JP4660324B2 - FBC memory device - Google Patents

FBC memory device Download PDF

Info

Publication number
JP4660324B2
JP4660324B2 JP2005257999A JP2005257999A JP4660324B2 JP 4660324 B2 JP4660324 B2 JP 4660324B2 JP 2005257999 A JP2005257999 A JP 2005257999A JP 2005257999 A JP2005257999 A JP 2005257999A JP 4660324 B2 JP4660324 B2 JP 4660324B2
Authority
JP
Japan
Prior art keywords
diffusion layer
memory device
mos transistor
semiconductor memory
drain diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005257999A
Other languages
Japanese (ja)
Other versions
JP2007073680A (en
Inventor
直樹 楠
六月生 森門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005257999A priority Critical patent/JP4660324B2/en
Priority to US11/485,278 priority patent/US20070013007A1/en
Publication of JP2007073680A publication Critical patent/JP2007073680A/en
Priority to US12/402,920 priority patent/US20090173983A1/en
Application granted granted Critical
Publication of JP4660324B2 publication Critical patent/JP4660324B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7841Field effect transistors with field effect produced by an insulated gate with floating body, e.g. programmable transistors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/403Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh
    • G11C11/404Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh with one charge-transfer gate, e.g. MOS transistor, per cell
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/20DRAM devices comprising floating-body transistors, e.g. floating-body cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2211/00Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C2211/401Indexing scheme relating to cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C2211/4016Memory devices with silicon-on-insulator cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Semiconductor Memories (AREA)
  • Dram (AREA)

Description

本発明は揮発性の半導体メモリ装置に関する。   The present invention relates to a volatile semiconductor memory device.

FBC(Floating Body Cell)は、MOS(Metal Oxide Semiconductor)トランジスタに形成されたフローティングボディ(Floating Body)半導体層に正孔を蓄積することによりメモリ動作が可能な半導体メモリ装置である(例えば特許文献1参照。)。従来の一般的なDRAM(Dynamic Random Access Memory)セルは、1トランジスタ−1キャパシタで構成されているのに対して、FBCはキャパシタ構造なしにトランジスタのみでメモリ動作が可能であることから、セル面積の縮小が可能であり、高集積メモリ装置として期待されている。   An FBC (Floating Body Cell) is a semiconductor memory device capable of performing a memory operation by accumulating holes in a floating body (floating body) semiconductor layer formed in a MOS (Metal Oxide Semiconductor) transistor (for example, Patent Document 1). reference.). A conventional DRAM (Dynamic Random Access Memory) cell is composed of one transistor and one capacitor, whereas an FBC can perform memory operation with only a transistor without a capacitor structure. Therefore, it is expected as a highly integrated memory device.

SOI(Silicon On Insulator)基板上に形成されるFBCは、ソース拡散層下及びドレイン拡散層下に絶縁膜が存在することにより拡散層容量を小さくすることができ,ソース拡散層およびドレイン拡散層とフローティングのp型半導体層間の電気容量を最小にする構造がとられている。   An FBC formed on an SOI (Silicon On Insulator) substrate can reduce the diffusion layer capacitance due to the presence of an insulating film below the source diffusion layer and the drain diffusion layer. A structure is adopted that minimizes the capacitance between the floating p-type semiconductor layers.

一方、FBCをバルクシリコン基板上に形成する場合には、n型の埋め込み層上にフローティングのp型半導体層を形成し、このp型半導体層に正孔を蓄積する。しかしSOI基板上にFBCを形成した場合に比較して、バルクシリコン基板上のFBCではソース拡散層およびドレイン拡散層とp型半導体層間の電気容量が増加する。このため、第一のデータ状態“1”と第二のデータ状態“0”の閾値の差が小さく、信号量が小さいという問題があった。
特開2003−68877号公報
On the other hand, when the FBC is formed on the bulk silicon substrate, a floating p-type semiconductor layer is formed on the n-type buried layer, and holes are accumulated in the p-type semiconductor layer. However, compared with the case where the FBC is formed on the SOI substrate, the capacitance between the source and drain diffusion layers and the p-type semiconductor layer increases in the FBC on the bulk silicon substrate. For this reason, there is a problem that the difference between the threshold values of the first data state “1” and the second data state “0” is small and the signal amount is small.
JP 2003-68877 A

本発明は、FBCにおいて第一のデータ状態“1”と第二のデータ状態“0”の閾値の差を増加することができるメモリ装置を提供する。   The present invention provides a memory device that can increase a difference between thresholds of a first data state “1” and a second data state “0” in the FBC.

本発明の一態様は、基板と、前記基板に形成されたMOSトランジスタと、前記MOSトランジスタのゲート電極がワード線に、ドレイン拡散層がビット線に、ソース拡散層が固定電位線にそれぞれ接続され、前記基板中に他から電気的に分離され正孔を蓄積することが可能なフローティングボディとを備え、前記ドレイン拡散層と前記フローティングボディ間の電気容量が前記ソース拡散層と前記フローティングボディ間の電気容量未満であることを特徴としている。   In one embodiment of the present invention, a substrate, a MOS transistor formed on the substrate, a gate electrode of the MOS transistor is connected to a word line, a drain diffusion layer is connected to a bit line, and a source diffusion layer is connected to a fixed potential line. A floating body that is electrically isolated from the other and can accumulate holes in the substrate, and an electric capacity between the drain diffusion layer and the floating body is between the source diffusion layer and the floating body. It is characterized by being less than the electric capacity.

本発明によれば、FBCにおいて、第一のデータ状態“1”と第二のデータ状態“0”の閾値の差を広げることにより信号量の大きいメモリ装置を提供できる。   According to the present invention, in the FBC, a memory device having a large signal amount can be provided by widening the difference between the threshold values of the first data state “1” and the second data state “0”.

以下に本発明による実施例を説明する。   Examples according to the present invention will be described below.

図1から図8を用いて本発明の実施例1を説明する。   A first embodiment of the present invention will be described with reference to FIGS.

図1は、実施例1に係るFBC装置の構造を示すビット線に沿う方向の断面図である。FBCはシリコン基板10上のnチャンネルMOSトランジスタにより構成されている。基板10中に例えば燐を約1x1018cm−3含むn型半導体層20と、その上部に例えばボロンを約3x1017cm−3から約1x1018cm−3含むp型半導体層30を備える。p型半導体層30は素子分離領域90によって隣り合う素子と互いに電気的に絶縁されたフローティング構造になっている。この基板10上にはゲート絶縁膜40を介してゲート電極50が形成され、ゲート電極50の両側壁にはゲート側壁60が形成されている。更に,電気的に活性化した燐を約3x1020cm−3含むn型のソース拡散層70およびドレイン拡散層80が基板10中に形成されている。ソース拡散層70およびドレイン拡散層80は、拡散層の底部がp型半導体層30の領域にとどまり、n型半導体層20には達しない深さに形成されている。 FIG. 1 is a cross-sectional view along the bit line showing the structure of the FBC device according to the first embodiment. The FBC is composed of an n-channel MOS transistor on the silicon substrate 10. An n-type semiconductor layer 20 containing, for example, about 1 × 10 18 cm −3 of phosphorus in the substrate 10 and a p-type semiconductor layer 30 containing, for example, about 3 × 10 17 cm −3 to about 1 × 10 18 cm −3 of boron are provided thereon. The p-type semiconductor layer 30 has a floating structure that is electrically insulated from adjacent elements by an element isolation region 90. A gate electrode 50 is formed on the substrate 10 via a gate insulating film 40, and gate sidewalls 60 are formed on both side walls of the gate electrode 50. Further, an n + -type source diffusion layer 70 and a drain diffusion layer 80 containing approximately 3 × 10 20 cm −3 of electrically activated phosphorus are formed in the substrate 10. The source diffusion layer 70 and the drain diffusion layer 80 are formed to such a depth that the bottom of the diffusion layer remains in the region of the p-type semiconductor layer 30 and does not reach the n-type semiconductor layer 20.

ここで、隣り合う素子分離領域90に挟まれたゲート絶縁膜40、ゲート電極50、ソース拡散層70、ドレイン拡散層80からなるMOSトランジスタをひとつのメモリセル領域100と定義する。   Here, a MOS transistor including the gate insulating film 40, the gate electrode 50, the source diffusion layer 70, and the drain diffusion layer 80 sandwiched between adjacent element isolation regions 90 is defined as one memory cell region 100.

図1に示すように、断面図におけるゲート電極50の中心線100bはメモリセル領域100の中央にあたるセル中心線100aよりもドレイン拡散層80側に寄った非対称な位置に形成されている。これによりゲート電極とドレイン拡散層端の距離は、ゲート電極とソース拡散層端の距離よりも短くなっている。   As shown in FIG. 1, the center line 100 b of the gate electrode 50 in the cross-sectional view is formed at an asymmetric position closer to the drain diffusion layer 80 side than the cell center line 100 a corresponding to the center of the memory cell region 100. As a result, the distance between the gate electrode and the drain diffusion layer end is shorter than the distance between the gate electrode and the source diffusion layer end.

図2(a)は本実施例1によるメモリセルアレイの平面図を示す。FBCをマトリクス配列したメモリセルアレイを構成する場合は、ゲート電極50は一方方向に連続的に形成され、これがワード線50aとなる。ソース拡散層は固定電位線であるソース線70aに接続され、ワード線50aと同じ方向に連続的に形成される。このソース線70aは隣り合う二つのセルのワード線50aに共有されるため、ワード線50a2本に対してソース線70aが1本で構成される。ビット線80aは隣り合う二つのトランジスタのドレイン拡散層80と共有され、ワード線50aと交差する方向に連続的に形成されている。ビット線80aはドレイン拡散層に接続される。トランジスタ上は層間絶縁膜で覆われ、この上にドレイン拡散層と電気的に接続するビット線コンタクト80bが形成される。ワード線50a、ソース線70a、ビット線80aによって格子状にパターン形成されたユニットセル140aは、絶縁領域110により分離されている。   FIG. 2A is a plan view of the memory cell array according to the first embodiment. In the case of configuring a memory cell array in which FBCs are arranged in a matrix, the gate electrode 50 is continuously formed in one direction, which becomes the word line 50a. The source diffusion layer is connected to the source line 70a, which is a fixed potential line, and is continuously formed in the same direction as the word line 50a. Since this source line 70a is shared by the word lines 50a of two adjacent cells, one source line 70a is formed for two word lines 50a. The bit line 80a is shared with the drain diffusion layer 80 of two adjacent transistors, and is continuously formed in a direction crossing the word line 50a. Bit line 80a is connected to the drain diffusion layer. The transistor is covered with an interlayer insulating film, and a bit line contact 80b electrically connected to the drain diffusion layer is formed thereon. The unit cells 140a patterned in a lattice pattern by the word lines 50a, the source lines 70a, and the bit lines 80a are separated by an insulating region 110.

比較のために従来のゲート電極50がセル中心線100a上にある場合の平面図を図2(b)に示す。本発明のユニットセル140aと、従来のセル中心線100aに対称な構造の場合のユニットセル140bを比較すると、本実施例は従来のユニットセルと同じ面積になる。ここで、ユニットセル140aの面積はセル中心線に対称な場合のユニットセル140bと同じである必要はないが、本実施例ではセル中心線100aに対称な構造と、セル中心線100aからゲート電極50をドレイン拡散層80方向に変位させた場合を比較する場合には、それぞれのユニットセル(140a、140b)の面積を同一の条件にして比較していることに留意すべきである。   For comparison, FIG. 2B shows a plan view when the conventional gate electrode 50 is on the cell center line 100a. Comparing the unit cell 140a of the present invention with the unit cell 140b having a structure symmetrical to the conventional cell center line 100a, this embodiment has the same area as the conventional unit cell. Here, the area of the unit cell 140a does not have to be the same as that of the unit cell 140b in the case of being symmetric with respect to the cell center line, but in this embodiment, a structure symmetric with respect to the cell center line 100a and the gate electrode from the cell center line 100a. When comparing the case where 50 is displaced in the direction of the drain diffusion layer 80, it should be noted that the comparison is made under the same conditions for the area of each unit cell (140a, 140b).

図3(a)は本実施例による半導体メモリ装置の断面形状を示し、とくにソース拡散層70とドレイン拡散層80の濃度分布を示している。ゲート電極50の中心位置がセル中心線100aからドレイン拡散層80側にΔ変位したことにより、ゲート電極の中心からソース拡散層端までの距離が長くなり、ドレイン拡散層端までの距離が短くなっている。これによってソース拡散層70に注入された不純物のドーズ量に比較してドレイン拡散層80に注入された不純物のドーズ量が小さく、濃度分布がセル中心線100aに対して非対称になっていることがわかる。比較のために、従来のセル中心線100aに対して対称な構造について図3(b)に示す。   FIG. 3A shows a cross-sectional shape of the semiconductor memory device according to this embodiment, and particularly shows the concentration distribution of the source diffusion layer 70 and the drain diffusion layer 80. Since the center position of the gate electrode 50 is displaced Δ from the cell center line 100a toward the drain diffusion layer 80, the distance from the center of the gate electrode to the end of the source diffusion layer is increased, and the distance to the end of the drain diffusion layer is decreased. ing. As a result, the dose of the impurity injected into the drain diffusion layer 80 is smaller than the dose of the impurity injected into the source diffusion layer 70, and the concentration distribution is asymmetric with respect to the cell center line 100a. Recognize. For comparison, FIG. 3B shows a symmetric structure with respect to the conventional cell center line 100a.

次に、本実施例における、書き込み、読み出しを行う選択セルにおける動作波形を図4に示す。また、本実施例において、計算に用いたバイアス条件を表1に示す。

Figure 0004660324
ここで、図4では説明をわかりやすくするために表1とは異なるバイアス条件を用いていることに留意すべきである。ここで、第一のデータ状態“1”および第二のデータ状態“0”について、フローティングボディにホールが注入されたデータ状態を“1”と定義し、フローティングボディのホールが放出されたデータ状態を“0”と定義する。本実施例では、選択セルに“1”書き込み→“1”記憶保持→“1”読み出しを行い、それに続いて“0”書き込み→“0”記憶保持→“0”読み出しの順に動作させる場合について、順次説明する。動作はこの順序に限定されるものではない。 Next, FIG. 4 shows operation waveforms in the selected cell for writing and reading in this embodiment. Table 1 shows the bias conditions used in the calculation in this example.
Figure 0004660324
Here, it should be noted that a bias condition different from that in Table 1 is used in FIG. 4 for easy understanding. Here, for the first data state “1” and the second data state “0”, the data state in which holes are injected into the floating body is defined as “1”, and the data state in which holes in the floating body are released Is defined as “0”. In the present embodiment, “1” write → “1” memory hold → “1” read is performed on the selected cell, and then “0” write → “0” memory hold → “0” read is operated in this order. These will be described sequentially. The operation is not limited to this order.

図4は、ワード線電圧VWL、ビット線電圧VBL、およびボディ電圧Vを同時にあらわしている。ただし、図4および表1は実施例1における動作電圧の一例であり、これらの電圧を用いる必要性はない。また、グラフにおける時間軸の長さについては模式的なものであり、相対的な動作時間を限定するものではない。 FIG. 4 shows the word line voltage V WL , the bit line voltage V BL , and the body voltage V B at the same time. However, FIG. 4 and Table 1 are examples of operating voltages in the first embodiment, and there is no need to use these voltages. The length of the time axis in the graph is schematic and does not limit the relative operation time.

まず、選択セルに“1”書き込みを行うには、時刻tにワード線電圧VWLを約1.5Vに印加し、続いて時刻tにビット線電圧VBLを約2.2Vに印加する。ドレイン拡散層80のゲート端でインパクトイオン化が起こり、フローティングボディー領域に過剰ホールが注入保持されて“1”が書き込まれる。 First, to write “1” to the selected cell, the word line voltage V WL is applied to about 1.5 V at time t 1 , and then the bit line voltage V BL is applied to about 2.2 V at time t 2. To do. Impact ionization occurs at the gate end of the drain diffusion layer 80, excess holes are injected and held in the floating body region, and "1" is written.

次に、“1”の記憶保持を行うには、時刻tにワード線電圧VWLを約−2Vに印加し、時刻tにビット線電圧VBLを約0Vにする。これにより時刻tに“1”が記憶される。 Next, in order to store and hold “1”, the word line voltage V WL is applied to about −2 V at time t 3 , and the bit line voltage V BL is set to about 0 V at time t 4 . As a result, “1” is stored at time t 4 .

次に、“1”読み出しを行うには、ワード線電圧VWLを約−2.0Vに保持した状態で時刻tにビット線電圧VBLを約0.2Vにする。そしてワード線電圧VWLをスウィープすることにより“1”が読み出される。 Next, in order to perform “1” reading, the bit line voltage V BL is set to about 0.2 V at time t 5 while the word line voltage V WL is held at about −2.0 V. Then, “1” is read by sweeping the word line voltage V WL .

続いて選択セルに“0”書き込みを行うには、時刻t11に選択したワード線電圧VWLを約1.5Vに印加し、続いて時刻t12にビット線電圧VBLを約−1.1Vにする。ドレイン拡散層との接合が順方向バイアスになり、バルク領域30のホールが放出され、“0”が書き込まれる。 To do "0" is written to the selected cell subsequently, the word line voltage V WL selected at the time t 11 and applied to approximately 1.5V, followed by time t 12 to the bit line voltage V BL about -1. Set to 1V. The junction with the drain diffusion layer becomes a forward bias, holes in the bulk region 30 are emitted, and “0” is written.

次に、“0”の記憶保持を行うには、時刻t13に選択したワード線電圧VWLを約−2Vに印加し、時刻t14に選択したビット線電圧VBLを約0Vにする。これにより時刻t14に“0”が記憶される。 Next, in order to store and hold “0”, the word line voltage V WL selected at time t 13 is applied to about −2 V, and the selected bit line voltage V BL is set to about 0 V at time t 14 . As a result the time t 14 "0" is stored.

最後に、“0”読み出しを行うには、選択したワード線電圧VWLを約−2・0Vに保持した状態で、時刻t15に選択したビット線電圧VBLを約0.2Vに印加してワード線電圧VWLをスウィープすると“0”が読み出される。以上のようにして“1”書き込みから“0”読み出しまでの一連の動作を行うことができる。 Finally, in order to perform “0” reading, the selected bit line voltage V BL is applied to about 0.2 V at time t 15 while the selected word line voltage V WL is held at about −2 · 0 V. When the word line voltage V WL is swept, “0” is read out. As described above, a series of operations from “1” writing to “0” reading can be performed.

ここで、実施例1における読み出し時のボディ電圧Vの変化量について、図5を用いてさらに詳細に説明する。図5(a)は“1”書き込み後の“1”記憶保持および“1”読み出し時におけるボディ電圧V、すなわち図4における時刻tから時刻tにおけるボディ電圧Vを示す。図5(b)は“0”書き込み後の“0”記憶保持および“0”読み出し時におけるボディ電圧V、すなわち図4における時刻13から時刻15のボディ電圧Vを示している。図5(a)(b)中の「変位あり」はゲート電極50が中心線100aからドレイン拡散層80側に約0.05μm変位した非対称な構造の場合のボディ電圧Vを示し、図中の「変位なし」は比較のために従来のセル中心線100aに対称な構造の場合のボディ電位Vを示している。 Here, the amount of change in the body voltage V B at the time of reading in Embodiment 1 will be described in more detail with reference to FIG. 5 (a) is "1" indicating body voltage V B at "1" memory retention and "1" when read after writing, that is, the body voltage V B at time t 5 from time t 3 in FIG. FIG. 5 (b) shows a "0" after writing "0" body voltage V B during storage hold and "0" is read, i.e. body voltage V B at time 15 from the time 13 in FIG. 4. “With displacement” in FIGS. 5A and 5B shows the body voltage V B when the gate electrode 50 has an asymmetric structure in which the gate electrode 50 is displaced by about 0.05 μm from the center line 100a to the drain diffusion layer 80 side. “No displacement” shows the body potential V B in the case of a structure symmetrical to the conventional cell center line 100a for comparison.

図5(a)において、「変位あり」のほうが「変位なし」に比較してボディ電位Vの下降が抑制されている。つまり「変位あり」では“1”読み出し時の閾値が浅くなることを意味している。一方、図5(b)では、「変位あり」のほうが「変位なし」に比較してボディ電位Vの上昇が抑制されている。つまり「変位あり」では“0”読み出し時の閾値が深くなることを意味している。この結果、「変位あり」では“1”読み出し時の閾値がより浅くなり、かつ“0”読み出し時の閾値がより深くなり、閾値の差を増大することが可能となる。すなわち二つのデータ状態の差が大きくなり、信号量が大きくなるという効果がある。 In FIG. 5 (a), "displacement there" whichever is lowered as compared to the "no displacement" body potential V B is suppressed. That is, “with displacement” means that the threshold value at the time of reading “1” becomes shallow. On the other hand, in FIG. 5B, “with displacement” suppresses the increase in body potential V B compared with “without displacement”. That is, “with displacement” means that the threshold value at the time of reading “0” becomes deeper. As a result, in “with displacement”, the threshold value at the time of reading “1” becomes shallower, the threshold value at the time of reading “0” becomes deeper, and the difference in threshold values can be increased. That is, there is an effect that the difference between the two data states is increased and the signal amount is increased.

図6にはゲート電極50のセル中心線100aからドレイン拡散層方向への変位量に対する信号量の関係を示す。ゲートの中心線をセル中心線100aと一致させた場合(変位0の場合)には約0.19V程度の信号量であったものが、0.05μm変位させた場合には、信号量が約0.25Vとなり、0.06V上昇している。これは変位なしの場合と比較して信号量が約32%上昇したことになる。また、図6から、信号量を約10%あげるためには、ゲート電極の変位量は約0.02μmに相当することがわかる。   FIG. 6 shows the relationship of the signal amount with respect to the displacement amount of the gate electrode 50 from the cell center line 100a toward the drain diffusion layer. When the gate center line is aligned with the cell center line 100a (when displacement is 0), the signal amount is about 0.19 V. When the gate center line is displaced by 0.05 μm, the signal amount is about It becomes 0.25V, and is rising 0.06V. This means that the signal amount has increased by about 32% compared to the case without displacement. Further, FIG. 6 shows that in order to increase the signal amount by about 10%, the displacement amount of the gate electrode corresponds to about 0.02 μm.

図7には、ソース拡散層70とボディ間の容量Csbに対するドレイン拡散層80とボディ間の容量Cdbの比(Cdb/Csb)に対する信号量を示している。Cdb/Csbの変化量に依存して信号量が増加する。たとえばCdb/Csbが1のときに比較して、Cdb/Csbを約0.93にした場合には信号量が約10%上昇することが図7からわかる。 FIG. 7 shows a signal amount with respect to a ratio (C db / C sb ) of the capacitance C db between the drain diffusion layer 80 and the body to the capacitance C sb between the source diffusion layer 70 and the body. The signal amount increases depending on the amount of change in C db / C sb . For example, it can be seen from FIG. 7 that when C db / C sb is set to about 0.93, the signal amount increases by about 10% compared to when C db / C sb is 1.

以上のように、本実施例ではユニットセル140の面積を一定の条件にした場合、ゲート電極50をセル中心線100aからドレイン拡散層80側に変位させ、セル中心線100aに対して非対称な構造にする、すなわちCdb/Csb比を小さくすることによって、信号量を大きくすることが可能となる。また、ゲート電極の変位量を大きくするにしたがって信号量が大きくなる効果がある。 As described above, in this embodiment, when the area of the unit cell 140 is constant, the gate electrode 50 is displaced from the cell center line 100a toward the drain diffusion layer 80, and the structure is asymmetric with respect to the cell center line 100a. In other words, by reducing the C db / C sb ratio, the signal amount can be increased. Further, there is an effect that the signal amount is increased as the displacement amount of the gate electrode is increased.

なお、実施例1ではワード線とソース拡散層端との距離を短くする方法として、直線構造を有するワード線を用いて説明したが、同様の距離関係を有する構造であれば他の構造であってもかまわない。例えば、ワード線の構成をウィグル構造とよばれる非直線からなる構造を用いてもかまわない。ウィグル構造の一例として図8に平面図を示す。ワード線がビット線と重なる領域ではワード線がドレイン拡散層に近く、ビット線と重ならない領域ではワード線がセル中心線上に構成される。また、ウィグル構造と直線構造を適宜組み合わせてもかまわない。   In the first embodiment, as a method of shortening the distance between the word line and the source diffusion layer end, a word line having a linear structure has been described. However, any structure having a similar distance relationship may be used. It doesn't matter. For example, the structure of the word line may be a non-linear structure called a wiggle structure. FIG. 8 shows a plan view as an example of the wiggle structure. In a region where the word line overlaps with the bit line, the word line is close to the drain diffusion layer, and in a region where the word line does not overlap with the bit line, the word line is formed on the cell center line. Moreover, you may combine a wiggle structure and a linear structure suitably.

図9および図10を用いて本発明における実施例2を説明する。   A second embodiment of the present invention will be described with reference to FIGS. 9 and 10.

実施例1ではワード線の中心位置をドレイン拡散層側に変位させる非対称構造を用いることによってCdb/Csb比を小さくしているが、実施例2ではドレイン拡散層とソース拡散層の濃度を非対称にすることによりCdb/Csb比を小さくしている点で、実施例1と異なる。 In the first embodiment, the C db / C sb ratio is reduced by using an asymmetric structure in which the center position of the word line is displaced to the drain diffusion layer side, but in the second embodiment, the concentration of the drain diffusion layer and the source diffusion layer is changed. The difference from the first embodiment is that the C db / C sb ratio is reduced by making it asymmetric.

図9に実施例2における半導体メモリ装置の構造を示すビット線に沿う方向の断面構造図を示す。実施例2の断面構造では、ソース拡散層はドレイン拡散層よりも不純物濃度が高いことに特徴がある。このような特徴をもつFBCの製造方法として、たとえば、図9中に示すようにソース/ドレインの拡散層の形成時に基板に対して角度をもって不純物イオンを注入することにより、ゲート電極によって影になるドレイン拡散層領域の不純物濃度を、ソース拡散層の不純物濃度よりも意図的に薄くする非対称イオン注入法を用いることが可能である。この方法を用いることによって、Cdb/Csbを小さくすることが可能となり、Cdb/Csbの変化量に対応して信号量を増加することができる。すなわち、実施例1と同様の効果を得ることが可能となる。 FIG. 9 is a sectional view showing the structure of the semiconductor memory device according to the second embodiment in the direction along the bit line. The cross-sectional structure of Example 2 is characterized in that the source diffusion layer has a higher impurity concentration than the drain diffusion layer. As a method of manufacturing the FBC having such a feature, for example, as shown in FIG. 9, impurity ions are implanted at an angle with respect to the substrate when forming the source / drain diffusion layers, thereby being shaded by the gate electrode. It is possible to use an asymmetric ion implantation method in which the impurity concentration in the drain diffusion layer region is intentionally made thinner than the impurity concentration in the source diffusion layer. By using this method, C db / C sb can be reduced, and the signal amount can be increased corresponding to the amount of change in C db / C sb . That is, it is possible to obtain the same effect as in the first embodiment.

図10は、本実施2によるメモリセルアレイの平面図を示す。実施例2でも実施例1と同様にCdb/Csbを小さくする効果がある。ただし、実施例2のユニットセル140cはセル中心線100aに対称な構造の場合のユニットセル140bと面積が異なることに注意が必要である。 FIG. 10 is a plan view of the memory cell array according to the second embodiment. The second embodiment also has the effect of reducing C db / C sb as in the first embodiment. However, it should be noted that the unit cell 140c of the second embodiment has a different area from the unit cell 140b in the case of a structure symmetrical to the cell center line 100a.

なお、図9および図10ではゲート電極位置がセル中心線100aと等しい場合について示したが、これは実施例1の方法と適宜組み合わせてゲート位置を変位させてもかまわない。   Although FIGS. 9 and 10 show the case where the gate electrode position is equal to the cell center line 100a, the gate position may be displaced by appropriately combining with the method of the first embodiment.

本発明は以上の構成に限定されるものではなく、種々の変形が可能である。   The present invention is not limited to the above configuration, and various modifications are possible.

実施例1に係る半導体メモリ装置の構造を示す断面図。1 is a cross-sectional view illustrating a structure of a semiconductor memory device according to a first embodiment. 実施例1に係る半導体メモリ装置のレイアウトを示す平面図。FIG. 3 is a plan view showing the layout of the semiconductor memory device according to the first embodiment. 実施例1に係る半導体メモリ装置の不純物濃度分布を示す断面図。FIG. 3 is a cross-sectional view showing the impurity concentration distribution of the semiconductor memory device according to the first embodiment. 実施例1に係る半導体メモリ装置の動作波形を示す図。FIG. 3 is a diagram illustrating operation waveforms of the semiconductor memory device according to the first embodiment. 実施例1に係る半導体メモリ装置のボディ電位変化量を示す図。FIG. 3 is a diagram illustrating a body potential change amount of the semiconductor memory device according to the first embodiment. 実施例1に係る半導体メモリ装置のゲート変位量に対する信号強度変化量を示す図。FIG. 6 is a diagram illustrating a signal intensity change amount with respect to a gate displacement amount of the semiconductor memory device according to the first embodiment. 実施例1に係る半導体メモリ装置の信号強度に対するドレイン−ボディ間容量とソース−ボディ間容量比(Cdb/Csb)を示す図。FIG. 3 is a diagram illustrating drain-body capacitance and source-body capacitance ratio (C db / C sb ) with respect to signal intensity of the semiconductor memory device according to the first embodiment. 実施例1に係る半導体メモリ装置のレイアウトを示す平面図。FIG. 3 is a plan view showing the layout of the semiconductor memory device according to the first embodiment. 実施例2に係る半導体メモリ装置の構造を示す断面図。FIG. 6 is a cross-sectional view illustrating a structure of a semiconductor memory device according to a second embodiment. 実施例2に係る半導体メモリ装置のレイアウトを示す平面図。FIG. 6 is a plan view showing a layout of a semiconductor memory device according to a second embodiment.

符号の説明Explanation of symbols

10 基板
20 n型半導体層
30 p型半導体層
40 ゲート絶縁膜
50 ゲート電極
50a ワード線
60 ゲート側壁
70 ソース拡散層
70a ソース線
80 ドレイン拡散層
80a ビット線
80b ビット線コンタクト
90 素子分離領域
100 メモリセル領域
100a セル中心線
100b ゲート中心線
110 絶縁領域
140a〜140c ユニットセル
〜t11〜t15 時刻
BL ビット線電圧
WL ワード線電圧
ボディ電圧
Δ 変位
sb ソース−ボディ間容量
db ドレイン−ボディ間容量
10 substrate 20 n-type semiconductor layer 30 p-type semiconductor layer 40 gate insulating film 50 gate electrode 50a word line 60 gate sidewall 70 source diffusion layer 70a source line 80 drain diffusion layer 80a bit line 80b bit line contact 90 element isolation region 100 memory cell Region 100a Cell center line 100b Gate center line 110 Insulating regions 140a to 140c Unit cells t 1 to t 5 t 11 to t 15 Time V BL bit line voltage V WL Word line voltage V B Body voltage Δ Displacement C sb Source-body Capacitance C db drain-body capacitance

Claims (4)

基板と、
前記基板に形成されたMOSトランジスタと、
前記MOSトランジスタのゲート電極がワード線に、ドレイン拡散層がビット線に、ソース拡散層が固定電位線にそれぞれ接続され、
前記基板中に他から電気的に分離され正孔を蓄積することが可能なフローティングボディとを備え、
前記ドレイン拡散層と前記フローティングボディ間の電気容量が前記ソース拡散層と前記フローティングボディ間の電気容量未満であることを特徴とする半導体メモリ装置。
A substrate,
A MOS transistor formed on the substrate;
The gate electrode of the MOS transistor is connected to the word line, the drain diffusion layer is connected to the bit line, and the source diffusion layer is connected to the fixed potential line.
A floating body that is electrically isolated from the other and can accumulate holes in the substrate;
A semiconductor memory device, wherein an electric capacity between the drain diffusion layer and the floating body is less than an electric capacity between the source diffusion layer and the floating body.
前記MOSトランジスタがnチャネルMOSトランジスタであり、前記フローティングボディがp型であり、前記p型のフローティングボディが前記基板中に設けられたn型の半導体層上に備えられることを特徴とする請求項1記載の半導体メモリ装置。 The MOS transistor is an n-channel MOS transistor, the floating body is p-type, and the p-type floating body is provided on an n-type semiconductor layer provided in the substrate. 2. The semiconductor memory device according to 1. 前記MOSトランジスタが隣り合う二つの素子分離領域の間に形成され、ビット線に平行に沿った断面における前記MOSトランジスタのゲート電極が、前記隣り合う二つの素子分離領域間の中央位置よりも前記ドレイン拡散層側に近い位置に形成されたMOSトランジスタ構造であることを特徴とする請求項1記載の半導体メモリ装置。   The MOS transistor is formed between two element isolation regions adjacent to each other, and the gate electrode of the MOS transistor in a cross section parallel to the bit line is more than the center position between the two adjacent element isolation regions. 2. The semiconductor memory device according to claim 1, wherein the semiconductor memory device has a MOS transistor structure formed at a position close to the diffusion layer side. 前記ドレイン拡散層の不純物濃度を前記ソース拡散層の不純物濃度に比較して薄くしたMOSトランジスタ構造であることを特徴とする請求項1記載の半導体メモリ装置。   2. The semiconductor memory device according to claim 1, wherein the semiconductor memory device has a MOS transistor structure in which an impurity concentration of the drain diffusion layer is made thinner than an impurity concentration of the source diffusion layer.
JP2005257999A 2005-07-15 2005-09-06 FBC memory device Expired - Fee Related JP4660324B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005257999A JP4660324B2 (en) 2005-09-06 2005-09-06 FBC memory device
US11/485,278 US20070013007A1 (en) 2005-07-15 2006-07-13 Semiconductor device and method of fabricating the same
US12/402,920 US20090173983A1 (en) 2005-07-15 2009-03-12 Semiconductor device and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005257999A JP4660324B2 (en) 2005-09-06 2005-09-06 FBC memory device

Publications (2)

Publication Number Publication Date
JP2007073680A JP2007073680A (en) 2007-03-22
JP4660324B2 true JP4660324B2 (en) 2011-03-30

Family

ID=37934885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005257999A Expired - Fee Related JP4660324B2 (en) 2005-07-15 2005-09-06 FBC memory device

Country Status (1)

Country Link
JP (1) JP4660324B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4498374B2 (en) 2007-03-22 2010-07-07 株式会社東芝 Semiconductor memory device
KR20090116088A (en) 2008-05-06 2009-11-11 삼성전자주식회사 A capacitor-less one transistor semiconductor memory device having improved data retention abilities and operation characteristics
US7969808B2 (en) 2007-07-20 2011-06-28 Samsung Electronics Co., Ltd. Memory cell structures, memory arrays, memory devices, memory controllers, and memory systems, and methods of manufacturing and operating the same
KR101308048B1 (en) 2007-10-10 2013-09-12 삼성전자주식회사 Semiconductor memory device
KR20090075063A (en) 2008-01-03 2009-07-08 삼성전자주식회사 Semiconductor memory device comprising memory cell array having dynamic memory cells using floating body transistor and method of operating the same
KR20090075062A (en) 2008-01-03 2009-07-08 삼성전자주식회사 Semiconductor memory device comprising memory cell array having dynamic memory cells using floating body transistors
KR101566403B1 (en) 2008-11-10 2015-11-13 삼성전자주식회사 Operation method of semiconductor device
KR20100070158A (en) 2008-12-17 2010-06-25 삼성전자주식회사 Semiconductor memory device comprising capacitor-less dynamic memory cells, and method of operating the same
KR101442177B1 (en) 2008-12-18 2014-09-18 삼성전자주식회사 Methods of fabricating a semiconductor device having a capacitor-less one transistor memory cell
FR2958779B1 (en) * 2010-04-07 2015-07-17 Centre Nat Rech Scient MEMORY POINT RAM HAS A TRANSISTOR
KR102059884B1 (en) * 2012-02-16 2019-12-27 제노 세미컨덕터, 인크. Memory cell comprising first and second transistors and methods of operating

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05267569A (en) * 1992-03-18 1993-10-15 Nec Corp Semiconductor memory device
JP2002343885A (en) * 2001-05-17 2002-11-29 Toshiba Corp Semiconductor memory device and its manufacturing method
JP2003017691A (en) * 2001-07-02 2003-01-17 Toshiba Corp Semiconductor device
JP2003031696A (en) * 2001-05-11 2003-01-31 Toshiba Corp Semiconductor memory and its manufacturing method
JP2004039982A (en) * 2002-07-05 2004-02-05 Mitsubishi Electric Corp Semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05267569A (en) * 1992-03-18 1993-10-15 Nec Corp Semiconductor memory device
JP2003031696A (en) * 2001-05-11 2003-01-31 Toshiba Corp Semiconductor memory and its manufacturing method
JP2002343885A (en) * 2001-05-17 2002-11-29 Toshiba Corp Semiconductor memory device and its manufacturing method
JP2003017691A (en) * 2001-07-02 2003-01-17 Toshiba Corp Semiconductor device
JP2004039982A (en) * 2002-07-05 2004-02-05 Mitsubishi Electric Corp Semiconductor device

Also Published As

Publication number Publication date
JP2007073680A (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP4660324B2 (en) FBC memory device
US20230395716A1 (en) Memory Device Comprising an Electrically Floating Body Transistor and Methods of Using
US9524971B2 (en) Techniques for providing a semiconductor memory device
KR100525138B1 (en) Semiconductor memory device
US9559216B2 (en) Semiconductor memory device and method for biasing same
TWI441319B (en) One transistor dram cell structure and method for forming
JP4559728B2 (en) Semiconductor memory device
WO2022137607A1 (en) Method for manufacturing memory device using semiconductor element
US20090213675A1 (en) Semiconductor memory device
WO2009005075A2 (en) A method of driving a semiconductor memory device and a semiconductor memory device
TWI517307B (en) Vertical capacitor-less dram cell, dram array and operation of the same
US20100207180A1 (en) High-performance one-transistor floating-body dram cell device
JP2009117518A (en) Semiconductor memory device and method of manufacturing the same
JP2008263133A (en) Semiconductor storage device and its driving method
US9263133B2 (en) Techniques for providing a semiconductor memory device
US8144514B2 (en) One-transistor floating-body DRAM cell device with non-volatile function
US20230377635A1 (en) Semiconductor element memory device
US20230186977A1 (en) Memory device
US11968822B2 (en) Memory device using semiconductor element
TWI816460B (en) Memory device using semiconductor element
KR20090018505A (en) Capacitorless dram and methods of operating and manufacturing the same
US8982633B2 (en) Techniques for providing a direct injection semiconductor memory device
US20220367681A1 (en) Semiconductor-element-including memory device
TW202303930A (en) Semiconductor device with memory element
US20100165757A1 (en) Semiconductor memory device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees