JP4660758B2 - Electrostatic actuator - Google Patents

Electrostatic actuator Download PDF

Info

Publication number
JP4660758B2
JP4660758B2 JP2005099686A JP2005099686A JP4660758B2 JP 4660758 B2 JP4660758 B2 JP 4660758B2 JP 2005099686 A JP2005099686 A JP 2005099686A JP 2005099686 A JP2005099686 A JP 2005099686A JP 4660758 B2 JP4660758 B2 JP 4660758B2
Authority
JP
Japan
Prior art keywords
electrode
force
electrostatic
electrostatic actuator
movable electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005099686A
Other languages
Japanese (ja)
Other versions
JP2006280180A (en
Inventor
和幸 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Original Assignee
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY filed Critical NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Priority to JP2005099686A priority Critical patent/JP4660758B2/en
Publication of JP2006280180A publication Critical patent/JP2006280180A/en
Application granted granted Critical
Publication of JP4660758B2 publication Critical patent/JP4660758B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micromachines (AREA)

Description

本発明は、静電引力を弾性エネルギーにより補完して常に大きな発生力を出力することができる静電アクチュエータに関する。   The present invention relates to an electrostatic actuator that can always output a large generated force by complementing an electrostatic attractive force with elastic energy.

一対の対向電極に電圧を印加したときに生じる静電引力により対向電極間のギャップ間隔が変位する現象を利用する静電アクチュエータが知られている。静電アクチュエータにおいて、静電引力は、ギャップ間隔の2乗に反比例するため、大きな静電引力を達成するためには、ギャップ間隔を出来る限り微小な値に設定する必要がある。一方、大きな変位量を得るためにはギャップ間隔を広くする必要があり、トレードオフの関係がある。すなわち、アクチュエータとして十分な変位量を得ようとすると、初期状態で静電引力は小さく、大きな出力を得ることができない。また、外力と釣合うギャップ間隔を任意に設定することができない。   There is known an electrostatic actuator that utilizes a phenomenon in which a gap interval between opposing electrodes is displaced by electrostatic attraction generated when a voltage is applied to a pair of opposing electrodes. In the electrostatic actuator, the electrostatic attractive force is inversely proportional to the square of the gap interval. Therefore, in order to achieve a large electrostatic attractive force, it is necessary to set the gap interval as small as possible. On the other hand, in order to obtain a large amount of displacement, it is necessary to widen the gap interval, and there is a trade-off relationship. That is, if an amount of displacement sufficient as an actuator is to be obtained, the electrostatic attractive force is small in the initial state, and a large output cannot be obtained. Moreover, the gap interval that balances the external force cannot be set arbitrarily.

本発明は、上記の問題点を鑑みてなされたもので、本発明の目的は、静電引力と弾性力とを効率良く協働させることにより、静電引力の弱い初期状態からでも所定設定の高出力を取り出すことができ、しかも静電引力と弾性力の仕事量を可変して外力と釣合うギャップ間隔を任意に設定することができるため位置制御を精度良く行うことができる静電アクチュエータを提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to achieve a predetermined setting even from an initial state where the electrostatic attractive force is weak by efficiently cooperating electrostatic attractive force and elastic force. An electrostatic actuator that can take out high output and can control the position precisely because the gap between the electrostatic force and elastic force can be varied to set the gap interval to balance with the external force. It is to provide.

請求項1に係る静電アクチュエータは、第1の固定電極と、該電極に対向し、出力部を一体に構成し、出力部の外部負荷によって第1の電極に接近することを妨げる力を受ける第2の可動電極と、第1の電極と第2の電極との間隔を広げることによって歪を生じ、そのエネルギーを弾性力として蓄積し、第2の電極を第1の電極に向けて押し付ける力となるばねと、両電極間に静電引力を生成するために電圧を印加する手段とを備え、電圧印加時に静電引力とばねの弾性力の合力によって第2の電極と、これと一体となった出力部を第1の電極方向に移動させる機構を有する静電アクチュエータである。 An electrostatic actuator according to a first aspect of the present invention receives a force that prevents the first fixed electrode and the electrode from facing the first electrode due to an external load of the output unit that is configured integrally with the output unit. Strain is generated by widening the distance between the second movable electrode and the first electrode and the second electrode, the energy is stored as an elastic force, and the second electrode is pressed toward the first electrode And a means for applying a voltage to generate an electrostatic attraction between both electrodes, and the second electrode is integrated with the second electrode by the resultant force of the electrostatic attraction and the elastic force of the spring when the voltage is applied. This is an electrostatic actuator having a mechanism for moving the output portion thus formed in the first electrode direction .

請求項2に係る静電アクチュエータは、請求項1記載の静電アクチュエータにおいて、前記ばねとして非線形ばねを用いることを特徴する静電アクチュエータである。 An electrostatic actuator according to a second aspect is the electrostatic actuator according to the first aspect, wherein a non-linear spring is used as the spring .

請求項3に係る静電アクチュエータは、第1の固定電極を対向する第2の電極に対して任意の位置に固定するための、電極間距離を調節する手段を備えた請求項1又は請求項2記載の静電アクチュエータである。 The electrostatic actuator according to claim 3 includes means for adjusting a distance between the electrodes for fixing the first fixed electrode at an arbitrary position with respect to the second electrode facing each other. 2. The electrostatic actuator according to 2.

本発明に係る静電アクチュエータによれば、静電引力と弾性力を効率良く協働させることができるために、静電引力の弱い初期状態からでも所定設定の高出力を取り出すことができ、しかも静電引力と弾性力の仕事量を可変することができるため位置制御を精度良く行うことができる。   According to the electrostatic actuator according to the present invention, electrostatic attractive force and elastic force can be efficiently cooperated, so that a predetermined high output can be taken out even from an initial state where the electrostatic attractive force is weak, and Since the work of electrostatic attraction and elastic force can be varied, position control can be performed with high accuracy.

以下、添付図面を参照して本発明に係る静電アクチュエータを詳述する。
図1は、本発明に係る第1実施例の静電アクチュエータを示す概略図である。図2は、図1の静電アクチュエータの部分分解図である。該図において、静電アクチュエータ10は、矩形形状の可動電極12と、可動電極に対向して所定の間隔をもって配置された、可動電極とほぼ同じ矩形形状で同じ面積の固定電極14と、可動電極12と固定電極14との距離の変化による仕事を弾性エネルギーとして蓄積するための弾性手段としての非線形ばね16と、静電気力と弾性力により駆動する出力部18とを備える。出力部18は、可動電極と固定電極のほぼ中心に嵌挿され上下方向に移動可能に設けられている。なお、弾性手段は、線形ばねであってもよい。
Hereinafter, an electrostatic actuator according to the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a schematic diagram showing an electrostatic actuator of a first embodiment according to the present invention. FIG. 2 is a partially exploded view of the electrostatic actuator of FIG. In the figure, an electrostatic actuator 10 includes a rectangular movable electrode 12, a fixed electrode 14 having the same rectangular shape and the same area as the movable electrode, which is disposed at a predetermined interval facing the movable electrode, 12 includes a non-linear spring 16 as elastic means for accumulating work due to a change in the distance between the electrode 12 and the fixed electrode 14 as elastic energy, and an output unit 18 driven by electrostatic force and elastic force. The output unit 18 is fitted and inserted in substantially the center of the movable electrode and the fixed electrode so as to be movable in the vertical direction. The elastic means may be a linear spring.

可動電極12は、出力部18と一体に設けられている。固定電極14は、枠体20の上面21に設けられており、かつ枠体20の上面に設けられている4本の電動プランジャ22により上下に移動することができる。各非線形ばね16の一端は、枠体の下面23に固定して設けられ、かつ他端は、可動電極12に当接されている。非線形ばねとして非線形板ばねが使用されているが、非線形板ばねは、荷重に比例してばね定数が変化するように変形形状、板厚変化、ばね幅変化、複数のばねの組み合わせ等により実現できる。例えば、非線形ばねとして、有効スパンを減少させることによりばね定数を増大させる、プログレッシブスプリングを使用する。   The movable electrode 12 is provided integrally with the output unit 18. The fixed electrode 14 is provided on the upper surface 21 of the frame body 20 and can be moved up and down by four electric plungers 22 provided on the upper surface of the frame body 20. One end of each nonlinear spring 16 is fixed to the lower surface 23 of the frame body, and the other end is in contact with the movable electrode 12. A non-linear leaf spring is used as the non-linear spring, but the non-linear leaf spring can be realized by a deformed shape, a change in plate thickness, a change in spring width, a combination of a plurality of springs, etc. so that the spring constant changes in proportion to the load. . For example, as a non-linear spring, a progressive spring is used that increases the spring constant by reducing the effective span.

可動電極と固定電極に電圧が印可されると、可動電極と固定電極との間に静電引力Feが生じる。静電引力は、可動電極と固定電極の間隔に依存して生じる。弾性手段としての非線形ばねは、固定電極と可動電極との距離の変化による仕事を弾性力Fsとして蓄積する。かくして、出力部は、静電引力と弾性力により移動する。   When a voltage is applied to the movable electrode and the fixed electrode, an electrostatic attractive force Fe is generated between the movable electrode and the fixed electrode. The electrostatic attractive force is generated depending on the distance between the movable electrode and the fixed electrode. The non-linear spring as the elastic means accumulates work due to a change in the distance between the fixed electrode and the movable electrode as an elastic force Fs. Thus, the output unit moves due to electrostatic attraction and elastic force.

以下に出力部の動作を図3−図5を参照して詳述する。
工程1、電圧印加;可動電極及び固定電極をOFF状態とする。可動電極は、非線形ばねを圧縮した状態にある(図3)。この結果、可動電極と固定電極との間隔が大きく静電引力は小さいが、一方弾性力は圧縮されて大きい。
The operation of the output unit will be described in detail below with reference to FIGS.
Step 1, voltage application; the movable electrode and the fixed electrode are turned off. The movable electrode is in a compressed state of the nonlinear spring (FIG. 3). As a result, the distance between the movable electrode and the fixed electrode is large and the electrostatic attractive force is small, while the elastic force is compressed and large.

工程2、電圧印加;可動電極及び固定電極をON状態にする。可動電極は、固定電極に向けて上方へ移動して、固定電極に到達する(図4―図5)。この結果、可動電極と固定電極との間隔が狭くなり静電引力は大きくなり、一方弾性力は解放されて小さくなる。   Step 2, voltage application; the movable electrode and the fixed electrode are turned on. The movable electrode moves upward toward the fixed electrode and reaches the fixed electrode (FIGS. 4 to 5). As a result, the distance between the movable electrode and the fixed electrode becomes narrower and the electrostatic attractive force becomes larger, while the elastic force is released and becomes smaller.

図6は、図1の静電アクチュエータの出力を示す図である。静電アクチュエータは、固定電極と可動電極間の間隔の二乗に反比例して静電引力Feが働く。該図において、初期設定d0は、両電極の距離が十分に大きく設定しているために、静電引力Feは小さい。そして、可動電極が固定電極に向かって移動することにより、両電極間の間隔は狭くなる。これに伴い静電引力の値Feは大きくなる。一方、非線形ばねは、初期設定状態で可動電極により圧縮されているので、弾性力Fsは大きい。しかし、可動電極が、固定電極に向けて移動すると両電極間の距離は狭くなり、ばねの弾性力は小さくなる。静電アクチュエータは、静電引力とばねの弾性力で仕事をすることができるため、Fe+Fsの力を発生する。   FIG. 6 is a diagram showing the output of the electrostatic actuator of FIG. In the electrostatic actuator, the electrostatic attractive force Fe works in inverse proportion to the square of the interval between the fixed electrode and the movable electrode. In the figure, the initial setting d0 has a small electrostatic attraction Fe because the distance between both electrodes is set sufficiently large. Then, as the movable electrode moves toward the fixed electrode, the distance between the two electrodes becomes narrower. Along with this, the electrostatic attractive value Fe increases. On the other hand, since the nonlinear spring is compressed by the movable electrode in the initial setting state, the elastic force Fs is large. However, when the movable electrode moves toward the fixed electrode, the distance between the two electrodes becomes narrow, and the elastic force of the spring becomes small. Since the electrostatic actuator can work with electrostatic attraction and elastic force of the spring, it generates a force of Fe + Fs.

また、静電引力Feと弾性力Fsの和の発生力W;(Fe+Fs)を可変することができる。発生力可変手段は、可動電極及び固定電極の印加電圧を可変すること、又は固定電極の初期位置を可変することにより可動電極及び固定電極の間隔を可変することにより達成される。図7は、可動電極及び固定電極の印加電圧を可変することにより、静電引力Feと弾性力Fsの和の発生力が可変することにより得られる発生力W1、W2を示す図である。ここで、静電引力Feに合わせて弾性力Fsを設計することにより、発生力Wを直線状にすることができる。該図において、印加電圧を可変することにより、静電引力はFeからFe’ に変化する。すなわち、静電引力の値は、大きくなる。この結果、発生力は、発生力W1(電圧可変前;Fe+Fs)から発生力W2(電圧可変後;Fe’ +Fs)に変化する。発生力W2(電圧可変後)は、電圧の2乗に比例した発生力W1より高い出力曲線を有する。ここで、電極間隔は、点Xから点Yに変化させることができる。なお、該図において、横軸は間隔dを示す。ここで、間隔d0は、初期設定状態を示す。縦軸は、力Fを示す。   Further, the generated force W; (Fe + Fs) of the electrostatic attractive force Fe and the elastic force Fs can be varied. The generated force varying means is achieved by varying the applied voltage between the movable electrode and the fixed electrode, or varying the interval between the movable electrode and the fixed electrode by varying the initial position of the fixed electrode. FIG. 7 is a diagram showing generated forces W1 and W2 obtained by changing the generated force of the electrostatic attractive force Fe and the elastic force Fs by changing the voltage applied to the movable electrode and the fixed electrode. Here, the generated force W can be made linear by designing the elastic force Fs in accordance with the electrostatic attractive force Fe. In this figure, by changing the applied voltage, the electrostatic attractive force changes from Fe to Fe '. That is, the value of electrostatic attraction becomes large. As a result, the generated force changes from the generated force W1 (before voltage change; Fe + Fs) to the generated force W2 (after voltage change; Fe ′ + Fs). The generated force W2 (after voltage change) has a higher output curve than the generated force W1 proportional to the square of the voltage. Here, the electrode interval can be changed from the point X to the point Y. In the figure, the horizontal axis indicates the interval d. Here, the interval d0 indicates an initial setting state. The vertical axis represents the force F.

図8は、初期設定として固定電極を電動プランジャで可動電極側に向けて下方に移動させた場合の静電アクチュエータの出力を示す図である。固定電極を初期状態で距離d1移動させることにより、電極間隔は、dからd’ と小さくなり、よって静電引力Feは大きくなる。一方弾性力Fsは、変化しないが、距離d1分だけシフトしたことになる。かくして、静電アクチュエータは、静電引力Feとばねの弾性力Fs’ で仕事をするため、静電アクチュエータは、静電引力Feとばねの弾性力Fsの発生力W1に比べて高い発生力W2(静電引力Fed+ばねの弾性力Fs’)を行うことができる。   FIG. 8 is a diagram showing an output of the electrostatic actuator when the fixed electrode is moved downward toward the movable electrode side by the electric plunger as an initial setting. By moving the fixed electrode by the distance d1 in the initial state, the electrode interval is reduced from d to d ', and thus the electrostatic attractive force Fe is increased. On the other hand, the elastic force Fs does not change, but is shifted by the distance d1. Thus, since the electrostatic actuator works with the electrostatic attractive force Fe and the elastic force Fs ′ of the spring, the electrostatic actuator has a higher generated force W2 than the generated force W1 of the electrostatic attractive force Fe and the elastic force Fs of the spring. (Electrostatic attractive force Fed + spring elastic force Fs ′) can be performed.

かくして、電圧可変後の発生力の曲線により、発生力が決まれば、その発生力に応じて外力と釣合う間隔dを定めることができ、よって静電アクチュエータによって位置制御が可能となる。   Thus, if the generated force is determined by the curve of the generated force after the voltage is varied, the interval d that balances with the external force can be determined according to the generated force, and thus the position can be controlled by the electrostatic actuator.

図9は、本発明に係る第2実施例の静電アクチュエータを示す概略図である。該図において、静電アクチュエータ10は、可動電極12と、可動電極に対向して所定の間隔をもって固定配置された固定電極14と、可動電極12と固定電極14との距離の変化による仕事を弾性エネルギーとして蓄積するための弾性手段としての非線形ばね16と、静電引力と弾性力により駆動する出力部18とを備える。出力部18は、可動電極と固定電極のほぼ中心を嵌挿して上下方向に移動可能に設けられている。   FIG. 9 is a schematic view showing an electrostatic actuator of a second embodiment according to the present invention. In the figure, the electrostatic actuator 10 elastically works by a change in the distance between the movable electrode 12, the fixed electrode 14 fixedly arranged at a predetermined interval facing the movable electrode, and the distance between the movable electrode 12 and the fixed electrode 14. A non-linear spring 16 as elastic means for storing energy and an output unit 18 driven by electrostatic attraction and elastic force are provided. The output unit 18 is provided so as to be movable in the vertical direction by inserting substantially the centers of the movable electrode and the fixed electrode.

可動電極12は、出力部18と一体に設けられている。固定電極14は、枠体20の上面21固定して設けられており、可動電極は、枠体20の下面に設けられて、4本の電動プランジャ22により上方に押される。この場合、静電引力とばね力との関係を一定に保ったまま可動電極の動作範囲を変化できるようにすることにより、荷重に対してアクチュエータの最適な特性範囲で使用することができる。   The movable electrode 12 is provided integrally with the output unit 18. The fixed electrode 14 is provided fixed to the upper surface 21 of the frame body 20, and the movable electrode is provided on the lower surface of the frame body 20 and is pushed upward by the four electric plungers 22. In this case, by making it possible to change the operating range of the movable electrode while keeping the relationship between the electrostatic attractive force and the spring force constant, the actuator can be used in an optimum characteristic range with respect to the load.

図10は、各部材が平板31上に配置され、固定電極と可動電極との間隔を調整するために可動電極に設けられたピエゾアクチュエータを備えた静電アクチュエータの概略図を示す。該図において、静電アクチュエータ10は、可動電極12と、可動電極に対向して所定の間隔をもって固定配置された固定電極14と、可動電極12と固定電極14との距離の変化による仕事を弾性エネルギーとして蓄積するための弾性手段としての非線形ばね16と、静電引力と弾性力により駆動する出力部18と、可動電極12の初期仕事を変化させるピエゾアクチュエータ24を備える。   FIG. 10 is a schematic view of an electrostatic actuator in which each member is disposed on the flat plate 31 and includes a piezoelectric actuator provided on the movable electrode in order to adjust the interval between the fixed electrode and the movable electrode. In the figure, the electrostatic actuator 10 elastically works by a change in the distance between the movable electrode 12, the fixed electrode 14 fixedly arranged at a predetermined interval facing the movable electrode, and the distance between the movable electrode 12 and the fixed electrode 14. A nonlinear spring 16 as elastic means for storing energy, an output unit 18 driven by electrostatic attraction and elastic force, and a piezo actuator 24 for changing the initial work of the movable electrode 12 are provided.

以下に静電アクチュエータの出力部の動作を図11−図13を参照して詳述する。
工程1(スタート)、電圧印加;可動電極及び固定電極をOFF状態に設定する。
Hereinafter, the operation of the output unit of the electrostatic actuator will be described in detail with reference to FIGS.
Step 1 (start), voltage application; the movable electrode and the fixed electrode are set to the OFF state.

工程2、電圧印加;ピエゾアクチュエータをONにする。可動電極は、固定電極に向けて移動する(図12)、そして可動電極は、固定可動電極に固着して停止する(図13)。かくして、可動電極は、固定電極に向けて移動することにより、電極間距離に依存して静電引力が生じる。一方、非線形ばねは弾性力を開放する。   Step 2, voltage application; the piezo actuator is turned on. The movable electrode moves toward the fixed electrode (FIG. 12), and the movable electrode adheres to the fixed movable electrode and stops (FIG. 13). Thus, when the movable electrode moves toward the fixed electrode, an electrostatic attractive force is generated depending on the distance between the electrodes. On the other hand, the non-linear spring releases the elastic force.

図14及び図15は、静電アクチュエータにおける可動電極の非線形及び線形構造をそれぞれ示す概略図である。図14において、静電アクチュエータは、可動電極12の下方に所定の間隔をもって平板31上に配設された固定電極14を備え、静電引力と電極間隔の変化を非線形な変位に変換する構造を有する。すなわち、可動電極12は、板ばね28と非線形形状ばね押し案内部26、ここでは案内部は、図6の非線形ばねの曲線を有する。   14 and 15 are schematic views respectively showing the nonlinear and linear structures of the movable electrode in the electrostatic actuator. In FIG. 14, the electrostatic actuator includes a fixed electrode 14 disposed on a flat plate 31 with a predetermined interval below the movable electrode 12, and has a structure that converts changes in electrostatic attraction and electrode interval into nonlinear displacement. Have. That is, the movable electrode 12 has a leaf spring 28 and a non-linear shape spring pushing guide portion 26, and the guide portion here has a curve of the non-linear spring of FIG.

図15において、線形形状のばね押し案内部30、ここでは所定の角度の傾斜面を有して、可動電極の下方向の変位を線形な横方向の変位に変換する。   In FIG. 15, the spring-shaped guide portion 30 having a linear shape, here having an inclined surface with a predetermined angle, converts the downward displacement of the movable electrode into a linear lateral displacement.

発生力、変位の大きい実用的で、かつ省エネルギー、環境負荷の小さな静電アクチュエータ、位置制御アクチュエータ、ナノ静電アクチュエータ、近接場静電アクチュエータ   Practical and energy-saving electrostatic force with large generated force and displacement, low environmental impact electrostatic actuator, position control actuator, nano electrostatic actuator, near-field electrostatic actuator

本発明に係る静電アクチュエータの発生力を示す概略図である。It is the schematic which shows the generated force of the electrostatic actuator which concerns on this invention. 図1の静電アクチュエータの部分分解を示す概略図である。It is the schematic which shows the partial decomposition | disassembly of the electrostatic actuator of FIG. 図1において、可動電極及び固定電極の印加電圧をOFFにした静電アクチュエータの発生を示す概略図である。In FIG. 1, it is the schematic which shows generation | occurrence | production of the electrostatic actuator which turned off the applied voltage of a movable electrode and a fixed electrode. 可動電極及び固定電極の印加電圧をONにした静電アクチュエータの発生を示す概略図である。It is the schematic which shows generation | occurrence | production of the electrostatic actuator which turned on the applied voltage of a movable electrode and a fixed electrode. 可動電極及び固定電極の印加電圧をONにして静電アクチュエータの移動の終点を示す概略図である。It is the schematic which shows the end point of the movement of an electrostatic actuator by applying the applied voltage of a movable electrode and a fixed electrode to ON. 図1の静電アクチュエータの出力を示す概略図である。It is the schematic which shows the output of the electrostatic actuator of FIG. 静電引力Feと弾性力Fsの仕事量を可変することによる仕事量可変の出力を示す概略図である。It is the schematic which shows the output of work variable by varying the work of electrostatic attraction force Fe and elastic force Fs. 静電引力Feと弾性力Fsの仕事量を可変することによる他の仕事量可変の出力を示す概略図である。It is the schematic which shows the output of another work variable by varying the work of electrostatic attraction force Fe and elastic force Fs. 本発明に係る第2実施例の静電アクチュエータを示す概略図である。It is the schematic which shows the electrostatic actuator of 2nd Example which concerns on this invention. 図9でピエゾアクチュエータを使用した静電アクチュエータを示す概略図である。FIG. 10 is a schematic diagram showing an electrostatic actuator using a piezo actuator in FIG. 9. 図10において、可動電極及び固定電極の印加電圧をOFFにした静電アクチュエータの発生を示す概略図である。In FIG. 10, it is the schematic which shows generation | occurrence | production of the electrostatic actuator which turned off the applied voltage of a movable electrode and a fixed electrode. 可動電極及び固定電極の印加電圧をONにした静電アクチュエータの発生を示す概略図である。It is the schematic which shows generation | occurrence | production of the electrostatic actuator which turned on the applied voltage of a movable electrode and a fixed electrode. 可動電極及び固定電極の印加電圧をONにして静電アクチュエータの移動の終点を示す概略図である。It is the schematic which shows the end point of the movement of an electrostatic actuator by applying the applied voltage of a movable electrode and a fixed electrode to ON. 静電アクチュエータにおける可動電極の非線形構造を示す概略図である。It is the schematic which shows the nonlinear structure of the movable electrode in an electrostatic actuator. 静電アクチュエータにおける可動電極の線形構造を示す概略図である。It is the schematic which shows the linear structure of the movable electrode in an electrostatic actuator.

符号の説明Explanation of symbols

10 静電アクチュエータ
12 可動電極
14 固定電極
16 非線形ばね
18 出力部
20 枠体
22 電動プランジャ
24 ピエゾアクチュエータ
26 非線形形状のばね押しガイド部
28 板ばね
30 線形形状のばね押しガイド部
31 平板
DESCRIPTION OF SYMBOLS 10 Electrostatic actuator 12 Movable electrode 14 Fixed electrode 16 Non-linear spring 18 Output part 20 Frame 22 Electric plunger 24 Piezo actuator 26 Non-linear spring pushing guide part 28 Leaf spring 30 Linear shaped spring pushing guide part 31 Flat plate

Claims (3)

第1の固定電極と、該電極に対向し、出力部を一体に構成し、出力部の外部負荷によって第1の電極に接近することを妨げる力を受ける第2の可動電極と、第1の電極と第2の電極との間隔を広げることによって歪を生じ、そのエネルギーを弾性力として蓄積し、第2の電極を第1の電極に向けて押し付ける力となるばねと、両電極間に静電引力を生成するために電圧を印加する手段とを備え、電圧印加時に静電引力とばねの弾性力の合力によって第2の電極と、これと一体となった出力部を第1の電極方向に移動させる機構を有する静電アクチュエータ。 A first fixed electrode, a second movable electrode facing the electrode, integrally forming the output unit, and receiving a force that prevents the first unit from approaching the first electrode by an external load of the output unit; A strain is generated by widening the gap between the electrode and the second electrode, the energy is stored as an elastic force, and a spring that acts as a force for pressing the second electrode against the first electrode, and a static force between the two electrodes. Means for applying a voltage to generate an electric attractive force, and when the voltage is applied, the second electrode and the output unit integrated with the second electrode by the resultant force of the electrostatic attractive force and the elastic force of the spring are arranged in the first electrode direction. an electrostatic actuator having a mechanism for moving the. 前記ばねは、非線形ばねであることを特徴とする請求項1記載の静電アクチュエータ。   The electrostatic actuator according to claim 1, wherein the spring is a non-linear spring. 第1の固定電極を対向する第2の可動電極に対して任意の位置に固定するための電極間距離を調節する手段を備えた請求項1又は請求項2記載の静電アクチュエータ。
3. The electrostatic actuator according to claim 1, further comprising means for adjusting a distance between the electrodes for fixing the first fixed electrode at an arbitrary position with respect to the second movable electrode facing the first fixed electrode.
JP2005099686A 2005-03-30 2005-03-30 Electrostatic actuator Active JP4660758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005099686A JP4660758B2 (en) 2005-03-30 2005-03-30 Electrostatic actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005099686A JP4660758B2 (en) 2005-03-30 2005-03-30 Electrostatic actuator

Publications (2)

Publication Number Publication Date
JP2006280180A JP2006280180A (en) 2006-10-12
JP4660758B2 true JP4660758B2 (en) 2011-03-30

Family

ID=37214304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005099686A Active JP4660758B2 (en) 2005-03-30 2005-03-30 Electrostatic actuator

Country Status (1)

Country Link
JP (1) JP4660758B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109030581B (en) * 2018-07-04 2024-04-16 南京铁道职业技术学院 Composite construction's pantograph carbon slide surface damage detects and uses charge converter

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576187A (en) * 1991-09-12 1993-03-26 Fuji Electric Co Ltd Electrostatic actuator
JPH05220680A (en) * 1992-02-10 1993-08-31 Fuji Electric Co Ltd Electrostatic actuator
JPH0866057A (en) * 1994-08-12 1996-03-08 Murata Mfg Co Ltd Coiled spring-type electrostatic actuator and its manufacture
JPH0981924A (en) * 1995-09-14 1997-03-28 Fujitsu Ltd Thin film magnetic head slider and electrostatic acutuator
JPH10337061A (en) * 1997-05-29 1998-12-18 Tsutomu Ogawara Actuator
JP2004074347A (en) * 2002-08-19 2004-03-11 Japan Aviation Electronics Industry Ltd Micro movable device
JP2005074561A (en) * 2003-08-29 2005-03-24 Matsushita Electric Works Ltd Electrostatic micro-actuator and optical switch
JP2005245151A (en) * 2004-02-27 2005-09-08 Olympus Corp Electrostatic actuator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576187A (en) * 1991-09-12 1993-03-26 Fuji Electric Co Ltd Electrostatic actuator
JPH05220680A (en) * 1992-02-10 1993-08-31 Fuji Electric Co Ltd Electrostatic actuator
JPH0866057A (en) * 1994-08-12 1996-03-08 Murata Mfg Co Ltd Coiled spring-type electrostatic actuator and its manufacture
JPH0981924A (en) * 1995-09-14 1997-03-28 Fujitsu Ltd Thin film magnetic head slider and electrostatic acutuator
JPH10337061A (en) * 1997-05-29 1998-12-18 Tsutomu Ogawara Actuator
JP2004074347A (en) * 2002-08-19 2004-03-11 Japan Aviation Electronics Industry Ltd Micro movable device
JP2005074561A (en) * 2003-08-29 2005-03-24 Matsushita Electric Works Ltd Electrostatic micro-actuator and optical switch
JP2005245151A (en) * 2004-02-27 2005-09-08 Olympus Corp Electrostatic actuator

Also Published As

Publication number Publication date
JP2006280180A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
KR102256354B1 (en) Piezo drive
JP6164615B2 (en) Variable negative stiffness actuation
JP4259458B2 (en) Piezoelectric power generation mechanism
US5266863A (en) Piezoelectric actuator
JP2008178250A (en) Pressing mechanism of ultrasonic resonator and ultrasonic motor
US9418764B2 (en) Actuator device and process for producing an actuator device
WO2015126928A1 (en) Electroactive polymer actuator with improved performance
US9472746B2 (en) Vibrator
US8253306B2 (en) Inertial drive actuator configured to provide arbitrary motion in an X-Y plane
CN108463893B (en) Method for controlling an electromechanical element
US20220255467A1 (en) Inertia Drive Motor And Method For Controlling Such Motor
JP4660758B2 (en) Electrostatic actuator
US20050217978A1 (en) Ultrasonic levitation device
JP4882065B2 (en) Electrostatic actuator
CN112865593A (en) Bionic impact piezoelectric driver with high output performance and control method thereof
JP6489237B2 (en) Piezoelectric generator
JP4625951B2 (en) Electrostatic actuator
JP2016073006A (en) Stage device and drive mechanism used for the same
KR20140128273A (en) Piezoelectric Bender Actuator by Using Buckling
JP2015144557A (en) Drive control method of ultrasonic motor and drive control device of ultrasonic motor
JP7242063B2 (en) piezo stage
CN112602263A (en) Piezoelectric drive, in particular as an automatic actuator for a vehicle component
JP5160299B2 (en) Micro movable device and driving method thereof
WO2012041370A1 (en) Electromechanical actuator
JP5283239B2 (en) Electrostatic actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150