JP4666896B2 - Polypropylene resin composition - Google Patents

Polypropylene resin composition Download PDF

Info

Publication number
JP4666896B2
JP4666896B2 JP2003294991A JP2003294991A JP4666896B2 JP 4666896 B2 JP4666896 B2 JP 4666896B2 JP 2003294991 A JP2003294991 A JP 2003294991A JP 2003294991 A JP2003294991 A JP 2003294991A JP 4666896 B2 JP4666896 B2 JP 4666896B2
Authority
JP
Japan
Prior art keywords
polypropylene resin
ptfe
weight
flame retardant
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003294991A
Other languages
Japanese (ja)
Other versions
JP2005060603A (en
Inventor
重信 河合
幸仁 残華
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Polypropylene Corp
Original Assignee
Japan Polypropylene Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Polypropylene Corp filed Critical Japan Polypropylene Corp
Priority to JP2003294991A priority Critical patent/JP4666896B2/en
Publication of JP2005060603A publication Critical patent/JP2005060603A/en
Application granted granted Critical
Publication of JP4666896B2 publication Critical patent/JP4666896B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は、ポリプロピレン樹脂組成物に関する。詳しくは、外力により凝集することなく、取り扱いが容易なテトラフルオロエチレン樹脂のマスターバッチを、リン酸塩系難燃剤と共にポリプロピレン樹脂に特定量配合してなる難燃性ポリプロピレン樹脂組成物に関する。   The present invention relates to a polypropylene resin composition. More specifically, the present invention relates to a flame retardant polypropylene resin composition obtained by blending a specific amount of a tetrafluoroethylene resin masterbatch that is easy to handle without aggregating with an external force into a polypropylene resin together with a phosphate flame retardant.

テトラフルオロエチレン樹脂(PTFE)は、熱可塑性樹脂に少量添加することにより、熱可塑性樹脂の難燃化における滴下防止効果が大きいことが知られている。   It is known that tetrafluoroethylene resin (PTFE) has a great effect of preventing dripping in the flame retardancy of a thermoplastic resin when added in a small amount to the thermoplastic resin.

一般に、熱可塑性樹脂にPTFEを添加する場合は、PTFEの融点が熱可塑性樹脂の加工温度より高いためにPTFEの融点以下で混練される。PTFEはせん断力を受けることにより容易に繊維化したり凝集しやすく、熱可塑性樹脂に混練り添加されたPTFEは、ネットワーク状に繊維化して滴下防止などの効果を発揮すると言われている。しかしながら、PTFEのこのような繊維化や凝集のし易さは、取り扱いの上では非常に厄介であり、取り扱い性の向上技術が種々提案されている。例えば、PTFEを予め、高級脂肪酸類の分散剤で処理する方法が提案されている(特許文献1参照)。   In general, when PTFE is added to a thermoplastic resin, the melting point of PTFE is higher than the processing temperature of the thermoplastic resin, so that the PTFE is kneaded below the melting point of PTFE. PTFE is easily fibrillated or aggregated by receiving a shearing force, and PTFE kneaded and added to a thermoplastic resin is said to be fiberized into a network and exhibit effects such as dripping prevention. However, the ease of fiberization and aggregation of PTFE is very troublesome in handling, and various techniques for improving the handling properties have been proposed. For example, a method of treating PTFE with a higher fatty acid dispersant in advance has been proposed (see Patent Document 1).

一方、従来より取り扱い性を向上させるために、PTFEを高濃度に含有する各種の粒状組成物が検討されている(特許文献2〜5参照)。しかしながら、ポリオレフィン樹脂においては、これらの技術においてもPTFEの分散性が充分でなく、難燃性、燃焼時の滴下防止性、剛性が充分に発揮されないなどの問題があった。   On the other hand, various granular compositions containing PTFE at a high concentration have been studied in order to improve the handleability (see Patent Documents 2 to 5). However, the polyolefin resin has problems such as insufficient dispersibility of PTFE even in these technologies, flame retardancy, prevention of dripping during combustion, and insufficient rigidity.

また、ポリオレフィンの難燃性を向上させる為に、特定のリン酸塩系難燃剤とドリップ防止剤を組合わせて使用する方法が提案されている(引用文献6)。しかしながら、これらの方法でも、十分な難燃性と剛性の両者を保持した組成物は達成されていない。
特開平10−30046号公報 特開平09−324124号公報 特開平09−324071号公報 特開平09−324092号公報 特開2001−2947号公報 特開平2003−26935号公報
Moreover, in order to improve the flame retardance of polyolefin, the method of using combining a specific phosphate flame retardant and an anti-drip agent is proposed (cited reference 6). However, even with these methods, a composition having both sufficient flame retardancy and rigidity has not been achieved.
Japanese Patent Laid-Open No. 10-30046 JP 09-324124 A JP 09-324071 A JP 09-324092 A JP 2001-2947 A JP-A-2003-26935

本発明の目的は、上記問題に鑑みポリプロピレン樹脂の難燃特性や基本物性である剛性低下の問題点を解決することであり、PTFEとリン酸塩系難燃剤を複合することにより、燃焼時の滴下防止性、外観等に優れた、かつ少ない難燃剤の配合量で優れた難燃性を有するリン酸塩系難燃性ポリプロピレン樹脂組成物を提供することにある。   The object of the present invention is to solve the problem of rigidity reduction, which is a flame retardant property and basic physical properties of polypropylene resin in view of the above problems, and by combining PTFE and a phosphate flame retardant, An object of the present invention is to provide a phosphate-based flame-retardant polypropylene resin composition that has excellent anti-dripping properties, appearance, and the like, and has excellent flame retardancy with a small amount of flame retardant.

本発明者らは難燃性、燃焼時の滴下防止性、剛性、外観等に優れたリン系難燃性ポリオレフィン樹脂組成物を得るべく鋭意検討した結果、PTFEをマトリクス樹脂と溶融混練して得られる粒状のPTFEマスターバッチを特定のポリプロピレン樹脂およびリン酸塩系難燃剤と溶融混練することにより目的が達成されることを見出し、本発明を完成するに至った。   As a result of intensive investigations to obtain a phosphorus-based flame-retardant polyolefin resin composition excellent in flame retardancy, anti-dripping property, rigidity, appearance, etc., the present inventors obtained PTFE by melt-kneading with a matrix resin. It was found that the object was achieved by melt-kneading the granular PTFE master batch obtained with a specific polypropylene resin and a phosphate flame retardant, and the present invention was completed.

すなわち本発明は、MFRが0.1〜80g/10分、アイソタクチックペンタッド分率が0.97以上の結晶性ポリプロピレン樹脂(A)及びリン酸塩系難燃剤(B)の合計量100重量部に対して、テトラフルオロエチレン樹脂(PTFE)を溶融混練したマスターバッチ(C)を、PTFEとして0.01〜3重量部を溶融混練してなる難燃性ポリプロピレン樹脂組成物であって、該マスターバッチ(C)の樹脂マトリックスがポリプロピレン樹脂であり、かつ該結晶性ポリプロピレン樹脂(A)、該リン酸塩系難燃剤(B)及び該マスターバッチ(C)の溶融混練は、該結晶性ポリプロピレン樹脂(A)は溶融するが、PTFEは溶融することなく、混練温度170〜230℃で行うことを特徴とする難燃性ポリプロピレン樹脂組成物に存する。
That is, the present invention provides a total amount of 100 of the crystalline polypropylene resin (A) and the phosphate flame retardant (B) having an MFR of 0.1 to 80 g / 10 min and an isotactic pentad fraction of 0.97 or more. A masterbatch (C) obtained by melt-kneading tetrafluoroethylene resin (PTFE) with respect to parts by weight, a flame-retardant polypropylene resin composition obtained by melt-kneading 0.01 to 3 parts by weight as PTFE , The resin matrix of the master batch (C) is a polypropylene resin, and the crystalline polypropylene resin (A), the phosphate-based flame retardant (B) and the master batch (C) are melt-kneaded to produce the crystalline The flame-retardant polypropylene resin composition is characterized in that the polypropylene resin (A) is melted, but the PTFE is not melted, and the kneading temperature is 170 to 230 ° C. It resides in.

本発明によれば、優れた機械的強度、成形性に加えて、優れた難燃性を有するポリプロピレン樹脂組成物が得られる。難燃剤として少量のPTFEマスターバッチを使用し、塩素及び臭素含有化合物を使用していないので環境負荷が小さい。   According to the present invention, a polypropylene resin composition having excellent flame resistance in addition to excellent mechanical strength and moldability can be obtained. Since a small amount of PTFE masterbatch is used as a flame retardant and no chlorine and bromine-containing compounds are used, the environmental impact is small.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

ポリプロピレン樹脂(A)
本発明に用いられるポリプロピレン樹脂(A)としては、結晶性プロピレン単独重合体、プロピレンを主成分とし該プロピレンとエチレンもしくは炭素数4以上のα―オレフィンとのランダム共重合体、結晶性ポリプロピレンとプロピレンエチレンのゴム状共重合体からなるいわゆるブロック共重合体、もしくはこれらの2種以上の混合物等が挙げられる。
Polypropylene resin (A)
Examples of the polypropylene resin (A) used in the present invention include a crystalline propylene homopolymer, a random copolymer of propylene as a main component and the propylene and ethylene or an α-olefin having 4 or more carbon atoms, crystalline polypropylene and propylene. Examples include so-called block copolymers made of a rubbery copolymer of ethylene, or a mixture of two or more thereof.

本発明のポリプロピレン樹脂(A)のメルトフローレート(MFR)は、0.1〜80g/10分、好ましくは5〜60g/10分であり、アイソタクチックペンタッド分率が0.97以上、好ましくは0.98以上の、高度の立体規則性を有するポリプロピレン結晶性ポリプロピレン部分を有するものである。   The melt flow rate (MFR) of the polypropylene resin (A) of the present invention is 0.1 to 80 g / 10 minutes, preferably 5 to 60 g / 10 minutes, and the isotactic pentad fraction is 0.97 or more, Preferably, it has a polypropylene crystalline polypropylene portion having a high degree of stereoregularity of 0.98 or more.

本発明でのアイソタクチックペンタッド分率([mmmm])とは、13C−NMRを使用する方法で測定されるポリプロピレン分子鎖中のペンタッド単位でのアイソタクチック分率である(Macromolecules,6巻,925頁(1973年)参照)。換言すれば、アイソタクチックペンタッド分率は、プロピレンモノマー単位が5個連続してメソ結合した連鎖の中心にあるプロピレンモノマー単位の分率である。ただし、ピークの帰属に関しては、Macromolecules,8巻、687頁(1975年)に記載の方法に基づいて行った。具体的な13C−NMRスペクトルのメチル炭素領域の全吸収ピーク中のケミカルシフトは、頭−尾結合しメチル分岐の方向が同一であるプロピレン単位5連鎖の第3単位目のメチル基を21.8ppmとして設定し、他の炭素ピークのケミカルシフトはこれを基準とし、[mmmm]ピークの強度分率としてアイソタクチックペンタッド単位を測定する。 The isotactic pentad fraction ([mmmm]) in the present invention is an isotactic fraction of pentad units in a polypropylene molecular chain measured by a method using 13 C-NMR (Macromolecules, 6, page 925 (1973)). In other words, the isotactic pentad fraction is a fraction of a propylene monomer unit at the center of a chain in which five propylene monomer units are continuously meso-bonded. However, peak assignment was performed based on the method described in Macromolecules, Vol. 8, page 687 (1975). The chemical shift in the total absorption peak in the methyl carbon region of a specific 13 C-NMR spectrum is as follows. The methyl group of the third unit of the 5-unit propylene unit having a head-to-tail bond and the same methyl branching direction is represented by 21. It is set as 8 ppm, and the chemical shift of the other carbon peak is based on this, and the isotactic pentad unit is measured as the intensity fraction of the [mmmm] peak.

詳しくは、下記の13C−NMRスペクトルの測定方法にしたがって測定した値である。13C−NMRスペクトルは、10mmφNMR用サンプル管の中で、ポリプロピレン試料約100mgを、2mlのオルトジクロロベンゼンと0.2mlのベンゼン−d6の混合溶媒に溶解させ、500MHzのNMR装置(Varian社製、Inova500)を用いて、共鳴周波数125.7MHzで13C−NMRを測定した。 Specifically, it is a value measured according to the following 13 C-NMR spectrum measurement method. The 13 C-NMR spectrum was obtained by dissolving about 100 mg of a polypropylene sample in a mixed solvent of 2 ml of orthodichlorobenzene and 0.2 ml of benzene-d6 in a sample tube for 10 mmφ NMR, and a 500 MHz NMR apparatus (manufactured by Varian, 13 C-NMR was measured at a resonance frequency of 125.7 MHz using Inova 500).

[mmmm]は0.97以上、好ましくは0.98以上である。0.97未満では、各種難燃剤を配合した際、剛性低下を引き起こし、十分な力学物性を保つことが出来ない。   [Mmmm] is 0.97 or more, preferably 0.98 or more. If it is less than 0.97, when various flame retardants are blended, rigidity is lowered and sufficient mechanical properties cannot be maintained.

本発明のポリプロピレン樹脂(A)は、上記のMFRと[mmmm]が充足される限り、特にその製造法が限定されるものではないが、通常、チーグラー型高活性触媒、あるいはメタロセン触媒を用いて製造される。   The production method of the polypropylene resin (A) of the present invention is not particularly limited as long as the above MFR and [mmmm] are satisfied. Usually, a Ziegler type highly active catalyst or a metallocene catalyst is used. Manufactured.

チーグラー(ZN)触媒としては、マグネシウム、チタン、ハロゲン、電子供与体を必須成分とする固体触媒成分と有機アルミニウム化合物を組合わせた高活性触媒が好ましい。   The Ziegler (ZN) catalyst is preferably a highly active catalyst in which a solid catalyst component containing magnesium, titanium, halogen, and an electron donor as essential components and an organoaluminum compound are combined.

メタロセン触媒としては、ジルコニウム、ハフニウム、チタンなどの遷移金属にシクロペンタジエニル骨格を有する有機化合物およびハロゲン原子などが配位したメタロセン錯体と、アルモキサン化合物、イオン交換性珪酸塩、有機アルミニウム化合物などを組み合わせた触媒が有効である。   Examples of metallocene catalysts include organic compounds having a cyclopentadienyl skeleton and transition metal such as zirconium, hafnium, titanium, and metallocene complexes in which halogen atoms are coordinated, alumoxane compounds, ion-exchange silicates, organoaluminum compounds, and the like. The combined catalyst is effective.

プロピレンと共重合させるコモノマーとしては、エチレン、ブテン−1、ペンテン−1、ヘキセン−1、4−メチル−ペンテン−1等が挙げられる。これらコモノマー成分は、0〜15重量%、好ましくは0〜10重量%である。これらのうち、特に好ましいものは、プロピレンとエチレン及び/又はブテン−1とのランダム共重合体である。   Examples of comonomers copolymerized with propylene include ethylene, butene-1, pentene-1, hexene-1, 4-methyl-pentene-1. These comonomer components are 0 to 15% by weight, preferably 0 to 10% by weight. Among these, a particularly preferable one is a random copolymer of propylene and ethylene and / or butene-1.

反応系中の各モノマーの量比は経時的に一定である必要はなく、各モノマーを一定の混合比で供給することも便利であるし、供給するモノマーの混合比を経時的に変化させることも可能である。また、共重合反応比を考慮してモノマーのいずれかを分割添加することもできる。   The amount ratio of each monomer in the reaction system does not need to be constant over time, it is convenient to supply each monomer at a constant mixing ratio, and the mixing ratio of the supplied monomers can be changed over time. Is also possible. Also, any of the monomers can be added in portions in consideration of the copolymerization reaction ratio.

重合様式は、触媒成分と各モノマーが効率よく接触するならば、あらゆる様式の方法を採用することができる。具体的には、不活性溶媒を用いるスラリー法、不活性溶媒を実質的に用いずプロピレンを溶媒として用いるバルク法、溶液法あるいは実質的に液体溶媒を用いず各モノマーを実質的にガス状に保つ気相法を採用することができる。   As the polymerization method, any method can be adopted as long as the catalyst component and each monomer come into efficient contact. Specifically, a slurry method using an inert solvent, a bulk method using substantially no inert solvent as a solvent, a solution method, or a solution method, or substantially using each liquid without substantially using a liquid solvent. A gas phase method can be employed.

また、連続重合、回分式重合のいずれを用いてもよい。スラリー重合の場合には、重合溶媒としてヘキサン、ヘプタン、ペンタン、シクロヘキサン、ベンゼン、トルエン等の飽和脂肪族または芳香族炭化水素の単独あるいは混合物を用いることができる。   Further, either continuous polymerization or batch polymerization may be used. In the case of slurry polymerization, a saturated aliphatic or aromatic hydrocarbon such as hexane, heptane, pentane, cyclohexane, benzene and toluene can be used alone or as a polymerization solvent.

重合条件としては重合温度が−78〜160℃、好ましくは0〜150℃であり、そのときの分子量調節剤として補助的に水素を用いることができる。また、重合圧力は0〜90kg/cm2・G、好ましくは0〜60kg/cm2・G、特に好ましくは1〜50kg/cm2・Gである。 As the polymerization conditions, the polymerization temperature is -78 to 160 ° C, preferably 0 to 150 ° C, and hydrogen can be supplementarily used as the molecular weight regulator at that time. The polymerization pressure is 0 to 90 kg / cm 2 · G, preferably 0 to 60 kg / cm 2 · G, particularly preferably 1 to 50 kg / cm 2 · G.

リン酸塩系難燃剤(B)
本発明に用いられるリン酸塩系難燃剤(B)としては、一般的にポリオレフィン用の難燃剤として用いられるものであれば、いずれも用いることができる。例えば、ポリリン酸アンモニウム塩、ポリリン酸メラミン塩、ポリリン酸ピペラジン塩、オルトリン酸ピペラジン塩、ピロリン酸メラミン塩、ピロリン酸ピペラジン塩、ポリリン酸メラミン塩、オルトリン酸メラミン塩、リン酸カルシウム、リン酸マグネシウム等のリン酸塩化合物または混合物などが挙げられる。
Phosphate flame retardant (B)
Any phosphate-based flame retardant (B) used in the present invention can be used as long as it is generally used as a flame retardant for polyolefins. For example, ammonium polyphosphate, melamine polyphosphate, piperazine polyphosphate, piperazine orthophosphate, melamine pyrophosphate, piperazine pyrophosphate, melamine polyphosphate, melamine orthophosphate, calcium phosphate, magnesium phosphate, etc. An acid salt compound or a mixture is mentioned.

上記例示において、メラミン、ピペラジンの代わりに、N,N,N',N'−テトラメチルジアミノメタン、エチレンジジアミン、N,N'−ジメチルエチレンジアミン、N,N'−ジエチルエチレンジアミン、N,N−ジメチルエチレンジアミン、N,N−ジエチルエチレンジアミン、N,N,N',N'−テトラメチルエチレンジアミン、N,N,N',N'−ジエチルエチレンジアミン、1,2−プロパンジアミン、1,3−プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、1,7−ジアミノへプタン、1,8−ジアミノオクタン、1,9ージアミノノナン、1,10−ジアミノデカン、trans−2,5−ジメチルピペラジン、1,4−ビス(2−アミノエチル)ピペラジン、1,4−ビス(3−アミノプロピル)ピペラジン、アセトグアナミン、ベンゾグアナミン、アクリルグアナミン、2,4−ジアミノ−6−ノニル−1,3,5−トリアジン、2,4−ジアミノ−6−ハイドロキシ−1,3,5−トリアジン、2−アミノ−4,6−ジハイドロキシ−1,3,5−トリアジン、2,4−ジアミノ−6−メトキシ−1,3,5−トリアジン、2,4−ジアミノ−6−エトキシ−1,3,5−トリアジン、2,4−ジアミノ−6−プロポキシ−1,3,5−トリアジン、2,4−ジアミノ−6−イソプロポキシ−1,3,5−トリアジン、2,4−ジアミノ−6−メルカプト−1,3,5−トリアジン、2−アミノ−4,6−ジメルカプト−1,3,5−トリアジン、アンメリン、ベンズグアナミン、アセトグアナミン、フタロジグアナミン、メラミンシアヌレート、ピロリン酸メラミン、ブチレンジグアナミン、ノルボルネンジグアナミン、メチレンジグアナミン、エチレンジメラミン、トリメチレンジメラミン、テトラメチレンジメラミン、ヘキサメチレンジメラミン、1,3−ヘキシレンジメランミン等を置き換えた化合物も同様に使用できる。市販品としては、旭電化社製・アデカスタブFP2000、ポリリン酸アンモニウム等が挙げられる。   In the above examples, instead of melamine and piperazine, N, N, N ′, N′-tetramethyldiaminomethane, ethylenedidiamine, N, N′-dimethylethylenediamine, N, N′-diethylethylenediamine, N, N— Dimethylethylenediamine, N, N-diethylethylenediamine, N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′-diethylethylenediamine, 1,2-propanediamine, 1,3-propanediamine , Tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, trans-2,5-dimethylpiperazine, 1 , 4-Bis (2-aminoethyl) piperazine, 1,4-bis 3-aminopropyl) piperazine, acetoguanamine, benzoguanamine, acrylic guanamine, 2,4-diamino-6-nonyl-1,3,5-triazine, 2,4-diamino-6-hydroxy-1,3,5-triazine 2-amino-4,6-dihydroxy-1,3,5-triazine, 2,4-diamino-6-methoxy-1,3,5-triazine, 2,4-diamino-6-ethoxy-1, 3,5-triazine, 2,4-diamino-6-propoxy-1,3,5-triazine, 2,4-diamino-6-isopropoxy-1,3,5-triazine, 2,4-diamino-6 -Mercapto-1,3,5-triazine, 2-amino-4,6-dimercapto-1,3,5-triazine, ammelin, benzguanamine, acetoguanamine, phthalodi Guanamine, melamine cyanurate, melamine pyrophosphate, butylene diguanamine, norbornene diguanamine, methylene diguanamine, ethylene dimelamine, trimethylene dimelamine, tetramethylene dimelamine, hexamethylene dimelamine, 1,3-hexylene dimeramine A compound in which etc. are replaced can be used similarly. Examples of commercially available products include Asahi Denka Co., Ltd., Adeka Stub FP2000, and ammonium polyphosphate.

本発明で使用されるリン酸塩化合物の配合量は、ポリオレフィン樹脂100重量部に対し10〜50重量部、好ましくは15〜40重量部、さらに好ましく22〜30重量部である。配合量が10重量部未満では、十分な難燃効果が得られず、50重量部を超えて添加するとポリオレフィン樹脂の特性を低下させることとなるし、経済性につても不利となるので好ましくない。   The compounding quantity of the phosphate compound used by this invention is 10-50 weight part with respect to 100 weight part of polyolefin resin, Preferably it is 15-40 weight part, More preferably, it is 22-30 weight part. If the blending amount is less than 10 parts by weight, a sufficient flame retardant effect cannot be obtained, and if it exceeds 50 parts by weight, the properties of the polyolefin resin are deteriorated, and this is disadvantageous in terms of economic efficiency. .

テトラフルオロエチレン樹脂(PTFE)を溶融混練したマスターバッチ(C)
本発明に用いられるPTFEは、テトラフルオロエチレンの単独重合体又はテトラフルオロエチレンを主成分とする共重合体である。テトラフルオロエチレンと共重合するコモノマーとしては、ジフルオロエチレン、トリフルオロエチレン、ヘキサフルオロプロピレン、クロロトリフルオロエチレン、フルオロアルキルエチレン、パーフルオロアルキルビニルエーテル等の含フッ素オレフィンや、パーフルオロアルキル(メタ)アクリレート等の含フッ素アルキル(メタ)アクリレートを用いることができる。共重合成分の含量は、テトラフルオロエチレンに対して10重量%以下であることが好ましい。
Master batch (C) in which tetrafluoroethylene resin (PTFE) is melt-kneaded
The PTFE used in the present invention is a tetrafluoroethylene homopolymer or a copolymer containing tetrafluoroethylene as a main component. Comonomers copolymerized with tetrafluoroethylene include fluorine-containing olefins such as difluoroethylene, trifluoroethylene, hexafluoropropylene, chlorotrifluoroethylene, fluoroalkylethylene, perfluoroalkyl vinyl ether, and perfluoroalkyl (meth) acrylate. The fluorine-containing alkyl (meth) acrylate can be used. The content of the copolymer component is preferably 10% by weight or less with respect to tetrafluoroethylene.

ポリテトラフルオロエチレン粒子の水性分散液の市販原料としては、旭硝子フロロポリマー社製のフルオンAD−1、AD−936、ダイキン工業社製のポリフロンD−1、D−2、三井デュポンフロロケミカル社製のテフロン30J(テフロンは登録商標)等を代表例として挙げることができる。   Commercial raw materials for aqueous dispersions of polytetrafluoroethylene particles include Asahi Glass Fluoropolymer's Fullon AD-1, AD-936, Daikin Industries' Polyflon D-1, D-2, Mitsui DuPont Fluorochemicals Teflon 30J (Teflon is a registered trademark) can be given as a representative example.

PTFE粒子の水性分散液は、含フッ素界面活性剤を用いる乳化重合法によって、テトラフルオロエチレンモノマーと、要すれば適宜のコモノマーを重合することにより得られる。PTFE粒子の水性分散液の粒子径は0.05〜1.0μmが好ましい。   An aqueous dispersion of PTFE particles can be obtained by polymerizing a tetrafluoroethylene monomer and, if necessary, an appropriate comonomer by an emulsion polymerization method using a fluorine-containing surfactant. The particle size of the aqueous dispersion of PTFE particles is preferably 0.05 to 1.0 μm.

PTFE粒子の水性分散液は、塩化カルシウム、硫酸マグネシウム等の金属塩を溶解した熱水中に投入し、塩析、凝固した後に乾燥するか、スプレードライにより粉体化することができる。得られた粉体を、酸化防止剤、安定剤、滑剤等の成形助剤と共にポリプロピレンなどのマトリクス樹脂に配合し、溶融混練することによってPTFEマスターバッチを調整することができる。   The aqueous dispersion of PTFE particles can be poured into hot water in which a metal salt such as calcium chloride or magnesium sulfate is dissolved and dried after being salted out and solidified, or powdered by spray drying. A PTFE masterbatch can be prepared by blending the obtained powder into a matrix resin such as polypropylene together with molding aids such as an antioxidant, a stabilizer and a lubricant, and melt-kneading them.

場合によっては、PTFE粒子の水性分散液中で重合性ビニル化合物を重合することによって、PTFEを変性することができる。この際に得られるPTFE変性物は、PTFEとビニル化合物の重合体との均一な混合物を形成しており、ポリプロピレンとの混合性を向上する上に効果的である。   In some cases, PTFE can be modified by polymerizing a polymerizable vinyl compound in an aqueous dispersion of PTFE particles. The PTFE-modified product obtained at this time forms a uniform mixture of PTFE and a polymer of a vinyl compound, and is effective in improving the mixing property with polypropylene.

上記重合性ビニル化合物としては、スチレン、α−メチルスチレン、p−メチルスチレン、o−メチルスチレン、t−ブチルスチレン、o−エチルスチレン、p−クロロスチレン、o−クロロスチレン、2,4−ジクロロスチレン、p−メトキシスチレン、o−メトキシスチレン、2,4−ジメチルスチレン等の芳香族ビニル単量体;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸−2−エチルヘキシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸トリデシル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸シクロヘキシル等の(メタ)アクリル酸エステル単量体;アクリロニトリル、メタアクリロニトリル等のシアン化ビニル単量体;無水マレイン酸等のα,β−不飽和カルボン酸;N−フェニルマレイミド、N−メチルマレイミド、N−シクロヘキシルマレイミド等のマレイミド単量体;グリシジルメタクリレート等のエポキシ基含有単量体;ビニルメチルエーテル、ビニルエチルエーテル等のビニルエーテル単量体;酢酸ビニル、酪酸ビニル等のカルボン酸ビニル単量体;エチレン、プロピレン、イソブチレン等のα−オレフィン単量体;ブタジエン、イソプレン、ジメチルブタジエン等のジエン単量体等を挙げることができる。なかでも極性基を有する(メタ)アクリルモノマーが好ましい。これらの単量体は、単独であるいは2種以上混合して用いることができる。変性PTFE中のPTFE含有量は、通常1〜90重量%の範囲から選択される。   Examples of the polymerizable vinyl compound include styrene, α-methylstyrene, p-methylstyrene, o-methylstyrene, t-butylstyrene, o-ethylstyrene, p-chlorostyrene, o-chlorostyrene, 2,4-dichloro. Aromatic vinyl monomers such as styrene, p-methoxystyrene, o-methoxystyrene, 2,4-dimethylstyrene; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth ) (Meth) acrylic acid ester monomers such as 2-ethylhexyl acrylate, dodecyl (meth) acrylate, tridecyl (meth) acrylate, octadecyl (meth) acrylate, cyclohexyl (meth) acrylate; acrylonitrile, meta Vinyl cyanide monomers such as acrylonitrile; α, β- such as maleic anhydride Saturated carboxylic acid; maleimide monomer such as N-phenylmaleimide, N-methylmaleimide, N-cyclohexylmaleimide; epoxy group-containing monomer such as glycidyl methacrylate; vinyl ether monomer such as vinylmethylether and vinylethylether; Examples thereof include vinyl carboxylate monomers such as vinyl acetate and vinyl butyrate; α-olefin monomers such as ethylene, propylene and isobutylene; and diene monomers such as butadiene, isoprene and dimethylbutadiene. Of these, a (meth) acryl monomer having a polar group is preferred. These monomers can be used alone or in admixture of two or more. The PTFE content in the modified PTFE is usually selected from the range of 1 to 90% by weight.

アクリルモノマーで変性されたPTFEの市販品としては、三菱レイヨン社製の熱可塑性樹脂用改質剤(メタブレンA−3000)などが挙げられる。   Examples of commercially available PTFE modified with an acrylic monomer include a modifier for thermoplastic resin (Methbrene A-3000) manufactured by Mitsubishi Rayon Co., Ltd.

本発明のポリプロピレン樹脂組成物は、結晶性ポリプロピレン樹脂(A)とリン酸塩系難燃剤(B)の合計量100重量部に対して、PTFEマスターバッチ(C)を、PTFEとして0.01〜3重量部、好ましくは0.02〜1.0重量部、更に好ましくは0.05〜0.5重量部配合することが重要である。 0.01重量部以下では燃焼時の滴下防止効果がなく、3重量部以上では機械物性の低下や外観を悪化させるだけでなく経済的に不利である。   The polypropylene resin composition of the present invention has a PTFE master batch (C) of 0.01 to PTFE based on 100 parts by weight of the total amount of the crystalline polypropylene resin (A) and the phosphate flame retardant (B). It is important to blend 3 parts by weight, preferably 0.02 to 1.0 parts by weight, more preferably 0.05 to 0.5 parts by weight. If it is 0.01 parts by weight or less, there is no effect of preventing dripping at the time of combustion, and if it is 3 parts by weight or more, it not only deteriorates mechanical properties and deteriorates the appearance, but is also economically disadvantageous.

PTFEは、結晶性ポリプロピレン樹脂(A)との溶融混練に際し、せん断力によりフイブリル化し繊維状のネットワーク構造を採るので、溶融樹脂の溶融張力を向上させる作用がある。このフイブリルを効率よく発生、分散させるためにPTFEを特殊なアクリル樹脂で変性した物が好ましい。   Since PTFE is fibrillated by a shearing force and adopts a fibrous network structure during melt kneading with the crystalline polypropylene resin (A), it has an effect of improving the melt tension of the molten resin. In order to efficiently generate and disperse this fibril, a product obtained by modifying PTFE with a special acrylic resin is preferable.

本発明において、PTFEは、マトリクス樹脂と共に溶融混練したマスターバッチの形態で使用される。マスターバッチとしないで、PTFE単独の粉状体として使用した場合は、ポリプロピレン樹脂との複合時に成形体全体に均一分散されないため、有効に滴下防止効果が発揮されない。マスターバッチは、ポリプロピレン樹脂等のマトリクス成分に、変性された、或いは変性されていないPTFE粉状品とを適当量混合し、タンブラーミキサーやヘンシェルミキサーで混合した後、二軸押し出し機等を用いて適当な溶融条件下でペレット化することで製造される。この際要すれば、酸化防止剤、滑剤、光安定剤など各種添加剤を同時に配合することができる。   In the present invention, PTFE is used in the form of a masterbatch that is melt-kneaded with a matrix resin. When not used as a masterbatch and used as a powdery body of PTFE alone, it is not uniformly dispersed throughout the molded body when combined with the polypropylene resin, so that the dripping prevention effect is not exhibited effectively. The master batch is mixed with an appropriate amount of modified or unmodified PTFE powder in a matrix component such as polypropylene resin, mixed with a tumbler mixer or Henschel mixer, and then using a twin screw extruder or the like. Manufactured by pelletizing under suitable melting conditions. If necessary, various additives such as an antioxidant, a lubricant, and a light stabilizer can be blended at the same time.

リン酸塩系難燃剤(B)は予め結晶性ポリプロピレン樹脂(A)に混合しておき、その後PTFEマスターバッチ(C)と混合してもよい。(A),(B),(C)を同時に混合してもよく、更に、各種添加剤を同時に混合してもよい。   The phosphate flame retardant (B) may be previously mixed with the crystalline polypropylene resin (A) and then mixed with the PTFE master batch (C). (A), (B), (C) may be mixed simultaneously, and various additives may be mixed simultaneously.

金属酸化物(D)
本発明に用いられる金属酸化物(D)としては、酸化亜鉛、酸化鉄、酸化アルミ、酸化モリブデン等が挙げられる。より好ましい金属酸化物としては酸化亜鉛、酸化鉄であり平均粒径が30μm以下、好ましくは10μm以下、更に好ましくは1μm以下のものが好適である。金属酸化物の平均粒子径が30μmより大きい場合には、ポリオレフィン樹脂に対する分散性が悪くなり、高度な難燃性を得ることが出来なくなる。
Metal oxide (D)
Examples of the metal oxide (D) used in the present invention include zinc oxide, iron oxide, aluminum oxide, and molybdenum oxide. More preferable metal oxides are zinc oxide and iron oxide, and those having an average particle size of 30 μm or less, preferably 10 μm or less, and more preferably 1 μm or less are suitable. When the average particle diameter of the metal oxide is larger than 30 μm, dispersibility with respect to the polyolefin resin is deteriorated, and high flame retardance cannot be obtained.

本発明に用いる金属酸化物を使用する場合の配合量は、ポリプロピレン樹脂(A)及びリン酸塩系難燃剤(B)の合計量100重量部に対して、0.05〜5重量部か好ましく、さらに好ましくは0.1〜3重量部である。0.05重量部未満では十分な添加による相乗難燃効果が得られず、5重量部を超えて添加すると経済性に不利となるので好ましくない。   The compounding amount when using the metal oxide used in the present invention is preferably 0.05 to 5 parts by weight with respect to 100 parts by weight of the total amount of the polypropylene resin (A) and the phosphate flame retardant (B). More preferably, it is 0.1 to 3 parts by weight. If it is less than 0.05 part by weight, a synergistic flame retardant effect due to sufficient addition cannot be obtained, and if it exceeds 5 parts by weight, it is disadvantageous for economic efficiency.

任意成分(E)
本発明のポリプロピレン樹脂組成物には、本発明の効果を損なわない範囲で、更に他の特性を付与するために、任意の添加剤を配合することができる。例えば、酸化防止剤、加工安定剤、紫外吸収剤、光安定剤、帯電防止剤、結晶化核剤、滑剤、金属不活性剤、着色顔料、各種無機充填剤、ガラス繊維等を添加することが出来る。また、高密度ポリエチレン(HDPE)、高圧法低密度ポリエチレン(LDPE),線状低密度ポリエチレン(LLDPE)、エチレン・プロピレンゴム(EPR)、エチレン・ブテンゴム(EBR)、C2/C6共重合体、C2/C8共重合体、ポリスチレン、エチレン・アクリル酸共重合体、エチレン・酢酸ビニル共重合体(EVA)、スチレン・ブタジエン共重合体水添物(SEBS)等の重合体を複合することも可能である。また、ポリプロピレンの無水マレイン酸変性体、エチレン・プロピレン共重合体の無水マレイン酸変性体等の極性基含有の変性ポリオレフィンを複合することも可能である。
Optional component (E)
In the polypropylene resin composition of the present invention, any additive can be blended in order to further impart other characteristics within a range not impairing the effects of the present invention. For example, antioxidants, processing stabilizers, ultraviolet absorbers, light stabilizers, antistatic agents, crystallization nucleating agents, lubricants, metal deactivators, color pigments, various inorganic fillers, glass fibers, etc. may be added. I can do it. Also, high density polyethylene (HDPE), high pressure method low density polyethylene (LDPE), linear low density polyethylene (LLDPE), ethylene propylene rubber (EPR), ethylene butene rubber (EBR), C2 / C6 copolymer, C2 / C8 copolymer, polystyrene, ethylene / acrylic acid copolymer, ethylene / vinyl acetate copolymer (EVA), styrene / butadiene copolymer hydrogenated product (SEBS), etc. can be combined. is there. It is also possible to combine a modified polyolefin containing a polar group such as a maleic anhydride-modified product of polypropylene and a maleic anhydride-modified product of ethylene / propylene copolymer.

上記任意成分のうち、各種の安定剤等は、結晶性ポリプロピレン樹脂(A)100重量部に対して、通常0〜5重量部、無機充填剤や重合体系配合剤は0〜30重量部の範囲で使用される。   Among the above optional components, various stabilizers and the like are usually in the range of 0 to 5 parts by weight with respect to 100 parts by weight of the crystalline polypropylene resin (A), and the inorganic filler and polymer system compounding agent are in the range of 0 to 30 parts by weight. Used in.

リン酸塩系難燃性ポリプロピレン樹脂組成物の製造方法
本発明のリン酸塩系難燃性ポリプロピレン樹脂組成物を製造する方法としては、特に限定されるものではない。結晶性ポリプロピレン樹脂(A)およびリン酸塩系難燃剤(B)の合計量100重量部に対して、所定量のテトラフルオロエチレンマスターバッチ(C)を混合し、必要に応じ他の添加剤の所定量を混合する。例えば、スーパーミキサー、タンブラーミキサー等の混合装置に各成分を入れ、1〜5分間混合したのち、得られた混合物を押し出し機、加熱ロール、ニーダーなどにより混練温度170〜230℃で溶融混練しペレット化する方法を挙げることができる。その中でも2軸による押し出し機混練が生産性、難燃特性面で好ましい。
<発明の作用>
本発明のポリプロピレン樹脂組成物は、従来知られている難燃ポリオレフィン樹脂より優れた難燃性と耐ドリップ性を示し、かつ機械的強度に優れている。ポリプロピレン樹脂と共に各種の配合成分を溶融混練するに際し、結晶性ポリプロピレン樹脂(A)は溶融するが、PTFE成分は溶融することなく、せん断力によりフイブリル化し繊維状のネットワーク構造を採る。これが溶融樹脂の溶融張力を向上させることとなり、ドリップ防止の効果を発現する。
Method for Producing Phosphate Flame Retardant Polypropylene Resin Composition The method for producing the phosphate flame retardant polypropylene resin composition of the present invention is not particularly limited. A predetermined amount of tetrafluoroethylene masterbatch (C) is mixed with 100 parts by weight of the total amount of the crystalline polypropylene resin (A) and the phosphate flame retardant (B), and if necessary, other additives Mix a predetermined amount. For example, each component is put into a mixing apparatus such as a super mixer and a tumbler mixer, mixed for 1 to 5 minutes, and then the obtained mixture is melt-kneaded at a kneading temperature of 170 to 230 ° C. with an extruder, a heating roll, a kneader, etc. Can be mentioned. Among them, the extruder kneading with two axes is preferable in terms of productivity and flame retardancy.
<Operation of the invention>
The polypropylene resin composition of the present invention exhibits flame retardancy and drip resistance superior to conventionally known flame retardant polyolefin resins, and is excellent in mechanical strength. When various compounding components are melt-kneaded with the polypropylene resin, the crystalline polypropylene resin (A) is melted, but the PTFE component is not melted but is fibrillated by a shearing force to take a fibrous network structure. This improves the melt tension of the molten resin and exhibits the effect of preventing drip.

以下に、本発明を更に具体的に説明するために、実施例を示すが本発明はこれによって限定されるものではない。また特に断りのない限り実施例で示される部は重量部である。   In order to describe the present invention more specifically, examples are shown below, but the present invention is not limited thereto. Unless otherwise specified, the parts shown in the examples are parts by weight.

なお、各種の物性評価は次の方法により行った。
(1)MFR(メルトフローレート)
JIS−K6921−2:1997付属書(230℃、21.18N荷重)に準拠した。
(2)アイソタクチックペンタッド分率 [mmmm]
13C−NMR法に従った。
(3)難燃性:
UL94V試験(アンダーライター・ラボラトリーズコーポレイテッド)の「機器の部品用プレスチック材料の燃焼試験」に規定された垂直燃焼試験方法に準拠した。
(4)滴下性(ドリップ性):
UL94V試験(アンダーライター・ラボラトリーズコーポレイテッド)の「機器の部品用プレスチック材料の燃焼試験」に規定された垂直燃焼試験方法に準拠し、下記の基準で評価した。即ち、
◎ :滴下物 なし
○ :滴下物 あり、但し、綿を着火させない(ドリップ1)
× :綿を着火する塊状滴下物 あり(ドリップ2)
(5)外観評価:
120mm×120mm×2mmの射出成形シートでの異物を目視観察し、下記の基準で評価した。即ち、
○ :白色異物がなかったもの
△ :0.1mm以上の白色異物が1個〜10個観察できたもの
× :0.1mm以上の白色異物が11個以上観察できたもの
(6)曲げ弾性率
JIS−K7203に準拠して23℃で測定した。成形品の寸法は90×10×4mmを用いた。単位:MPa。
Various physical properties were evaluated by the following methods.
(1) MFR (melt flow rate)
It was based on JIS-K6921-2: 1997 appendix (230 degreeC, 21.18N load).
(2) Isotactic pentad fraction [mmmm]
The 13 C-NMR method was followed.
(3) Flame retardancy:
The vertical combustion test method stipulated in the UL94V test (Underwriters Laboratories) “Plastic material combustion test for equipment parts” was used.
(4) Dripping property (drip property):
In accordance with the vertical combustion test method defined in the “flammability test of plastic materials for equipment parts” of the UL94V test (Underwriter Laboratories Corp.), the evaluation was made according to the following criteria. That is,
◎: There is no dropped material. ○: There is a dropped material. However, cotton is not ignited (drip 1).
×: Massive dripping material that ignites cotton (Drip 2)
(5) Appearance evaluation:
The foreign matters on the 120 mm × 120 mm × 2 mm injection molded sheet were visually observed and evaluated according to the following criteria. That is,
○: No white foreign matter was observed. Δ: One to ten white foreign matters of 0.1 mm or more could be observed. X: Eleven white foreign matters of 0.1 mm or more could be observed. (6) Flexural modulus. It measured at 23 degreeC based on JIS-K7203. The dimension of the molded product was 90 × 10 × 4 mm. Unit: MPa.

<結晶性ポリプロピレン樹脂(A)の製造>
[製造例1]・・・・・(A1)の製造
(チーグラー触媒の製造)
充分に窒素置換した10L反応器に、脱水および脱酸素したn−ヘプタン4000mlを導入し、次いでMgCl2を8モル、Ti(O−n−C494を16モル導入し、95℃で2時間反応させた。反応終了後、40℃に温度を下げ、次いでメチルヒドロポリシロキサン(20センチストークスのもの)を960ml導入し、3時間反応させた。生成した固体成分をn−ヘプタンで洗浄した。次いで、充分に窒素置換した10L反応器に、上記と同様に精製したn−ヘプタンを1000ml導入し、上記で合成した固体成分をMg原子換算で4.8モル導入した。次いでn−ヘプタン500mlにSiCl48モルを混合して30℃、30分間でフラスコへ導入し、70℃で3時間反応させた。反応終了後、n−ヘプタンで洗浄した。次いでn−ヘプタン500mlにフタル酸クロライド0.48モルを混合して、70℃、30分間でフラスコへ導入し、90℃で1時間反応させた。反応終了後、n−ヘプタンで洗浄した。次いで、SiCl4200mlを導入して80℃で6時間反応させた。反応終了後、n−ヘプタンで充分に洗浄し固体成分を得た。このもののチタン含量は1.3重量%であった。
<Production of crystalline polypropylene resin (A)>
[Production Example 1] ... (A1) (Production of Ziegler catalyst)
Into a 10-liter reactor sufficiently purged with nitrogen, 4000 ml of dehydrated and deoxygenated n-heptane was introduced, and then 8 moles of MgCl 2 and 16 moles of Ti (On-C 4 H 9 ) 4 were introduced. For 2 hours. After completion of the reaction, the temperature was lowered to 40 ° C., and then 960 ml of methylhydropolysiloxane (20 centistokes) was introduced and reacted for 3 hours. The resulting solid component was washed with n-heptane. Next, 1000 ml of n-heptane purified in the same manner as described above was introduced into a 10 L reactor sufficiently purged with nitrogen, and 4.8 mol of the solid component synthesized above was introduced in terms of Mg atoms. Next, 8 mol of SiCl 4 was mixed with 500 ml of n-heptane, introduced into the flask at 30 ° C. for 30 minutes, and reacted at 70 ° C. for 3 hours. After completion of the reaction, washing with n-heptane was performed. Subsequently, 0.48 mol of phthalic acid chloride was mixed with 500 ml of n-heptane, introduced into the flask at 70 ° C. for 30 minutes, and reacted at 90 ° C. for 1 hour. After completion of the reaction, washing with n-heptane was performed. Next, 200 ml of SiCl 4 was introduced and reacted at 80 ° C. for 6 hours. After completion of the reaction, it was sufficiently washed with n-heptane to obtain a solid component. The titanium content of this product was 1.3% by weight.

次いで、充分に窒素置換したフラスコに、上記と同様に精製したn−ヘプタンを1000ml導入し、上記で合成した固体成分を100グラム導入し、(t−C49)Si(CH3)(OCH3224ml、Al(C25334グラムを30℃で2時間接触させた。接触終了後、n−ヘプタンで充分に洗浄し、塩化マグネシウムを主体とする固体触媒成分を得た。このもののチタン含量は1.1重量%であった。 Next, 1000 ml of n-heptane purified in the same manner as described above was introduced into a sufficiently nitrogen-substituted flask, 100 g of the solid component synthesized above was introduced, and (t-C 4 H 9 ) Si (CH 3 ) ( 24 ml of OCH 3 ) 2 and 34 grams of Al (C 2 H 5 ) 3 were contacted at 30 ° C. for 2 hours. After completion of the contact, it was thoroughly washed with n-heptane to obtain a solid catalyst component mainly composed of magnesium chloride. The titanium content of this product was 1.1% by weight.

(プロピレンブロック共重合体の製造)
上記で得た固体触媒成分及びトリエチルアルミニウムを使用し、第1重合工程として反応部容積280Lを有する流動床式気相反応器を用い重合温度85℃、プロピレン分圧22kg/cm2 の条件下プロピレン単独重合を連続的に行った。この時、固体触媒成分は1.2g/hrの速度で、またトリエチルアルミニウムを5.5g/hrの速度で連続的に供給した。第1重合工程より抜き出されるパウダーを24kg/hrで連続的に第2重合工程として用いる反応部容積280Lを有する流動床式気相反応器に送り、プロピレンとエチレンの共重合を連続的に行った。第2重合工程から連続的に30kg/hrのポリマーを抜き出した。各重合工程での水素濃度は1槽目H2/C3=0.03モル比、2槽目H2/(C2+C3)=0.01モル比にコントロールすることにより分子量を制御した。ゴム状プロピレン・エチレン共重合体中のエチレン組成は第2重合工程でのプロピレンとエチレンのガス組成をプロピレン/エチレン=1/1モル比にコントロールすることによりプロピレン・エチレンブロック共重合体(A1)を得た。[mmmm]は0.98、MFRは30g/10分であった。
(Production of propylene block copolymer)
Using the solid catalyst component obtained above and triethylaluminum, propylene under the conditions of a polymerization temperature of 85 ° C. and a propylene partial pressure of 22 kg / cm 2 using a fluidized bed gas phase reactor having a reaction part volume of 280 L as the first polymerization step. Homopolymerization was performed continuously. At this time, the solid catalyst component was continuously supplied at a rate of 1.2 g / hr and triethylaluminum was continuously supplied at a rate of 5.5 g / hr. The powder extracted from the first polymerization step is continuously fed at 24 kg / hr to a fluidized bed gas phase reactor having a reaction part volume of 280 L used as the second polymerization step, and propylene and ethylene are continuously copolymerized. It was. A polymer of 30 kg / hr was continuously extracted from the second polymerization step. The molecular weight was controlled by controlling the hydrogen concentration in each polymerization step to the first tank H 2 /C3=0.03 molar ratio and the second tank H 2 /(C2+C3)=0.01 molar ratio. The ethylene composition in the rubbery propylene / ethylene copolymer is a propylene / ethylene block copolymer (A1) by controlling the propylene / ethylene gas composition in the second polymerization step to a propylene / ethylene = 1/1 molar ratio. Got. [Mmmm] was 0.98, and MFR was 30 g / 10 min.

[製造例2]・・・・・(A2)の製造
(チーグラー触媒の製造)
窒素置換した500ml内容積のガラス製三ツ口フラスコ(温度計、滴下ロート、攪拌棒付き)に、144mlの精製ヘプタンと58mlの四塩化チタンを加えた。また、滴下ロートには120mlのヘプタンと66mlのジエチルアルミニウムクロリドを仕込んだ。フラスコを−10℃に冷却し、120rpmの攪拌のもとで3時間でジエチルアルミニウムクロリドを滴下する。さらに、−10℃で1時間反応させたのち、系の温度を1時間でゆっくりと65℃に昇温した。65℃で1時間反応させたのち、デカンテーションにより上澄液を分離し、新しい精製ヘプタン200mlで5回洗浄した。つぎに、250mlのヘプタンと99mlのジイソアミルエーテルを添加し、35℃で1時間反応させた。反応終了後、先の四塩化チタンの還元時と同様に精製ヘプタン200mlで5回洗浄した。つぎに、150mlのヘプタンと116mlの四塩化チタンを加えて65℃で2時間反応させた。反応終了後、精製ヘプタン200mlで5回洗浄した。最後に、150mlのヘプタンとn‐ブタノール2.3mlを加え、室温で1時間反応させ、ヘプタン200mlで3回洗浄して、固体触媒成分とした。
[Production Example 2] ... Production of (A2) (Production of Ziegler catalyst)
To a 500-ml glass three-necked flask (with a thermometer, a dropping funnel, and a stirring rod) purged with nitrogen, 144 ml of purified heptane and 58 ml of titanium tetrachloride were added. The dropping funnel was charged with 120 ml of heptane and 66 ml of diethylaluminum chloride. The flask is cooled to −10 ° C., and diethylaluminum chloride is added dropwise over 3 hours under stirring at 120 rpm. Furthermore, after reacting at -10 ° C for 1 hour, the temperature of the system was slowly raised to 65 ° C in 1 hour. After reacting at 65 ° C. for 1 hour, the supernatant was separated by decantation and washed 5 times with 200 ml of fresh purified heptane. Next, 250 ml of heptane and 99 ml of diisoamyl ether were added and reacted at 35 ° C. for 1 hour. After completion of the reaction, it was washed 5 times with 200 ml of purified heptane in the same manner as in the previous reduction of titanium tetrachloride. Next, 150 ml of heptane and 116 ml of titanium tetrachloride were added and reacted at 65 ° C. for 2 hours. After completion of the reaction, washing was performed 5 times with 200 ml of purified heptane. Finally, 150 ml of heptane and 2.3 ml of n-butanol were added, reacted at room temperature for 1 hour, washed 3 times with 200 ml of heptane to obtain a solid catalyst component.

(プロピレンの重合)
内容積200リットルの攪拌式オートクレーブをプロピレンで充分置換した後、充分に脱水・脱酸素したn‐ヘプタン63リットルを導入し、ジエチルアルミニウムモノクロライドとエチルアルミニウムジクロライドとを混合し、室温で2時間撹拌し、均質化して調製したエチルアルミニウムクロリド50gおよび前記三塩化チタン組成物10gを65℃でプロピレン雰囲気下で導入した。第一段重合は、オートクレーブを70℃に昇温した後、水素濃度を5vol%に調節しながらプロピレンを9kg/hrの流量で導入することにより開始した。202分後、プロピレンの導入をやめ、さらに重合を70℃で90分継続させた。気相部プロピレンを0.2kg/cm2 Gとなるまでパージした。第二段重合は、オートクレーブを65℃に降温した後、プロピレンを4.6kg/hr、エチレンを3kg/hrで導入して60分間実施した。
(Propylene polymerization)
After thoroughly replacing the 200-liter stirred autoclave with propylene, introduce 63 liters of fully dehydrated and deoxygenated n-heptane, mix diethylaluminum monochloride and ethylaluminum dichloride, and stir at room temperature for 2 hours. Then, 50 g of ethylaluminum chloride prepared by homogenization and 10 g of the titanium trichloride composition were introduced at 65 ° C. in a propylene atmosphere. The first stage polymerization was started by heating the autoclave to 70 ° C. and then introducing propylene at a flow rate of 9 kg / hr while adjusting the hydrogen concentration to 5 vol%. After 202 minutes, the introduction of propylene was stopped, and the polymerization was further continued at 70 ° C. for 90 minutes. Vapor phase propylene was purged to 0.2 kg / cm 2 G. The second stage polymerization was carried out for 60 minutes by lowering the temperature of the autoclave to 65 ° C., and then introducing propylene at 4.6 kg / hr and ethylene at 3 kg / hr.

このようにして得られたスラリーをロ過・乾燥して粉末状のプロピレン・エチレンブロック共重合体を得た。同共重合体の[mmmm]は0.95、MFRは30g/10分であった。   The slurry thus obtained was filtered and dried to obtain a powdery propylene / ethylene block copolymer. [Mmmm] of the copolymer was 0.95, and MFR was 30 g / 10 min.

<リン系難燃剤>
(B1)リン酸塩系難燃剤として、旭電化社製「アデカスタブFP2000」を使用した。当該難燃剤の物性として、融点なし(250℃以上で分解)、窒素含量20〜23重量%、リン含量18〜21重量%である。
(B2)リン酸エステル系難燃剤として、グレートレイク社製「レオガード1000」融点190〜195℃を使用した。
<Phosphorus flame retardant>
(B1) “ADK STAB FP2000” manufactured by Asahi Denka Co., Ltd. was used as a phosphate flame retardant. As physical properties of the flame retardant, there is no melting point (decomposition at 250 ° C. or higher), a nitrogen content of 20 to 23% by weight, and a phosphorus content of 18 to 21% by weight.
(B2) “Leoguard 1000” melting point 190 to 195 ° C. manufactured by Great Lakes was used as a phosphate ester flame retardant.

<PTFE難燃剤>
(C1)アクリル変性PTFEを原料としたマスターバッチ
ポリプロピレン(日本ポリケム社製、プロピレン単独重合パウダー:FY4
相当品、MFR5g/10分、)60重量部、アクリル変性PTFE(三菱レイヨン社製、メタブレンA3000、PTFE含有量20%)40重量部(PTFEとして8重量部)に、更に、安定剤として、ペンタエリスリチルーテトラキス[3−(3,5―ジーt−ブチルー4−ヒドロキシフェニル)プロピオネートを0.05%、トリス(2,4−ジーt―ブチルフェニル)フォスファイトを0.05%、ステアリン酸カルシウムを0.05%、それぞれタンブラーミキサーに投入し20分間混合した。その後、二軸押し出し機(池貝社製、45mmD、L/D=38.5)を用いて温度200℃の条件下で溶融混練しペレット化した。
<PTFE flame retardant>
(C1) Masterbatch made of acrylic modified PTFE as raw material Polypropylene (Nippon Polychem, Propylene homopolymer powder: FY4
Equivalent product, MFR 5 g / 10 min.) 60 parts by weight, acrylic modified PTFE (Mitsubishi Rayon Co., Ltd., Metabrene A3000, PTFE content 20%) 40 parts by weight (PTFE 8 parts by weight), and stabilizer as penta Erythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate 0.05%, tris (2,4-di-t-butylphenyl) phosphite 0.05%, calcium stearate 0.05% of each was put into a tumbler mixer and mixed for 20 minutes. Then, it melt-kneaded and pelletized on the conditions of the temperature of 200 degreeC using the biaxial extruder (Ikegai company make, 45mmD, L / D = 38.5).

(C2)未変性PTFEを原料としたマスターバッチ
ポリプロピレン(日本ポリケム社製、プロピレン単独重合パウダー:FY4相当品、MFR5g/10分、)90重量部、未変性PTFE(ダイキン社製、ポリフロンFA500、PTFE含有量100%)10重量部を使用した以外は上記(C1)と同様の条件で溶融混練しペレット化した。
(C2) Master batch polypropylene made from unmodified PTFE (produced by Nippon Polychem, propylene homopolymer powder: FY4 equivalent, MFR 5 g / 10 min), 90 parts by weight, unmodified PTFE (produced by Daikin, Polyflon FA500, PTFE) (Content 100%) Except for using 10 parts by weight, the mixture was melt-kneaded and pelletized under the same conditions as in (C1) above.

(C3)アクリル変性PTFE(三菱レイヨン社製、メタブレンA3000)の粉状品をそのまま使用した。   (C3) A powdery product of acrylic modified PTFE (Mitsubrene A3000 manufactured by Mitsubishi Rayon Co., Ltd.) was used as it was.

<金属酸化物>
(D1)〜(D4)
各種の粒径を有する酸化亜鉛、酸化鉄又は酸化アルミを使用した。
<Metal oxide>
(D1) to (D4)
Zinc oxide, iron oxide or aluminum oxide having various particle sizes was used.

上記の原料について、物性・商品名などを[表1]にまとめた。   [Table 1] summarizes the physical properties and product names of the above raw materials.

<実施例1>
ポリプロピレン樹脂として上記で得た(A1)を100重量部、リン酸塩系難燃剤として上記(B1)を28重量部、PTFEマスターバッチとして上記(C1)を1.25重量部(PTFEとして0.1重量部)、及びその他の添加剤として、ペンタエリスリチルーテトラキス[3−(3,5―ジーt−ブチルー4−ヒドロキシフェニル)プロピオネート(チバ・スペシャリティ・ケミカルズ社製、酸化防止剤イルガノックス1010)を0.2重量部、トリス(2,4−ジーt―ブチルフェニル)フォスファイト(チバ・スペシャリティ・ケミカルズ社製、加工安定剤イルガフォス168)を0.2重量部、ステアリン酸カルシウムを0.05重量部、それぞれヘンシェルミキサーに入れ、3分間撹拌混合した。得られた混合物を口径30mmの2軸押し出し機を使用して200℃で溶融混練押し出し、ペレット化した。得られたペレットを80℃で4時間乾燥したのち、型締め圧100tの射出成形機を用い、成型温度200℃、金型冷却温度40℃の設定条件下で1.5mm厚みのUL94V用試験片を作成した。また、同条件下で120mm×120mm×2mmの射出成形シートを成形し外観評価用に使用した。
<Example 1>
100 parts by weight of (A1) obtained above as a polypropylene resin, 28 parts by weight of (B1) as a phosphate-based flame retardant, 1.25 parts by weight of (C1) as a PTFE masterbatch (0.005 as PTFE). 1 part by weight), and as other additives, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate (manufactured by Ciba Specialty Chemicals, Inc., antioxidant Irganox 1010) ) 0.2 parts by weight, Tris (2,4-di-t-butylphenyl) phosphite (manufactured by Ciba Specialty Chemicals, Inc., processing stabilizer Irgaphos 168), 0.2 parts by weight, and calcium stearate 0.05 Each part by weight was placed in a Henschel mixer and stirred for 3 minutes. The obtained mixture was melt-kneaded and extruded at 200 ° C. using a biaxial extruder having a diameter of 30 mm, and pelletized. The obtained pellets were dried at 80 ° C. for 4 hours, and then using an injection molding machine with a clamping pressure of 100 t, a test piece for UL94V having a thickness of 1.5 mm under the setting conditions of a molding temperature of 200 ° C. and a mold cooling temperature of 40 ° C. It was created. Further, an injection molded sheet of 120 mm × 120 mm × 2 mm was molded under the same conditions and used for appearance evaluation.

難燃性ポリプロピレン樹脂組成物の配合処方及び該組成物の難燃評価結果を表2に示した。   Table 2 shows the formulation of the flame retardant polypropylene resin composition and the results of flame retardant evaluation of the composition.

<実施例2〜11>
表1に示した配合原料を使用し、表2に示した配合処方に従って、実施例1と同様にして他の添加剤も配合して、撹拌・混合及び溶融混練してペレット化した。得られたペレットから試験片を作成して実施した難燃評価結果を表2に示した。
<Examples 2 to 11>
Using the blending raw materials shown in Table 1, according to the blending recipe shown in Table 2, other additives were blended in the same manner as in Example 1, and the mixture was pelletized by stirring, mixing and melt-kneading. Table 2 shows the results of flame retardant evaluation conducted by preparing test pieces from the obtained pellets.

<比較例1〜5>
表1に示した配合原料を使用し、表3に示した配合処方に従って、実施例1と同様にして他の添加剤も配合して、撹拌・混合及び溶融混練してペレット化した。得られたペレットから試験片を作成して実施した難燃評価結果を表3に示した。
<Comparative Examples 1-5>
Using the blending raw materials shown in Table 1, according to the blending recipe shown in Table 3, other additives were blended in the same manner as in Example 1, and the mixture was pelletized by stirring, mixing and melt-kneading. Table 3 shows the results of flame retardant evaluation performed by preparing test pieces from the obtained pellets.

表2及び表3の比較から次のことが明らかとなった。
(1)PTFE系難燃剤を配合しないと優れた難燃性は達成されない(比較例1)。
(2)結晶性に劣る([mmmm]=0.95)ポリプロピレン樹脂を原料とした場合は優れた難燃性は達成されない(比較例2)。
(3)リン酸塩系難燃剤の代わりにリン酸エステル系難燃剤を配合した場合は、優れた難燃性は達成されない(比較例3,4)。
(4)PTFEマスターバッチ(溶融混練品)の代わりにPTFE粉状品を配合した場合は、優れた難燃性は達成されない(比較例5,6)。
From the comparison of Table 2 and Table 3, the following became clear.
(1) Excellent flame retardancy is not achieved unless a PTFE flame retardant is blended (Comparative Example 1).
(2) Inferior in crystallinity ([mmmm] = 0.95) When a polypropylene resin is used as a raw material, excellent flame retardancy is not achieved (Comparative Example 2).
(3) When a phosphate ester flame retardant is blended in place of the phosphate flame retardant, excellent flame retardancy is not achieved (Comparative Examples 3 and 4).
(4) When a PTFE powder product is blended in place of the PTFE master batch (melt kneaded product), excellent flame retardancy is not achieved (Comparative Examples 5 and 6).

Figure 0004666896
Figure 0004666896

Figure 0004666896
Figure 0004666896

Figure 0004666896
Figure 0004666896

本発明によれば、ポリプロピレン樹脂の優れた機械的強度、成形性に加えて、優れた難燃性が得られるので、自動車部品、電機部品、容器包装部材、建築用部材など広範な分野で利用が可能である。   According to the present invention, in addition to the excellent mechanical strength and moldability of polypropylene resin, excellent flame retardancy can be obtained, so it can be used in a wide range of fields such as automobile parts, electrical parts, container packaging members, and building members. Is possible.

Claims (6)

MFRが0.1〜80g/10分、アイソタクチックペンタッド分率が0.97以上の結晶性ポリプロピレン樹脂(A)及びリン酸塩系難燃剤(B)の合計量100重量部に対して、テトラフルオロエチレン樹脂(以下、PTFEと略記)を溶融混練したマスターバッチ(C)を、PTFEとして0.01〜3重量部を溶融混練してなる難燃性ポリプロピレン樹脂組成物であって、該マスターバッチ(C)の樹脂マトリックスがポリプロピレン樹脂であり、かつ該結晶性ポリプロピレン樹脂(A)、該リン酸塩系難燃剤(B)及び該マスターバッチ(C)の溶融混練は、該結晶性ポリプロピレン樹脂(A)は溶融するが、PTFEは溶融することなく、混練温度170〜230℃で行うことを特徴とする難燃性ポリプロピレン樹脂組成物Based on 100 parts by weight of the total amount of crystalline polypropylene resin (A) and phosphate flame retardant (B) having an MFR of 0.1 to 80 g / 10 min and an isotactic pentad fraction of 0.97 or more A master batch (C) obtained by melt-kneading tetrafluoroethylene resin (hereinafter abbreviated as PTFE) is a flame-retardant polypropylene resin composition obtained by melt-kneading 0.01 to 3 parts by weight as PTFE , The resin matrix of the master batch (C) is a polypropylene resin, and the crystalline polypropylene resin (A), the phosphate-based flame retardant (B), and the master batch (C) are melt-kneaded with the crystalline polypropylene. A flame retardant polypropylene resin composition characterized by being melted at a kneading temperature of 170 to 230 ° C. without melting PTFE but melting resin (A) . 結晶性ポリプロピレン樹脂(A)のMFRが、5〜60g/10分である請求項1に記載の難燃性ポリプロピレン樹脂組成物。   The flame-retardant polypropylene resin composition according to claim 1, wherein the MFR of the crystalline polypropylene resin (A) is 5 to 60 g / 10 min. MFRが5〜60g/10分、アイソタクチックペンタッド分率が0.97以上の結晶性ポリプロピレン樹脂(A)及びリン酸塩系難燃剤(B)の合計量100重量部に対して、PTFEを溶融混練したマスターバッチ(C)をPTFEとして0.01〜3重量部、及び金属酸化物(D)0.05〜5重量部を溶融混練してなる難燃性ポリプロピレン樹脂組成物であって、該マスターバッチ(C)の樹脂マトリックスがポリプロピレン樹脂であり、かつ該結晶性ポリプロピレン樹脂(A)、該リン酸塩系難燃剤(B)及び該マスターバッチ(C)の溶融混練は、該結晶性ポリプロピレン樹脂(A)は溶融するが、PTFEは溶融することなく、混練温度170〜230℃で行うことを特徴とする難燃性ポリプロピレン樹脂組成物PTFE with respect to a total amount of 100 parts by weight of crystalline polypropylene resin (A) and phosphate flame retardant (B) having an MFR of 5 to 60 g / 10 min and an isotactic pentad fraction of 0.97 or more. 0.01 to 3 parts by weight of the master batch was melt-kneaded (C) as PTFE, and a metal oxide (D) a flame retardant polypropylene resin composition obtained by melt-kneading a 0.05 to 5 parts by weight The melt matrix of the master batch (C) is a polypropylene resin, and the crystalline polypropylene resin (A), the phosphate flame retardant (B) and the master batch (C) The flame retardant polypropylene resin composition is characterized by being melted at a kneading temperature of 170 to 230 ° C. without melting the PTFE polypropylene resin (A) but PTFE . 金属酸化物が酸化亜鉛である請求項3記載の難燃性ポリプロピレン樹脂組成物。   The flame retardant polypropylene resin composition according to claim 3, wherein the metal oxide is zinc oxide. 結晶性ポリプロピレン樹脂(A)100重量部に対して、リン酸塩系難燃剤(B)22〜30重量部を配合してなる請求項1〜4のいずれか1項に記載の難燃性ポリプロピレン樹脂組成物。   The flame-retardant polypropylene according to any one of claims 1 to 4, wherein 22 to 30 parts by weight of a phosphate flame retardant (B) is blended with 100 parts by weight of the crystalline polypropylene resin (A). Resin composition. マスターバッチ(C)中のPTFEがアクリル変性されていることを特徴とする請求項1〜5のいずれか1項に記載の難燃性ポリプロピレン樹脂組成物。   The flame retardant polypropylene resin composition according to any one of claims 1 to 5, wherein PTFE in the master batch (C) is acrylic-modified.
JP2003294991A 2003-08-19 2003-08-19 Polypropylene resin composition Expired - Fee Related JP4666896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003294991A JP4666896B2 (en) 2003-08-19 2003-08-19 Polypropylene resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003294991A JP4666896B2 (en) 2003-08-19 2003-08-19 Polypropylene resin composition

Publications (2)

Publication Number Publication Date
JP2005060603A JP2005060603A (en) 2005-03-10
JP4666896B2 true JP4666896B2 (en) 2011-04-06

Family

ID=34371364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003294991A Expired - Fee Related JP4666896B2 (en) 2003-08-19 2003-08-19 Polypropylene resin composition

Country Status (1)

Country Link
JP (1) JP4666896B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11339263B2 (en) 2015-03-16 2022-05-24 Shpp Global Technologies B.V. Fibrillated polymer compositions and methods of their manufacture

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5036584B2 (en) * 2008-02-07 2012-09-26 アロン化成株式会社 Flame retardant elastomer composition
JP5708973B2 (en) * 2010-04-30 2015-04-30 三菱レイヨン株式会社 Method for producing tablet of modifier for thermoplastic resin, thermoplastic resin composition and molded article
JP6171666B2 (en) 2012-08-01 2017-08-02 住友化学株式会社 Method for producing flame retardant thermoplastic elastomer composition
JP6372125B2 (en) * 2013-03-29 2018-08-15 日本ポリプロ株式会社 Fiber reinforced polypropylene flame retardant resin composition and molded body using the same
JP2015078277A (en) * 2013-10-16 2015-04-23 日本ポリプロ株式会社 Flame retardant resin composition
JP6213235B2 (en) 2013-12-27 2017-10-18 住友化学株式会社 Method for producing flame retardant thermoplastic elastomer composition
CN105906929B (en) 2015-02-19 2020-07-17 住友化学株式会社 Thermoplastic elastomer composition
CN105906928B (en) 2015-02-19 2019-12-27 住友化学株式会社 Thermoplastic elastomer composition

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04139241A (en) * 1990-09-28 1992-05-13 Chisso Corp Production of ammonium polyphosphate-containing bleed-free olefin-based polymer composition
JPH04202506A (en) * 1990-11-30 1992-07-23 Mitsui Petrochem Ind Ltd Production of propylene-based copolymer, propylene-based copolymer, propylene-based copolymer composition and use thereof
JPH06248189A (en) * 1993-02-24 1994-09-06 Asahi Chem Ind Co Ltd Thermoplatic resin composition containing fluororesin
JPH07330968A (en) * 1994-06-09 1995-12-19 Sekisui Chem Co Ltd Flame-retardant polyolefin resin composition
JPH111598A (en) * 1997-06-16 1999-01-06 Tokuyama Corp Propylene-ethylene block copolymer composition
JP2000336218A (en) * 1999-05-28 2000-12-05 Tokuyama Corp Polypropylene resin sheet and thermoformed container
JP2001328116A (en) * 2000-05-22 2001-11-27 Mitsubishi Rayon Co Ltd Producing method for master batch of modifying agent
JP2002128969A (en) * 2000-10-25 2002-05-09 Calp Corp Flame retardant resin composition and its molding
JP2002220533A (en) * 2001-01-24 2002-08-09 Mitsubishi Rayon Co Ltd Thermoplastic resin composition and additive for improving moldability and compatibility and master batch using the same
JP2002338756A (en) * 2001-05-16 2002-11-27 Calp Corp Flame-retardant resin composition and its molded product
JP2003026935A (en) * 2001-07-17 2003-01-29 Asahi Denka Kogyo Kk Flame-retardant synthetic resin composition
JP2004500457A (en) * 1999-12-30 2004-01-08 サムソン ジェネラル ケミカルズ カンパニー リミテッド Flame retardant polypropylene resin composition

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04139241A (en) * 1990-09-28 1992-05-13 Chisso Corp Production of ammonium polyphosphate-containing bleed-free olefin-based polymer composition
JPH04202506A (en) * 1990-11-30 1992-07-23 Mitsui Petrochem Ind Ltd Production of propylene-based copolymer, propylene-based copolymer, propylene-based copolymer composition and use thereof
JPH06248189A (en) * 1993-02-24 1994-09-06 Asahi Chem Ind Co Ltd Thermoplatic resin composition containing fluororesin
JPH07330968A (en) * 1994-06-09 1995-12-19 Sekisui Chem Co Ltd Flame-retardant polyolefin resin composition
JPH111598A (en) * 1997-06-16 1999-01-06 Tokuyama Corp Propylene-ethylene block copolymer composition
JP2000336218A (en) * 1999-05-28 2000-12-05 Tokuyama Corp Polypropylene resin sheet and thermoformed container
JP2004500457A (en) * 1999-12-30 2004-01-08 サムソン ジェネラル ケミカルズ カンパニー リミテッド Flame retardant polypropylene resin composition
JP2001328116A (en) * 2000-05-22 2001-11-27 Mitsubishi Rayon Co Ltd Producing method for master batch of modifying agent
JP2002128969A (en) * 2000-10-25 2002-05-09 Calp Corp Flame retardant resin composition and its molding
JP2002220533A (en) * 2001-01-24 2002-08-09 Mitsubishi Rayon Co Ltd Thermoplastic resin composition and additive for improving moldability and compatibility and master batch using the same
JP2002338756A (en) * 2001-05-16 2002-11-27 Calp Corp Flame-retardant resin composition and its molded product
JP2003026935A (en) * 2001-07-17 2003-01-29 Asahi Denka Kogyo Kk Flame-retardant synthetic resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11339263B2 (en) 2015-03-16 2022-05-24 Shpp Global Technologies B.V. Fibrillated polymer compositions and methods of their manufacture

Also Published As

Publication number Publication date
JP2005060603A (en) 2005-03-10

Similar Documents

Publication Publication Date Title
KR100407724B1 (en) Flame retardant polypropylene resin composition
CN107075201B (en) Fiber-reinforced flame-retardant polypropylene resin composition and molded article using same
JP6372125B2 (en) Fiber reinforced polypropylene flame retardant resin composition and molded body using the same
JP6291612B1 (en) Resin composition, molded article and pipe comprising the composition
EP0794225A1 (en) Thermoplastic resin composition
JP4666896B2 (en) Polypropylene resin composition
JP5953846B2 (en) Polypropylene resin composition and flame retardant blow molded article
US6444736B1 (en) Flame retardant polyolefin composition
JPH11228760A (en) Polypropylene resin film or sheet
AU2003280167A1 (en) Irradiated, oxidized olefin polymer coupling agents
CN112739767B (en) Flame retardant polypropylene composition
JP2009035581A (en) Flame-retardant polypropylene resin composition
JP2011256247A (en) Propylene resin composition
WO1998031744A1 (en) Impact polypropylene composition having high impact resistance and stiffness
JPS59184237A (en) Propylene polymer composition
JP2015078277A (en) Flame retardant resin composition
JPS58213038A (en) Polypropylene composition
JP2016089059A (en) Filler-containing polypropylene-based resin composition and molded body
JP2020084176A (en) Polypropylene resin composition having excellent whitening resistance, method for preparing the same, and molded article produced thereby
JP3275949B2 (en) Flame retardant polyolefin composition
JP3338248B2 (en) Polypropylene resin composition
KR102548685B1 (en) Flame-retardant Polypropylene Resin Composition with Excellent Transparency
EP1589070B1 (en) Polymer composition with improved stiffness and impact strength
JP7466742B1 (en) Propylene-based resin composition
JPH01104638A (en) High-rigidity and high-melt viscoelastic propylene homopolymer composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060619

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4666896

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees