836B2 (en) | Silicon carbide honeycomb structure and manufacturing method thereof | |
JPH1181983A (en) | Particulate filter | |
JP2022128501A (en) | Ceramics madreporite and manufacturing method thereof, and filter for dust collection | |
JP2004322082A (en) | Ceramic honeycomb filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090815 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100815 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100815 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110815 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110815 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120815 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120815 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130815 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |