JP4667768B2 - Chlorophyll derivative and metal complex thereof, and method for oxidizing organic compound using the compound as catalyst - Google Patents
Chlorophyll derivative and metal complex thereof, and method for oxidizing organic compound using the compound as catalyst Download PDFInfo
- Publication number
- JP4667768B2 JP4667768B2 JP2004165762A JP2004165762A JP4667768B2 JP 4667768 B2 JP4667768 B2 JP 4667768B2 JP 2004165762 A JP2004165762 A JP 2004165762A JP 2004165762 A JP2004165762 A JP 2004165762A JP 4667768 B2 JP4667768 B2 JP 4667768B2
- Authority
- JP
- Japan
- Prior art keywords
- metal complex
- chlorophyll
- compound
- chlorophyll derivative
- iii
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
本発明は、酸化触媒等として有用なクロロフィル誘導体及びその金属錯体に関するものである、又、本発明は、これら化合物を触媒として用いる有機化合物の酸化方法に関するものでもある。 The present invention relates to a chlorophyll derivative useful as an oxidation catalyst or the like and a metal complex thereof, and the present invention also relates to a method for oxidizing an organic compound using these compounds as a catalyst.
これまでに、数多くのポルフィリン誘導体が知られており、種々の分野での応用が検討、提案されてきている(例えば下記の特許文献1〜3参照)。
ポルフィリン誘導体は、動植物生体内の代謝過程で重要な役割を演じていることが知られており、例えば、ヘモグロビン、チトクローム系酵素、クロロフィル等は、いずれも酸化還元過程に関与している。この事実から、機能性材料分野や触媒分野等への応用として、多くのポルフィリン誘導体やそれらを触媒として用いた酸化方法の開発が手がけられている。しかしながら、水系、油系及びこれらの混合系における酸化反応を効率よく行うことが可能な触媒についてはほとんど提案されていないのが現状であり、従来のポルフィリン誘導体は、これらの適用範囲が制限されたり、機能の面で充分満足できるものではなかった。 Porphyrin derivatives are known to play an important role in the metabolic processes in animals and plants. For example, hemoglobin, cytochrome enzymes, chlorophyll, etc. are all involved in the redox process. From this fact, many porphyrin derivatives and oxidation methods using them as catalysts have been developed as applications in the functional material field and the catalyst field. However, there are currently few proposals for catalysts that can efficiently carry out oxidation reactions in water systems, oil systems, and mixed systems thereof, and conventional porphyrin derivatives are limited in their application range. The function was not satisfactory.
本発明は、上記従来技術の問題点に鑑みてなされたものであり、機能性材料や触媒などとして有用なクロロフィル誘導体及びその金属錯体を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems of the prior art, and an object thereof is to provide a chlorophyll derivative useful as a functional material or a catalyst, and a metal complex thereof.
かかる実情において、本発明者等は鋭意研究を行った結果、後記一般式(1)で表されるクロロフィル誘導体及びその金属錯体が、優れた酸化触媒作用を有することを見出し、本発明を完成した。
本発明は、下記の一般式 (1):
Under such circumstances, the present inventors have intensively studied, and as a result, found that the chlorophyll derivative represented by the following general formula (1) and its metal complex have excellent oxidation catalytic action, and completed the present invention. .
The present invention provides the following general formula (1):
で表されるクロロフィル誘導体又はその金属錯体を提供するものである。
また、本発明は、前記一般式(1)で表されるクロロフィル誘導体又はその金属錯体を触媒として用いることを特徴とする有機化合物の酸化方法を提供するものである。
The chlorophyll derivative represented by these or its metal complex is provided.
Moreover, this invention provides the oxidation method of the organic compound characterized by using the chlorophyll derivative represented by the said General formula (1), or its metal complex as a catalyst.
本発明のクロロフィル誘導体は、前記一般式(1)で表されるものであり、特に次の一般式(3)〜(4): The chlorophyll derivative of the present invention is represented by the general formula (1), and particularly the following general formulas (3) to (4):
で表されるものが好ましい。 The thing represented by these is preferable.
本発明のクロロフィル誘導体又はその金属錯体は、酸化触媒作用に優れ、特に酸化触媒として有用である。また、本発明のクロロフィル誘導体又はその金属錯体を触媒として用いる本発明の酸化方法を用いることで、水系、油系及びこれらの混合系における酸化反応を効率よく行うことができる。 The chlorophyll derivative or metal complex thereof of the present invention is excellent in oxidation catalytic action and is particularly useful as an oxidation catalyst. Further, by using the oxidation method of the present invention using the chlorophyll derivative of the present invention or a metal complex thereof as a catalyst, an oxidation reaction in an aqueous system, an oil system, or a mixed system thereof can be efficiently performed.
本発明のクロロフィル誘導体は、クロロフィル骨格に金属が配位した金属錯体であってもよい。ここで、クロロフィル骨格に配位する金属としては、特に制限されず、例えば、Ag (I)、Ag (II)、Al (III)、Ba (II)、Ca (II)、Co (II)、Cr (III)、Cu (I)、Cu (II)、Fe (II)、Fe (III)、Mg (II)、Mn (II)、Mn (III)、Mo (II)、Mo (III)、Ni (II)、Pb (II)、Pt (II)、W (II)、W (III)、Zn (II)等が挙げられる。特に、Mn (II)、Mn (III)が配位した金属錯体が好ましい。
本発明のクロロフィル誘導体又はその金属錯体は、次の一般式(5)で表されるクロロフィルa(Chla)を化学修飾することにより得ることができる。クロロフィルa(Chla)は市販のホウレン草等から容易に抽出することが出来る。
The chlorophyll derivative of the present invention may be a metal complex in which a metal is coordinated to a chlorophyll skeleton. Here, the metal coordinated to the chlorophyll skeleton is not particularly limited. For example, Ag (I), Ag (II), Al (III), Ba (II), Ca (II), Co (II), Cr (III), Cu (I), Cu (II), Fe (II), Fe (III), Mg (II), Mn (II), Mn (III), Mo (II), Mo (III), Ni (II), Pb (II), Pt (II), W (II), W (III), Zn (II), etc. are mentioned. In particular, a metal complex in which Mn (II) and Mn (III) are coordinated is preferable.
The chlorophyll derivative or metal complex thereof of the present invention can be obtained by chemically modifying chlorophyll a (Chla) represented by the following general formula (5). Chlorophyll a (Chla) can be easily extracted from commercially available spinach and the like.
このChlaから金属Mgを除去したものを2,4,6-コリジンに溶かし、120℃窒素雰囲気中で還流することで下記化合物(6)のPyroPheophytin aを得ることが出来る。 PyroPheophytina of the following compound (6) can be obtained by dissolving the metal Mg removed from Chla in 2,4,6-collidine and refluxing in a nitrogen atmosphere at 120 ° C.
このPyroPheophytin aを加水分解することで下記の化合物を得ることが出来る。
また、前記化合物(3)は、例えば次の反応式に従い、下記の化合物又はその金属錯体と、下記のポリマーを縮合することにより製造することができる。
The following compounds can be obtained by hydrolyzing this PyroPheophytin a.
Moreover, the said compound (3) can be manufactured by condensing the following compound or its metal complex, and the following polymer according to the following reaction formula, for example.
この反応は、通常のアミド形成反応の条件に従って行うことができる。例えば、カルボン酸を塩化チオニル等と反応させて酸ハロゲン化物とした後、これと末端のヒドロキシル基にアルキル基が置換していてもよいアミノポリオキシアルキレンとを反応させればよい。また、N,N’−ジシクロヘキシルカルボジイミド等の縮合剤の存在化に反応を行うこともできる。
また、同様に前記化合物(4)は、例えば次の反応式に従い、下記の化合物又はその金属錯体とL−ヒスチジンメチルエステルを縮合することにより製造することが出来る。
This reaction can be performed according to the conditions of a normal amide formation reaction. For example, after reacting a carboxylic acid with thionyl chloride or the like to form an acid halide, this may be reacted with an aminopolyoxyalkylene whose terminal hydroxyl group may be substituted with an alkyl group. The reaction can also be carried out in the presence of a condensing agent such as N, N′-dicyclohexylcarbodiimide.
Similarly, the compound (4) can be produced, for example, by condensing the following compound or a metal complex thereof with L-histidine methyl ester according to the following reaction formula.
このようにして得られる本発明のクロロフィル誘導体又はその金属錯体は、酸化触媒作用に優れ、特に酸化触媒として有用である。
本発明のクロロフィル誘導体又はその金属錯体を用いて有機化合物を酸化するには、通常の酸化反応の際に、これを触媒として用いればよい。ここで、酸化される有機化合物は特に制限されず、例えばアゾ色素であるC.I. Acid Orange 7等の酸化分解反応に適用する事ができる。
酸化反応の際には、本発明のクロロフィル誘導体又はその金属錯体とともにイミダゾール誘導体を用いると、このものは軸配位子として作用するので好ましい。イミダゾール誘導体はクロロフィル誘導体に対して1〜10000倍用いるのが好ましい。また、化合物(4)のようにイミダゾール基を有している化合物を用いることで、イミダゾールを併用せずとも高い活性を得ることが出来る。
The chlorophyll derivative of the present invention or the metal complex thereof thus obtained is excellent in oxidation catalytic action and is particularly useful as an oxidation catalyst.
In order to oxidize an organic compound using the chlorophyll derivative of the present invention or a metal complex thereof, it may be used as a catalyst during a normal oxidation reaction. Here, the organic compound to be oxidized is not particularly limited, and can be applied to, for example, an oxidative decomposition reaction of CI Acid Orange 7, which is an azo dye.
In the oxidation reaction, it is preferable to use an imidazole derivative together with the chlorophyll derivative of the present invention or a metal complex thereof because this acts as an axial ligand. The imidazole derivative is preferably used 1 to 10,000 times as much as the chlorophyll derivative. Further, by using a compound having an imidazole group like the compound (4), high activity can be obtained without using imidazole in combination.
本発明のクロロフィル誘導体又はその金属錯体を用いる酸化方法は、水系、油系及びこれらの混在する系のいずれにも適用することができ、生体系での使用も可能である。水系で反応を行う場合には、反応系のpHが6〜12、特にpH8付近であるのが好ましい。また、酸化剤として、過酸化水素等を用いるのが好ましい。
本発明のクロロフィル誘導体又はその金属錯体を水系で用いる場合、前記化合物(3)はそのまま用いることができるが、前記化合物(4)は界面活性剤ミセル中あるいはリポソーム膜等の脂質二分子膜中に導入して使用することができる。
ミセルを形成させる界面活性剤には、オクチルグルコシド(非イオン性)、ソディウムドデシルサルフェート(アニオン性)、セチルトリメチルアンモニウムブロミド(カチオン性)等が使用でき、特に制限されず酸化する物質に適したものを選べばよい。
The oxidation method using the chlorophyll derivative or its metal complex of the present invention can be applied to any of aqueous systems, oil systems, and systems in which these are mixed, and can also be used in biological systems. When the reaction is carried out in an aqueous system, the pH of the reaction system is preferably 6-12, particularly around pH 8. Further, it is preferable to use hydrogen peroxide or the like as the oxidizing agent.
When the chlorophyll derivative or metal complex thereof of the present invention is used in an aqueous system, the compound (3) can be used as it is, but the compound (4) is contained in a surfactant micelle or a lipid bilayer such as a liposome membrane. It can be introduced and used.
As surfactants that form micelles, octyl glucoside (nonionic), sodium dodecyl sulfate (anionic), cetyltrimethylammonium bromide (cationic), etc. can be used, and they are not particularly limited and are suitable for oxidizing substances You can choose.
リポソームの調整に用いる脂質としては卵黄フォスファチジルコリン(EggPC)、ジセチルホスフェート(DCP), ジヘキサデシルジメチルアンモニウムブロミド(DHDAB)等を使用することができ、EggPCとDHDABを配合して膜表面にカチオン性を帯びたリポソーム膜、EggPCとDCPを配合して膜表面にアニオン性を帯びたリポソーム膜など酸化する物質に適したものを調製すればよい。また、リポソーム膜中に本発明のクロロフィル誘導体又は金属錯体を導入することで触媒の安定性を向上することができる。 Egg lipid phosphatidylcholine (EggPC), dicetyl phosphate (DCP), dihexadecyldimethylammonium bromide (DHDAB), etc. can be used as the lipid used to prepare the liposome. It is only necessary to prepare a material suitable for an oxidizing substance such as a liposome membrane having a cationic property, EggPC and DCP, and an anionic liposome membrane on the membrane surface. Moreover, the stability of the catalyst can be improved by introducing the chlorophyll derivative or metal complex of the present invention into the liposome membrane.
また、本発明のクロロフィル誘導体又は金属錯体を電極上に組織化することにより、不均一系の触媒として利用することが出来る。使用する際は、過酸化水素などの酸化剤を用いる以外に、電極とクロロフィル誘導体間の電子移動を利用して基質を酸化反応することもできる。その際、酸素を供給するとより好ましい。
電極上に組織化させる手段としては物理吸着、静電相互作用、共有結合などを利用することができる。例えば、ITO電極をピラニア溶液(濃硫酸:過酸化水素=7:3)に2分間浸漬させ、続いて蒸留水、メタノール、クロロホルムで洗浄した後、所定量のクロロフィル誘導体と脂質をクロロホルムに溶解したものを滴下し、室温で風乾した。その後2分間温風をあて、膜中に残存するクロロホルムを除去することにより電極上に組織化することができる。脂質にはジパルミトイルホスファチジルコリン(DPPC)、卵黄ホスファチジルコリン(EggPC)等市販品をそのまま使用することができ、特に限定されない。
In addition, by organizing the chlorophyll derivative or metal complex of the present invention on an electrode, it can be used as a heterogeneous catalyst. When used, in addition to using an oxidizing agent such as hydrogen peroxide, the substrate can also be oxidized using electron transfer between the electrode and the chlorophyll derivative. At that time, it is more preferable to supply oxygen.
As a means for organizing on the electrode, physical adsorption, electrostatic interaction, covalent bond, or the like can be used. For example, the ITO electrode was immersed in a piranha solution (concentrated sulfuric acid: hydrogen peroxide = 7: 3) for 2 minutes, then washed with distilled water, methanol, and chloroform, and then a predetermined amount of chlorophyll derivative and lipid were dissolved in chloroform. The thing was dripped and air-dried at room temperature. Thereafter, warm air can be applied for 2 minutes to remove chloroform remaining in the membrane, so that it can be organized on the electrode. As the lipid, commercially available products such as dipalmitoyl phosphatidylcholine (DPPC) and egg yolk phosphatidylcholine (EggPC) can be used as they are and are not particularly limited.
本発明を実施例及び比較例を挙げて説明するが、本発明はこれらの例に限定されるものではない。
(実施例1)
Chl aを酢酸中で数分撹拌し中心金属Mgを除去して得られるフェオフィチンa (Pheo a) 100 mgを2, 4, 6-コリジン10 mlに溶かし入れ120℃窒素雰囲気中で3時間還流を行った。その後、室温で放冷し真空乾燥させた後、12.5%硫酸/メタノールを200 ml加え、窒素雰囲気中室温で2時間撹拌した。反応終了後5N水酸化ナトリウムで氷冷しながら中和操作を行った後、塩化メチレンで有機相に抽出し、溶媒留去した。得られた粉末を5N塩酸400 mlに加えて溶かし、窒素雰囲気中室温で3.5時間撹拌した。反応終了後5N水酸化ナトリウムで氷冷しながら中和操作を行った後、塩化メチレンで有機相に抽出し、溶媒留去した。次に、シリカゲルクロマトグラフィにより分離精製することによりPyroPheophorbide a (PPheide a)を収率57.3%で得た。MALDI-TOF-MASS(m/z 534.04 MH+), 1H-NMR (CDCl3) 9.47, 9.35, 及び8.53 (それぞれ s, 1H, 5-H,10-H, 及び20-H); 8.00 (dd, J ) 17.7, 11.4 Hz, 1H, 31-CH=CH2); 6.27 (d,1H, trans-32-CH=CH2); 6.15(d, 1H, cis-32-CH=CH2); 5.18 (ABX, 2H, 132-CH2); 4.47 (q, 1H for 18-H); 4.29 (m,1H for 17-H); 3.68 (q, 2H, 8-CH2-CH3); 3.64, 3.39, 及び3.22 (それぞれ s, 3H, 12-CH3, 2-CH3 及び7-CH3); 2.65 及び 2.32 (それぞれ m, 2H, for 2 ×171-H 及び 2×172-H); 1.81 (d, 3H, 18-CH3); 1.70 (t,3H, 8-CH2CH3), 0.87 及び -1.35 (それぞれ brs, 1H, 2×N-H)。
The present invention will be described with reference to examples and comparative examples, but the present invention is not limited to these examples.
Example 1
Stir Chl a in acetic acid for several minutes to remove central metal Mg. 100 mg of pheophytin a (Pheo a) dissolved in 10 ml of 2,4,6-collidine is refluxed at 120 ° C in a nitrogen atmosphere for 3 hours. went. Then, after standing to cool at room temperature and vacuum-drying, 200 ml of 12.5% sulfuric acid / methanol was added, and it stirred at room temperature for 2 hours in nitrogen atmosphere. After completion of the reaction, the reaction mixture was neutralized with 5N sodium hydroxide while cooling with ice, then extracted with methylene chloride into the organic phase, and the solvent was distilled off. The obtained powder was dissolved in 400 ml of 5N hydrochloric acid, and stirred at room temperature in a nitrogen atmosphere for 3.5 hours. After completion of the reaction, the reaction mixture was neutralized with 5N sodium hydroxide while cooling with ice, then extracted with methylene chloride into the organic phase, and the solvent was distilled off. Next, PyroPheophorbide a (PPheide a) was obtained in a yield of 57.3% by separation and purification by silica gel chromatography. MALDI-TOF-MASS (m / z 534.04 MH +), 1 H-NMR (CDCl 3 ) 9.47, 9.35, and 8.53 (s, 1H, 5-H, 10-H, and 20-H, respectively); 8.00 (dd , J) 17.7, 11.4 Hz, 1H, 31-CH = CH 2 ); 6.27 (d, 1H, trans-3 2 -CH = CH 2 ); 6.15 (d, 1H, cis-3 2 -CH = CH 2) ); 5.18 (ABX, 2H, 13 2 -CH 2 ); 4.47 (q, 1H for 18-H); 4.29 (m, 1H for 17-H); 3.68 (q, 2H, 8-CH 2 -CH 3 ); 3.64, 3.39, and 3.22 (s, 3H, 12-CH 3 , 2-CH 3 and 7-CH 3 respectively); 2.65 and 2.32 (m, 2H, for 2 × 17 1 -H and 2 × 17, respectively) 2 -H); 1.81 (d, 3H, 18-CH 3 ); 1.70 (t, 3H, 8-CH 2 CH 3 ), 0.87 and -1.35 (brs, 1H, 2 × NH, respectively).
(実施例2)
PPheide a 15 mg及びそれぞれ2倍当量のN-ヒドロキシスクシンイミド、N,N’-ジシクロヘキシルカルボジイミドをクロロホルム2 mlに溶かし、室温で1時間反応を行った。次にPEG5000 125 mgをクロロフィル1 mlに溶かし入れ数滴のトリエチルアミンを加え、室温で24時間反応を行った。次に限外濾過法によって精製し、フリーズドライによってPEG-PPheide aを収率76.9%で得た。1H-NMR(CDCl3) 9.47, 9.35, 及び 8.53 (それぞれ s, 1H, 5-H,10-H, 及び 20-H); 8.00 (dd, J ) 17.7, 11.4 Hz, 1H, 31-CH=CH2); 6.27 (d,1H, trans-32-CH=CH2); 6.15(d, 1H, cis-32-CH=CH2); 5.97(amide 1H, N-H);5.18 (ABX, 2H, 132-CH2); 4.47 (q, 1H for 18-H); 4.29 (m,1H for 17-H); 3.68 (q, 2H, 8-CH2-CH3); 3.64, (PEG, 456H, -[OCH2,-CH2]- ); 2.65 及び 2.32 (それぞれ m, 2H, for 2 _ 171-H 及び 2×172-H); 1.81 (d, 3H, 18-CH3); 1.70 (t,3H, 8-CH2CH3), 0.87 及び -1.35 (それぞれ brs, 1H, 2×N-H)。
(Example 2)
15 mg of PPheide a and 2 equivalents each of N-hydroxysuccinimide and N, N′-dicyclohexylcarbodiimide were dissolved in 2 ml of chloroform and reacted at room temperature for 1 hour. Next, 125 mg of PEG 5000 was dissolved in 1 ml of chlorophyll, a few drops of triethylamine was added, and the reaction was carried out at room temperature for 24 hours. Next, it was purified by ultrafiltration, and PEG-PPheide a was obtained in a yield of 76.9% by freeze drying. 1 H-NMR (CDCl 3 ) 9.47, 9.35, and 8.53 (s, 1H, 5-H, 10-H, and 20-H, respectively); 8.00 (dd, J) 17.7, 11.4 Hz, 1H, 31-CH = CH 2 ); 6.27 (d, 1H, trans-3 2 -CH = CH 2 ); 6.15 (d, 1H, cis-3 2 -CH = CH 2 ); 5.97 (amide 1H, NH); 5.18 (ABX , 2H, 13 2 -CH 2 ); 4.47 (q, 1H for 18-H); 4.29 (m, 1H for 17-H); 3.68 (q, 2H, 8-CH 2 -CH 3 ); 3.64, ( PEG, 456H,-[OCH 2 , -CH 2 ]-); 2.65 and 2.32 (m, 2H, for 2 _ 17 1 -H and 2 × 17 2 -H, respectively); 1.81 (d, 3H, 18-CH 3 ); 1.70 (t, 3H, 8-CH 2 CH 3 ), 0.87 and -1.35 (brs, 1H, 2 × NH respectively).
(実施例3)
PPheide a 29.1 mg、N-ヒドロキシスクシンイミド25.1 mg、N,N’-ジシクロヘキシルカルボジイミド45.0 mgをクロロホルム5 mlに溶解させ室温で2時間撹拌した。これに別にトリエチルアミンを数滴加えたクロロホルム2 mlに溶解させておいたL−ヒスチジンメチルエステル二塩酸塩 26.3 mgを徐々に添加した。20時間撹拌した後溶媒留去し、その残留物を塩化メチレンで抽出した。塩化メチレンの留去後、シリカゲルカラムにて精製を行いPPheide a-(L−HisOMe)の粉末を収率19.8 %で得た。MALDI-TOF-MASS(m/z 687.17 MH+), 1H NMR(CDCl3) 9.38(1H, s, C5 −H), 9.34(1H, s, C10 −H), 8.53(1H, s, C20 −H), 8.03(1H, q, C31 −CH=), 7.36(1H,s,Imidazole-NCHNH), 6.60(1H,s,His-NH), 6.30(1H, d, C32 =CH2trans), 6.15(1H, d, C32 =CH2cis), 5.12(2H, q, C132 −CH2−), 4.71(1H, s,His-CH), 4.50(1H, m, C18 −H), 4.32(1H, m, C17 −H), 3.61(2H, q, C81 −CH2−), 3.61(3H, s, C12 −CH3), 3.49(3H, s, C2 −CH3), 3.22(3H, s, C7 −CH3), 2.93(2H, d, His-CH2), 2.65(2H, m, C171 −CH2−trans), 2.64(2H, m, C172 −CH2−trans), 2.45(2H, m, C172 −CH2), 1.82(3H, d, C18 −CH3), 1.66(3H, t, C82 −CH3), 0.87(1H, br s, −NH), -1.65(1H, br s, −NH)。
(Example 3)
PPheide a 29.1 mg, N-hydroxysuccinimide 25.1 mg, and N, N′-dicyclohexylcarbodiimide 45.0 mg were dissolved in 5 ml of chloroform and stirred at room temperature for 2 hours. Separately, 26.3 mg of L-histidine methyl ester dihydrochloride dissolved in 2 ml of chloroform to which several drops of triethylamine were added was gradually added. After stirring for 20 hours, the solvent was distilled off, and the residue was extracted with methylene chloride. After distilling off methylene chloride, purification was performed with a silica gel column to obtain PPheide a- (L-HisOMe) powder in a yield of 19.8%. MALDI-TOF-MASS (m / z 687.17 MH +), 1H NMR (CDCl 3) 9.38 (1H, s, C5 -H), 9.34 (1H, s, C10 -H), 8.53 (1H, s, C20 -H ), 8.03 (1H, q, C3 1 -CH =), 7.36 (1H, s, Imidazole-NCHNH), 6.60 (1H, s, His-NH), 6.30 (1H, d, C3 2 = CH 2 trans) , 6.15 (1H, d, C3 2 = CH 2 cis), 5.12 (2H, q, C13 2 -CH 2- ), 4.71 (1H, s, His-CH), 4.50 (1H, m, C18 -H) , 4.32 (1H, m, C17 -H), 3.61 (2H, q, C8 1 -CH 2 -), 3.61 (3H, s, C12 -CH 3), 3.49 (3H, s, C2 -CH 3), 3.22 (3H, s, C7 -CH 3 ), 2.93 (2H, d, His-CH2), 2.65 (2H, m, C17 1 -CH 2 -trans), 2.64 (2H, m, C17 2 -CH 2- trans), 2.45 (2H, m, C17 2 -CH 2 ), 1.82 (3H, d, C18 -CH 3 ), 1.66 (3H, t, C8 2 -CH 3 ), 0.87 (1H, br s, -NH ), -1.65 (1H, br s, -NH).
(実施例4)
PPheide a 10 mgに酢酸2 mlを加え溶解し、そこへ5倍当量の酢酸マンガン(II)4水和物23 mgを酢酸2 mlに溶かし入れ、窒素雰囲気中60℃で1時間還流した。反応終了後、ヘキサンを過剰に加え濾過し、得られた沈殿をジエチルエーテル‐水系の分液ロートで洗浄し、水相に得られたものを塩化メチレンを用いて有機相に抽出し溶媒留去することでMn-PyroChlorophyllide a (MnPChlide a)を収率86.1%で得た。
Example 4
2 mg of acetic acid was added to 10 mg of PPheide a and dissolved, and 23 mg of 5-fold equivalent manganese (II) acetate tetrahydrate was dissolved in 2 ml of acetic acid and refluxed at 60 ° C. for 1 hour in a nitrogen atmosphere. After completion of the reaction, hexane was added in excess and the mixture was filtered. The resulting precipitate was washed with a diethyl ether-water separatory funnel, and the water phase was extracted into the organic phase with methylene chloride. As a result, Mn-PyroChlorophyllide a (MnPChlide a) was obtained in a yield of 86.1%.
(実施例5)
PEG-PPheide a 10 mgに酢酸2 mlを加え溶解し、そこへ5倍当量の酢酸マンガン(II)4水和物23 mgを酢酸2 mlに溶かし入れ、窒素雰囲気中60℃で1時間還流した。反応終了後、ヘキサンを過剰に加え濾過し、得られた沈殿をジエチルエーテル‐水系の分液ロートで洗浄し、水相に得られたものを塩化メチレンを用いて有機相に抽出し溶媒留去することでPEG-MnPChlide aを収率89.3%で得た。
(Example 5)
Acetic acid (2 ml) was added to 10 mg of PEG-PPheide a and dissolved, and 5 mg equivalent of manganese (II) acetate tetrahydrate (23 mg) was dissolved in acetic acid (2 ml) and refluxed at 60 ° C. for 1 hour in a nitrogen atmosphere. . After completion of the reaction, hexane was added in excess and the mixture was filtered. The resulting precipitate was washed with a diethyl ether-water separatory funnel, and the water phase was extracted into the organic phase with methylene chloride. As a result, PEG-MnPChlide a was obtained with a yield of 89.3%.
(実施例6)
PPheide a-(L−HisOMe)10 mgに酢酸2 mlを加え溶解し、そこへ5倍当量の酢酸マンガン(II)4水和物23 mgを酢酸2 mlに溶かし入れ、窒素雰囲気中60℃で1時間還流した。反応終了後、ヘキサンを過剰に加え濾過し、得られた沈殿をジエチルエーテル‐水系の分液ロートで洗浄し、水相に得られたものを塩化メチレンを用いて有機相に抽出し溶媒留去することでMnPChlide a-(L−HisOMe)を収率89.1%で得た。
(Example 6)
2 mg of acetic acid is dissolved in 10 mg of PPheide a- (L-HisOMe), and 23 mg of 5 times equivalent manganese (II) acetate tetrahydrate is dissolved in 2 ml of acetic acid at 60 ° C. in a nitrogen atmosphere. Refluxed for 1 hour. After completion of the reaction, hexane was added in excess and the mixture was filtered. The resulting precipitate was washed with a diethyl ether-water separatory funnel, and the water phase was extracted into the organic phase with methylene chloride. As a result, MnPChlide a- (L-HisOMe) was obtained in a yield of 89.1%.
(実施例7)
EggPC 100 mg(1.43×10-4 mol)とMnPChlide a 2.4×10-6molをクロロホルム中に溶かしたものを丸底フラスコに入れ、ロータリーエバポレーターでゆっくり留去し薄膜を調整した。その後真空乾燥によって完全にクロロホルムを除去し、10mM Tris-HCl buffer (pH 8)2.5mlで薄膜をはがし freeze-thawing methodを薄膜が完全にはがれるまで行いMLVを調整した。続いて氷浴中で10分間超音波処理を行うことでSUVを調整し、Sephadex G50 fineを用いてゲル濾過を行い、精製を行った。同様にして電荷をもつリポソームを調整した。[カチオン性リポソーム EggPC:DHDAB=4:1(mol/mol), アニオン性リポソーム EggPC:DCP=4:1(mol/mol)]
(Example 7)
EggPC 100 mg (1.43 × 10 −4 mol) and MnPChlide a 2.4 × 10 −6 mol dissolved in chloroform were placed in a round bottom flask and slowly distilled off with a rotary evaporator to prepare a thin film. Thereafter, the chloroform was completely removed by vacuum drying, and the thin film was peeled off with 2.5 ml of 10 mM Tris-HCl buffer (pH 8), and the freeze-thawing method was performed until the thin film was completely removed to adjust the MLV. Subsequently, SUV was adjusted by sonication for 10 minutes in an ice bath, gel filtration was performed using Sephadex G50 fine, and purification was performed. Similarly, charged liposomes were prepared. [Cationic liposome EggPC: DHDAB = 4: 1 (mol / mol), anionic liposome EggPC: DCP = 4: 1 (mol / mol)]
(実施例8)
過酸化水素(水系)におけるC.I. Acid Orange 7に対する酸化触媒能: 各種クロロフィル誘導体10 mMに対して、アゾ色素C.I. Acid Orange 7(λmax 484 nm) 100mM、イミダゾール 0.1Mを含むTris-HCl buffer (pH 8)溶液を調製し、これに31%過酸化水素を30mM添加しC.I. Acid Orange 7の吸光度変化を観察することでC.I. Acid Orange 7の分解の評価を行った。色素の退色反応においては反応初期の段階では、擬一次反応式に従うことが分かっており、下記式より擬一次速度定数(kobs)を求めた。
ln(C0/Ct) = kobs t
ただしC0:基質初期濃度、Ct:t分後の基質濃度
本発明の化合物と、下記比較例のポルフィリン誘導体及び酵素と比較した結果を表1に示す。その結果、本発明の化合物は非常に高い活性を示し、酵素よりも高い触媒活性も認められた。
(Example 8)
Oxidation catalytic ability for CI Acid Orange 7 in hydrogen peroxide (aqueous): Tris-HCl buffer (pH) containing azo dye CI Acid Orange 7 (λ max 484 nm) 100 mM and imidazole 0.1 M for 10 mM of various chlorophyll derivatives 8) A solution was prepared, and 30 mM of 31% hydrogen peroxide was added thereto, and the change in absorbance of CI Acid Orange 7 was observed to evaluate the degradation of CI Acid Orange 7. In the fading reaction of the dye, it is known that the pseudo first order reaction equation is obeyed at the initial stage of the reaction, and the pseudo first order rate constant (k obs ) was obtained from the following equation.
ln (C 0 / C t ) = k obs t
However, C 0 : Substrate initial concentration, C t : Substrate concentration after t minutes Table 1 shows the results of comparing the compound of the present invention with the porphyrin derivatives and enzymes of the following comparative examples. As a result, the compound of the present invention showed very high activity, and higher catalytic activity than that of the enzyme was also observed.
(比較例1)
下記構造をもつ化合物
(Comparative Example 1)
Compound with the following structure
(比較例2)
下記構造をもつ化合物
(Comparative Example 2)
Compound with the following structure
(比較例3)
クロロフィルaの中心金属MgをMnに置換した下記化合物
(Comparative Example 3)
The following compounds in which the central metal Mg of chlorophyll a is replaced with Mn
(比較例4)
天然の酵素である西洋ワサビペルオキシダーゼ (EIA用)(和光純薬)
酵素の活性200U/mg, Rz=3.11
(Comparative Example 4)
Horseradish peroxidase, a natural enzyme (for EIA) (Wako Pure Chemical Industries)
Enzyme activity 200U / mg, Rz = 3.11
以下の表1に、イミダゾールの併用の有無での各ポルフィリン誘導体を触媒として用いたC.I. Acid Orange 7の酸化分解反応速度定数を示す。 Table 1 below shows oxidative decomposition rate constants of C.I. Acid Orange 7 using each porphyrin derivative with and without imidazole as a catalyst.
(実施例9)
脂質膜被覆電極の調整:水平にしたITO電極上にクロロホルム中に溶かしたMnPChlide a /DMPC=150mmol/gの溶液を電極1cm2当たり150nmol/mgになるように滴下し、室温で風乾した。その後温風で膜中に存在するクロロホルムを完全に除去した。なお、今回の実験系ではITO電極2cm2に処理した。
( Example 9 )
Preparation of lipid membrane-coated electrode: A solution of MnPChlide a / DMPC = 150 mmol / g dissolved in chloroform was dropped onto a leveled ITO electrode so as to be 150 nmol / mg per 1 cm 2 of the electrode, and air-dried at room temperature. Thereafter, the chloroform present in the membrane was completely removed with warm air. In this experimental system, the ITO electrode was treated to 2 cm 2 .
(実施例10)
電極とクロロフィル間での電子伝達を利用したアゾ色素の分解:測定はTris-HCl buffer (pH 8.0)中で行った。図1に示すように3電極式セルを用い、参照電極にAg/AgCl / 0.1 M KCl電極、対極に白金電極を使用し、作用極としてクロロフィル誘導体と脂質膜を組織化したITO電極を用いた。作用電極に一定の電位をかけ30分C.I. Acid Orange 7の最大吸収波長である484nmの吸光度の変化を測定しアゾ色素の酸化分解を確認した(図2)。
( Example 10 )
Decomposition of azo dye using electron transfer between electrode and chlorophyll: Measurement was performed in Tris-HCl buffer (pH 8.0). As shown in FIG. 1, a three-electrode cell is used, an Ag / AgCl / 0.1 M KCl electrode is used as a reference electrode, a platinum electrode is used as a counter electrode, and an ITO electrode in which a chlorophyll derivative and a lipid membrane are organized as a working electrode. . A constant potential was applied to the working electrode, and the change in absorbance at 484 nm, which is the maximum absorption wavelength of CI Acid Orange 7, was measured for 30 minutes to confirm oxidative degradation of the azo dye (FIG. 2).
Claims (7)
で表されるクロロフィル誘導体及びその金属錯体。 The following general formula (1):
And a metal complex thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004165762A JP4667768B2 (en) | 2004-06-03 | 2004-06-03 | Chlorophyll derivative and metal complex thereof, and method for oxidizing organic compound using the compound as catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004165762A JP4667768B2 (en) | 2004-06-03 | 2004-06-03 | Chlorophyll derivative and metal complex thereof, and method for oxidizing organic compound using the compound as catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005343828A JP2005343828A (en) | 2005-12-15 |
JP4667768B2 true JP4667768B2 (en) | 2011-04-13 |
Family
ID=35496532
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004165762A Expired - Fee Related JP4667768B2 (en) | 2004-06-03 | 2004-06-03 | Chlorophyll derivative and metal complex thereof, and method for oxidizing organic compound using the compound as catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4667768B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1260347A (en) * | 1999-10-28 | 2000-07-19 | 许德余 | Chlorophyll alpha degraded product metal complex, its preparation method and medicament for anti-gastric ulcer |
JP2002343572A (en) * | 2001-03-14 | 2002-11-29 | Canon Inc | Light-emitting element and display device employing porphyrin derivative compound |
-
2004
- 2004-06-03 JP JP2004165762A patent/JP4667768B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1260347A (en) * | 1999-10-28 | 2000-07-19 | 许德余 | Chlorophyll alpha degraded product metal complex, its preparation method and medicament for anti-gastric ulcer |
JP2002343572A (en) * | 2001-03-14 | 2002-11-29 | Canon Inc | Light-emitting element and display device employing porphyrin derivative compound |
Also Published As
Publication number | Publication date |
---|---|
JP2005343828A (en) | 2005-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2008065187A1 (en) | Ruthenium-based catalytic complexes and the use of such complexes for olefin metathesis | |
Swetha et al. | Synthesis, characterization and antimicrobial evaluation of ferrocene–oxime ether benzyl 1 H-1, 2, 3-triazole hybrids | |
JP2020515237A (en) | Enzyme reaction medium containing a surfactant | |
CA1077061A (en) | Process for the oxydation of .beta.-ethilenic ketones | |
JP4667768B2 (en) | Chlorophyll derivative and metal complex thereof, and method for oxidizing organic compound using the compound as catalyst | |
JP2006151874A (en) | Dimer of chlorophyll derivative, its metal complex and method for oxidizing organic compound by using the same as catalyst | |
EP2380664B1 (en) | Functionalized substrate and its applications | |
EP0751142A2 (en) | Chiral manganese-triazanonane complexes and process for their preparation | |
KR102547109B1 (en) | Novel organic eletron-transfer mediator and device comprising the same | |
EP0914205A1 (en) | Oxidation process of organic substrates in the presence of metal complexes of tetra-, penta- and hexacoordinating ligands, and oxidation catalysts containing them | |
CA2393951C (en) | Method for preparing quinoline-5,8-diones | |
EP2776447B2 (en) | Method for producing oxo-vinyl-ionol and o-protected derivatives thereof | |
KR102193321B1 (en) | Method for preparation of β-trifluoromethyl ketone derivatives. | |
EP0788458B1 (en) | Method for the catalytic disproportionation of hydroperoxides and peroxides in aqueous media | |
JP3257371B2 (en) | Method for producing 5-phthalimido-4-oxopentenoic acid or its pyridine salt | |
JPS5929595B2 (en) | Production method of pyrimidine derivatives | |
CN118440078A (en) | Preparation method of biologically active benzoindolizine derivative | |
Khan | Synthesis and characterization of protic ammonium based ionic liquids | |
JPH07304777A (en) | Porphyrin derivative or metal complex thereof | |
EP0374014A2 (en) | Organo-manganese compounds, their preparation and their use | |
JP2022171296A (en) | Compound having azobenzene structure, vesicle and method for controlling vesicle structure | |
CN118108646A (en) | Water-soluble astaxanthin derivative and preparation method thereof | |
CN113880835A (en) | Preparation method for efficiently constructing indolizine derivative | |
KR20130009386A (en) | Multiple substituted 4-arylcoumarin derivatives and preparation method thereof | |
JPS63216883A (en) | 4,5-dihydro-4,5-dioxo-1h-pyrrolo(2,3-f)quinoline derivative, its production and synthetic intermediate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070531 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20070531 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20091013 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100908 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101026 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101124 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101207 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110105 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110112 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140121 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4667768 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140121 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |