JP4658383B2 - Manufacturing method of optical film, laminated polarizing plate using the same, and liquid crystal display device - Google Patents
Manufacturing method of optical film, laminated polarizing plate using the same, and liquid crystal display device Download PDFInfo
- Publication number
- JP4658383B2 JP4658383B2 JP2001168375A JP2001168375A JP4658383B2 JP 4658383 B2 JP4658383 B2 JP 4658383B2 JP 2001168375 A JP2001168375 A JP 2001168375A JP 2001168375 A JP2001168375 A JP 2001168375A JP 4658383 B2 JP4658383 B2 JP 4658383B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- liquid crystal
- optical film
- polarizing plate
- roll
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Polarising Elements (AREA)
- Liquid Crystal (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、液晶セルの表示コントラストや表示色の視角特性等の改善に好適な光学フィルム、特に傾斜型位相差フィルムの製造方法、及びそれを用いた積層偏光板、液晶表示装置に関する。
【0002】
【従来の技術】
ツイストネマチック(TN)型やスーパーツイストネマチック(STN)型の液晶セルを用いたTFT(Thin Film Transistor)型やMIM(Metal Insulator Metal)型等の液晶表示装置が、応答速度性や表示コントラスト性等に着目されて、ワードプロセッサやパーソナルコンピュータ等のOA機器など、種々の装置の表示手段として広く普及しているが、見る角度(視角)、特に斜めからの視角でのコントラストの低下や画面の着色化等による視認性の低下が大きく、その視角特性の改善が強く要望されている。従来、前記の視角特性の改善方法としては、位相差板を配置する方法が知られている(特開平4−229828号公報、特開平4−258923号公報)。
【0003】
【発明が解決しようとする課題】
しかしながら、前記位相差板を用いた場合、全方位での視角特性の改善が困難で、特定方位での視角特性の改善効果に乏しいという問題点があった。
【0004】
一方、屈折率楕円体の主屈折率方向を法線方向に対し傾斜させて、液晶分子のチルトに対処しうるようにした位相差板を配置する方法も提案されている(特開平6−75116号公報)。しかしながら、その位相差板の形成が困難という問題点があった。また、押出し成形のロッドを中心軸に沿って斜めに切り出した主軸方向の三屈折率が全て異なる位相差板を配置する方法も提案されている(特開平6−174920号公報)。しかしながら、液晶表示装置等に必要な面積を有するものが得られにくいという問題点があった。
【0005】
さらに、周速の異なるロールを介した剪断力で延伸処理してなる、光学軸が法線方向に対して傾斜した位相差板を配置する方法も提案されている(特開平6−222213号公報)。しかしながら、付与できる剪断力や延伸配向温度に乏しいため、前記光学軸の傾斜角度が小さく、かつその角度のバラツキが大きいため視角特性の改善効果に乏しく、表面にロールとの接触傷が発生しやすく、表示品位を低下させる問題点などがあった。
【0006】
本発明は、前記従来の問題を解決するため、液晶表示装置における視認性の視角変化による低下を広範囲の方位で防止でき、品質に優れる大面積物も容易に安定して形成できる光学フィルムの製造方法、およびこれを用いた偏光板、ならびに広い視角範囲でコントラストや白黒表示等の視認性に優れる液晶表示装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
前記目的を達成するため、本発明の光学フィルムの製造方法は、透光性の複屈折フィルムからなり、法線面を基準とした左右対象の斜め透過光における位相差値が互いに異なる光学フィルムの製造方法であって、透光性樹脂を溶融押し出し法によってフィルム状に押し出した後、該フィルムを回転する表面硬度の異なる2本のロール間を通し、冷却硬化させることを特徴とする。本発明の光学フィルムの製造方法においては、前記ロールに、平板ベルトが装着されていることが好ましい。
【0008】
また、本発明の光学フィルムの製造方法は、前記方法により製造された光学フィルムに、さらに、縦一軸延伸処理、横一軸延伸処理、厚み方向配向処理から選ばれる少なくとも一つの処理を施すことを特徴とする。
【0009】
次に、本発明の積層偏光板は、前記の方法により製造された光学フィルムから選ばれる少なくとも1枚の光学フィルムと、偏光板とを、感圧接着剤を介して積層したこと特徴とする。これにより、広視野角偏光板が得られる。
【0010】
さらに、本発明の液晶表示装置は、前記の方法により製造された光学フィルムから選ばれる少なくとも1枚の光学フィルムを、液晶表示セルの少なくとも片側に配置したことを特徴とする。
【0011】
また、本発明の液晶表示装置は、前記の積層偏光板を、液晶表示セルの少なくとも片側に配置したことを特徴とする。
【0012】
また、本発明の液晶表示装置は、前記の方法により製造された光学フィルムから選ばれる少なくとも1枚の光学フィルム(A)及び/又は前記の積層偏光板(B)と、面内屈折率をnx,ny(nx>ny)、厚み方向屈折率をnzとしたときに、以下の式(1)〜(8)のいずれかを満足する位相差板から選ばれる少なくとも1枚の位相差板(C)とを備えていることを特徴とする。
nx>ny=nz (1)
nx=nz>ny (2)
nx=ny>nz (3)
nx=ny<nz (4)
nx>ny>nz (5)
nx>nz>ny (6)
nz>nx>ny (7)
【0013】
【発明の実施の形態】
本発明による製造方法は、透光性樹脂を溶融押し出し法によってフィルム状に押し出した後、該押出しフィルムを、回転する表面硬度の異なる2本のロール間を通し、冷却硬化させて光学フィルム(透光性の複屈折フィルム)を得るものであり、これにより、液晶セルの表示コントラストや、表示色の視角特性に優れた光学フィルムを得ることができる。製造された光学フィルムは、法線面を基準とした左右対象の斜め透過光における位相差値が互いに異なる特性を有する、傾斜型位相差フィルムとなる。
【0014】
図1は、本発明の光学フィルムの一例を示す図である。図1に示す如く、本発明の光学フィルム1は、遅相軸又は進相軸の一方又は両方の軸上の法線面11を基準とした傾斜角(θ)40度において、当該法線面の左右の斜め透過光12,13における複屈折による位相差の差が、実質的に異なる。
【0015】
光学フィルムの製造方法としては、透光性樹脂を、例えば、Tダイ法やインフレーション法等の溶融押出法により押し出した後、押出しフィルムを、その直下に置かれた表面硬度の異なる2本のロール間を通し、冷却硬化させればよい。冷却方法は、特に限定されないが、例えば、ロール間を200mm直径のシリコーンゴムをコートしたロールと、同じく200mm直径のメタルロールのキャップ部に挟み込む様に加圧冷却することにより行うことができる。
【0016】
本発明の製造方法により、法線面を基準とした傾斜角に基づく位相差値、すなわち当該法線面の左右の斜め透過光における複屈折による位相差値が、互いに異なる(非対称である)傾斜型位相差フィルムが製造できる理由としては、以下のことが考えられる。従来例でも述べた様に、周速の異なるロールを介した剪断力で延伸処理し、光学軸が法線方向に対して傾斜した位相差板を得る方法(特開平6−222213号公報)の場合は、周速管理が難しく、精度を保つのが困難である。しかし、本発明では、かかる欠点を補填すべく、押出しフィルムを表面硬度の異なるロール間に挟むため、ロールの弾性率の違いによる表面の非対称な変形が生じ、ロールを等速で回転させた場合であっても、ロール接触部分においてフィルムに剪断力が発生するためと考えられる。
【0017】
また、より密着力を上げて、剪断力を増すためには、ロール間に平板ベルトを挟み、その間に押し出しフィルムを挟み込む方法でも良い。平板ベルトとしては、特に限定されず、ロールの硬度の違いから発生する変形が、平板ベルトを介して押し出しフィルムに伝わるように設計されているものであればよい。ベルトの厚みや材質等は、特に限定はなく、表面性、熱伝導性の点からは金属製が好ましい。
【0018】
ロールは、特に限定はなく、2本のロールの表面硬度が異なるものであればよい。例えば、前述した様な、シリコーンゴムをコートしたロールとメタルロールの組合せなど、表面材質の異なるロールの組合せが挙げられる。また、平板ベルトを装着する場合は、同じ材質のロールに、硬度の異なるベルトを装着し、ロールを等速で回転させた場合に発生する剪断力が互いに異なるように設計されていてもよい。ロールの表面温度、ロールの直径、ロールの回転数等は、特に制限されず、本発明の目的を達成可能な範囲内で、適宜設定する。
【0019】
以上のように、表面硬度の異なるロール間での剪断力を応用することで、速度管理も容易となる。また、溶融押し出し直後の粘性の低いフィルムを使用したり、平板ベルトを応用することで、剪断力の大きさも制御しやすくなる。
【0020】
本発明の光学フィルムの形成に用いる透光性樹脂材料としては、特に限定はなく、光透過性の適宜なフィルム材料を用いることができ、溶融押し出し製膜時に均一なフィルムが得られやすいことから、溶融粘度の低い樹脂材料が好ましい。フィルムの光透過率としては、70%以上、好ましくは80%以上、特に好ましくは85%以上であり、光透過率に優れる透光性フィルムが好ましい。中でも、ポリカーボネート、ポリアリレート、ポリエチレンテレフタレート、ポリエーテルスルホン、ポリビニルアルコール、ポリエチレンないしポリプロピレンの如きポリオレフィン、セルロース系ポリマー、ポリスチレン、ポリメチルメタクリレート、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリアミド、ポリノルボルネンなどからなる透光性フィルムが好ましく用いられる。
【0021】
また、本発明のような傾斜型位相差フィルムを形成するためには、溶融押出法等により適度な粘性をもって押し出される樹脂材料が好ましい。さらに、自由端又は固定端による一軸延伸処理フィルムや二軸延伸処理フィルム、厚さ方向に配向処理したフィルム等が形成しやすいように、延伸処理等による配向が可能なフィルム材料であることが好ましい。
【0022】
なお、本発明においては、前記した剪断応力付与後の光学フィルムに、一軸延伸処理や二軸延伸処理等、適宜な方式で延伸処理を施し、光学フィルム(傾斜型位相差フィルム)とすることもできる。
【0023】
透光性フィルムの厚さは、目的とする光学フィルムの位相差特性などにより適宜に決定することができる。位相差は、複屈折の屈折率差(△n)とフィルム厚(d)の積(△n×d)として求めることができる。また、透光性フィルムないし光学フィルムの一般的な厚さは、5〜500μmであり、好ましくは10〜350μm、特に好ましくは20〜200μmである。
【0024】
本発明の光学フィルムにおいて、遅相軸又は進相軸の一方又は両方の軸上の法線面を基準とした傾斜角40度に基づく、当該法線面の左右の斜め透過光における複屈折による位相差の差は、視角特性の改善方位の広さなどの点より、10nm以上であることが好ましい。かかる位相差の差が10nm未満では、視角特性の改善効果、特に改善方位の拡大効果に乏しい。また、表示ムラの発生防止やコントラストの低下防止などの点より、フィルム面に垂直な(正面方向の)透過光の位相差の最大値と最小値の差が、10nm以下、好ましくは7nm以下、特に5nm以下のものが好ましい。
【0025】
本発明の光学フィルムは、単層物や同種又は異種の積層体などとして、液晶セルの複屈折による視角特性の補償に好ましく用いられる。その実用に際しては、偏光板との積層体や位相差板との積層体、等方性の透明な樹脂層やガラス層等からなる保護層との積層体など、適宜な形態で用いることができる。偏光板等との積層体は、光学フィルムや偏光板等を、液晶表示装置の製造過程で順次別個に積層することによっても形成できるが、前記の如く予め積層することにより、品質の安定性や積層作業性等に優れ、液晶表示装置の製造効率を向上させうる利点等がある。なお、積層には、粘着層等の適宜な接着手段を用いることができる。
【0026】
図2には、光学フィルム(傾斜型位相差フィルム)1と偏光板3とを、感圧接着剤2を介して接着積層してなる積層偏光板(B)を例示した。ここで、偏光板としては、例えばポリビニルアルコール系フィルムや部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルムの如き親水性高分子フィルムに、ヨウ素及び/又は二色性染料を吸着させて延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物の如きポリエン配向フィルム等からなる偏光フィルムなどがあげられる。偏光板は、偏光フィルムの片側又は両側に、透明保護層を有するものであってもよい。光学フィルムと偏光板との積層には、粘着剤や接着剤等の適宜な接着手段を用いることができ、例えば、感圧性接着剤(粘着剤)であってもよい。
【0027】
また、偏光板は、反射層を有する反射型のものであってもよい。反射型の偏光板は、視認側(表示側)からの入射光を反射させて表示するタイプの液晶表示装置などを形成するためのものであり、バックライト等の光源の内蔵を省略できて液晶表示装置の薄型化をはかりやすいなどの利点を有する。
【0028】
また、前記の透明保護層は、プラスチックの塗布層や保護フィルムの積層物などとして適宜に形成してよく、その形成には、透明性や機械的強度、熱安定性や水分遮蔽性等に優れるプラスチックなどが好ましく用いられる。その例としては、ポリエステル系樹脂、アセテート系樹脂、ポリエーテルサルホン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、アクリル系樹脂、あるいはアクリル系、ウレタン系、アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型、ないし紫外線硬化型の樹脂などがあげられる。透明保護層は、微粒子の含有によりその表面が微細凹凸構造に形成されていてもよい。
【0029】
さらに、上記の光学フィルムや偏光板と積層されることのある位相差板(C)としては、例えば、ポリカーボネート、ポリビニルアルコール、ポリスチレン、ポリメチルメタクリレート、ポリプロピレンやその他のポリオレフィン、ポリアリレート、ポリアミドの如き、適宜なプラスチックからなるフィルムを延伸処理してなる複屈折性フィルムなどが挙げられる。また、液晶化合物を薄層コーティングした複屈折性フィルムであっても良い。
【0030】
位相差板の特性としては、特に限定はなく、例えば一軸延伸フィルムや厚さ方向に配向したフィルムなどが挙げられる。フィルム面内屈折率をnx、ny(nx>ny)、厚み方向屈折率をnzとしたとき、前記の式(1)〜(7)のいずれかを満足する位相差板を、単独で又は組み合せて使用することができる。遅相軸方向の屈折率をnx、進相軸方向のそれをny、厚さ方向のそれをnzとしたときに、例えば、nx>ny>nz等の特性を示す二軸延伸フィルムや、nx=ny>nzやnx=ny<nz等の特性を示す一軸延伸光学楕円体などの適宜な位相差特性を示すものであってよい。
【0031】
上記において、光学フィルムと偏光板等との積層に用いられる接着剤(粘着剤)としては、特に限定はなく、例えばアクリル系、シリコーン系、ポリエステル系、ポリウレタン系、ポリエーテル系、ゴム系等の透明な感圧接着剤など、適宜な接着剤を用いることができる。光学フィルム等の光学特性の変化を防止する点より、硬化や乾燥の際に高温のプロセスを要しないものが好ましく、長時間の硬化処理や乾燥時間を要しないものが望ましい。また加熱や加湿条件下に剥離等を生じないものが好ましく用いられる。
【0032】
かかる点より、(メタ)アクリル酸ブチル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸等のモノマーを重合して得られる、質量平均分子量が10万以上、ガラス転移温度0℃以下のアクリル系ポリマーからなるアクリル系感圧接着剤が特に好ましく用いられる。また、アクリル系感圧接着剤は、透明性や耐候性や耐熱性などに優れる点からも好ましい。なお、屈折率が異なるものを積層する場合には、反射損の抑制などの点より、中問の屈折率を有する接着剤等が好ましく用いられる。
【0033】
接着剤には、必要に応じて、例えば天然物や合成物の樹脂類、ガラス繊維やガラスビーズ、金属粉やその他の無機粉末等からなる充填剤や、顔料、着色剤や酸化防止剤などの適宜な添加剤を配合することもできる。また微粒子を含有させて光拡散性を示す接着剤層とすることもできる。
【0034】
前述した光学フィルムや偏光板等には、液晶セル等の他部材と接着するための粘着層を設けることもできる。その粘着層は、アクリル系等の従来に準じた適宜な粘着剤にて形成することができる。偏光板や光学フィルムに設けた粘着層が表面に露出する場合には、その粘着層を実用に供するまでの間、汚染防止等を目的にセパレータにて仮着カバーすることが好ましい。セパレータは、上記の透明保護フィルム等に準じた適宜な薄葉体に、必要に応じシリコーン系や長鎖アルキル系、フッ素系や硫化モリブデン等の適宜な剥離剤による剥離コートを設ける方式などにより形成することができる。
【0035】
なお、上記した光学フィルムや偏光板、位相差板や透明保護層や接着剤層などの各層は、例えばサリチル酸エステル系化合物、ベンゾフェノール系化合物、ベンゾトリアゾール系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物等の紫外線吸収剤で処理する方式などにより、紫外線吸収能をもたせることもできる。
【0036】
本発明の光学フィルムを用いた液晶表示装置の形成は、従来の方法に準じて行うことができる。すなわち、液晶表示装置は、一般に、液晶セルと光学補償用の光学フィルム、及び必要に応じて偏光板や照明システム等の構成部品を適宜に組立て、駆動回路を組込むことなどにより形成されるが、本発明の液晶表示装置においては、本発明の光学フィルムを光学補償用に用い、それを液晶セルの少なくとも片側に設ける点を除き、特に限定はなく、従来に準ずる。
【0037】
従って、液晶セルの片側又は両側に偏光板を配置した液晶表示装置や、照明システムにバックライトあるいは反射板を用いたものなど、適宜な液晶表示装置を形成することができる。偏光板を用いた液晶表示装置の場合、光学補償用の光学フィルムは、液晶セルと偏光板、特に視認側の偏光板との間に配置することが補償効果の点などより好ましい。その配置に際しては、上記の積層偏光板としたものを用いることもできる。
【0038】
【実施例】
以下、実施例及び比較例を用いて本発明を更に具体的に説明する。
【0039】
(実施例1)
溶融押出法によってTダイから押し出された、厚さ150μmの透明ポリカーボネートフィルムを、各々300mm径のメタルロールとシリコンロールで保持された金属製のエンドレスベルト間にて冷却し、光学フィルムを得た。図3に、その概略を示した。
【0040】
(比較例1)
厚さ100μmの透明ポリカーボネートフィルムを、160℃の雰囲気下、周速の異なるロール間を通過させて、1.15倍に延伸処理して光学フィルムを得た。
【0041】
(比較例2)
厚さ100μmの透明ポリカーボネートフィルムを、駆動系を有するロール間に供給して剪断処理した。なお、ロールの一方は表面温度150℃、周速2.8m/分、他方は表面温度150℃、周速1.9m/分の条件とした。
【0042】
実施例、比較例で得た光学フィルムについて、下記の特性を調べた。その結果を表1に示す。
【0043】
(位相差)
オーク社製、ADR−100XYを用い、正面方向及び遅相軸方向に±40度傾斜させたときの位相差を調べた。
【0044】
(位相差バラツキ)
100mm角内における正面方向の位相差を、10mm間隔で100点測定し、その最大値と最小値の差を求めた。
【0045】
(傷)
光学フィルムの外観を目視観察して傷の有無を調べた。
【0046】
【表1】
【0047】
表1より、実施例1では、法線面を基準とした左右の斜め透過光の位相差の差が大きく、非対称性に優れると共に、面内での位相差のバラツキが小さく、品質も良好であった。これに対し、比較例1では、左右の斜め透過光の位相差に差がなくて通常の一軸延伸物の特性を示し、比較例2では、左右の斜め透過光の位相差の差が小さい上に、面内での位相差のバラツキが大きく、ロールとの接触による傷付きがあることがわかる。
【0048】
【発明の効果】
以上説明したとおり、本発明の非対称な傾斜型位相差フィルムにより、その作用機構は不明であるが、液晶セルの複屈折に基づく視角による視認性の変化を広範囲の方位にわたり高度に補償でき、コントラストや白黒表示等の視認性に優れる液晶表示装置を得ることができる。また品質に優れる大面積の光学フィルムも容易に安定して形成することができる。よって、その工業的価値は大である。
【図面の簡単な説明】
【図1】本発明の光学フィルム(傾斜型位相差フィルム)の断面図である。
【図2】積層偏光板の構成例を示す断面図である。
【図3】本発明の製造方法を示す模式図である。
【符号の説明】
1 光学フィルム(傾斜型位相差フィルム)
2 接着(粘着)層
3 偏光板
11 法線
12 斜め透過光
13 斜め透過光[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical film suitable for improving the display contrast of a liquid crystal cell, the viewing angle characteristics of a display color, and the like, in particular, a method for producing a tilted retardation film, a laminated polarizing plate using the same, and a liquid crystal display device.
[0002]
[Prior art]
TFT (Thin Film Transistor) type and MIM (Metal Insulator Metal) type liquid crystal display devices using twisted nematic (TN) type and super twisted nematic (STN) type liquid crystal cells, response speed, display contrast, etc. Although it is widely used as a display means for various devices such as OA equipment such as word processors and personal computers, the viewing angle (viewing angle), in particular, the decrease in contrast at an oblique viewing angle and the coloring of the screen As a result, there is a great demand for improvement in viewing angle characteristics. Conventionally, as a method for improving the viewing angle characteristics, a method of arranging a phase difference plate is known (Japanese Patent Laid-Open Nos. 4-229828 and 4-258923).
[0003]
[Problems to be solved by the invention]
However, when the retardation plate is used, it is difficult to improve the viewing angle characteristics in all directions, and there is a problem that the effect of improving the viewing angle characteristics in a specific direction is poor.
[0004]
On the other hand, there has also been proposed a method of arranging a retardation plate in which the main refractive index direction of the refractive index ellipsoid is inclined with respect to the normal direction so as to cope with the tilt of liquid crystal molecules (Japanese Patent Laid-Open No. 6-75116). Issue). However, there is a problem that it is difficult to form the retardation plate. There has also been proposed a method of arranging retardation plates having different three refractive indexes in the main axis direction obtained by obliquely cutting an extruded rod along the central axis (Japanese Patent Laid-Open No. 6-174920). However, there is a problem that it is difficult to obtain a liquid crystal display device having a necessary area.
[0005]
Furthermore, there is also proposed a method of arranging a retardation plate whose optical axis is inclined with respect to the normal direction, which is formed by stretching with a shearing force through rolls having different peripheral speeds (Japanese Patent Laid-Open No. 6-222213). ). However, since the shearing force and stretching orientation temperature that can be imparted are poor, the tilt angle of the optical axis is small, and the variation in the angle is large, so the effect of improving the viewing angle characteristics is poor, and contact scratches with the roll are likely to occur on the surface. There was a problem of lowering the display quality.
[0006]
In order to solve the above-mentioned conventional problems, the present invention can prevent deterioration of visibility in a liquid crystal display device due to a change in viewing angle in a wide range of directions, and manufacture an optical film capable of easily and stably forming a large-area product having excellent quality. It is an object to provide a method, a polarizing plate using the same, and a liquid crystal display device excellent in visibility such as contrast and black-and-white display in a wide viewing angle range.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, an optical film manufacturing method of the present invention comprises a light-transmitting birefringent film, and optical films having different retardation values in obliquely transmitted light on the right and left sides with respect to the normal plane. A manufacturing method is characterized in that after the translucent resin is extruded into a film by a melt extrusion method, the film is cooled and cured by passing between two rolls having different surface hardnesses. In the method for producing an optical film of the present invention, it is preferable that a flat belt is attached to the roll.
[0008]
The method for producing an optical film of the present invention is characterized in that the optical film produced by the above method is further subjected to at least one treatment selected from a longitudinal uniaxial stretching treatment, a transverse uniaxial stretching treatment, and a thickness direction orientation treatment. And
[0009]
Next, the laminated polarizing plate of the present invention is characterized in that at least one optical film selected from the optical films produced by the above method and a polarizing plate are laminated via a pressure-sensitive adhesive. Thereby, a wide viewing angle polarizing plate is obtained.
[0010]
Furthermore, the liquid crystal display device of the present invention is characterized in that at least one optical film selected from the optical films produced by the above method is disposed on at least one side of the liquid crystal display cell.
[0011]
The liquid crystal display device of the present invention is characterized in that the laminated polarizing plate is disposed on at least one side of a liquid crystal display cell.
[0012]
Further, the liquid crystal display device of the present invention comprises at least one optical film (A) selected from the optical films produced by the above method and / or the laminated polarizing plate (B), and an in-plane refractive index of nx. , Ny (nx> ny) and the thickness direction refractive index is nz, at least one retardation plate (C) selected from retardation plates satisfying any of the following formulas (1) to (8): ).
nx> ny = nz (1)
nx = nz> ny (2)
nx = ny> nz (3)
nx = ny <nz (4)
nx>ny> nz (5)
nx>nz> ny (6)
nz>nx> ny (7)
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the production method according to the present invention, a translucent resin is extruded into a film by a melt extrusion method, and then the extruded film is passed between two rolls having different surface hardnesses to be cooled and cured to form an optical film (translucent film). Optical birefringent film), whereby an optical film excellent in display contrast of liquid crystal cells and viewing angle characteristics of display colors can be obtained. The manufactured optical film becomes a tilted phase difference film having characteristics in which the phase difference values in the oblique transmission light of the left and right objects with respect to the normal plane are different from each other.
[0014]
FIG. 1 is a diagram showing an example of the optical film of the present invention. As shown in FIG. 1, the optical film 1 of the present invention has the normal surface at an inclination angle (θ) of 40 degrees with respect to the normal surface 11 on one or both of the slow axis and the fast axis. The difference in phase difference due to birefringence in the left and right oblique transmitted lights 12, 13 is substantially different.
[0015]
As a method for producing an optical film, a translucent resin is extruded by, for example, a melt extrusion method such as a T-die method or an inflation method, and then the extruded film is placed under the two rolls having different surface hardness. What is necessary is just to cool and harden through. The cooling method is not particularly limited, and for example, it can be performed by pressurizing and cooling so as to be sandwiched between 200 mm diameter silicone rubber-coated rolls and 200 mm diameter metal roll caps.
[0016]
According to the manufacturing method of the present invention, the phase difference values based on the inclination angle with respect to the normal plane, that is, the phase difference values due to birefringence in the oblique transmitted light on the left and right of the normal plane are different from each other (asymmetric). The reason why the mold retardation film can be produced is as follows. As described in the prior art, a method of obtaining a retardation plate having an optical axis inclined with respect to the normal direction by stretching with shearing force through rolls having different peripheral speeds (Japanese Patent Laid-Open No. 6-222213). In this case, it is difficult to manage the peripheral speed, and it is difficult to maintain accuracy. However, in the present invention, in order to make up for such a defect, since the extruded film is sandwiched between rolls having different surface hardness, asymmetric deformation of the surface due to the difference in elastic modulus of the roll occurs, and the roll is rotated at a constant speed. Even so, it is considered that a shearing force is generated in the film at the roll contact portion.
[0017]
Further, in order to increase the adhesion force and increase the shearing force, a method of sandwiching a flat belt between rolls and sandwiching an extruded film therebetween may be used. The flat belt is not particularly limited as long as it is designed so that the deformation caused by the difference in the hardness of the roll is transmitted to the extruded film via the flat belt. The thickness, material, etc. of the belt are not particularly limited, and metal is preferable from the viewpoint of surface properties and thermal conductivity.
[0018]
The roll is not particularly limited as long as the surface hardness of the two rolls is different. For example, as described above, a combination of rolls having different surface materials, such as a combination of a roll coated with silicone rubber and a metal roll, can be used. Further, when a flat belt is mounted, it may be designed such that shear forces generated when a belt having different hardness is mounted on a roll of the same material and the roll is rotated at a constant speed are different from each other. The surface temperature of the roll, the diameter of the roll, the number of rotations of the roll, etc. are not particularly limited, and are appropriately set within a range in which the object of the present invention can be achieved.
[0019]
As described above, speed management is also facilitated by applying a shearing force between rolls having different surface hardness. Moreover, it becomes easy to control the magnitude of the shearing force by using a low-viscosity film immediately after melt extrusion or by applying a flat belt.
[0020]
The light-transmitting resin material used for forming the optical film of the present invention is not particularly limited, and an appropriate light-transmitting film material can be used, and a uniform film can be easily obtained during melt extrusion film formation. A resin material having a low melt viscosity is preferred. The light transmittance of the film is 70% or more, preferably 80% or more, particularly preferably 85% or more, and a light-transmitting film excellent in light transmittance is preferable. Among them, polycarbonate, polyarylate, polyethylene terephthalate, polyethersulfone, polyvinyl alcohol, polyolefins such as polyethylene or polypropylene, cellulose polymers, polystyrene, polymethyl methacrylate, polyvinyl chloride, polyvinylidene chloride, polyamide, polynorbornene, etc. A light film is preferably used.
[0021]
Moreover, in order to form the inclination type | mold phase difference film like this invention, the resin material extruded with moderate viscosity by the melt extrusion method etc. is preferable. Furthermore, it is preferably a film material that can be oriented by a stretching process or the like so that a uniaxially stretched film or a biaxially stretched film by a free end or a fixed end, a film orientated in the thickness direction, and the like can be easily formed. .
[0022]
In the present invention, the optical film after applying the shear stress described above may be subjected to a stretching process by an appropriate method such as a uniaxial stretching process or a biaxial stretching process to obtain an optical film (an inclined retardation film). it can.
[0023]
The thickness of the translucent film can be appropriately determined depending on the retardation characteristics of the target optical film. The phase difference can be obtained as the product (Δn × d) of the refractive index difference (Δn) of birefringence and the film thickness (d). Moreover, the general thickness of a translucent film thru | or an optical film is 5-500 micrometers, Preferably it is 10-350 micrometers, Most preferably, it is 20-200 micrometers.
[0024]
In the optical film of the present invention, due to birefringence in the obliquely transmitted light on the left and right of the normal line based on an inclination angle of 40 degrees with respect to the normal line on one or both of the slow axis and the fast axis. The difference in phase difference is preferably 10 nm or more from the viewpoint of the improvement of viewing angle characteristics. When the difference in phase difference is less than 10 nm, the effect of improving the viewing angle characteristics, particularly the effect of expanding the improvement azimuth, is poor. In addition, the difference between the maximum value and the minimum value of the phase difference of transmitted light (in the front direction) perpendicular to the film surface (in the front direction) is 10 nm or less, preferably 7 nm or less, from the viewpoint of preventing the occurrence of display unevenness and preventing the decrease in contrast The thing of 5 nm or less is especially preferable.
[0025]
The optical film of the present invention is preferably used for compensation of viewing angle characteristics due to birefringence of a liquid crystal cell as a single-layered product or the same type or different types of laminates. In practical use, a laminate with a polarizing plate, a laminate with a retardation plate, a laminate with a protective layer made of an isotropic transparent resin layer, a glass layer, or the like can be used in an appropriate form. . A laminate with a polarizing plate or the like can also be formed by sequentially laminating an optical film, a polarizing plate, etc. sequentially in the manufacturing process of the liquid crystal display device, but by previously laminating as described above, quality stability and There are advantages such as excellent laminating workability and the like, which can improve the manufacturing efficiency of the liquid crystal display device. In addition, suitable adhesion | attachment means, such as an adhesion layer, can be used for lamination | stacking.
[0026]
FIG. 2 illustrates a laminated polarizing plate (B) formed by bonding and laminating an optical film (tilted retardation film) 1 and a
[0027]
The polarizing plate may be a reflective type having a reflective layer. The reflective polarizing plate is used to form a liquid crystal display device or the like that reflects incident light from the viewing side (display side) and displays a liquid crystal display that can omit the incorporation of a light source such as a backlight. It has an advantage that the display device can be easily thinned.
[0028]
The transparent protective layer may be suitably formed as a plastic coating layer or a laminate of a protective film, and is excellent in transparency, mechanical strength, thermal stability, moisture shielding properties, etc. Plastic or the like is preferably used. Examples include polyester resins, acetate resins, polyethersulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, acrylic resins, or acrylic, urethane, and acrylic urethane types. , Epoxy-type, silicone-type, etc. thermosetting or ultraviolet curable resins. The surface of the transparent protective layer may be formed in a fine concavo-convex structure by containing fine particles.
[0029]
Further, examples of the retardation plate (C) that may be laminated with the optical film or polarizing plate include polycarbonate, polyvinyl alcohol, polystyrene, polymethyl methacrylate, polypropylene, other polyolefins, polyarylate, and polyamide. And a birefringent film formed by stretching a film made of an appropriate plastic. Further, it may be a birefringent film coated with a thin layer of a liquid crystal compound.
[0030]
The properties of the retardation plate are not particularly limited, and examples thereof include a uniaxially stretched film and a film oriented in the thickness direction. Retardation plates satisfying any of the above formulas (1) to (7) when the film in-plane refractive index is nx, ny (nx> ny), and the thickness direction refractive index is nz, alone or in combination Can be used. When the refractive index in the slow axis direction is nx, that in the fast axis direction is ny, and that in the thickness direction is nz, for example, a biaxially stretched film exhibiting characteristics such as nx>ny> nz, nx Appropriate retardation characteristics such as a uniaxially stretched optical ellipsoid showing characteristics such as = ny> nz and nx = ny <nz may be used.
[0031]
In the above, the adhesive (adhesive) used for laminating the optical film and the polarizing plate is not particularly limited. For example, acrylic, silicone, polyester, polyurethane, polyether, rubber, etc. An appropriate adhesive such as a transparent pressure-sensitive adhesive can be used. From the viewpoint of preventing changes in optical properties of optical films and the like, those that do not require a high-temperature process during curing and drying are preferable, and those that do not require a long curing process or drying time are desirable. Further, those which do not cause peeling or the like under heating or humidification conditions are preferably used.
[0032]
From this point, the weight average molecular weight obtained by polymerizing monomers such as butyl (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, (meth) acrylic acid, and the like, glass transition An acrylic pressure-sensitive adhesive made of an acrylic polymer having a temperature of 0 ° C. or lower is particularly preferably used. An acrylic pressure-sensitive adhesive is also preferable from the viewpoint of excellent transparency, weather resistance, heat resistance, and the like. In addition, when laminating | stacking what has a different refractive index, the adhesive agent etc. which have a medium refractive index are used preferably from points, such as suppression of reflection loss.
[0033]
Adhesives include, for example, natural and synthetic resins, glass fibers and glass beads, fillers made of metal powder and other inorganic powders, pigments, colorants, antioxidants, etc. Appropriate additives can also be blended. Moreover, it can also be set as the adhesive layer which contains microparticles | fine-particles and shows light diffusibility.
[0034]
The above-described optical film, polarizing plate, and the like can be provided with an adhesive layer for bonding with other members such as a liquid crystal cell. The pressure-sensitive adhesive layer can be formed of an appropriate pressure-sensitive adhesive according to the conventional type such as acrylic. When the pressure-sensitive adhesive layer provided on the polarizing plate or the optical film is exposed on the surface, it is preferable to temporarily cover with a separator for the purpose of preventing contamination until the pressure-sensitive adhesive layer is put to practical use. The separator is formed by, for example, a method in which a release coat with an appropriate release agent such as a silicone-based, long-chain alkyl-based, fluorine-based, or molybdenum sulfide is provided on an appropriate thin leaf according to the above-described transparent protective film or the like. be able to.
[0035]
In addition, each layer such as the optical film, polarizing plate, retardation plate, transparent protective layer, and adhesive layer described above may be, for example, a salicylic acid ester compound, a benzophenol compound, a benzotriazole compound, a cyanoacrylate compound, or a nickel complex salt compound. Ultraviolet absorbing ability can be provided by a method of treating with an ultraviolet absorber such as a compound.
[0036]
The liquid crystal display device using the optical film of the present invention can be formed according to a conventional method. That is, the liquid crystal display device is generally formed by assembling a liquid crystal cell, an optical film for optical compensation, and components such as a polarizing plate and an illumination system as needed, and incorporating a drive circuit. In the liquid crystal display device of the present invention, there is no particular limitation, except that the optical film of the present invention is used for optical compensation and is provided on at least one side of the liquid crystal cell, and it conforms to the conventional case.
[0037]
Therefore, an appropriate liquid crystal display device such as a liquid crystal display device in which a polarizing plate is disposed on one side or both sides of a liquid crystal cell, or a backlight or a reflecting plate used in an illumination system can be formed. In the case of a liquid crystal display device using a polarizing plate, the optical film for optical compensation is preferably disposed between the liquid crystal cell and the polarizing plate, particularly the polarizing plate on the viewing side, from the viewpoint of the compensation effect. In the arrangement, the laminated polarizing plate described above can also be used.
[0038]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[0039]
Example 1
A transparent polycarbonate film having a thickness of 150 μm extruded from a T die by a melt extrusion method was cooled between metal endless belts each held by a metal roll having a diameter of 300 mm and a silicon roll to obtain an optical film. The outline is shown in FIG.
[0040]
(Comparative Example 1)
A transparent polycarbonate film having a thickness of 100 μm was passed between rolls having different peripheral speeds in an atmosphere of 160 ° C., and stretched 1.15 times to obtain an optical film.
[0041]
(Comparative Example 2)
A transparent polycarbonate film having a thickness of 100 μm was supplied between rolls having a drive system and sheared. One of the rolls had a surface temperature of 150 ° C. and a peripheral speed of 2.8 m / min, and the other had a surface temperature of 150 ° C. and a peripheral speed of 1.9 m / min.
[0042]
The following characteristics were examined for the optical films obtained in Examples and Comparative Examples. The results are shown in Table 1.
[0043]
(Phase difference)
Using an ADR-100XY made by Oak Co., the phase difference when tilted by ± 40 degrees in the front direction and slow axis direction was examined.
[0044]
(Phase difference variation)
The phase difference in the front direction within a 100 mm square was measured at 10 points at intervals of 10 mm, and the difference between the maximum value and the minimum value was obtained.
[0045]
(Scratches)
The appearance of the optical film was visually observed to check for scratches.
[0046]
[Table 1]
[0047]
From Table 1, in Example 1, the difference in the phase difference between the left and right oblique transmitted light with respect to the normal plane is large, the asymmetry is excellent, the variation in the phase difference in the plane is small, and the quality is also good. there were. In contrast, Comparative Example 1 shows the characteristics of a normal uniaxially stretched product with no difference in the phase difference between left and right oblique transmitted light, and Comparative Example 2 shows a small difference in phase difference between left and right oblique transmitted light. In addition, it can be seen that there is a large variation in the in-plane retardation, and there is a scratch due to contact with the roll.
[0048]
【The invention's effect】
As described above, the mechanism of operation of the asymmetric tilt-type retardation film of the present invention is unknown, but the change in visibility due to the viewing angle based on the birefringence of the liquid crystal cell can be highly compensated over a wide range of directions, and the contrast And a liquid crystal display device excellent in visibility such as monochrome display can be obtained. In addition, a large-area optical film having excellent quality can be easily and stably formed. Therefore, its industrial value is great.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an optical film (tilted retardation film) of the present invention.
FIG. 2 is a cross-sectional view illustrating a configuration example of a laminated polarizing plate.
FIG. 3 is a schematic view showing the production method of the present invention.
[Explanation of symbols]
1 Optical film (tilt-type retardation film)
2 Adhesive (adhesive)
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001168375A JP4658383B2 (en) | 2001-06-04 | 2001-06-04 | Manufacturing method of optical film, laminated polarizing plate using the same, and liquid crystal display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001168375A JP4658383B2 (en) | 2001-06-04 | 2001-06-04 | Manufacturing method of optical film, laminated polarizing plate using the same, and liquid crystal display device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002365428A JP2002365428A (en) | 2002-12-18 |
JP4658383B2 true JP4658383B2 (en) | 2011-03-23 |
Family
ID=19010610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001168375A Expired - Fee Related JP4658383B2 (en) | 2001-06-04 | 2001-06-04 | Manufacturing method of optical film, laminated polarizing plate using the same, and liquid crystal display device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4658383B2 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7612845B2 (en) | 2005-07-13 | 2009-11-03 | Nitto Denko Corporation | Polarizing plate with an optical compensation layer, method of producing the same, and liquid crystal panel, liquid crystal display apparatus, and image display apparatus, using the polarizing plate with an optical compensation layer |
JP4775851B2 (en) * | 2005-10-21 | 2011-09-21 | 日東電工株式会社 | Polarizing plate with optical compensation layer and image display device using the same |
US20090122236A1 (en) * | 2005-10-21 | 2009-05-14 | Nitto Denko Corporation | Polarizing plate with an optical compensation layer and image display apparatus using the same |
JP5435929B2 (en) * | 2008-11-21 | 2014-03-05 | 富士フイルム株式会社 | Thermoplastic film, method for producing thermoplastic film, polarizing plate, optical compensation film, and liquid crystal display device |
JP5435931B2 (en) * | 2008-11-26 | 2014-03-05 | 富士フイルム株式会社 | Film, polarizing plate and liquid crystal display device |
JP5437782B2 (en) * | 2008-12-10 | 2014-03-12 | 富士フイルム株式会社 | Film manufacturing method, polarizing plate and liquid crystal display device |
JP5324904B2 (en) * | 2008-12-10 | 2013-10-23 | 富士フイルム株式会社 | Manufacturing method of polarizing plate, polarizing plate, and liquid crystal display device |
JP5411489B2 (en) * | 2008-12-10 | 2014-02-12 | 富士フイルム株式会社 | Film, film manufacturing method, polarizing plate, optical compensation film, antireflection film, and liquid crystal display device |
JP5410136B2 (en) * | 2009-03-31 | 2014-02-05 | 富士フイルム株式会社 | Film production method, film, polarizing plate, and liquid crystal display film |
JP5574676B2 (en) * | 2009-11-13 | 2014-08-20 | 日東電工株式会社 | Display element substrate and display element using display element substrate |
JP5273826B2 (en) * | 2011-02-04 | 2013-08-28 | 日東電工株式会社 | Laminated film |
JP2013101409A (en) * | 2013-02-28 | 2013-05-23 | Nitto Denko Corp | Laminate film |
WO2019169170A1 (en) * | 2018-03-02 | 2019-09-06 | Sharp Gary D | Retarder stack pairs for polarization basis vector transformations |
US11648723B2 (en) * | 2019-12-03 | 2023-05-16 | Racing Optics, Inc. | Method and apparatus for reducing non-normal incidence distortion in glazing films |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09318816A (en) * | 1996-05-27 | 1997-12-12 | Nitto Denko Corp | Optical film, its production, laminated polarizing plate and liquid crystal display device |
JPH10123320A (en) * | 1996-10-16 | 1998-05-15 | Sekisui Chem Co Ltd | Phase difference plate and its production |
JPH10264237A (en) * | 1997-03-27 | 1998-10-06 | Sekisui Chem Co Ltd | Stock roll for manufacture of optical film, and manufacture thereof |
-
2001
- 2001-06-04 JP JP2001168375A patent/JP4658383B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09318816A (en) * | 1996-05-27 | 1997-12-12 | Nitto Denko Corp | Optical film, its production, laminated polarizing plate and liquid crystal display device |
JPH10123320A (en) * | 1996-10-16 | 1998-05-15 | Sekisui Chem Co Ltd | Phase difference plate and its production |
JPH10264237A (en) * | 1997-03-27 | 1998-10-06 | Sekisui Chem Co Ltd | Stock roll for manufacture of optical film, and manufacture thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2002365428A (en) | 2002-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4798679B2 (en) | Manufacturing method of tilted retardation film, optical member, and liquid crystal display device | |
US5245456A (en) | Birefringent film with nx >nz >ny, process for producing the same, retardation film, elliptically polarizing plate, and liquid crystal display | |
US6829026B2 (en) | Laminated phase retarder having a cholesteric liquid crystal layer, polarizing member and liquid crystal display device | |
JP2003121642A (en) | Wide viewing angle polarizing plate and liquid crystal display device | |
JP4658383B2 (en) | Manufacturing method of optical film, laminated polarizing plate using the same, and liquid crystal display device | |
JP2000190385A (en) | Manufacture of optical film, optical film and liquid crystal display | |
JP2003131032A (en) | Tacky optical member and liquid crystal display device | |
JP2009075533A (en) | Elliptic polarization plate and liquid crystal display device | |
JP2018077522A (en) | Polarizing plate, image display unit, and liquid crystal display | |
JP2012078431A (en) | Liquid crystal panel and liquid crystal display device including the same | |
TW202106518A (en) | Method for producing thin circularly polarizing plate | |
TWI708966B (en) | Polarizing plate set and ips mode liquid crystal display device using the same | |
JP4077244B2 (en) | VA mode optical film, laminated polarizing plate, and image display device using the same | |
JP2003315541A (en) | Method for manufacturing birefringent film, optical compensation polarizing plate and display device | |
JP3752013B2 (en) | Diffusion plate, laminated polarizing plate, elliptical polarizing plate, and liquid crystal display device | |
JP3609563B2 (en) | Wide-field polarizing plate | |
JPH09318816A (en) | Optical film, its production, laminated polarizing plate and liquid crystal display device | |
JPH09318815A (en) | Production of optical film, laminated polarizing plate and liquid crystal display device | |
JP4367868B2 (en) | Retardation plate continuous manufacturing method, optical member, and liquid crystal display device | |
JP3810969B2 (en) | Optical compensation polarizing plate and manufacturing method of liquid crystal display device | |
JP2006330650A (en) | Phase difference film, polarizing plate with optical compensation, and manufacturing method thereof | |
JP2000056131A (en) | Phase difference plate, laminated polarizing plate and liquid crystal display device | |
WO2008062624A1 (en) | Multilayer optical film, liquid crystal panel employing multilayer optical film and liquid crystal display | |
JP2003075637A (en) | Phase difference film and light emission type display device using the same | |
JP2002196134A (en) | Optically compensated film, method for manufacturing the same and polarization plate and liquid crystal display device using the film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071113 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100329 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100408 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100531 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100615 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100802 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100831 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101125 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20101202 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101221 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101224 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140107 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4658383 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |