JP2015144557A - Drive control method of ultrasonic motor and drive control device of ultrasonic motor - Google Patents

Drive control method of ultrasonic motor and drive control device of ultrasonic motor Download PDF

Info

Publication number
JP2015144557A
JP2015144557A JP2014260461A JP2014260461A JP2015144557A JP 2015144557 A JP2015144557 A JP 2015144557A JP 2014260461 A JP2014260461 A JP 2014260461A JP 2014260461 A JP2014260461 A JP 2014260461A JP 2015144557 A JP2015144557 A JP 2015144557A
Authority
JP
Japan
Prior art keywords
voltage
ultrasonic motor
drive control
electrode
bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014260461A
Other languages
Japanese (ja)
Inventor
真之 石田
Masayuki Ishida
真之 石田
滝本 幹夫
Mikio Takimoto
幹夫 滝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Co Ltd
Nikko KK
Original Assignee
Nikko Co Ltd
Nikko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Co Ltd, Nikko KK filed Critical Nikko Co Ltd
Priority to JP2014260461A priority Critical patent/JP2015144557A/en
Publication of JP2015144557A publication Critical patent/JP2015144557A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a drive control method and device of an ultrasonic linear motor which can perform fine drive of 0.1 μm or less, secure speed stability in a low speed region, and stability of motor characteristics, perform ultrafine feeding and ultrafine positioning in nano order, is small in size, and has high output and high durability.SOLUTION: There is provided a drive control method of an ultrasonic motor which controls telescopic vibration and bending vibration independently from each other, and applies sawtooth waveform DC voltage or rectangular DC voltage with different rise times and fall times to an electrode for telescopic drive and an electrode for bending drive independently from each other. There is also provided a drive control device of an ultrasonic motor which controls telescopic vibration and bending vibration independently from each other, and includes a voltage control unit for applying sawtooth waveform DC voltage or rectangular DC voltage with different rise times and fall times of voltage to the electrode for telescopic drive and the electrode for bending drive independently from each other.

Description

本発明は超音波モータの駆動制御方法及び超音波モータの駆動制御装置に関する。本発明は特に圧電振動子上の電極を屈曲振動と伸縮振動の分極領域に独立して配置し、伸縮振動と屈曲振動をそれぞれ独立して制御する超音波モータにおける駆動制御方法及び駆動制御装置に関する。   The present invention relates to an ultrasonic motor drive control method and an ultrasonic motor drive control apparatus. In particular, the present invention relates to a drive control method and a drive control apparatus for an ultrasonic motor in which electrodes on a piezoelectric vibrator are arranged independently in polarization regions of bending vibration and stretching vibration, and the stretching vibration and bending vibration are controlled independently. .

電子・情報技術の急速な発展に伴い、精密部品の更なる微細化、高集積化が求められており、ナノオーダでの検査や超微細加工に対応する超精密位置決め装置が必要となってきている。このような超精密位置決め装置や超微細送りを実現するものとして、圧電振動子を利用した超音波モータが開発されている。この超音波モータは圧電素子の共振現象を利用しているため、インパクトドライブアクチュエータと比べて効率がよく、高出力が可能であり、さらに構造が比較的単純で、小形化できる点で優れている。   With the rapid development of electronic and information technology, there is a need for further miniaturization and higher integration of precision parts, and an ultra-precision positioning device that can handle nano-order inspection and ultra-fine processing is becoming necessary. . Ultrasonic motors using piezoelectric vibrators have been developed as means for realizing such an ultra-precision positioning device and ultra-fine feed. Since this ultrasonic motor uses the resonance phenomenon of a piezoelectric element, it is more efficient than an impact drive actuator, can output high power, and is excellent in that the structure is relatively simple and can be miniaturized. .

超音波モータの基本的な構造は振動子と移動体とにより構成されており、振動子先端の摩擦接触部を前記移動体に押し付け、前記振動子の摩擦接触部に伸縮動作と屈曲動作の共働した楕円運動を行わせ、摩擦接触部が移動体に間欠的に圧接しながら移動体を移動させる。   The basic structure of an ultrasonic motor is composed of a vibrator and a moving body. The frictional contact portion at the tip of the vibrator is pressed against the moving body, and the frictional contact portion of the vibrator is subjected to both stretching and bending operations. The moved elliptical motion is performed, and the moving body is moved while the frictional contact portion is intermittently pressed against the moving body.

超音波モータに関連した先行技術としては、本出願人らによる特許文献1〜3に示されるものがある。特許文献1(特開2011−155760号公報)では圧電素子に屈曲振動を励振する電極領域と伸縮振動を励振する電極領域を配置し、各振動子を個別に制御できるようにしている。この方式は各電極を同時制御するものに比べて速度のばらつきや不感帯をなくすことができる。
また、特許文献2(特開2010−041777号公報)では圧電振動子を移動体に押し付けるばね手段として座屈現象を利用した板ばねを採用し、これによって、ある変位領域で押し付け荷重が一定となる非線形性を実現し、この荷重一定領域で駆動することで摩擦接触部の磨耗による加圧力の変化を小さくし、耐久性も高めることが可能となる。特許文献3(特開2008−054407号公報)には、薄板圧電素子を複数枚積層した積層圧電型超音波モータ用振動子について記載されており、伸縮振動を励振する電極領域に所定の電圧を印加して伸縮振動を励起し、屈曲振動を励振する電極領域に印加する電圧を可変にして屈曲振動を調整し、これによって移動体の移動速度を制御するようにしている。
Prior arts related to ultrasonic motors include those disclosed in Patent Documents 1 to 3 by the present applicants. In Patent Document 1 (Japanese Patent Application Laid-Open No. 2011-155760), an electrode region for exciting bending vibration and an electrode region for exciting stretching vibration are arranged in a piezoelectric element so that each vibrator can be controlled individually. This method can eliminate variations in speed and dead zone as compared with those in which each electrode is controlled simultaneously.
Further, in Patent Document 2 (Japanese Patent Application Laid-Open No. 2010-041777), a leaf spring using a buckling phenomenon is employed as a spring means for pressing the piezoelectric vibrator against the moving body, so that the pressing load is constant in a certain displacement region. By realizing this non-linearity and driving in this constant load region, it is possible to reduce the change in the applied pressure due to wear of the frictional contact portion and to improve the durability. Patent Document 3 (Japanese Patent Application Laid-Open No. 2008-054407) describes a laminated piezoelectric ultrasonic motor vibrator in which a plurality of thin piezoelectric elements are laminated, and a predetermined voltage is applied to an electrode region that excites stretching vibration. This is applied to excite stretching vibration, and the bending vibration is adjusted by changing the voltage applied to the electrode region for exciting the bending vibration, thereby controlling the moving speed of the moving body.

特開2011−155760号公報JP 2011-155760 A 特開2010−041777号公報JP 2010-041777 A 特開2008−054407号公報JP 2008-054407 A

超音波モータは低速駆動における不安定性を有するため、ナノオーダの精密位置決めを行うためには複雑な制御を必要とする。また、摩擦部材の磨耗によってもモータ性能が変化するなど、多くの改善すべき点が残されている。例えば、伸縮振動(縦振動)と屈曲振動を独立制御で行う超音波モータで微小駆動を共振で行う場合、定常振動に至るまでの立上げ時間の問題があり、微小駆動のように入力時間が短い中での移動となると、立上げ中の過渡的な振動が支配的となり、0.1μm以下での微小駆動が困難となる。   Since the ultrasonic motor has instability in low-speed driving, complicated control is required for precise positioning of the nano-order. Moreover, many points to be improved are left, such as motor performance changing due to wear of the friction member. For example, when micro drive is performed by resonance with an ultrasonic motor that performs independent control of stretching vibration (longitudinal vibration) and flexural vibration, there is a problem of start-up time until steady vibration, and the input time is as in micro drive. When the movement is short, transient vibration during startup becomes dominant, and it becomes difficult to perform micro-driving at 0.1 μm or less.

本発明は上述した問題を解決するためになされたものであり、0.1μm以下の微小駆動が可能で、低速域での速度安定性、モータ特性の安定性を確保でき、ナノオーダでの超微細送りや超微細位置決めができ、また小形で高出力、高耐久性の超音波リニアモータの駆動制御方法及びその装置を提供することを目的とするものである。   The present invention has been made to solve the above-described problems, and can be driven minutely of 0.1 μm or less, can ensure speed stability in a low speed range and stability of motor characteristics, and is ultrafine in nano-order. It is an object of the present invention to provide a drive control method and apparatus for an ultrasonic linear motor that can perform feeding and ultrafine positioning, and is small, high output, and high durability.

本発明によれば、下記[1]〜[5]の超音波モータの駆動制御方法、及び[6]の駆動制御装置が提供される。   According to the present invention, the following ultrasonic motor drive control method [1] to [5] and [6] drive control apparatus are provided.

(請求項に合わせ修正済み)
[1]伸縮振動と屈曲振動をそれぞれ独立して制御する超音波モータの駆動制御方法において、伸縮駆動用電極と屈曲駆動用電極にそれぞれ独立して、立ち上がり時間と立下がり時間の異なる鋸歯波状のDC電圧、または矩形状のDC電圧を印加することを特徴とする超音波モータの駆動制御方法。
(Corrected according to claims)
[1] In a drive control method for an ultrasonic motor that independently controls expansion and contraction vibrations and bending vibrations, sawtooth wave-like waveforms having different rise times and fall times independently of the extension drive electrodes and the bending drive electrodes. A drive control method for an ultrasonic motor, wherein a DC voltage or a rectangular DC voltage is applied.

[2]前記伸縮駆動用電極及び屈曲駆動用電極にそれぞれ独立して、立ち上がり時間と立下がり時間の異なる鋸歯波状のDC電圧を印加する請求項1に記載の超音波モータの駆動制御方法。 [2] The ultrasonic motor drive control method according to [1], wherein a sawtooth wave-like DC voltage having a different rise time and fall time is applied independently to each of the expansion drive electrode and the bending drive electrode.

[3]前記印加電圧の立ち上がり時間を立下がり時間よりも長くする前項2に記載の超音波モータの駆動制御方法。
前記印加DC電圧の立ち上がり時間が立下がり時間よりも長い前項2に記載の超音波モータの駆動制御装置。
[3] The drive control method for an ultrasonic motor according to the above item 2, wherein the rising time of the applied voltage is longer than the falling time.
3. The drive control apparatus for an ultrasonic motor according to item 2, wherein the rising time of the applied DC voltage is longer than the falling time.

[4]前記印加電圧の立ち上がり時間を5000μs以上とし、立下がり時間を5μs以下とする前項3に記載の超音波モータの駆動制御方法。
[5]前記伸縮駆動用電極及び屈曲駆動用電極にそれぞれ独立して、矩形状のDC電圧(電圧OFF時間5μ秒以下)を印加する前項1に記載の超音波モータの駆動制御方法。
[4] The drive control method for an ultrasonic motor according to item 3 above, wherein a rising time of the applied voltage is 5000 μs or more and a falling time is 5 μs or less.
[5] The drive control method for an ultrasonic motor according to [1], wherein a rectangular DC voltage (voltage OFF time of 5 μsec or less) is applied independently to each of the extension drive electrode and the bending drive electrode.

[6]伸縮振動と屈曲振動をそれぞれ独立制御する超音波モータの駆動制御装置において、伸縮駆動用電極と屈曲駆動用電極にそれぞれ独立して、立ち上がり時間と立下がり時間の異なる鋸歯波状のDC電圧、または矩形状のDC電圧を印加する電圧制御部を有することを特徴とする超音波モータの駆動制御装置。 [6] In an ultrasonic motor drive control device that independently controls expansion and contraction vibrations and bending vibrations, a sawtooth wave-like DC voltage having a different rise time and fall time independently of the extension drive electrode and the bending drive electrode. Or a drive control device for an ultrasonic motor, comprising a voltage control unit for applying a rectangular DC voltage.

本発明による超音波モータの駆動制御方法及び駆動制御装置によれば、0.1μm以下の微小駆動が可能で、低速域での速度安定性、モータ特性の安定性を確保でき、またナノオーダでの超微細送り、超微細位置決めができる。さらに本発明では小形で高出力、高耐久性の超音波モータが実現できる。   According to the drive control method and drive control apparatus for an ultrasonic motor according to the present invention, a minute drive of 0.1 μm or less is possible, speed stability in a low speed range, stability of motor characteristics can be ensured, and nano order Ultra fine feed and ultra fine positioning are possible. Furthermore, the present invention can realize a small, high output and high durability ultrasonic motor.

本発明に適用される超音波モータの振動子の概略的な平面図である。It is a schematic top view of the vibrator | oscillator of the ultrasonic motor applied to this invention. 鋸歯波状のDC電圧を印加する本発明の実施例に係る超音波モータの圧電振動子の保持機構部を示した側面図(a)及び概略的な横断面図(b)である。It is the side view (a) and schematic cross-sectional view (b) which showed the holding mechanism part of the piezoelectric vibrator of the ultrasonic motor which concerns on the Example of this invention which applies a sawtooth wave-like DC voltage. 図2に示す保持機構部を有する超音波モータの振動子の変位と加圧力の関係を示す図である。It is a figure which shows the relationship between the displacement of the vibrator | oscillator of an ultrasonic motor which has a holding mechanism part shown in FIG. 2, and applied pressure. 本発明の実施例による超音波モータの駆動制御方法における電圧ON領域の時間の目安を示す図である。It is a figure which shows the standard of the time of the voltage ON area | region in the drive control method of the ultrasonic motor by the Example of this invention. 本発明の実施例による超音波モータの駆動制御方法における電圧OFF領域の時間の目安を示す図である。It is a figure which shows the standard of the time of the voltage OFF area | region in the drive control method of the ultrasonic motor by the Example of this invention. 本発明の実施例による超音波モータの駆動制御方法における鋸歯波状電圧の立ち上がり、立下がりの状態を示す図である。It is a figure which shows the rising and falling state of the sawtooth voltage in the drive control method of the ultrasonic motor by the Example of this invention. 超音波モータの振動子に屈曲変位のみを与えた場合のスライダ移動特性を示す図である。It is a figure which shows the slider movement characteristic at the time of giving only a bending displacement to the vibrator | oscillator of an ultrasonic motor. 本発明に係る超音波モータの駆動制御方法において振動子に縦駆動電極と屈曲駆動電極に独立制御で鋸歯波状のDC電圧を入力した場合のスライダ移動特性を示す図である。It is a figure which shows the slider movement characteristic at the time of inputting the sawtooth-wave-like DC voltage to the vertical drive electrode and the bending drive electrode by independent control in the drive control method of the ultrasonic motor according to the present invention. 縦駆動電極と屈曲駆動電極に独立して矩形状のDC電圧を入力する本発明の実施例によるスライダ移動特性を示す図である。It is a figure which shows the slider movement characteristic by the Example of this invention which inputs rectangular DC voltage independently to a longitudinal drive electrode and a bending drive electrode.

次に、本発明を各種の実施例について図面を参照して説明する。まず、実施例に適用される超音波モータの振動子の例を図1に示して説明すれば、矩形薄板状の無機あるいは有機圧電材を複数枚積層して積層圧電素子を構成し、その各積層体に屈曲振動用電極7,8及び伸縮振動用電極9を配置する。屈曲振動用電極7,8は、その外側縁7a,8aが矩形板状圧電素子1の長辺側部1aに平行に隣接し、内側縁7b,8bは所定の値の歪みの等高線に沿う曲線状に形成し、圧電素子1の上面では長辺側部1aの位置に外部電極との接続部7c,8cを形成する。圧電素子1の下面の電極は前記上面に対して接続する外部電極とは別の外部電極に接続する。各面で対となった電極7,8を逆位相で駆動することにより、屈曲2次振動が励振される。   Next, various embodiments of the present invention will be described with reference to the drawings. First, an example of an ultrasonic motor vibrator applied to the embodiment will be described with reference to FIG. 1. A plurality of rectangular thin plate-like inorganic or organic piezoelectric materials are laminated to form a laminated piezoelectric element. The bending vibration electrodes 7 and 8 and the stretching vibration electrode 9 are arranged on the laminate. The bending vibration electrodes 7 and 8 have their outer edges 7a and 8a adjacent to the long side portion 1a of the rectangular plate-like piezoelectric element 1 in parallel, and the inner edges 7b and 8b are curves along a contour line of a predetermined strain. In the upper surface of the piezoelectric element 1, connection portions 7c and 8c with external electrodes are formed at the position of the long side portion 1a. The electrode on the lower surface of the piezoelectric element 1 is connected to an external electrode different from the external electrode connected to the upper surface. The secondary bending vibration is excited by driving the electrodes 7 and 8 paired on each surface in opposite phases.

伸縮振動用電極9では、矩形板状圧電素子は上面、下面とも同じ中央位置に配置し、上面側ではその電極外側部9aを素子1の長辺側部1aに隣接させ、かつ素子1の他方の長辺側部1bで外部電極との接続部9cを形成する。素子1の下面では電極外側部を素子1の長辺側部1aで別の外部電極との接続部を形成し、かつ素子1の前記他方の長辺側部1bに下面側電極を隣接させる。また、伸縮振動用電極9は屈曲振動用電極7,8との間で十分に絶縁性が確保されるように間隔を空けて、屈曲振動用電極7,8の曲線形状部分に沿った曲線状に形成する。なお、矩形板圧電素子は積層体だけでなく単層の圧電素子としてもよい。   In the stretching vibration electrode 9, the rectangular plate-shaped piezoelectric element is disposed at the same central position on both the upper surface and the lower surface, the electrode outer side portion 9 a is adjacent to the long side portion 1 a of the element 1 on the upper surface side, and the other side of the element 1 A connecting portion 9c with the external electrode is formed on the long side portion 1b. On the lower surface of the element 1, the electrode outer portion is connected to another external electrode at the long side portion 1 a of the element 1, and the lower electrode is adjacent to the other long side portion 1 b of the element 1. In addition, the stretching vibration electrode 9 is curved along the curved portions of the bending vibration electrodes 7 and 8 with a space between the bending vibration electrodes 7 and 8 so as to ensure sufficient insulation. To form. The rectangular plate piezoelectric element may be a single-layer piezoelectric element as well as a laminated body.

上述のような圧電振動素子は、図2(a),(b)に示すように、枠形の支持部材11内に、支持部材11と直接接触しない形態で、板ばね3を介して保持される。圧電振動素子1は先端の摩擦接触部2が支持部材11から露出しており、この部分が図示しない移動体と摩擦接触して移動体に送り動作を与える。板ばね3は振動子1の上端側(摩擦接触部側)の両側部と下端側の両側部で振動子1を支持している。4は板ばね3を振動子1に固定する固着部材であって、振動子1の上下両側部に固着されている。この例では上下の4枚の板ばね3は座屈平行板ばねとして構成されており、前記移動体に対して振動子1の摩擦接触部2に押圧力が作用することで振動子1が変位するとき、ある変位領域で板ばね3に座屈現象が生じ、非線形性のばね変位−加圧力特性を示す。図3はこの時の振動子の変位(mm)と加圧力(N)との関係を示したものである。図中、線Aは前記座屈平行板ばねの場合、同図の線Bは変位と加圧力が比例関係となる通常のコイルばねの場合である。この図3に示すように線Aの加圧力が変化しない領域Sで駆動することにより、前記摩擦接触部の磨耗による加圧力の変化をなくすことができ、安定したモータ特性を持続させることができる。   As shown in FIGS. 2A and 2B, the piezoelectric vibration element as described above is held in the frame-shaped support member 11 via the leaf spring 3 so as not to be in direct contact with the support member 11. The The piezoelectric vibration element 1 has a friction contact portion 2 at the tip exposed from the support member 11, and this portion frictionally contacts a moving body (not shown) to give a moving operation to the moving body. The leaf spring 3 supports the vibrator 1 on both sides on the upper end side (friction contact portion side) and both sides on the lower end side of the vibrator 1. Reference numeral 4 denotes a fixing member for fixing the leaf spring 3 to the vibrator 1 and is fixed to both upper and lower sides of the vibrator 1. In this example, the upper and lower four leaf springs 3 are configured as buckling parallel leaf springs, and the vibrator 1 is displaced by the pressing force acting on the frictional contact portion 2 of the vibrator 1 against the moving body. When this occurs, a buckling phenomenon occurs in the leaf spring 3 in a certain displacement region, and exhibits a non-linear spring displacement-pressure force characteristic. FIG. 3 shows the relationship between the displacement (mm) of the vibrator and the applied pressure (N) at this time. In the figure, line A is the case of the buckled parallel leaf spring, and line B in the figure is the case of a normal coil spring in which the displacement and the applied pressure are in a proportional relationship. As shown in FIG. 3, by driving in the region S where the pressing force of the line A does not change, it is possible to eliminate a change in the pressing force due to wear of the friction contact portion, and to maintain stable motor characteristics. .

次に、上述のような超音波モータにおいて、振動子に印加する電圧のON,OFFの形態について説明する。
超音波モータの場合、振動子に対して電圧は間欠的なON、OFFの形態で印加される。このような電圧の間欠的なON,OFFの操作により、振動子と接触する移動体の移動動作がなされる。電圧ONの時は、振動子は移動体に対してすべりを発生することなく移動体を送り駆動する必要があり、電圧OFFの時は、前述のばね手段の関与により、振動子は元の位置へ戻り、この動作を繰り返しつつ移動体の移動がなされる。ここで振動子の戻り時には振動子と移動体との間にはすべりが発生することが必要である。本発明では電圧ON時にすべりが発生せず、電圧OFF時にはすべりが有効に働くような電圧モードによって駆動制御がなされる。
Next, in the ultrasonic motor as described above, the ON / OFF mode of the voltage applied to the vibrator will be described.
In the case of an ultrasonic motor, the voltage is applied to the vibrator in an intermittent ON / OFF form. By such an intermittent ON / OFF operation of the voltage, the moving body in contact with the vibrator is moved. When the voltage is ON, the vibrator needs to feed and drive the slider without generating any slip. When the voltage is OFF, the vibrator is in its original position due to the involvement of the spring means described above. Returning to step S2, the moving body is moved while repeating this operation. Here, it is necessary that slip occurs between the vibrator and the moving body when the vibrator returns. In the present invention, the drive control is performed in a voltage mode in which no slip occurs when the voltage is on and the slip works effectively when the voltage is off.

上述したように、この種の微細送り用超音波モータでは、伸縮振動と屈曲振動を独立制御で共振させて駆動を行うとき、定常振動に至るまでの立上げ時間が重要となり、特に微小駆動の場合、入力時間が短い中での移動では立上げ中の過渡的な振動が支配的となり、微小駆動が難しくなる。
本発明ではこの問題に鑑み、鋸歯波状または矩形波状の電圧を振動子に印加するON・OFF時間を適切な範囲とすることで超音波モータの駆動制御装置を制御する。
As described above, in this type of ultrasonic motor for fine feed, when driving by resonating expansion and contraction vibration and bending vibration by independent control, the startup time until steady vibration is important. In this case, the transitional vibration during start-up becomes dominant in the movement while the input time is short, and the minute driving becomes difficult.
In the present invention, in view of this problem, the ultrasonic motor drive control device is controlled by setting the ON / OFF time for applying a sawtooth wave or rectangular wave voltage to the vibrator within an appropriate range.

次に鋸歯波状の電圧を印加する場合(実施態様1)について図4〜図6を参照して具体的に説明する。
厚さ0.08mm×長さ30mm×幅7.6mmの矩形状のチタン酸ジルコン酸鉛(PZT)製の板を50層積層した積層型の圧電素子板を用意し、図1に示した形状及び配置の伸縮1次振動用電極(9)及び屈曲2次振動用電極(7,8)を形成した。伸縮1次振動用電極は長さ29.6mmの十字型とし、圧電素子の面積の41%の大きさを有する。屈曲2次振動用の電極は、各々、長さ11.72mm、幅3.02mmとし、2対で圧電素子の面積の14%を有する。短辺中央部に摩擦接触部となるステータ(ジルコニア製、1mmφのピン型形状)を接着して超音波モータ用振動子を作製した。
Next, a case where a sawtooth voltage is applied (embodiment 1) will be described in detail with reference to FIGS.
A laminated piezoelectric element plate was prepared by laminating 50 layers of rectangular lead zirconate titanate (PZT) plates having a thickness of 0.08 mm, a length of 30 mm, and a width of 7.6 mm. The shape shown in FIG. And the expansion / contraction primary vibration electrode (9) and the bent secondary vibration electrode (7, 8) were formed. The expansion / contraction primary vibration electrode is a cross shape having a length of 29.6 mm and has a size of 41% of the area of the piezoelectric element. Each of the electrodes for bending secondary vibration has a length of 11.72 mm and a width of 3.02 mm, and two pairs have 14% of the area of the piezoelectric element. An ultrasonic motor vibrator was manufactured by adhering a stator (made of zirconia, 1 mmφ pin shape) serving as a friction contact portion to the center of the short side.

摺動板として、アルミナジルコニアを使用し、前記振動子の伸縮駆動用電極と屈曲駆動用電極に、それぞれ独立して、立ち上がり時間と立下がり時間の異なる鋸歯波状(25m秒/波)のDC電圧を印加する超音波モータの駆動制御方法における電圧ON領域の時間の目安を図4に示す。伸縮駆動用電極には70V(縦電圧、固定)を印加し、屈曲駆動用電極には可変で0〜80V(曲げ電圧)を印加した。   Alumina zirconia is used as the sliding plate, and a sawtooth wave-like (25 msec / wave) DC voltage with different rise time and fall time is independently applied to the extension drive electrode and the bending drive electrode of the vibrator. FIG. 4 shows a guideline for the time in the voltage ON region in the drive control method of the ultrasonic motor to which the voltage is applied. 70 V (longitudinal voltage, fixed) was applied to the expansion / contraction driving electrode, and 0 to 80 V (bending voltage) was applied in a variable manner to the bending driving electrode.

電圧ON領域では、立ち上がり時間13μ秒(μs)以下で電圧を上げると、すべりが発生し、移動体の駆動が有効になされない。これ以上で250μs(図4中のA点)まではすべりは発生しないが、電圧のON時間が早い(短い)ことによる移動体のオーバラップが見られる。このオーバラップ及びすべりの発生がないようにするためには5000μs(図4中のB点)以上の時間をかけて電圧をONにするのがよいことが判明した。   In the voltage ON region, if the voltage is increased within a rise time of 13 μsec (μs) or less, a slip occurs, and the moving body is not effectively driven. Above this time, no slip occurs until 250 μs (point A in FIG. 4), but there is an overlap of moving bodies due to the early (short) voltage ON time. In order to prevent the occurrence of overlap and slip, it has been found that the voltage should be turned on over a time of 5000 μs (point B in FIG. 4) or more.

図5にこの超音波モータの駆動制御方法における電圧OFF領域の時間の目安を示す。電圧OFFの領域では、5μ秒(μs)以上かけて電圧を落すと、移動体と振動子との間のすべりが発生しにくく、振動子につられて移動体が戻る現象が見られる。図5でAはすべりが発生する点(5μs以下)、Bはすべりが発生しにくく戻り現象が見られ点(5〜25μs)を示している。   FIG. 5 shows a guideline for the time in the voltage OFF region in this ultrasonic motor drive control method. In the voltage OFF region, when the voltage is dropped over 5 μs (μs) or more, slip between the moving body and the vibrator hardly occurs, and a phenomenon that the moving body returns with the vibrator is observed. In FIG. 5, A indicates a point where slip occurs (5 μs or less), and B indicates a point where the slip hardly occurs and a return phenomenon is observed (5 to 25 μs).

したがって、この実施態様1では、図6に示すように電圧ONの電圧立ち上がり時には、5000μs以上の時間(図中のA)をかけて電圧をONにし、電圧OFFの電圧立下がり時には可能な限り早く、具体的には5μs以下の時間で電圧OFFを行う電圧制御により0.1μm以下の微小駆動が可能となることが確かめられた。   Therefore, in this embodiment 1, as shown in FIG. 6, the voltage is turned on over 5000 μs or more (A in the figure) when the voltage is turned on, and as soon as possible when the voltage is turned off. Specifically, it has been confirmed that a minute driving of 0.1 μm or less is possible by voltage control in which the voltage is turned OFF in a time of 5 μs or less.

図7は超音波モータの振動子を屈曲駆動電極の印加による屈曲変位のみで駆動した場合のスライダ移動特性を示す図である。屈曲駆動電極のみの印加による屈曲変位のみで駆動した場合、電圧OFF時のすべりが発生せず微小変位動作に難点がある。屈曲振動のみでも微小変位は可能であるが、制止状態で保持するために常に屈曲駆動電極に電圧印加し続けていなければならず(電圧OFFにすると移動体が元の位置に戻ってしまうため)、これでは静止時の消費電力0Vという超音波モータの長所を活かすことはできない。   FIG. 7 is a diagram showing slider movement characteristics when the vibrator of the ultrasonic motor is driven only by bending displacement by application of a bending drive electrode. In the case of driving only by bending displacement by applying only the bending drive electrode, no slip occurs when the voltage is OFF, and there is a difficulty in minute displacement operation. Although a slight displacement is possible only by bending vibration, voltage must be continuously applied to the bending drive electrode in order to keep it in a restrained state (because the moving body returns to its original position when the voltage is turned off). This makes it impossible to take advantage of the ultrasonic motor's power consumption of 0 V at rest.

これに対し、屈曲駆動と伸縮駆動の両方を独立制御で行うことにより、図8に示すように、より低い電圧でより小さい移動量での移動体の0.1μm以下の微動が可能となる。なお、図7で符号Aの部分は移動した移動体が戻ってしまう部分であり、図8ではこのような状態は生じていない。   On the other hand, by performing both the bending driving and the expansion / contraction driving by independent control, as shown in FIG. 8, it is possible to finely move the moving body by 0.1 μm or less with a lower voltage and a smaller moving amount. In addition, the part of the code | symbol A in FIG. 7 is a part where the moved mobile body returns, and such a state has not arisen in FIG.

次に矩形状の電圧を印加する場合(実施態様2)について説明する。
実施態様1と同様に図1に示した矩形形状及び配置の伸縮1次振動用電極及び屈曲2次振動用電極を形成し、短辺中央部にステータ(アルミナ製、4mmφの円柱形状)を接着して超音波モータ用振動子を作製した。摺動板として、99アルミナを使用し、前記振動子の伸縮駆動用電極と屈曲駆動用電極にそれぞれ独立して、矩形波のDC電圧(25m秒/波、電圧OFF時間5μ秒以下)を、伸縮駆動用電極には80V(縦電圧、固定)を印加し、屈曲駆動用電極には可変で0〜80V(曲げ電圧)を印加した。その結果を図9に示す。図9から曲げ電圧5〜10Vの範囲で0.1μm以下の微小移動量が達成できることが確認された。
Next, a case where a rectangular voltage is applied (embodiment 2) will be described.
As in the first embodiment, the expansion and contraction primary vibration electrode and the bending secondary vibration electrode having the rectangular shape and arrangement shown in FIG. 1 are formed, and a stator (made of alumina, 4 mmφ cylindrical shape) is bonded to the center of the short side. Thus, a vibrator for an ultrasonic motor was produced. 99 Alumina is used as the sliding plate, and a rectangular DC voltage (25 ms / wave, voltage OFF time of 5 μsec or less) is independently applied to the extension driving electrode and the bending driving electrode of the vibrator. 80 V (longitudinal voltage, fixed) was applied to the expansion / contraction driving electrode, and 0 to 80 V (bending voltage) was applied in a variable manner to the bending driving electrode. The result is shown in FIG. From FIG. 9, it was confirmed that a minute movement amount of 0.1 μm or less can be achieved in the range of the bending voltage of 5 to 10V.

1 圧電振動子
2 摩擦接触部
3 板ばね(座屈平行板ばね)
4 固着部材
7,8 屈曲振動用電極
9 伸縮振動用電極
11 支持部材
DESCRIPTION OF SYMBOLS 1 Piezoelectric vibrator 2 Friction contact part 3 Leaf spring (buckling parallel leaf spring)
4 Fixing member 7, 8 Electrode for bending vibration 9 Electrode for stretching vibration 11 Support member

Claims (6)

伸縮振動と屈曲振動をそれぞれ独立して制御する超音波モータの駆動制御方法において、伸縮駆動用電極と屈曲駆動用電極にそれぞれ独立して、立ち上がり時間と立下がり時間の異なる鋸歯波状のDC電圧、または矩形状のDC電圧を印加することを特徴とする超音波モータの駆動制御方法。   In an ultrasonic motor drive control method that controls stretching vibration and bending vibration independently, a sawtooth wave-like DC voltage having a different rise time and fall time independently for each of the extension drive electrode and the bending drive electrode, Alternatively, a drive control method for an ultrasonic motor, wherein a rectangular DC voltage is applied. 前記伸縮駆動用電極及び屈曲駆動用電極にそれぞれ独立して、立ち上がり時間と立下がり時間の異なる鋸歯波状のDC電圧を印加する請求項1に記載の超音波モータの駆動制御方法。   The ultrasonic motor drive control method according to claim 1, wherein a sawtooth wave-like DC voltage having a different rising time and falling time is applied to each of the extension driving electrode and the bending driving electrode. 前記印加電圧の立ち上がり時間を立下がり時間よりも長くする請求項2に記載の超音波モータの駆動制御方法。   The ultrasonic motor drive control method according to claim 2, wherein a rising time of the applied voltage is made longer than a falling time. 前記印加電圧の立ち上がり時間を5000μs以上とし、立下がり時間を5μs以下とする請求項3に記載の超音波モータの駆動制御方法。   The ultrasonic motor drive control method according to claim 3, wherein a rising time of the applied voltage is set to 5000 μs or more and a falling time is set to 5 μs or less. 前記伸縮駆動用電極及び屈曲駆動用電極にそれぞれ独立して、矩形状のDC電圧(電圧OFF時間5μ秒以下)を印加する請求項1に記載の超音波モータの駆動制御方法。   The ultrasonic motor drive control method according to claim 1, wherein a rectangular DC voltage (voltage OFF time of 5 μsec or less) is applied independently to each of the extension drive electrode and the bending drive electrode. 伸縮振動と屈曲振動をそれぞれ独立制御する超音波モータの駆動制御装置において、伸縮駆動用電極と屈曲駆動用電極にそれぞれ独立して、立ち上がり時間と立下がり時間の異なる鋸歯波状のDC電圧、または矩形状のDC電圧を印加する電圧制御部を有することを特徴とする超音波モータの駆動制御装置。   In an ultrasonic motor drive control device that independently controls stretching vibration and bending vibration, a sawtooth wave-like DC voltage with different rise time and fall time, or a rectangular wave, independently from each other, the stretching drive electrode and the bending drive electrode. A drive control apparatus for an ultrasonic motor, comprising a voltage control unit for applying a DC voltage having a shape.
JP2014260461A 2013-12-27 2014-12-24 Drive control method of ultrasonic motor and drive control device of ultrasonic motor Pending JP2015144557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014260461A JP2015144557A (en) 2013-12-27 2014-12-24 Drive control method of ultrasonic motor and drive control device of ultrasonic motor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013273105 2013-12-27
JP2013273105 2013-12-27
JP2014260461A JP2015144557A (en) 2013-12-27 2014-12-24 Drive control method of ultrasonic motor and drive control device of ultrasonic motor

Publications (1)

Publication Number Publication Date
JP2015144557A true JP2015144557A (en) 2015-08-06

Family

ID=53889239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014260461A Pending JP2015144557A (en) 2013-12-27 2014-12-24 Drive control method of ultrasonic motor and drive control device of ultrasonic motor

Country Status (1)

Country Link
JP (1) JP2015144557A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106059382A (en) * 2016-06-06 2016-10-26 长春工业大学 Rhombic hinge skewed slot type orthogonal driving type piezoelectric stick-slip linear motor and composite excitation method therefor
CN108467006A (en) * 2018-02-22 2018-08-31 南京航空航天大学 The rotary-type nano-motor and its working method of micro- acoustic streaming driving

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007221988A (en) * 2006-01-17 2007-08-30 Seiko Instruments Inc Piezoelectric actuator and electronic apparatus using same
JP2008172967A (en) * 2007-01-15 2008-07-24 Seiko Epson Corp Linear drive device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007221988A (en) * 2006-01-17 2007-08-30 Seiko Instruments Inc Piezoelectric actuator and electronic apparatus using same
JP2008172967A (en) * 2007-01-15 2008-07-24 Seiko Epson Corp Linear drive device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106059382A (en) * 2016-06-06 2016-10-26 长春工业大学 Rhombic hinge skewed slot type orthogonal driving type piezoelectric stick-slip linear motor and composite excitation method therefor
CN106059382B (en) * 2016-06-06 2017-09-01 长春工业大学 Rhombus hinge oblique slot type quadrature drive type piezoelectricity stick-slip line motor and its complex incentive method
CN108467006A (en) * 2018-02-22 2018-08-31 南京航空航天大学 The rotary-type nano-motor and its working method of micro- acoustic streaming driving

Similar Documents

Publication Publication Date Title
JP4794897B2 (en) Ultrasonic motor
JP4679938B2 (en) Ultrasonic motor
JP4795158B2 (en) Ultrasonic motor
JP5127293B2 (en) Drive device
KR20070075307A (en) Exciting method for elastic vibration member and vibratory driving device
JP4209465B2 (en) Drive device
JP2009044932A (en) Driving method of ultrasonic motor, and ultrasonic motor
WO2007080851A1 (en) Ultrasonic actuator
JP2006094591A (en) Ultrasonic motor and its operation method
JP2015144557A (en) Drive control method of ultrasonic motor and drive control device of ultrasonic motor
JP4830165B2 (en) Ultrasonic motor vibrator
JP2015144558A (en) Drive control method of ultrasonic motor
JP4814948B2 (en) Control device for vibration actuator
JP2017200374A5 (en)
JP5818500B2 (en) Vibration wave driving device and method of manufacturing the same
JP2008236820A (en) Driving device
JP5326244B2 (en) Driving device using piezoelectric element and driving method thereof
JP2008199700A (en) Ultrasonic motor, driving method thereof, and ultrasonic motor device
JPH0417584A (en) Ultrasonic actuator
JP2007325366A (en) Piezoelectric actuator
JP5315434B2 (en) Drive device
JP2000022231A (en) Piezoelectric device
JP2006314174A (en) Ultrasonic motor
JP6269224B2 (en) Piezoelectric motor
JP5144097B2 (en) Ultrasonic motor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190507