JP4668089B2 - Geothermal utilization system with rainwater storage tank - Google Patents

Geothermal utilization system with rainwater storage tank Download PDF

Info

Publication number
JP4668089B2
JP4668089B2 JP2006054800A JP2006054800A JP4668089B2 JP 4668089 B2 JP4668089 B2 JP 4668089B2 JP 2006054800 A JP2006054800 A JP 2006054800A JP 2006054800 A JP2006054800 A JP 2006054800A JP 4668089 B2 JP4668089 B2 JP 4668089B2
Authority
JP
Japan
Prior art keywords
storage tank
heat
rainwater storage
medium pipe
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006054800A
Other languages
Japanese (ja)
Other versions
JP2007231618A (en
Inventor
弘哲 中山
清智 矢木橋
善則 松永
俊司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2006054800A priority Critical patent/JP4668089B2/en
Publication of JP2007231618A publication Critical patent/JP2007231618A/en
Application granted granted Critical
Publication of JP4668089B2 publication Critical patent/JP4668089B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/30Geothermal collectors using underground reservoirs for accumulating working fluids or intermediate fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Description

本発明は、土壌を安定して湿潤状態に保持できる雨水貯留槽を用いた熱交換効率に優れる地熱利用システムに関する。
The present invention relates to a geothermal system excellent in heat exchange efficiency with rain water reservoir soil Ru can stably hold the wet state.

近年、森林伐採などにより大地の保水能力が低下し、鉄砲水や水不足などの災害が年々増加している。この対策として、集中豪雨時の雨水を雨水貯留槽に一旦貯留し、河川の水位が低下したところで放流したり、貯留した雨水をトイレ、洗濯、洗車、屋上緑化の散水などに利用することが行われている。   In recent years, the water retention capacity of the earth has decreased due to deforestation, etc., and disasters such as flash floods and water shortages are increasing year by year. As countermeasures, rainwater during torrential rains is temporarily stored in rainwater storage tanks and discharged when the water level of the river drops, or the stored rainwater is used for toilets, washing, car washing, watering for rooftop greening, etc. It has been broken.

一方、地熱(年間を通じて約15℃)を冷暖房に利用する方法として、地中埋設した雨水貯留槽の内部や下方に、熱交換機の熱媒体管路(クールチューブ)を配置する方法(特許文献1、2)が提案されているが、十分な熱交換効率が得られていない。また熱媒体管路を、吸水性樹脂を含ませた土壌中に配置する方法(特許文献3)は、吸水性樹脂が一旦暖まってしまうと水の移動が殆どなくなってその熱交換効率が低下し、さらにNaイオン濃度の高い土壌では吸水性樹脂の吸水機能が十分に得られないなどの問題がある。   On the other hand, as a method of using geothermal heat (approximately 15 ° C. throughout the year) for cooling and heating, a method of disposing a heat medium pipe (cool tube) of a heat exchanger inside or below a rainwater storage tank buried underground (Patent Document 1) 2) has been proposed, but sufficient heat exchange efficiency has not been obtained. Further, in the method (Patent Document 3) in which the heat medium pipe is disposed in the soil containing the water-absorbent resin, once the water-absorbent resin is warmed, there is almost no movement of water and the heat exchange efficiency is lowered. In addition, there is a problem that the water absorption function of the water absorbent resin cannot be sufficiently obtained in soil having a high Na ion concentration.

特開平9−292153号公報Japanese Patent Laid-Open No. 9-292153 特開平9−137478号公報JP-A-9-137478 特開2001−74316号公報JP 2001-74316 A

このような状況に鑑み、本発明者は地中埋設した熱交換機の熱媒体管路と土壌との熱交換効率の向上および安定化について検討した。その結果、雨水貯留槽の水を、熱媒体管路を埋設した土壌に滲出させることにより土壌と熱媒体の熱交換効率が著しく向上することを知見し、さらに検討を重ねて本発明を完成させるに至った。
本発明は、土壌を安定して湿潤状態に保持できる雨水貯留槽を用いた熱交換効率に優れる地熱利用システムの提供を目的とする。
In view of such a situation, the present inventor examined improvement and stabilization of heat exchange efficiency between the heat medium pipe line of the heat exchanger embedded in the ground and the soil. As a result, it has been found that the heat exchange efficiency between the soil and the heat medium is significantly improved by leaching the water in the rainwater storage tank into the soil in which the heat medium pipe is embedded, and further studies are made to complete the present invention. It came to.
The present invention has an object to provide a geothermal system excellent in heat exchange efficiency with rain water storage tank that can hold soil stably the wet.

請求項1に記載の発明は、地中に埋設された雨水貯留槽の壁部の少なくとも一部が透水性部材で形成されている雨水貯留槽の側壁下部の外側の少なくとも一部に液体または空気を熱媒体として利用する熱交換機の熱媒体管路を埋設し、雨水貯留槽の水を壁部から熱媒体管路を埋設した土壌に滲出させて、埋設した熱媒体管路を利用して土壌と熱交換を行う熱媒体管路と前記雨水貯留槽を有する地熱利用システムである。
The invention according to claim 1, or a liquid to at least a portion of the outer side wall lower part of the rain water storage tank at least partially that is formed by the permeable member of the wall of the rainwater storage tank which is buried in the ground The heat medium pipe of the heat exchanger that uses air as the heat medium is buried, the water of the rainwater storage tank is leached from the wall to the soil where the heat medium pipe is buried, and the buried heat medium pipe is used. a geothermal system with the rainwater reservoir and heat medium pipe to perform soil and heat exchange.

請求項2記載の発明は、雨水貯留槽の側壁上部の少なくとも一部が透水性部材で形成され、前記側壁上部の下側部分が非透水性部材で形成されている側壁面を有する雨水貯留槽の側壁下部の外側の少なくとも一部に液体または空気を熱媒体として利用する熱交換機の熱媒体管路を埋設し、雨水貯留槽の水を壁部から熱媒体管路を埋設した土壌に滲出させて、埋設した熱媒体管路を利用して土壌と熱交換を行う熱媒体管路と雨水貯留槽を有する地熱利用システムである。
このような側壁面は、雨水貯留槽の全面でなくとも、側壁面の少なくとも1面が上記の構成になっていれば良い。
According to a second aspect of the invention, the rain at least a portion of the upper portion of the side wall of the rainwater storage tank is formed by water-permeable member, the lower portion of the sidewall upper portion that have a side wall surface formed by an impermeable member Soil in which the heat medium pipe of a heat exchanger that uses liquid or air as a heat medium is embedded in at least a part of the outside of the lower part of the side wall of the water storage tank, and the heat medium pipe is embedded from the wall to the water of the rainwater storage tank It is a geothermal utilization system having a heat medium pipe and a rainwater storage tank that exudes and heat-exchanges with soil using the buried heat medium pipe.
Even if such a side wall surface is not the entire surface of the rainwater storage tank, it is sufficient that at least one of the side wall surfaces has the above-described configuration.

請求項3記載の発明は、地中に埋設された雨水貯留槽の壁部の少なくとも一部が透水性部材で形成されており、前記雨水貯留槽の外方に所定間隔を開けて外壁が設けられている請求項1または請求項2に記載の埋設した熱媒体管路を利用して土壌と熱交換を行う熱媒体管路と雨水貯留槽を有する地熱利用システムである。
According to a third aspect of the present invention, at least a part of a wall portion of the rainwater storage tank buried in the ground is formed of a water permeable member, and an outer wall is provided at a predetermined interval outside the rainwater storage tank. are to claim 1 or claim 2 which is a geothermal system having a heat medium pipe and rainwater storage tank to perform a soil heat exchanger utilizing the buried thermal medium conduit according.

請求項4記載の発明は、雨水貯留槽の外方に所定間隔を開けて設けられた外壁が雨水貯留槽を外側から覆う容器形状をしているもう1つの貯留槽の外壁の一部であるような貯留槽を設けて、貯留槽を2重構造とし、内側の貯留槽と外側の貯留槽の間に、土砂を配置した請求項3に記載の埋設した熱媒体管路を利用して土壌と熱交換を行う熱媒体管路と雨水貯留槽を有する地熱利用システムである。
The invention described in claim 4 is a part of the outer wall of the other storage tank in which the outer wall provided at a predetermined interval outside the rainwater storage tank has a container shape that covers the rainwater storage tank from the outside. provided reservoir as the reservoir is a double structure, between the inner reservoir and the outer reservoir of using heat medium conduit embedded was according to claim 3 which is disposed a sediment soil a geothermal system having a heat medium pipe and rainwater storage tank for exchanging heat with.

請求項記載の発明は、請求項1乃至請求項4のいずれかに記載の埋設した熱媒体管路を利用して土壌と熱交換を行う熱媒体管路と雨水貯留槽を有する地熱利用システムにおいて、
雨水貯留槽の側壁下部の外側の少なくとも一部に熱交換機の熱媒体管路を埋設し、前記埋設した熱媒体管路と、さらに前記雨水貯留槽内の貯留水中に熱交換機の熱媒体管路が配置され、前記埋設した熱媒体管路と、前記雨水貯留槽内に配置した熱媒体管路の両者を利用して、土壌と熱交換を行う熱媒体管路と雨水貯留槽を有する地熱利用システムである。
The invention according to claim 5 is a geothermal heat utilization system having a heat medium pipe and a rainwater storage tank for exchanging heat with soil using the buried heat medium pipe according to any one of claims 1 to 4. In
At least a portion of the outer side wall lower part of the rainwater storage tank buried heat medium pipe of a heat exchanger, and a heat medium pipe mentioned above embedded, further heat medium pipe of the heat exchanger to the storage water of the rainwater storage tank Geothermal utilization having a heat medium pipe line and a rain water storage tank for exchanging heat with the soil using both the buried heat medium pipe line and the heat medium pipe line arranged in the rain water storage tank System.

請求項記載の発明は、請求項1乃至請求項5のいずれかに記載の埋設した熱媒体管路を利用して土壌と熱交換を行う熱媒体管路と雨水貯留槽を有する地熱利用システムであって、前記雨水貯留槽の壁部が熱伝導率0.1W/(m・K)以上の材料により形成されていることを特徴とする地熱利用システムである。
A sixth aspect of the present invention is a geothermal utilization system having a heat medium pipe that performs heat exchange with soil using the embedded heat medium pipe according to any one of claims 1 to 5 and a rainwater storage tank. The wall portion of the rainwater storage tank is made of a material having a thermal conductivity of 0.1 W / (m · K) or more.

請求項記載の発明は、請求項1乃至請求項5のいずれかに記載の埋設した熱媒体管路を利用して土壌と熱交換を行う熱媒体管路と雨水貯留槽を有する地熱利用システムであって、前記雨水貯留槽の壁部の透水係数を雨水貯留槽の壁部の外側の土砂の透水係数より小さくしたことを特徴とする熱媒体管路と雨水貯留槽を有する地熱利用システムである。
A seventh aspect of the present invention is a geothermal heat utilization system having a heat medium pipe that performs heat exchange with soil using the embedded heat medium pipe according to any one of claims 1 to 5 and a rainwater storage tank. In the geothermal utilization system having a heat medium pipe line and a rainwater storage tank, the permeability coefficient of the wall portion of the rainwater storage tank is made smaller than that of the earth and sand outside the wall portion of the rainwater storage tank. is there.

請求項記載の発明は、請求項5乃至請求項7のいずれかに記載の埋設した熱媒体管路を利用して土壌と熱交換を行う熱媒体管路と雨水貯留槽を有する地熱利用システムにおいて、前記雨水貯留槽が地熱利用のための蓄熱機能と雨水の生活水としての利用の複合機能を有することを特徴とする熱媒体管路と雨水貯留槽を有する地熱利用システムである。
The invention according to claim 8 is a geothermal heat utilization system having a heat medium pipe that performs heat exchange with soil using the embedded heat medium pipe according to any one of claims 5 to 7 and a rainwater storage tank. The rainwater storage tank has a heat storage function for use of geothermal heat and a combined function of use as rainwater for daily use, and is a geothermal utilization system having a heat medium pipe line and a rainwater storage tank.

本発明の雨水貯留槽は地中に埋設され、かつ透水性壁部を有するので、貯留槽内の貯留水は前記透水性壁部を通って雨水貯留槽近傍の土壌に滲出する。従って、雨水貯留槽近傍の土壌は湿潤状態が安定して保持される。
本発明の地熱利用システムは、前記湿潤状態となる土壌に熱交換機の熱媒体管路を埋設したものなので十分な熱交換効率が安定して得られる。
Since the rainwater storage tank of the present invention is embedded in the ground and has a water permeable wall, the stored water in the storage tank oozes out to the soil near the rainwater storage tank through the water permeable wall. Accordingly, the soil in the vicinity of the rainwater storage tank is stably maintained in a wet state.
Since the geothermal utilization system of the present invention is obtained by burying a heat medium pipe of a heat exchanger in the wet soil, sufficient heat exchange efficiency can be stably obtained.

本発明を、図を参照して具体的に説明する。符号の重複説明は省略する。
図1に示すように、本発明の地熱利用システムに用いる雨水貯留槽1は、地中2に埋設されており、雨水貯留槽1の壁部3の少なくとも一部が透水性部材4により形成されている。
この雨水貯留槽1に雨水5が雨水流入管6から流れ込み、貯留された雨水(貯留水)5が透水性部材4により形成された透水性壁部7の下端を越えだすと貯留水5が透水性壁部7から地中2に徐々に滲出し始め、雨水貯留槽1近傍が湿潤状態の土壌8になる。図1で9は雨水貯留槽1の蓋である。
The present invention will be specifically described with reference to the drawings. Description of overlapping symbols is omitted.
As shown in FIG. 1, the rainwater storage tank 1 used in the geothermal utilization system of the present invention is embedded in the underground 2, and at least a part of the wall 3 of the rainwater storage tank 1 is formed by a water permeable member 4. ing.
When the rainwater 5 flows into the rainwater storage tank 1 from the rainwater inflow pipe 6 and the stored rainwater (reserved water) 5 exceeds the lower end of the permeable wall portion 7 formed by the permeable member 4, the stored water 5 becomes permeable. It begins to gradually exude from the sex wall 7 into the ground 2, and the vicinity of the rainwater storage tank 1 becomes wet soil 8. In FIG. 1, 9 is a lid of the rainwater storage tank 1.

透水性壁部7から滲出する滲出水10は、図2(イ)に示すように、土壌と熱交換しながら徐々に地中2を降下して行き、予め埋設された熱媒体管路11の表面を濡らしつつ熱媒体管路11と熱交換する。滲出水10の増加とともに熱媒体管路11が埋設された部分の土壌は湿潤し、湿潤状態の土壌域12が形成される。この土壌域12と熱媒体管路11間の熱交換効率は滲出水10が熱媒体管路を濡らすため飛躍的に向上し、熱媒体管路11内の熱媒体は効率よく加温或いは冷却される。   As shown in FIG. 2 (a), the exuded water 10 that exudes from the water permeable wall portion 7 gradually descends the ground 2 while exchanging heat with the soil, and the preheated heat medium conduit 11 Heat exchange with the heat medium pipe 11 is performed while the surface is wet. As the amount of the exudate 10 increases, the portion of the soil where the heat medium pipe 11 is embedded is moistened to form a wet soil region 12. The heat exchange efficiency between the soil region 12 and the heat medium pipe 11 is drastically improved because the exudate 10 wets the heat medium pipe, and the heat medium in the heat medium pipe 11 is efficiently heated or cooled. The

熱媒体管路11は家屋13に設置された熱交換機本体14に接続されており、熱媒体管路11内の熱媒体は熱交換機本体14内で放熱或いは吸熱される。
前記熱媒体は、水などの液体でも空気などの気体でもよい。熱媒体に液体を用いる場合は、水のほか、不凍液や防腐剤の入った水や、アルコールなどの水溶性有機溶媒を混合した水を用いることができる。空気の場合は、熱交換機本体の代わりに送風機を用いて空気を循環させることで冷暖房が行える。
The heat medium pipe 11 is connected to a heat exchanger main body 14 installed in the house 13, and the heat medium in the heat medium pipe 11 is radiated or absorbed in the heat exchanger main body 14.
The heat medium may be a liquid such as water or a gas such as air. In the case of using a liquid as the heat medium, water mixed with a water-soluble organic solvent such as alcohol or water containing an antifreeze or a preservative can be used in addition to water. In the case of air, air conditioning can be performed by circulating air using a blower instead of the heat exchanger body.

本発明において、雨水貯留槽の壁部は、全壁を透水性部材4により形成してもよいが、図2(イ)に示したように、側壁上部を透水性とし、雨水貯留槽1の側壁下部に熱媒体管路11を埋設するようにすると、滲出水10は土壌と熱交換しつつ降下するため熱媒体管路11が効率よく冷却される。このとき、埋設する熱媒体管路は、雨水貯留槽の周囲を囲うように配設するのではなく、その何箇所かの側壁の一部に配設することでも良い。たとえば、雨水貯留槽の側壁の一面のみを透水性部材4で形成し、その側壁部分の土壌に熱媒体管路を配設すると、貯留水が有効に利用される。
In the present invention, the wall portion of the rainwater storage tank may be entirely formed of the water permeable member 4, but as shown in FIG. If the heat medium pipe 11 is embedded in the lower portion of the side wall, the exudate 10 descends while exchanging heat with the soil, so that the heat medium pipe 11 is efficiently cooled. At this time, the heat medium pipe to be buried may not be arranged so as to surround the rainwater storage tank, but may be arranged on some of the side walls. For example, when only one side wall of the rainwater storage tank is formed of the water permeable member 4 and the heat medium pipe is disposed in the soil of the side wall, the stored water is effectively used.

雨水貯留槽1内の貯留水5が、図2(ロ)に示すように、透水性壁部7の下端まで下がると貯留水5の滲出が止まるため熱交換効率が低下する。熱交換機を稼動し続けたいが降雨がないときは雨水貯留槽に上水などを補給して凌ぐことも可能である。側壁下部を透水性壁部とする場合は、雨水貯留槽内の貯留水を使い切り、雨水貯留槽内の雨水が枯渇する可能性があるため、側壁下部を非透水性とする方が雨水貯留槽を有する地熱利用システムを長時間安定的に使用するには、有利である。   As shown in FIG. 2B, when the stored water 5 in the rainwater storage tank 1 falls to the lower end of the water permeable wall portion 7, the exudation of the stored water 5 stops, and the heat exchange efficiency is lowered. If you want to keep the heat exchanger running but there is no rain, it is possible to replenish the rainwater storage tank with fresh water. When the lower part of the side wall is a permeable wall part, it is possible to use up the stored water in the rainwater storage tank and the rainwater in the rainwater storage tank may be depleted. It is advantageous to stably use a geothermal utilization system having a long time.

透水性壁部の透水性は、高すぎると貯留水が短時間で地中に滲出してしまって土壌の湿潤状態が持続せず、低すぎると十分な湿潤状態が得られず熱交換効率が低下する。従って、透水性壁部の透水性は、土壌の状態、貯留槽の容量などを考慮して適切に決める必要がある。   If the water permeability of the water-permeable wall is too high, the stored water will ooze into the ground in a short time and the wet state of the soil will not be maintained. descend. Accordingly, it is necessary to appropriately determine the water permeability of the water permeable wall portion in consideration of the state of the soil, the capacity of the storage tank, and the like.

本発明において、透水性壁部の材料には、微細な孔やスリットを有する樹脂成形品、多孔質セラミック、不織布などが用いられる。材質的には、適切な強度および加工性を有し、透水加工(微細な孔やスリットを設ける加工)が可能な材料が用いられる。   In the present invention, a resin molded product having a fine hole or a slit, a porous ceramic, a nonwoven fabric, or the like is used as the material of the water permeable wall. In terms of material, a material having appropriate strength and workability and capable of water permeation processing (processing to provide fine holes and slits) is used.

前記微細な孔やスリットのサイズは、土砂粒子や砂粒子の大きさや透水係数を考慮して、通常1mmから10μmの範囲の大きさに適宜設定される。この理由は、1mmを超えると土壌粒子や砂粒子が徐々に貯留槽に進入し、貯留槽内に堆積するためであり、また10μm未満では孔やスリットが目詰まりを起こすからである。   The size of the fine holes and slits is appropriately set in the range of usually 1 mm to 10 μm in consideration of the size of sand particles and sand particles and the water permeability coefficient. This is because if the particle diameter exceeds 1 mm, soil particles and sand particles gradually enter the storage tank and accumulate in the storage tank, and if it is less than 10 μm, the holes and slits are clogged.

孔のサイズは、土砂粒子や砂粒子の大きさ、形などを考慮して決定しなければならない。実際の土砂は、土砂の種類や大きさ、形、硬さなどが一定ではなく、種類の異なる粒子の混合物であることも多いため、土砂粒子や砂粒子の種類や大きさに応じて経験的に決定される。土砂粒子や砂粒子のサイズが比較的粗い、透水係数(大気圧下の透水係数k)がやや大きめの場合には、孔とスリットのサイズは上記範囲で比較的大きめに設定され、また土砂が微細砂やシルトあるいは粘土またはこれらの混合物で形成され、その大きさが小さめで透水係数が小さい場合には、孔とスリットのサイズは上記範囲で小さめに設定する。また、透水係数は、実用的には、10−1cm/s〜10−7cm/sの範囲に設計することが多い。土壌が粘土質で土壌粒子が超微細でほぼ非透水な場合には、ごく稀には孔やスリットのサイズを10μm〜1μmに設定することもある。 The pore size must be determined in consideration of the size and shape of earth and sand particles and sand particles. The actual sediment is not constant in type, size, shape, hardness, etc., and is often a mixture of different types of particles, so it is empirical depending on the type and size of the sediment particles and sand particles. To be determined. If the size of the earth and sand particles or sand particles is relatively coarse and the hydraulic conductivity (permeability coefficient k under atmospheric pressure) is slightly large, the size of the holes and slits is set relatively large in the above range, and When formed from fine sand, silt, clay, or a mixture thereof and having a small size and a low permeability coefficient, the size of the hole and slit is set to be small within the above range. Moreover, the water permeability coefficient is often designed in the range of 10 −1 cm / s to 10 −7 cm / s in practice. If the soil is clayey and the soil particles are ultrafine and almost impermeable, the size of the holes and slits may be set to 10 μm to 1 μm very rarely.

請求項4記載の発明のように、貯留槽を2重構造としたときは、内側の雨水貯留槽と外側の雨水貯留槽の間に透水係数の小さい土砂を入れて内側の雨水貯留槽の周囲での滲出水の滞留時間が長くなるようにすると、土壌と熱媒体管路間の熱交換効率を向上させることができる。このように雨水貯留槽の周りの土砂の透水係数を所定範囲に選定することは、雨水貯留槽の外側に外壁を有しない1重の雨水貯留槽構造の熱媒体管路と雨水貯留槽を有する地熱利用システムである場合でも有効である。
When the storage tank has a double structure as in the invention described in claim 4, earth and sand having a small hydraulic conductivity are inserted between the inner rainwater storage tank and the outer rainwater storage tank, and the periphery of the inner rainwater storage tank. If the residence time of the exudate water is increased, the heat exchange efficiency between the soil and the heat medium pipe can be improved. In this way, selecting the permeability coefficient of the earth and sand around the rainwater storage tank within a predetermined range includes a heat medium pipe and a rainwater storage tank having a single rainwater storage tank structure that does not have an outer wall outside the rainwater storage tank. Even if it is a geothermal system, it is effective.

以上の他、透水性部材で形成された雨水貯留槽の透水性壁部の透水係数を、その壁部の周りの土砂の透水係数より小さく設定することにより、貯留槽の外側から貯留槽への雨水の流入を防止でき、本発明の効果を十分なものとすることができる。このように、土砂の透水係数と雨水貯留槽の透水性壁部の透水係数の比率は、土砂の透水係数と雨水貯留槽の透水性壁部の透水係数の1.2倍から1.3倍程度の差をつけることは必要であり、望ましくは2倍以上にすべきである。   In addition to the above, by setting the permeability coefficient of the permeable wall part of the rainwater storage tank formed of the permeable member to be smaller than the permeability coefficient of the earth and sand around the wall part, the outside of the storage tank can be transferred to the storage tank. Inflow of rainwater can be prevented, and the effect of the present invention can be made sufficient. Thus, the ratio of the permeability coefficient of earth and sand and the permeability coefficient of the permeable wall of the rainwater storage tank is 1.2 to 1.3 times the permeability coefficient of earth and sand and the permeability of the permeable wall of the rainwater storage tank. It is necessary to make a difference in degree, and should preferably be doubled or more.

熱媒体管路の熱交換効率を左右する因子としては、透水係数の他、貯留槽の壁部の熱伝導率の影響がある。雨水貯留槽内の水温を予め土壌温度に近づけておくと土壌と熱媒体管路間の熱交換が効率よく行われるので、雨水貯留槽の壁部(透水性壁部を含む)には、熱伝導率が0.1W/(m・K)以上、更には0.5W/(m・K)以上の熱伝導性に優れる材料を用いるのが望ましい。   Factors affecting the heat exchange efficiency of the heat medium pipe include the influence of the thermal conductivity of the wall of the storage tank in addition to the water permeability. When the water temperature in the rainwater storage tank is brought close to the soil temperature in advance, heat exchange between the soil and the heat medium pipe line is performed efficiently, so the wall (including the permeable wall) of the rainwater storage tank It is desirable to use a material with excellent thermal conductivity having a conductivity of 0.1 W / (m · K) or more, more preferably 0.5 W / (m · K) or more.

熱伝導率が0.1W/(m・K)以上の材料としては、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ塩化ビニル樹脂を主材とする材料、多孔質体を作り易いポリスチレンを主材とする発泡スチレン樹脂、ポリエチレンテレフタレート系樹脂の不織布、アクリル樹脂、ポリカーボネート樹脂、エンジニアリングプラスチックなどが挙げられる。   Materials with a thermal conductivity of 0.1 W / (m · K) or higher include materials based on polyethylene resin, polypropylene resin, and polyvinyl chloride resin, and foamed styrene based on polystyrene that can easily form porous materials. Examples thereof include a resin, a nonwoven fabric of polyethylene terephthalate resin, an acrylic resin, a polycarbonate resin, and an engineering plastic.

熱伝導率が0.5W/(m・K)以上の材料としては、現在も研究が盛んな機能性樹脂であるところの、ポリエチレン系高熱伝導性樹脂およびポリフェニレンサルファイド系高熱伝導性樹脂などが挙げられる。   Examples of materials having a thermal conductivity of 0.5 W / (m · K) or higher include polyethylene-based high thermal conductive resins and polyphenylene sulfide-based high thermal conductive resins, which are functional resins that have been actively studied. It is done.

請求項記載発明に用いる熱媒体管路と雨水貯留槽を有する地熱利用システムや請求項に記載の発明に用いる熱媒体管路と雨水貯留槽を有する地熱利用システムは、図3に示す1例を示すように、地中埋設された雨水貯留槽1を取り囲むように外壁15を設けたもので、透水性壁部7からの滲出水10はこの外壁15内に留まるため、土壌の湿潤状態が長期間持続する。従って、前記湿潤状態の土壌域12に熱媒体管路11を埋設した本発明の地熱利用システムは良好な熱交換が長期間安定して行われる。
雨水貯留槽1と外壁15間に天井を設けると湿潤状態がより長く持続する。
A geothermal utilization system having a heat medium pipe and a rainwater storage tank used in the invention according to claim 3 and a geothermal utilization system having a heat medium pipe and a rainwater storage tank used in the invention according to claim 4 are shown in FIG. As shown in one example, the outer wall 15 is provided so as to surround the rainwater storage tank 1 buried in the ground, and the exudate 10 from the permeable wall 7 remains in the outer wall 15, so that the soil is wet. The condition persists for a long time. Therefore, in the geothermal heat utilization system of the present invention in which the heat medium pipe 11 is embedded in the wet soil region 12, good heat exchange is stably performed for a long time.
When a ceiling is provided between the rainwater storage tank 1 and the outer wall 15, the wet state lasts longer.

この発明において、外壁15の高さは、滲出水が下方に移動するので透水性壁部より低くてもよいが、土壌の湿潤状態が外壁の外側にはみ出さず、また埋め戻し作業の邪魔にならない高さにする必要がある。   In the present invention, the height of the outer wall 15 may be lower than that of the permeable wall because exudate moves downward. However, the wet state of the soil does not protrude outside the outer wall and disturbs the backfilling operation. It is necessary to make it a height that does not become necessary.

外壁が底板を有する受け皿状の場合は、滲出水が外壁内に多量に留まって土壌温度が外気温に近づく虞がある。そのため底部に穴を空けてある程度の水抜きが必要になる。外壁にも熱伝導性の高い材料をもちいて、外壁外側の地熱を外壁内側に伝達するのが良い。   When the outer wall is in the shape of a saucer having a bottom plate, a large amount of exudate water may remain in the outer wall and the soil temperature may approach the outside air temperature. Therefore, it is necessary to make a certain amount of water by making a hole in the bottom. It is preferable to use a material having high thermal conductivity for the outer wall to transmit the geothermal heat outside the outer wall to the inner side of the outer wall.

雨水貯留槽の埋め戻しには、掘り起こした土をそのまま用いても良いが、保水性、熱伝導性などに優れる樹脂を混合した土を埋め戻すと熱交換効率を高めることができる。保水性樹脂としては橋かけポリアクリル酸塩系、ポリビニルアルコール/ポリアクリル酸塩系などの高吸水性ポリマーが用いられる。   Although the excavated soil may be used as it is for the backfilling of the rainwater storage tank, the heat exchange efficiency can be improved by backfilling the soil mixed with a resin excellent in water retention, thermal conductivity and the like. As the water-retaining resin, a highly water-absorbing polymer such as a crosslinked polyacrylate salt or polyvinyl alcohol / polyacrylate salt is used.

本発明において、雨水貯留槽内の貯留水の温度が地熱に近い温度であれば、図4に示すように、雨水貯留槽1の貯留水5中に熱媒体管路11を配置して熱交換を行うことができる。また貯留水をヒートポンプなどの熱源に用いることもできる。さらに水温に関係なく、貯留水をポンプでくみ上げて、家屋の外壁に散水して冷房することも、樹木の散水などに利用することもできる。さらに、トイレの水洗水などに利用することも可能である。上記のように、雨水貯留槽を地熱利用システムとして使用する他に、生活用水として複合利用することも可能であることが本発明の特徴の一つである。   In the present invention, if the temperature of the stored water in the rainwater storage tank is close to the geothermal heat, a heat medium pipe 11 is arranged in the stored water 5 of the rainwater storage tank 1 as shown in FIG. It can be performed. The stored water can also be used as a heat source such as a heat pump. Furthermore, regardless of the water temperature, the stored water can be pumped and sprinkled on the outer wall of the house for cooling, or used for watering trees. Furthermore, it can be used for flushing toilets. As described above, in addition to using the rainwater storage tank as a geothermal utilization system, it is also one of the features of the present invention that it can be used in combination as domestic water.

なお、本発明では、主として経済的であるなどの理由により、貯留槽内に貯留する対象を雨水としていることから、地下に埋設した貯留槽のことを総称して雨水貯留槽と記載しているが、地熱利用システムを安定して稼動するためには、貯留槽に一定量以上の水を常時確保しておく必要があることから、雨水の代わりに上水や融雪水を使用して発明の効果を実現する場合であっても本発明の権利に含まれるものとする。   In the present invention, because the target to be stored in the storage tank is rainwater mainly because of economic reasons, the storage tank buried underground is collectively described as a rainwater storage tank. However, in order to operate the geothermal utilization system stably, it is necessary to always secure a certain amount of water in the storage tank. Therefore, it is necessary to use clean water or snowmelt instead of rainwater. Even when the effect is realized, it is included in the right of the present invention.

本発明の地熱利用システムに用いる雨水貯留槽の実施形態を示す縦断面説明図である。It is longitudinal cross-sectional explanatory drawing which shows embodiment of the rainwater storage tank used for the geothermal utilization system of this invention. (イ)、(ロ)は本発明の地熱利用システムの第1の実施形態を示すそれぞれ縦断面説明図である。(A) and (B) are longitudinal sectional explanatory views showing a first embodiment of the geothermal utilization system of the present invention. 本発明の地熱利用システムの第2の実施形態を示す縦断面説明図である。It is a longitudinal cross-sectional explanatory drawing which shows 2nd Embodiment of the geothermal utilization system of this invention. 本発明の地熱利用システムの第3の実施形態を示す縦断面説明図である。It is longitudinal cross-sectional explanatory drawing which shows 3rd Embodiment of the geothermal utilization system of this invention.

符号の説明Explanation of symbols

1 雨水貯留槽
2 地中
3 雨水貯留槽の壁部
4 透水性部材
5 貯留水
6 雨水流入管
7 透水性部材により形成された透水性壁部
8 湿潤状態の土壌
9 雨水貯留槽の蓋
10 透水性壁部からの滲出水
11 熱媒体管路
12 湿潤状態の土壌域
13 家屋
14 熱交換機本体
15 外壁
DESCRIPTION OF SYMBOLS 1 Rainwater storage tank 2 Underground 3 Rainwater storage tank wall 4 Permeability member 5 Reservation water 6 Rainwater inflow pipe 7 Permeability wall part formed of the water permeability member 8 Wet soil 9 Rainwater storage tank lid 10 Permeation Exudate water from sexual wall 11 Heat medium conduit 12 Wet soil region 13 House 14 Heat exchanger body 15 Outer wall

Claims (8)

地中に埋設された雨水貯留槽の壁部の少なくとも一部が透水性部材で形成されている雨水貯留槽の側壁下部の外側の少なくとも一部に液体または空気を熱媒体として利用する熱交換機の熱媒体管路を埋設し、雨水貯留槽の水を壁部から熱媒体管路を埋設した土壌に滲出させて、埋設した熱媒体管路を利用して土壌と熱交換を行う熱媒体管路と前記雨水貯留槽を有する地熱利用システム。 Heat exchanger that utilizes a liquid or air as a heating medium to at least a portion of the outer side wall lower part of the rain water storage tank at least partially that is formed by the permeable member of the wall of the rainwater storage tank which is buried in the ground The heat transfer medium pipe is used to exude heat from the rainwater storage tank from the wall to the soil where the heat transfer medium pipe is embedded, and to exchange heat with the soil using the embedded heat transfer medium pipe. A geothermal utilization system having a road and the rainwater storage tank. 雨水貯留槽の側壁上部の少なくとも一部が透水性部材で形成され、前記側壁上部の下側部分が非透水性部材で形成されている側壁面を有する雨水貯留槽の側壁下部の外側の少なくとも一部に液体または空気を熱媒体として利用する熱交換機の熱媒体管路を埋設し、雨水貯留槽の水を壁部から熱媒体管路を埋設した土壌に滲出させて、埋設した熱媒体管路を利用して土壌と熱交換を行う熱媒体管路と雨水貯留槽を有する地熱利用システム。 At least a portion of the upper portion of the side wall of the rainwater storage tank is formed by water-permeable member, the outer side wall lower portion of the rain water storage tank that having a side wall surface of the lower portion of the side wall upper portion is formed by an impermeable member The heat medium pipe of a heat exchanger that uses liquid or air as a heat medium is embedded in at least a part of the heat, and the water in the rainwater storage tank is leached from the wall to the soil in which the heat medium pipe is embedded, A geothermal heat utilization system including a heat medium pipe that performs heat exchange with soil using a medium pipe and a rainwater storage tank. 地中に埋設された雨水貯留槽の壁部の少なくとも一部が透水性部材で形成されており、前記雨水貯留槽の外方に所定間隔を開けて外壁が設けられている請求項1または請求項2に記載の埋設した熱媒体管路を利用して土壌と熱交換を行う熱媒体管路と雨水貯留槽を有する地熱利用システム。 The wall portion of the rainwater storage tank buried in the ground is formed of a water permeable member, and the outer wall is provided outside the rainwater storage tank at a predetermined interval. A geothermal utilization system having a heat medium conduit and a rainwater storage tank for exchanging heat with soil using the embedded heat medium conduit according to Item 2. 雨水貯留槽の外方に所定間隔を開けて設けられた外壁が雨水貯留槽を外側から覆う容器形状をしているもう1つの貯留槽の外壁の一部であるような貯留槽を設けて、貯留槽を2重構造とし、内側の貯留槽と外側の貯留槽の間に、土砂を配置した請求項3に記載の埋設した熱媒体管路を利用して土壌と熱交換を行う熱媒体管路と雨水貯留槽を有する地熱利用システム。 A storage tank is provided such that the outer wall provided at a predetermined interval outside the rainwater storage tank is a part of the outer wall of another storage tank having a container shape that covers the rainwater storage tank from the outside, 4. A heat medium pipe for exchanging heat with soil using the buried heat medium pipe according to claim 3, wherein the storage tank has a double structure, and earth and sand are arranged between the inner storage tank and the outer storage tank. Geothermal utilization system with road and rainwater storage tank. 請求項1乃至請求項4のいずれかに記載の埋設した熱媒体管路を利用して土壌と熱交換を行う熱媒体管路と雨水貯留槽を有する地熱利用システムにおいて、
雨水貯留槽の側壁下部の外側の少なくとも一部に熱交換機の熱媒体管路を埋設し、前記埋設した熱媒体管路と、さらに前記雨水貯留槽内の貯留水中に熱交換機の熱媒体管路が配置され、
前記埋設した熱媒体管路と、前記雨水貯留槽内に配置した熱媒体管路の両者を利用して、土壌と熱交換を行う熱媒体管路と雨水貯留槽を有する地熱利用システム。
In the geothermal utilization system which has a heat-medium line which performs heat exchange with the soil using the buried heat-medium line in any one of Claims 1 thru / or, and a rainwater storage tank,
At least a portion of the outer side wall lower part of the rainwater storage tank buried heat medium pipe of a heat exchanger, and a heat medium pipe mentioned above embedded, further heat medium pipe of the heat exchanger to the storage water of the rainwater storage tank Is placed,
A geothermal heat utilization system having a heat medium pipe and a rainwater storage tank that exchange heat with soil using both the buried heat medium pipe and the heat medium pipe arranged in the rainwater storage tank.
請求項1乃至請求項5のいずれかに記載の埋設した熱媒体管路を利用して土壌と熱交換を行う熱媒体管路と雨水貯留槽を有する地熱利用システムであって、前記雨水貯留槽の壁部が熱伝導率0.1W/(m・K)以上の材料により形成されていることを特徴とする地熱利用システム。 A geothermal heat utilization system having a heat medium pipe for exchanging heat with soil using the embedded heat medium pipe according to any one of claims 1 to 5 , and a rainwater storage tank, wherein the rainwater storage tank The wall portion is made of a material having a thermal conductivity of 0.1 W / (m · K) or more. 請求項1乃至請求項5のいずれかに記載の埋設した熱媒体管路を利用して土壌と熱交換を行う熱媒体管路と雨水貯留槽を有する地熱利用システムであって、前記雨水貯留槽の壁部の透水係数を雨水貯留槽の壁部の外側の土砂の透水係数より小さくしたことを特徴とする熱媒体管路と雨水貯留槽を有する地熱利用システム。 A geothermal heat utilization system having a heat medium pipe for exchanging heat with soil using the embedded heat medium pipe according to any one of claims 1 to 5, and a rainwater storage tank, wherein the rainwater storage tank A geothermal heat utilization system having a heat medium pipe line and a rainwater storage tank, characterized in that a water permeability coefficient of the wall portion of the rainwater is made smaller than a water permeability coefficient of earth and sand outside the wall part of the rainwater storage tank. 請求項5乃至請求項7のいずれかに記載の埋設した熱媒体管路を利用して土壌と熱交換を行う熱媒体管路と雨水貯留槽を有する地熱利用システムにおいて、前記雨水貯留槽が地熱利用のための蓄熱機能と雨水の生活水としての利用の複合機能を有することを特徴とする熱媒体管路と雨水貯留槽を有する地熱利用システム。
The geothermal heat utilization system which has a heat-medium line which performs heat exchange with soil using the embedded heat-medium line in any one of Claims 5 thru | or 7 , and a rainwater storage tank, The said rainwater storage tank is geothermal A geothermal utilization system having a heat medium pipe line and a rainwater storage tank, which has a combined function of heat storage function for utilization and utilization as domestic water for rainwater.
JP2006054800A 2006-03-01 2006-03-01 Geothermal utilization system with rainwater storage tank Expired - Fee Related JP4668089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006054800A JP4668089B2 (en) 2006-03-01 2006-03-01 Geothermal utilization system with rainwater storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006054800A JP4668089B2 (en) 2006-03-01 2006-03-01 Geothermal utilization system with rainwater storage tank

Publications (2)

Publication Number Publication Date
JP2007231618A JP2007231618A (en) 2007-09-13
JP4668089B2 true JP4668089B2 (en) 2011-04-13

Family

ID=38552483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006054800A Expired - Fee Related JP4668089B2 (en) 2006-03-01 2006-03-01 Geothermal utilization system with rainwater storage tank

Country Status (1)

Country Link
JP (1) JP4668089B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010025528A (en) * 2008-07-15 2010-02-04 Tokyo Civil Consultant:Kk Underground heat exchanger equipped with rain water permeable function
WO2010020999A2 (en) * 2008-07-28 2010-02-25 Rajendra Vithal Ladkat Multi-purpose geothermal temperature modifying system
CN107542127B (en) * 2017-08-18 2019-12-27 西北矿冶研究院 Heat preservation method for underground concrete reservoir

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09137478A (en) * 1995-11-13 1997-05-27 Sekisui House Ltd Simple underground rainwater tank structure
JPH09292153A (en) * 1996-04-26 1997-11-11 Gantan Beauty Kogyo Kk Air conditioning structure using underground buried facilities
JPH1161896A (en) * 1997-08-26 1999-03-05 Mitsubishi Heavy Ind Ltd Rain water reserving tank mechanism
JP2001074316A (en) * 1999-09-01 2001-03-23 Kubota Corp Underground heat utilizing facility
JP2001133049A (en) * 1999-08-24 2001-05-18 Yasuyoshi Matsumoto Rain water tank with heat-exchanger having condensate draining function
JP2002147892A (en) * 2000-11-09 2002-05-22 Tadashi Tsunoda Utilizing system for heat of ground water bearing layer
JP2005098542A (en) * 2003-09-22 2005-04-14 Asahi Kasei Homes Kk Terrestrial heat exchanging device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09137478A (en) * 1995-11-13 1997-05-27 Sekisui House Ltd Simple underground rainwater tank structure
JPH09292153A (en) * 1996-04-26 1997-11-11 Gantan Beauty Kogyo Kk Air conditioning structure using underground buried facilities
JPH1161896A (en) * 1997-08-26 1999-03-05 Mitsubishi Heavy Ind Ltd Rain water reserving tank mechanism
JP2001133049A (en) * 1999-08-24 2001-05-18 Yasuyoshi Matsumoto Rain water tank with heat-exchanger having condensate draining function
JP2001074316A (en) * 1999-09-01 2001-03-23 Kubota Corp Underground heat utilizing facility
JP2002147892A (en) * 2000-11-09 2002-05-22 Tadashi Tsunoda Utilizing system for heat of ground water bearing layer
JP2005098542A (en) * 2003-09-22 2005-04-14 Asahi Kasei Homes Kk Terrestrial heat exchanging device

Also Published As

Publication number Publication date
JP2007231618A (en) 2007-09-13

Similar Documents

Publication Publication Date Title
JP3104969B2 (en) Wide-area underground water storage tank
EP1769199B1 (en) Water sump structure
JP5963790B2 (en) Groundwater circulation type geothermal heat collection system and geothermal use air conditioning or hot water supply system
WO2012139263A1 (en) Water-permeable and water-absorbing eco-pavement
JP4668089B2 (en) Geothermal utilization system with rainwater storage tank
CN109594446B (en) Urban road pavement structure
KR101541781B1 (en) Ground heat exchanger using phase change materials fused grout and method for constructing the same
EP2619509B1 (en) System for storing thermal energy, heating assembly comprising said system and method of manufacturing said system
JP2006046063A (en) Rainwater storage penetration facility utilizing recycle glass caret
JP4360690B1 (en) Rainwater infiltration type underground heat exchange system
KR101441369B1 (en) Module for afforestation of artificial ground
JP2007292445A (en) Cooling and heating system utilizing geothermal heat
JP2006299514A (en) Irrigation equipment of water-retentive pavement body
JP6076055B2 (en) Artificial grass laying structure
JP2001074316A (en) Underground heat utilizing facility
JP2008266989A (en) Method of forming water-retainable pavement
JP2006125015A (en) Thermal insulating material making use of vaporizing heat, heat insulation method making use thereof and planting ground water retainable mat
JP6914026B2 (en) Soil purification system
JP5872296B2 (en) Dredge equipment and dredging method
JP2004183296A (en) Construction method for pumping and water-retentive pavement
JP2014152469A (en) Water storage structure
KR101815690B1 (en) Geothermal system using module type storage tank
JP2007077660A (en) External wall material and laying material containing diatom shale, building using the same, and functional solid containing diatom shale and holding functional substance inside
JP4559538B1 (en) Underground water tank
JP2005313105A (en) Disposal site having circulation system for improving semi-aerobic state

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101122

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees