JP4658342B2 - Water quality checker circuit - Google Patents

Water quality checker circuit Download PDF

Info

Publication number
JP4658342B2
JP4658342B2 JP2001014866A JP2001014866A JP4658342B2 JP 4658342 B2 JP4658342 B2 JP 4658342B2 JP 2001014866 A JP2001014866 A JP 2001014866A JP 2001014866 A JP2001014866 A JP 2001014866A JP 4658342 B2 JP4658342 B2 JP 4658342B2
Authority
JP
Japan
Prior art keywords
voltage
operational amplifier
output
detection signal
inverting input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001014866A
Other languages
Japanese (ja)
Other versions
JP2002214220A (en
Inventor
一夫 翁長
順子 柳谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FIS Inc
Original Assignee
FIS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FIS Inc filed Critical FIS Inc
Priority to JP2001014866A priority Critical patent/JP4658342B2/en
Publication of JP2002214220A publication Critical patent/JP2002214220A/en
Application granted granted Critical
Publication of JP4658342B2 publication Critical patent/JP4658342B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は水道水の塩素濃度や、アルカリ生成水のアルカリ度合の何れのチェックにも使える水質チェッカ回路に関するものである。
【0002】
【従来の技術】
従来液中の塩素濃度或いはアルカリ度合を一対の電極の起電圧によってチェックするものがあるが、塩素濃度を測定する場合と、アルカリ度合の測定時とで電極間の起電圧の方向が逆であるため、塩素濃度が略零、つまりきれいな水と、アルカリ度合が所定以上ある液とが共に”良”と評価するような場合において、同一の発光ダイオードを用いて”良”であることを評価表示しようとすると、起電圧の方向が逆であるため検知信号処理のための回路構成が複雑になるという問題があった。
【0003】
【発明が解決しようとする課題】
本発明は、上述の問題点に鑑みて為されたもので、その目的とするところは、アルカリ度合も塩素濃度もチェックすることができ、しかも表示手段により、水質の評価表示する場合に、塩素濃度、アルカリ度合の何れの測定時にも同じ表示手段によって評価表示することができる水質チェッカ回路を提供することにある。
【0004】
【課題を解決するための手段】
上記の目的を達成するために、請求項1の発明では、電源と、異種の金属により構成され、検知対象の液中に浸けられたときに電圧を発生して検知信号として出力する一対の電極と、塩素濃度の検知対象の液中に浸けたときに起電圧のマイナス側となり、アルカリ度合の検知対象の液中に浸けたときに起電圧のプラス側となる一方の電極を接続する接続ラインの電位を上記電源のマイナスグランドから見て一定の電位に保持する手段と、上記検知信号を非反転入力端に入力し、出力端と反転入力端に接続した抵抗と反転入力端と基準電位との間に接続した抵抗とで定まる利得で検知信号を非反転増幅する信号増幅用の第1演算増幅器と、上記電源のプラス極と上記接続ラインとの間に接続された複数の抵抗の直列回路によって構成される分圧回路から出力される複数の異なる分圧出力に対応して設けられて、異なる分圧出力により基準電圧が夫々設定され、該基準電圧と上記第1演算増幅器から出力される検知信号電圧とを比較する複数のコンパレータと、該各コンパレータに対応して設けられて各コンパレータの出力端と上記電源との間に接続され、上記対応するコンパレータの出力に応じて駆動され、検知結果を表示する表示手段とを備えるとともに、塩素濃度測定時には上記基準電位を上記接続ラインの電位とし、アルカリ度合測定時には上記基準電位を上記接続ラインの電位よりもマイナス方向に低く切換設定する手段を備えて測定するアルカリ度合が所定以上高い場合から所定以下に至るまでの上記第1演算増幅器から出力される検知信号電圧の変化と、測定する塩素濃度が略零の場合から所定濃度以上に至るまでの上記第1演算増幅器から出力される検知信号電圧の変化が略同じとなるように上記第1演算増幅器の利得を設定したことを特徴とする。
【0005】
請求項2の発明では、請求項1の発明において、上記接続ラインの電位を一定に保持する手段を、上記電源の電圧を所定電圧に降圧した電圧を非反転入力端に入力して略同じ電圧を出力に発生するように利得が設定された非反転増幅器を構成する第2演算増幅器により構成し、該第2演算増幅器の出力端に上記接続ラインを接続して成ることを特徴とする。
【0006】
請求項3の発明では、請求項1又は2の発明において、上記切換手段として、反転入力端と出力端が接続された第3演算増幅器と、該第3演算増幅器の非反転入力端に入力する電圧を上記接続ラインの電圧とこの接続ラインよりも低い電圧とに切り換える電圧切換手段とから構成し、上記第3演算増幅器の出力端の電位を上記基準電位としたことを特徴とする。
【0007】
請求項4の発明では、請求項1乃至3の何れかの発明において、上記各コンパレータの非反転入力端に上記信号増幅用の第1演算増幅器からの検知信号電圧を、上記各コンパレータの反転入力端に基準電圧を夫々入力し、基準電圧より入力する検知信号電圧が低いコンパレータをオンして上記表示手段を動作させることを特徴とする。
【0008】
請求項5の発明では、請求項1乃至4の何れかの発明において、上記電源が電池電源を安定化する定電圧回路の出力により構成して成ることを特徴とする。
【0009】
【発明の実施の形態】
以下本発明を一実施形態により説明する。
【0010】
図1は本実施形態の回路を示しており、図において、乾電池、二次電池等の電池電源1に対して塩素濃度測定開始用スイッチSW1とアルカリ度合の測定開始用スイッチSW2との並列回路を介して汎用IC等からなる定電圧回路2を接続し、この定電圧回路2により安定化した電源電圧を得、この電圧を抵抗R1,R2の抵抗分圧回路により分圧して非反転増幅器を構成する演算増幅器OP1(第2演算増幅器)の非反転入力端に印加し、この演算増幅器OP1の出力端と反転入力端との間に接続した抵抗R3、R4の直列回路の中点電位を、水質評価を段階的に表示するための表示回路4のコンパレータCP1〜CP5の基準電圧のグランドレベルとするとともに、センサ用電極3a、3b間に発生する起電力による検出信号電圧のグランドレベルとしている。
【0011】
電極3a、3b間には抵抗R5,R6の直列回路を接続し、該直列回路の中点を検出信号増幅用の演算増幅器OP2(第1演算増幅器)の非反転入力端に接続してある。この非反転入力端はコンデンサC1を介して上記定電圧回路2の出力端のプラス極側にも接続してある。
【0012】
演算増幅器OP2は非反転増幅器を構成し、出力端と反転入力端との間には可変抵抗器VR1、応答調整用のコンデンサC2からなる並列回路を接続してあり、この可変抵抗器VR1の抵抗値と、反転入力端とグランド(基準)となる後述する演算増幅器OP3の出力端との間に接続した抵抗R7とで利得が設定され、該利得は可変抵抗器VR1で調整することができるようになっている。
【0013】
また一方上記抵抗R3,R4の直列回路の中点と、電池電源1のマイナス極との間には抵抗R8を介して可変抵抗器VR2とスイッチSW21の直列回路を接続するとともに、可変抵抗器VR2,スイッチSW21の直列回路にノイズ除去用コンデンサC3を接続し、抵抗R8と可変抵抗器VR2の接続点に演算増幅器OP3の非反転入力端を接続してある。
【0014】
この演算増幅器OP3(第3演算増幅器)は、ボルテージフォロアの非反転増幅器を構成し、非反転入力端の入力電圧と、出力電圧とが等しく、その出力端を抵抗R7を介して上記演算増幅器OP2の反転入力端に接続し、演算増幅器OP2のグランドの電位(基準電位)を出力端の電位に設定するようになっている。
【0015】
上記スイッチSW21はアルカリ度合測定開始用スイッチSW2のオン/オフに連動してオン/オフするスイッチであって、演算増幅器OP2の入力電圧の切換手段を構成する。
【0016】
表示回路4は5つのコンパレータCP1〜CP5、このコンパレータCP1〜CP5の出力端と定電圧回路2の出力端のプラス極との間に限流抵抗R11〜R15を介して接続された表示手段を構成する発光ダイオードL1〜L5等から構成されている。そして上記定電圧回路2の出力端のプラス極と、上記抵抗R3,R4の直列回路の中点との間に同一抵抗値の抵抗R16〜R21の直列回路からなる分圧回路を接続し、抵抗R21と抵抗R20との接続点の分圧電圧をコンパレータCP1の反転入力端に基準電圧として接続し、また抵抗R20と抵抗R19との接続点の分圧電圧をコンパレータCP2の反転入力端に基準電圧として接続し、更に抵抗R19と抵抗R18との接続点の分圧電圧をコンパレータCP3の反転入力端に基準電圧として接続し、同様に抵抗R18と抵抗R17との接続点の分圧電圧をコンパレータCP4の反転入力端に基準電圧として接続し、更に抵抗R17と抵抗R16との接続点の分圧電圧をコンパレータCP5の反転入力端に基準電圧として接続しており、コンパレータCP1の基準電圧からコンパレータCP5の基準電圧までを順次段階的に高めてある。
【0017】
一方コンパレータCP1〜CP5の非反転入力端には、夫々抵抗R22〜R26を介して上記演算増幅器OP2の出力端を接続してあり、これら抵抗R22〜R26は同じ抵抗値のものが使用されている。
【0018】
図2は本発明水質チェッカ回路を用いた水質チェッカの外観を示すものであって、樹脂成形品からなるハウジング5は図1で示す回路及び電池電源1を内装するとともに、外面にスイッチSW1及びSW2の操作部や表示回路4の発光ダイオードL1〜L5の発光部が露設された本体部6と、本体部6の前部から前方に突出するように形成された、先端部に一対の電極3a,3bからなるセンサ部が設けられているヘッド部7とから構成されている。
【0019】
このハウジング5は外因性内分泌撹乱化学物質(環境ホルモン)を含まない材質にて形成することが好ましく、例えばABS樹脂等のような樹脂成形品にて形成される。
【0020】
またヘッド部7は前後方向に長い円筒状に形成されており、その内部の中空部は後端側にて本体部6内に連通し、前端側が前方に向けて開口している。ここで、ヘッド部7の前端部には、図4に示すように、開口の周縁の全周に亘って、前方に突出すると共にヘッド部7の外径寸法よりも小さい外径寸法を有する円筒状の嵌合リブ8が設けられており、この嵌合リブ8の外周面には全周に亘って嵌合凹部9が凹設されると共に、嵌合凹部9よりも前端側は嵌合凹部9よりも外周側に突出した嵌合凸部10として形成されている。
【0021】
ヘッド部7の先端部には、ヘッド部7の内外の水密性を確保すると共に端子電極3a,3bを固定するための固定部材11が装着されている。固定部材11は環境ホルモンを含まない材質にて形成することが好ましく、例えばABS樹脂等のような樹脂成形品にて形成されるものであり、円柱状に形成された係止部12の前端側に係止部12よりも小径の円筒状の突出部13を形成し、係止部12の後端側に係止部12よりも小径の円筒状の挿入部14を形成したものである。
【0022】
このとき突出部13には前方に開口する前側凹部15が形成され、挿入部14には後方に開口する後側凹部22が形成されているものであり、この前側凹部15と後側凹部22とは係止部12によって仕切られている。
【0023】
またこの係止部12には、前側凹部15と後側凹部22とを連通する二つの挿通孔16が形成されている。また、固定部材11の挿入部14の外周面には、全周に亘る凹溝17が形成されている。
【0024】
この固定部材11は、図2に示すように挿入部14をハウジング5のヘッド部7の前端開口から挿入することによりヘッド部7の前端に取り付けられるものであり、このとき挿入部14にOリング18を取着することにより挿入部14の外面とヘッド部7の内面との間の水密性を確保することができる。
【0025】
また更に挿入部14の外面とヘッド部7の内面との間の隙間に接着剤を充填してヘッド部7と固定部材11とを接着することにより、固定部材11をヘッド部7に対して強固に固定すると共に挿入部14の外面とヘッド部7の内面との間の水密性を更に向上することができる。
【0026】
ヘッド部7の中空部内には二本のリード線19a,19bが配設されており、各リード線19a,19bの後端部はハウジング5の本体部6に引き出されて制御部に接続され、前端部は固定部材11に固定されている。また二本のリード線19a,19bの先端にはそれぞれ電極3a,3bが接続されている。
【0027】
ここで、リード線19a,19bは固定部材11の係止部12の挿通孔16に挿通されて後端側が挿入部14の後側凹部22内から後端開口を介して固定部材11の後方に引き出されている。またリード線19a,19bの先端の末端部には挿通孔16の内径よりも大きい球状の瘤部20が形成されており、この瘤部20によってリード線19a,19bの先端は突出部13の前側凹部15内において係止部12の前面側に係止されている。このリード線19a,19bの先端の瘤部20にはそれぞれ線状の電極3a,3bの後端が埋設されており、これによりリード線19a,19bの先端には電極3a,3bが接続されている。各電極3a,3bは先端側は固定部材11の突出部13の前側凹部15の開口から前方に突出するように配設されている。
【0028】
また固定部材11の挿入部14の後側凹部22内には封止材21が充填されており、これにより固定部材11の挿入部14の後側凹部22内においてリード線19a,19bが固定されている。また固定部材11の突出部13の前側凹部15内にも封止材23が充填されており、これによりこれ固定部材11の突出部13の前側凹部15内において電極3a,3bが固定されている。また、これらの封止材23,19によって、固定部材11の前端側と後端側との間の水密性が確保される。
【0029】
一対の電極3a,3bは、一方の電極3bが白金線、他方の電極3aが銀線にて形成されており、この電極3a,3bによって、センサ部が構成されている。各電極3a,3bは後端側は固定部材11の突出部13の前側凹部15内において封止材23内に埋設されている埋設部として形成され、前端側はこの封止材23から前方に向けて突出する検知部位として形成されている。
【0030】
銀線からなる電極3aには検知端子部7の表面のみに塩化銀被膜が形成され、埋設部の表面には塩化銀被膜は形成されていないものであり、このため、電極3aとリード線19aとの接続部には塩化銀被膜は形成されることがなく、電極3aとリード線19aとの電気的接続が塩化銀被膜によって阻害されることがないものである。
【0031】
更に、ヘッド部7の先端には、固定部材11及び電極3a,3bの検知端子部7を覆うようにキャップ体24が設けられ、これにより検知端子部7の保護が行なわれる。このキャップ体24は図3に示すように、前端側が閉塞すると共に後端側が開口した有底円筒状に形成されており、その外径寸法はヘッド部7の外径寸法と略同一に形成される。またキャップ体24の後端部は、内径寸法が前端側よりも大きくかつ固定部材11の係止部12の外径と略同一の寸法に形成された、被嵌合リブ25として形成されており、この被嵌合リブ25の後端部の内周面には全周に亘って、ヘッド部7の嵌合リブ8の嵌合凸部10に合致する被嵌合凹部26が形成されると共に、この被嵌合凹部26よりも更に後端側は被嵌合凹部26よりも内周側に突出した、嵌合リブ8の嵌合凹部9に合致する被嵌合凸部27として形成されている。そしてキャップ体24の被嵌合リブ25を固定部材11の係止部12の外周側からヘッド部7の嵌合リブ8の外周側にかけて配置し、嵌合凹部9と被嵌合凸部27とを嵌合させると共に嵌合凸部10と被嵌合凹部26とを嵌合させることにより、キャップ体24がヘッド部7の前端に取り付けられるものであり、このとき嵌合リブ8と被嵌合リブ25との間の隙間に接着剤を充填してキャップ体24とヘッド部7とを接着することにより、キャップ体24をヘッド部7に対して強固に固定すると共に嵌合リブ8と被嵌合リブ25との間の水密性を確保することができるものである。
【0032】
このキャップ体24には、二つの平行並列なスリット状の開口部28が形成されており、この開口部28により、キャップ体24の内側と外側とが連通されている。この開口部28はキャップ体24の側面から前端面を通って反対側の側面に亘るように形成されている。またキャップ体24には各開口部28の両端部に、この開口部28と連通すると共にキャップ体24の内側と外側とを連通する連通孔29が形成されており、この連通孔29は各開口部28の幅よりも大径に形成されている。
【0033】
このキャップ体24のスリット状の開口部28は、水質の測定時にキャップ体24の内側に水道水等の検出対象の液体を侵入させて電極2の検知端子部7をこの液体に浸漬させたり、水質の測定後にキャップ体24の内側から液体を排出したりするためのものである。
【0034】
また連通孔6は水質の測定時にキャップ体24の内側から空気を排出してキャップ体24の内側に検出対象の液体がスムーズに侵入するようにし、あるいは水質の測定後にキャップ体24の内側に空気を侵入させてキャップ体24の内側から液体がスムーズに排出されるようにするためのものである。
【0035】
次に本実施形態の水質チェッカ回路の動作について説明する。
【0036】
まず水道水の塩素濃度をチェックする場合には、スイッチSW1をオンして、ヘッド部7を被検知対象液である水道水に浸ける。水道水に漬けられたキャップ体24内の電極3a、3b間には塩素濃度に応じて起電圧が発生する。この場合電極3aがプラス極となって、起電圧によって抵抗R6には電圧が発生し、この電圧が検出信号でとして演算増幅器OP2に非反転入力端に入力され、非反転増幅される。
【0037】
一方定電圧回路2からの出力電圧が抵抗R1と、抵抗R2とで分圧されて降圧され、抵抗R2の両端電圧が演算増幅器OP1により非反転増幅される。ここで演算増幅器OP1の出力端と反転入両端に接続された抵抗R4、R3の抵抗値を、その中点に接続されている接続ラインAの電圧が略抵抗R2の両端電圧に略等し入力電圧となるように設定してある。
【0038】
またスイッチSW21がオフ状態であるため演算増幅器OP3では出力端の電圧が非反転入力端に入力している電圧、つまり接続ラインAの電圧と等しい電圧となる。従ってこの出力端の電位と、接続ラインAの電位とが等しいため、演算増幅器OP2は可変抵抗器VR1の抵抗値と、反転入力端と演算増幅器OP3の出力端との間に接続した抵抗R7の抵抗値とで定まる利得により、抵抗R6の両端に発生する検出信号電圧を増幅する。
【0039】
この演算増幅器OP3により増幅された検出信号電圧は、表示回路4に入力されて、各コンパレータCP1〜CP5に設定される基準電圧と比較される。そして検出信号電圧が基準電圧を越えていないコンパレータにおいては、出力端を”L”レベルとし、出力端に接続されている発光ダイオードに発光電流を流す。つまり被測定水の塩素濃度が高ければ高い程、電極3a、3b間に発生する起電圧が増加して、抵抗R6の両端電圧が高くなり、そのため基準電圧を越えるコンパレータの数が多くなり、発光する発光ダイオードの数が少なくなる。従って発光ダイオードL1〜L5の全てが点灯している場合には塩素濃度が略零に近くて水質評価は”良”となり、その点灯数が少なくなればなるほど塩素濃度が高く、水質評価は”悪”であることが分かる。またヘッド部7を水道水に浸ける前に、スイッチSW1を投入した時点からコンデンサC1が充電されその充電に伴ってゆっくりと発光ダイオードL1〜5が順次点灯し、この点灯により動作チェックができることになるようになっている。この動作は塩素濃度測定時のみで、後述するアルカリ度合の測定時ではこの点灯動作は無い。
【0040】
さて本発明チェッカ回路は水道水の塩素濃度以外に、アルカリ生成水のアルカリ度合もチェックする事ができるもので、この場合、スイッチSW2をオンして検知対象液内に水道水の塩素濃度のチェックと同様にヘッド部7を浸ければよい。
【0041】
つまりスイッチSW2のオン動作に連動してスイッチSW21がオンし、演算増幅器OP3の非反転入力端の電圧が、抵抗R8と可変抵抗器VR2で分圧された電圧に切り換えられるため、塩素濃度測定時に比して演算増幅器OP3の出力端の電位が接続ラインAの電位よりもマイナス方向に低くなる。
【0042】
一方アルカリ測定時においては電極3a、3b間の起電圧の方向が塩素濃度測定時とは反対方向となり、アルカリ度合が高くなれば成る程、演算増幅器OP2の非反転入力端に入力する検出信号電圧は接続ラインAの電位に対してマイナス方向に大きくなる。
【0043】
ここでアルカリ度合が所定以上高い場合には発光ダイオードL1〜L5を全点灯させ、アルカリ度合が所定度合より低い場合には全消灯させるように、上記演算増幅器OP3の出力端の電位を、可変抵抗器VR2により設定しておくことにより、アルカリ度合が所定以上高い程と、演算増幅器OP3の非反転入力端に入力する検出信号電圧が接続ラインAを基準としてマイナス方向に増大するが、演算増幅器OP3の出力端の電位を接続ラインAの電位よりもマイナス方向に十分大きくすることで、検知信号が入力する演算増幅器OP2の非反転入力端と、グランド(基準電位)との間の電位差が小さくなり、演算増幅器OP2の出力端から出力される増幅された検出信号電圧は接続ラインAの電圧に対して略近い値となる。これによって、アルカリ度合が所定以上ある場合には、全てのコンパレータCP1〜CP5の非反転入力端の入力電圧が基準電圧を下回って、コンパレータCP1〜CP5の出力が全て”L”レベルとなり、全発光ダイオードL1〜L5が点灯する。
【0044】
また検知対象の液のアルカリ度合が低くなれば成る程、マイナス方向の起電圧が小さくなり、演算増幅器OP2の非反転入力端に入力するマイナス方向の検出信号電圧は小さくなり、演算増幅器OP2の非反転入力端と、グランド(基準電位)との間の電位差が大きくなり、演算増幅器OP3の出力端から出力される増幅された検出信号電圧は大きくなる。従って被測定液のアルカリ度合が高ければ高い程、非反転入力端の電圧が基準電圧を越えるコンパレータの数が多くなって、発光する発光ダイオードの数が少なくなる。つまり発光ダイオードL1〜L5の全てが点灯している場合にはアルカリ度合が所定以上あって水質評価が”良”で、逆にその点灯数が少なくなればなるほどアルカリ度合が小さくなって水質評価が”悪”となっていることが分かる。
【0045】
尚本実施形態では発光ダイオードL1〜L5の点灯数で水質評価を表示するようになっているが、液晶表示器等を用いて表示するようにしても良い。
【0046】
【発明の効果】
請求項1の発明は、電源と、異種の金属により構成され、検知対象の液中に浸けられたときに電圧を発生して検知信号として出力する一対の電極と、塩素濃度の検知対象の液中に浸けたときに起電圧のマイナス側となり、アルカリ度合の検知対象の液中に浸けたときに起電圧のプラス側となる一方の電極を接続する接続ラインの電位を上記電源のマイナスグランドから見て一定の電位に保持する手段と、上記検知信号を非反転入力端に入力し、出力端と反転入力端に接続した抵抗と反転入力端と基準電位との間に接続した抵抗とで定まる利得で検知信号を非反転増幅する信号増幅用の第1演算増幅器と、上記電源のプラス極と上記接続ラインとの間に接続された複数の抵抗の直列回路によって構成される分圧回路から出力される複数の異なる分圧出力に対応して設けられて、異なる分圧出力により基準電圧が夫々設定され、該基準電圧と上記第1演算増幅器から出力される検知信号電圧とを比較する複数のコンパレータと、該各コンパレータに対応して設けられて各コンパレータの出力端と上記電源との間に接続され、上記対応するコンパレータの出力に応じて駆動され、検知結果を表示する表示手段とを備えるとともに、塩素濃度測定時には上記基準電位を上記接続ラインの電位とし、アルカリ度合測定時には上記基準電位を上記接続ラインの電位よりもマイナス方向に低く切換設定する手段を備えて測定するアルカリ度合が所定以上高い場合から所定以下に至るまでの上記第1演算増幅器から出力される検知信号電圧の変化と、測定する塩素濃度が略零の場合から所定濃度以上に至るまでの上記第1演算増幅器から出力される検知信号電圧の変化が略同じとなるように上記第1演算増幅器の利得を設定したので、水道水の塩素濃度の略零の場合から所定濃度に至るまでの水質の評価表示と、アルカリ生成水などアルカリ度合の所定以上から所定以下に至るまでの水質の評価表示とが同じ表示手段により行うことができ、しかもコンパレータ等を切替えることなく行えるため、同一の電極と簡単な回路構成により塩素濃度の測定と、アルカリ度合の測定とが行える水質チェッカ回路を実現できるという効果がある。
【0047】
請求項2の発明は、請求項1の発明において、上記接続ラインの電位を一定に保持する手段を、上記電源の電圧を所定電圧に降圧した電圧を非反転入力端に入力して略同じ電圧を出力に発生するように利得が設定された非反転増幅器を構成する第2演算増幅器により構成し、該第2演算増幅器の出力端に上記接続ラインを接続してあるので、接続ラインの電位を一定に保持する回路が簡単に実現できる。
【0048】
請求項3の発明は、請求項1又は2の発明において、上記切換手段として、反転入力端と出力端が接続された第3演算増幅器と、該第3演算増幅器の非反転入力端に入力する電圧を上記接続ラインの電圧とこの接続ラインよりも低い電圧とに切り換える電圧切換手段とから構成し、上記第3演算増幅器の出力端の電位を上記基準電位としたので、演算増幅器と、簡単な電圧切換手段とで、塩素濃度測定時とアルカリ度合の測定時とを同じ信号増幅用の第1演算増幅器と、コンパレータと、同じ表示手段によって、同じように水質の評価表示が行える回路を実現できる。
【0049】
請求項4の発明は、請求項1乃至3の何れかの発明において、上記各コンパレータの非反転入力端に上記信号増幅用の第1演算増幅器からの検知信号電圧を、上記各コンパレータの反転入力端に基準電圧を夫々入力し、基準電圧より入力する検知信号電圧が低いコンパレータをオンして上記表示手段を動作させるので、塩素濃度測定時に測定前の動作チェックができるという効果がある。
【0050】
請求項5の発明では、請求項1乃至4の何れかの発明において、上記電源が電池電源を安定化する定電圧回路の出力により構成してあるので、電池電源によって動作する水質チェッカ回路を提供できる。
【図面の簡単な説明】
【図1】本発明の一実施形態の回路図である。
【図2】同上を使用した水質チェッカの側面図である。
【図3】(a)は同上を使用した水質チェッカのヘッド部の一部省略せる拡大断面図である。
(b)は同上を使用した水質チェッカのヘッド部の一部省略せる拡大側面図である。
【符号の説明】
1 電池電源
2 定電圧回路
3a、3b 電極
4 表示回路
OP1〜OP3 演算増幅器
SW1、SW2、SW21 スイッチ
CP1〜CP5 コンパレータ
L1〜L5 発光ダイオード
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water quality checker circuit that can be used for checking either the chlorine concentration of tap water or the alkalinity of alkali-generated water.
[0002]
[Prior art]
Although there are those that check the chlorine concentration or alkalinity in the conventional liquid by the electromotive voltage of a pair of electrodes, the direction of the electromotive voltage between the electrodes is opposite when measuring the chlorine concentration and when measuring the alkalinity Therefore, when the chlorine concentration is almost zero, that is, when clean water and a liquid with a certain alkalinity level or higher are both evaluated as “good”, the same LED is used for evaluation display When trying to do so, there is a problem that the circuit configuration for detection signal processing becomes complicated because the direction of the electromotive voltage is reversed.
[0003]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned problems. The purpose of the present invention is to check both the alkalinity and the chlorine concentration, and when the water quality is evaluated and displayed by the display means, It is an object of the present invention to provide a water quality checker circuit that can be evaluated and displayed by the same display means at the time of measuring either concentration or alkalinity.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, the power source and the pair of electrodes that are made of different metals and generate a voltage and output as a detection signal when immersed in the liquid to be detected. And a connection line that connects one of the electrodes that becomes the negative side of the electromotive voltage when immersed in the liquid whose chlorine concentration is to be detected and the positive side of the electromotive voltage when immersed in the liquid whose alkalinity is to be detected Means for holding the potential at a constant potential as viewed from the negative ground of the power source, and the detection signal is input to the non-inverting input terminal, and the resistor and the inverting input terminal are connected to the output terminal and the inverting input terminal. Reference potential For signal amplification that non-inverts and amplifies the detection signal with a gain determined by a resistor connected between First Provided corresponding to a plurality of different voltage dividing outputs outputted from an operational amplifier and a voltage dividing circuit constituted by a series circuit of a plurality of resistors connected between the positive pole of the power source and the connection line. , Each reference voltage is set by a different divided voltage output, the reference voltage and the above First A plurality of comparators for comparing the detection signal voltages output from the operational amplifiers, provided corresponding to the comparators, connected between the output terminals of the comparators and the power supply, and output to the corresponding comparators And display means for displaying the detection result. And salt When measuring elementary concentration Above reference potential Use the potential of the above connection line when measuring the alkalinity. Above reference potential Provided with means for switching setting in the negative direction lower than the potential of the connection line , From when the alkalinity to be measured is higher than a predetermined level to below a predetermined level Change of the detection signal voltage output from the first operational amplifier of The above from the case where the chlorine concentration to be measured is approximately zero to the predetermined concentration or more First Output from operational amplifier Is So that the change in the detection signal voltage is approximately the same. First The gain of the operational amplifier is set.
[0005]
According to a second aspect of the present invention, in the first aspect of the invention, the means for holding the potential of the connection line constant is substantially the same voltage by inputting a voltage obtained by stepping down the voltage of the power source to a predetermined voltage to the non-inverting input terminal. Configures a non-inverting amplifier with gain set to generate at the output Second Comprising an operational amplifier, Second The connection line is connected to the output terminal of the operational amplifier.
[0006]
In the invention of claim 3, in the invention of claim 1 or 2, an inverting input terminal and an output terminal are connected as the switching means. Third An operational amplifier; and Third Voltage switching means for switching the voltage input to the non-inverting input terminal of the operational amplifier between the voltage of the connection line and a voltage lower than the connection line; Third The potential at the output terminal of the operational amplifier Above reference potential It is characterized by that.
[0007]
According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the signal amplifying signal is connected to the non-inverting input terminal of each of the comparators. First A detection signal voltage from an operational amplifier is inputted to each inverting input terminal of each comparator, and a comparator having a lower detection signal voltage input than the reference voltage is turned on to operate the display means. .
[0008]
According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the power source is constituted by an output of a constant voltage circuit that stabilizes the battery power source.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below with reference to an embodiment.
[0010]
FIG. 1 shows a circuit of this embodiment. In FIG. 1, a parallel circuit of a chlorine concentration measurement start switch SW1 and an alkalinity measurement start switch SW2 is provided for a battery power source 1 such as a dry battery or a secondary battery. A constant voltage circuit 2 composed of a general-purpose IC or the like is connected to the power supply, a stabilized power supply voltage is obtained by the constant voltage circuit 2, and this voltage is divided by a resistance voltage dividing circuit of resistors R1 and R2, thereby forming a non-inverting amplifier. Operational amplifier OP1 (Second operational amplifier) A display for displaying the middle point potential of the series circuit of the resistors R3 and R4 connected between the output terminal and the inverting input terminal of the operational amplifier OP1 in stages for the water quality evaluation. The ground level of the reference voltage of the comparators CP1 to CP5 of the circuit 4 is set to the ground level of the detection signal voltage due to the electromotive force generated between the sensor electrodes 3a and 3b.
[0011]
A series circuit of resistors R5 and R6 is connected between the electrodes 3a and 3b, and the midpoint of the series circuit is an operational amplifier OP2 for amplifying a detection signal. (First operational amplifier) Is connected to the non-inverting input terminal. This non-inverting input terminal is also connected to the positive pole side of the output terminal of the constant voltage circuit 2 via the capacitor C1.
[0012]
The operational amplifier OP2 constitutes a non-inverting amplifier, and a parallel circuit composed of a variable resistor VR1 and a response adjusting capacitor C2 is connected between the output end and the inverting input end. The resistance of the variable resistor VR1 A gain is set by a value and a resistor R7 connected between an inverting input terminal and an output terminal of an operational amplifier OP3 (to be described later) serving as a ground (reference), and the gain can be adjusted by a variable resistor VR1. It has become.
[0013]
On the other hand, a series circuit of the variable resistor VR2 and the switch SW21 is connected between the midpoint of the series circuit of the resistors R3 and R4 and the negative pole of the battery power source 1 through the resistor R8, and the variable resistor VR2 , A noise removing capacitor C3 is connected to the series circuit of the switch SW21, and a non-inverting input terminal of the operational amplifier OP3 is connected to a connection point between the resistor R8 and the variable resistor VR2.
[0014]
This operational amplifier OP3 (Third operational amplifier) Constitutes a voltage follower non-inverting amplifier, the input voltage of the non-inverting input terminal is equal to the output voltage, and the output terminal is connected to the inverting input terminal of the operational amplifier OP2 via the resistor R7. OP2 ground potential (Reference potential) Is set to the potential of the output terminal.
[0015]
The switch SW21 is a switch that is turned on / off in conjunction with the on / off of the alkalinity measurement start switch SW2, and constitutes a switching means for the input voltage of the operational amplifier OP2.
[0016]
The display circuit 4 comprises five comparators CP1 to CP5 and display means connected between the output terminals of the comparators CP1 to CP5 and the positive pole of the output terminal of the constant voltage circuit 2 via current limiting resistors R11 to R15. It comprises light emitting diodes L1 to L5 and the like. A voltage dividing circuit comprising a series circuit of resistors R16 to R21 having the same resistance value is connected between the positive pole at the output terminal of the constant voltage circuit 2 and the midpoint of the series circuit of the resistors R3 and R4, The divided voltage at the connection point between R21 and the resistor R20 is connected as a reference voltage to the inverting input terminal of the comparator CP1, and the divided voltage at the connection point between the resistor R20 and the resistor R19 is connected to the inverting input terminal of the comparator CP2. And the divided voltage at the connection point between the resistors R19 and R18 is connected as a reference voltage to the inverting input terminal of the comparator CP3. Similarly, the divided voltage at the connection point between the resistors R18 and R17 is connected to the comparator CP4. Is connected as a reference voltage to the inverting input terminal, and a divided voltage at the connection point between the resistor R17 and the resistor R16 is connected as a reference voltage to the inverting input terminal of the comparator CP5. Comparator from the reference voltage CP1 to the reference voltage of the comparator CP5 are sequentially stepwise increased.
[0017]
On the other hand, the output terminals of the operational amplifier OP2 are connected to the non-inverting input terminals of the comparators CP1 to CP5 through the resistors R22 to R26, respectively, and the resistors R22 to R26 having the same resistance value are used. .
[0018]
FIG. 2 shows the external appearance of a water quality checker using the water quality checker circuit of the present invention. A housing 5 made of a resin molded product includes the circuit and battery power source 1 shown in FIG. 1 and switches SW1 and SW2 on the outer surface. And a pair of electrodes 3a at the tip part formed so as to protrude forward from the front part of the main body part 6 and the main body part 6 in which the light emitting parts of the light emitting diodes L1 to L5 of the display circuit 4 are exposed. , 3b and a head portion 7 provided with a sensor portion.
[0019]
The housing 5 is preferably formed of a material that does not contain an exogenous endocrine disrupting chemical substance (environmental hormone), and is formed of a resin molded product such as an ABS resin.
[0020]
Further, the head portion 7 is formed in a cylindrical shape that is long in the front-rear direction, and the hollow portion inside thereof communicates with the main body portion 6 on the rear end side, and the front end side opens forward. Here, at the front end portion of the head portion 7, as shown in FIG. 4, a cylinder that protrudes forward over the entire circumference of the opening and has an outer diameter smaller than the outer diameter of the head portion 7. A fitting rib 8 is provided on the outer peripheral surface of the fitting rib 8, and a fitting recess 9 is provided over the entire circumference. 9 is formed as a fitting convex portion 10 that protrudes to the outer peripheral side from 9.
[0021]
A fixing member 11 for securing the watertightness inside and outside the head portion 7 and fixing the terminal electrodes 3a and 3b is mounted at the tip portion of the head portion 7. The fixing member 11 is preferably formed of a material that does not contain environmental hormones. For example, the fixing member 11 is formed of a resin molded product such as ABS resin, and the front end side of the locking portion 12 formed in a cylindrical shape. A cylindrical protruding portion 13 having a smaller diameter than the locking portion 12 is formed on the rear end, and a cylindrical insertion portion 14 having a smaller diameter than the locking portion 12 is formed on the rear end side of the locking portion 12.
[0022]
At this time, the projecting portion 13 is formed with a front concave portion 15 that opens forward, and the insertion portion 14 is formed with a rear concave portion 22 that opens rearward. The front concave portion 15, the rear concave portion 22, Is partitioned by a locking portion 12.
[0023]
In addition, the engaging portion 12 is formed with two insertion holes 16 that allow the front concave portion 15 and the rear concave portion 22 to communicate with each other. Further, a concave groove 17 is formed on the outer peripheral surface of the insertion portion 14 of the fixing member 11 over the entire circumference.
[0024]
The fixing member 11 is attached to the front end of the head portion 7 by inserting the insertion portion 14 from the front end opening of the head portion 7 of the housing 5 as shown in FIG. By attaching 18, water tightness between the outer surface of the insertion portion 14 and the inner surface of the head portion 7 can be ensured.
[0025]
Furthermore, the fixing member 11 is firmly attached to the head portion 7 by filling the gap between the outer surface of the insertion portion 14 and the inner surface of the head portion 7 with an adhesive and bonding the head portion 7 and the fixing member 11. In addition, the watertightness between the outer surface of the insertion portion 14 and the inner surface of the head portion 7 can be further improved.
[0026]
Two lead wires 19a and 19b are disposed in the hollow portion of the head portion 7, and the rear end portions of the lead wires 19a and 19b are drawn out to the main body portion 6 of the housing 5 and connected to the control portion. The front end is fixed to the fixing member 11. Electrodes 3a and 3b are connected to the tips of the two lead wires 19a and 19b, respectively.
[0027]
Here, the lead wires 19 a and 19 b are inserted into the insertion holes 16 of the locking portion 12 of the fixing member 11, and the rear end side is located behind the fixing member 11 through the rear end opening from the rear concave portion 22 of the insertion portion 14. Has been pulled out. In addition, a spherical knob 20 larger than the inner diameter of the insertion hole 16 is formed at the end of the tip of the lead wires 19a and 19b, and the tip of the lead wires 19a and 19b is formed on the front side of the protrusion 13 by the knob 20. The recess 15 is locked to the front side of the locking portion 12. The rear ends of the linear electrodes 3a and 3b are embedded in the ridges 20 at the ends of the lead wires 19a and 19b, respectively, whereby the electrodes 3a and 3b are connected to the ends of the lead wires 19a and 19b. Yes. Each electrode 3 a, 3 b is disposed so that the tip side protrudes forward from the opening of the front recess 15 of the protrusion 13 of the fixing member 11.
[0028]
Further, the sealing member 21 is filled in the rear concave portion 22 of the insertion portion 14 of the fixing member 11, whereby the lead wires 19 a and 19 b are fixed in the rear concave portion 22 of the insertion portion 14 of the fixing member 11. ing. Further, the sealing material 23 is also filled in the front concave portion 15 of the protruding portion 13 of the fixing member 11, whereby the electrodes 3 a and 3 b are fixed in the front concave portion 15 of the protruding portion 13 of the fixing member 11. . Further, the sealing materials 23 and 19 ensure water tightness between the front end side and the rear end side of the fixing member 11.
[0029]
In the pair of electrodes 3a and 3b, one electrode 3b is formed of a platinum wire and the other electrode 3a is formed of a silver wire, and a sensor portion is configured by the electrodes 3a and 3b. Each electrode 3a, 3b is formed as a buried portion embedded in the sealing material 23 in the front recess 15 of the protruding portion 13 of the fixing member 11, and the front end side is forward from the sealing material 23. It is formed as a detection part which protrudes toward.
[0030]
The electrode 3a made of silver wire is formed with a silver chloride coating only on the surface of the detection terminal portion 7, and no silver chloride coating is formed on the surface of the buried portion. For this reason, the electrode 3a and the lead wire 19a The silver chloride coating is not formed on the connection portion between the electrode 3a and the lead wire 19a, and the electrical connection between the electrode 3a and the lead wire 19a is not hindered by the silver chloride coating.
[0031]
Furthermore, a cap body 24 is provided at the tip of the head portion 7 so as to cover the fixing member 11 and the detection terminal portions 7 of the electrodes 3a and 3b, whereby the detection terminal portion 7 is protected. As shown in FIG. 3, the cap body 24 is formed in a bottomed cylindrical shape with the front end closed and the rear end opened, and the outer diameter is substantially the same as the outer diameter of the head portion 7. The Further, the rear end portion of the cap body 24 is formed as a fitted rib 25 having an inner diameter larger than that of the front end side and substantially the same as the outer diameter of the locking portion 12 of the fixing member 11. On the inner peripheral surface of the rear end portion of the fitting rib 25, a fitting concave portion 26 that matches the fitting convex portion 10 of the fitting rib 8 of the head portion 7 is formed over the entire circumference. Further, the rear end side of the fitting recessed portion 26 is formed as a fitting convex portion 27 that protrudes to the inner peripheral side of the fitting concave portion 26 and matches the fitting concave portion 9 of the fitting rib 8. Yes. And the to-be-fitted rib 25 of the cap body 24 is arrange | positioned from the outer peripheral side of the latching | locking part 12 of the fixing member 11 to the outer peripheral side of the fitting rib 8 of the head part 7, and the fitting recessed part 9 and the to-be-fitted convex part 27 are arranged. The cap body 24 is attached to the front end of the head portion 7 by fitting the fitting convex portion 10 and the fitting concave portion 26 together. At this time, the fitting rib 8 and the fitting portion are fitted. The gap between the ribs 25 is filled with an adhesive and the cap body 24 and the head portion 7 are bonded to firmly fix the cap body 24 to the head portion 7 and to be fitted to the fitting rib 8. The watertightness between the ribs 25 can be ensured.
[0032]
The cap body 24 is formed with two parallel and parallel slit-shaped openings 28, and the inside and the outside of the cap body 24 communicate with each other through the openings 28. The opening 28 is formed so as to extend from the side surface of the cap body 24 through the front end surface to the opposite side surface. Further, the cap body 24 is formed with communication holes 29 at both ends of each opening portion 28 so as to communicate with the opening portion 28 and between the inside and the outside of the cap body 24. The diameter is larger than the width of the portion 28.
[0033]
The slit-shaped opening 28 of the cap body 24 allows the liquid to be detected such as tap water to enter the inside of the cap body 24 when measuring the water quality, so that the detection terminal portion 7 of the electrode 2 is immersed in the liquid. The liquid is discharged from the inside of the cap body 24 after measuring the water quality.
[0034]
Further, the communication hole 6 discharges air from the inside of the cap body 24 when measuring the water quality so that the liquid to be detected smoothly enters the inside of the cap body 24, or air inside the cap body 24 after measuring the water quality. This allows the liquid to be smoothly discharged from the inside of the cap body 24.
[0035]
Next, the operation of the water quality checker circuit of this embodiment will be described.
[0036]
First, when checking the chlorine concentration of tap water, the switch SW1 is turned on to immerse the head unit 7 in tap water that is the liquid to be detected. An electromotive voltage is generated between the electrodes 3a and 3b in the cap body 24 immersed in tap water according to the chlorine concentration. In this case, the electrode 3a becomes a positive pole, and a voltage is generated in the resistor R6 due to the electromotive voltage. This voltage is input to the operational amplifier OP2 at the non-inverting input terminal as a detection signal, and is amplified non-invertingly.
[0037]
On the other hand, the output voltage from the constant voltage circuit 2 is divided and reduced by the resistor R1 and the resistor R2, and the voltage across the resistor R2 is non-inverted and amplified by the operational amplifier OP1. Here, the resistance values of the resistors R4 and R3 connected to the output terminal and the inverting input terminal of the operational amplifier OP1 are input so that the voltage of the connection line A connected to the middle point is substantially equal to the voltage of both ends of the resistor R2. It is set to be a voltage.
[0038]
Since the switch SW21 is in the OFF state, the voltage at the output terminal of the operational amplifier OP3 is equal to the voltage input to the non-inverting input terminal, that is, the voltage of the connection line A. Therefore, since the potential of the output terminal is equal to the potential of the connection line A, the operational amplifier OP2 has a resistance value of the variable resistor VR1 and a resistor R7 connected between the inverting input terminal and the output terminal of the operational amplifier OP3. The detection signal voltage generated at both ends of the resistor R6 is amplified by a gain determined by the resistance value.
[0039]
The detection signal voltage amplified by the operational amplifier OP3 is input to the display circuit 4 and compared with reference voltages set in the comparators CP1 to CP5. In the comparator in which the detection signal voltage does not exceed the reference voltage, the output terminal is set to the “L” level, and a light emission current is passed through the light emitting diode connected to the output terminal. In other words, the higher the chlorine concentration in the water to be measured, the higher the electromotive voltage generated between the electrodes 3a and 3b, and the higher the voltage across the resistor R6. Therefore, the number of comparators exceeding the reference voltage increases, and the light emission The number of light emitting diodes to be reduced is reduced. Therefore, when all of the light emitting diodes L1 to L5 are lit, the chlorine concentration is nearly zero and the water quality evaluation is “good”. The smaller the number of lighting, the higher the chlorine concentration is, and the water quality evaluation is “bad”. " Further, before immersing the head part 7 in tap water, the capacitor C1 is charged from the time when the switch SW1 is turned on, and the light emitting diodes L1 to L5 are sequentially lighted sequentially with the charging, and the operation check can be performed by this lighting. It is like that. This operation is only at the time of measuring the chlorine concentration, and this lighting operation is not performed at the time of measuring the alkalinity described later.
[0040]
The checker circuit of the present invention can check the alkalinity of the alkali generated water in addition to the chlorine concentration of tap water. In this case, the switch SW2 is turned on to check the chlorine concentration of tap water in the detection target liquid. It is sufficient to immerse the head portion 7 in the same manner as described above.
[0041]
In other words, the switch SW21 is turned on in conjunction with the ON operation of the switch SW2, and the voltage at the non-inverting input terminal of the operational amplifier OP3 is switched to the voltage divided by the resistor R8 and the variable resistor VR2, so when measuring the chlorine concentration In comparison, the potential at the output terminal of the operational amplifier OP3 is lower than the potential of the connection line A in the negative direction.
[0042]
On the other hand, in the alkali measurement, the direction of the electromotive voltage between the electrodes 3a and 3b is opposite to that in the chlorine concentration measurement, and as the alkalinity increases, the detection signal voltage input to the non-inverting input terminal of the operational amplifier OP2. Increases in the negative direction with respect to the potential of the connection line A.
[0043]
Here, the potential of the output terminal of the operational amplifier OP3 is set to a variable resistance so that the light emitting diodes L1 to L5 are all turned on when the alkalinity is higher than a predetermined level, and are turned off when the alkalinity is lower than the predetermined level. As the alkalinity is higher than a predetermined value by setting the voltage VR2, the detection signal voltage input to the non-inverting input terminal of the operational amplifier OP3 increases in the minus direction with reference to the connection line A. However, the operational amplifier OP3 Is made sufficiently larger in the minus direction than the potential of the connection line A, the non-inverting input terminal of the operational amplifier OP2 to which the detection signal is input, and the ground (Reference potential) And the amplified detection signal voltage output from the output terminal of the operational amplifier OP2 is substantially close to the voltage of the connection line A. Accordingly, when the alkalinity is equal to or higher than a predetermined level, the input voltages at the non-inverting input terminals of all the comparators CP1 to CP5 are lower than the reference voltage, and all the outputs of the comparators CP1 to CP5 are set to the “L” level. The diodes L1 to L5 are lit.
[0044]
Further, the lower the alkalinity of the liquid to be detected, the smaller the negative electromotive voltage, the smaller the negative detection signal voltage input to the non-inverting input terminal of the operational amplifier OP2, and the lower the operational amplifier OP2. Inverting input and ground (Reference potential) And the amplified detection signal voltage output from the output terminal of the operational amplifier OP3 increases. Therefore, the higher the alkalinity of the solution to be measured, the more comparators whose non-inverting input voltage exceeds the reference voltage, and the fewer light emitting diodes emit light. That is, when all of the light emitting diodes L1 to L5 are lit, the alkalinity level is more than a predetermined value and the water quality evaluation is “good”. Conversely, the lower the number of lightings, the lower the alkalinity level and the water quality evaluation becomes. It turns out that it is "evil".
[0045]
In this embodiment, the water quality evaluation is displayed by the number of lighting of the light emitting diodes L1 to L5, but may be displayed using a liquid crystal display or the like.
[0046]
【The invention's effect】
The invention of claim 1 comprises a power source, a pair of electrodes that are made of different kinds of metals, generate a voltage and output as a detection signal when immersed in the liquid to be detected, and a liquid for detecting the chlorine concentration From the negative ground of the power supply, the potential of the connection line that connects one electrode that becomes the negative side of the electromotive voltage when immersed in the solution and becomes the positive side of the electromotive voltage when immersed in the liquid whose alkalinity is detected Means for holding at a constant potential, and the detection signal is input to the non-inverting input terminal, and the resistance connected to the output terminal and the inverting input terminal and the inverting input terminal Reference potential For signal amplification that non-inverts and amplifies the detection signal with a gain determined by a resistor connected between First Provided corresponding to a plurality of different voltage dividing outputs outputted from an operational amplifier and a voltage dividing circuit constituted by a series circuit of a plurality of resistors connected between the positive pole of the power source and the connection line. , Each reference voltage is set by a different divided voltage output, the reference voltage and the above First A plurality of comparators for comparing the detection signal voltages output from the operational amplifiers, provided corresponding to the respective comparators, connected between the output terminals of the respective comparators and the power supply, and output to the corresponding comparators And a display means that is driven in response to display the detection result. ,salt When measuring elementary concentration Above reference potential Use the potential of the above connection line when measuring the alkalinity. Above reference potential Provided with means for switching setting in the negative direction lower than the potential of the connection line , From when the alkalinity to be measured is higher than a predetermined level to below a predetermined level Change of the detection signal voltage output from the first operational amplifier of The above from the case where the chlorine concentration to be measured is approximately zero to the predetermined concentration or more First Operational amplifier Output from The above so that the change of the detection signal voltage is almost the same First Since the gain of the operational amplifier is set, the water quality evaluation display from the case where the chlorine concentration of tap water is almost zero to the predetermined concentration, and the water quality from the predetermined degree of alkalinity such as alkali generated water to below the predetermined level Since the evaluation display can be performed by the same display means and without changing the comparator, etc., a water quality checker circuit that can measure the chlorine concentration and the alkalinity with the same electrode and simple circuit configuration is realized. There is an effect that can be done.
[0047]
According to a second aspect of the invention, in the first aspect of the invention, the means for holding the potential of the connection line constant is substantially the same voltage by inputting a voltage obtained by stepping down the voltage of the power source to a predetermined voltage to the non-inverting input terminal. Configures a non-inverting amplifier with gain set to generate at the output Second Comprising an operational amplifier, Second Since the above connection line is connected to the output terminal of the operational amplifier, Connection line It is possible to easily realize a circuit that keeps the potential at a constant.
[0048]
According to a third aspect of the present invention, in the first or second aspect of the present invention, the inverting input terminal and the output terminal are connected as the switching means. Third An operational amplifier; and Third Voltage switching means for switching the voltage input to the non-inverting input terminal of the operational amplifier between the voltage of the connection line and a voltage lower than the connection line; Third The potential at the output terminal of the operational amplifier Above reference potential As a result, the operational amplifier and simple voltage switching means can be used for the same signal amplification when measuring the chlorine concentration and when measuring the alkalinity. First A circuit capable of displaying and evaluating the water quality in the same manner can be realized by the operational amplifier, the comparator, and the same display means.
[0049]
According to a fourth aspect of the present invention, there is provided the signal amplification circuit according to any one of the first to third aspects, wherein the signal amplifying circuit is connected to a non-inverting input terminal of each comparator. First Chlorine concentration measurement because the detection signal voltage from the operational amplifier is input to the inverting input terminal of each comparator, and the display means is operated by turning on the comparator whose detection signal voltage is lower than the reference voltage. Sometimes it is possible to check the operation before measurement.
[0050]
According to a fifth aspect of the present invention, there is provided a water quality checker circuit that is operated by a battery power source because the power source is constituted by the output of a constant voltage circuit that stabilizes the battery power source. it can.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of an embodiment of the present invention.
FIG. 2 is a side view of a water quality checker using the same as above.
FIG. 3A is an enlarged cross-sectional view in which a part of a head portion of a water quality checker using the same can be omitted.
(B) is an enlarged side view in which a part of the head portion of the water quality checker using the above can be omitted.
[Explanation of symbols]
1 Battery power
2 Constant voltage circuit
3a, 3b electrode
4 Display circuit
OP1 to OP3 operational amplifier
SW1, SW2, SW21 switch
CP1 to CP5 comparator
L1-L5 Light emitting diode

Claims (5)

電源と、異種の金属により構成され、検知対象の液中に浸けられたときに電圧を発生して検知信号として出力する一対の電極と、塩素濃度の検知対象の液中に浸けたときに起電圧のマイナス側となり、アルカリ度合の検知対象の液中に浸けたときに起電圧のプラス側となる一方の電極を接続する接続ラインの電位を上記電源のマイナスグランドから見て一定の電位に保持する手段と、上記検知信号を非反転入力端に入力し、出力端と反転入力端に接続した抵抗と反転入力端と基準電位との間に接続した抵抗とで定まる利得で検知信号を非反転増幅する信号増幅用の第1演算増幅器と、上記電源のプラス極と上記接続ラインとの間に接続された複数の抵抗の直列回路によって構成される分圧回路から出力される複数の異なる分圧出力に対応して設けられて、異なる分圧出力により基準電圧が夫々設定され、該基準電圧と上記第1演算増幅器から出力される検知信号電圧とを比較する複数のコンパレータと、該各コンパレータに対応して設けられて各コンパレータの出力端と上記電源との間に接続され、上記対応するコンパレータの出力に応じて駆動され、検知結果を表示する表示手段とを備えるとともに、塩素濃度測定時には上記基準電位を上記接続ラインの電位とし、アルカリ度合測定時には上記基準電位を上記接続ラインの電位よりもマイナス方向に低く切換設定する手段を備えて測定するアルカリ度合が所定以上高い場合から所定以下に至るまでの上記第1演算増幅器から出力される検知信号電圧の変化と、測定する塩素濃度が略零の場合から所定濃度以上に至るまでの上記第1演算増幅器から出力される検知信号電圧の変化が略同じとなるように上記第1演算増幅器の利得を設定したことを特徴とする水質チェッカ回路。A power source and a pair of electrodes that are made of different metals and generate a voltage when immersed in the liquid to be detected and output as a detection signal, and occur when immersed in the liquid whose chlorine concentration is to be detected. Holds the potential of the connection line connecting one electrode, which becomes the positive side of the electromotive voltage when immersed in the liquid to be detected for alkalinity, at a constant potential when viewed from the negative ground of the power source. The detection signal is non-inverted with a gain determined by a means for inputting the detection signal to the non-inverting input terminal and a resistor connected between the output terminal and the inverting input terminal and a resistance connected between the inverting input terminal and the reference potential. A plurality of different voltage division outputs from a voltage dividing circuit constituted by a first operational amplifier for signal amplification to be amplified and a series circuit of a plurality of resistors connected between the positive pole of the power source and the connection line Corresponding to the output Vignetting, the different reference voltages by the divided output is respectively set, and a plurality of comparators for comparing the detection signal voltage output from the reference voltage and the first operational amplifier provided corresponding to the respective comparator Te is connected between the output terminal and the power supply of the comparators are driven in response to the output of the corresponding comparator, the detection result provided with a display means for displaying said the reference potential at the time chlorine concentration measurement the potential of the connection line, at the time of alkaline degree measuring comprises means for switching set low in the negative direction than the potential of the connection line the reference potential, said to alkaline degree of measurement reaches the predetermined or less from when the predetermined or more high the change of the detection signal voltage output from the first operational amplifier, said from when the chlorine concentration is substantially zero measuring up to more than a predetermined concentration Water checker circuit, wherein a change in the detection signal voltage that will be output from the first operational amplifier sets the gain of the first operational amplifier so as to be substantially the same. 上記接続ラインの電位を一定に保持する手段を、上記電源の電圧を所定電圧に降圧した電圧を非反転入力端に入力して略同じ電圧を出力に発生するように利得が設定された非反転増幅器を構成する第2演算増幅器により構成し、該第2演算増幅器の出力端に上記接続ラインを接続して成ることを特徴とする請求項1記載の水質チェッカ回路。The non-inverted gain is set so that a voltage obtained by stepping down the voltage of the power source to a predetermined voltage is input to the non-inverted input terminal to generate substantially the same voltage at the output. constituted by a second operational amplifier constituting the amplifier, water quality checker circuit according to claim 1, characterized in that formed by connecting the connecting line to the output terminal of the second operational amplifier. 上記切換手段として、反転入力端と出力端が接続された第3演算増幅器と、該第3演算増幅器の非反転入力端に入力する電圧を上記接続ラインの電圧とこの接続ラインよりも低い電圧とに切り換える電圧切換手段とから構成し、上記第3演算増幅器の出力端の電位を上記基準電位としたことを特徴とする請求項1又は2記載の水質チェッカ回路。As the switching means, a third operational amplifier output terminal and the inverting input terminal is connected, the third non-inverting input voltage of the connection line the voltage input to the terminal of the operational amplifier and a voltage lower than the connection line The water quality checker circuit according to claim 1 or 2, wherein the reference voltage is used as the potential at the output terminal of the third operational amplifier. 上記各コンパレータの非反転入力端に上記信号増幅用の第1演算増幅器からの検知信号電圧を、上記各コンパレータの反転入力端に基準電圧を夫々入力し、基準電圧より入力する検知信号電圧が低いコンパレータをオンして上記表示手段を動作させることを特徴とする請求項1乃至3の何れか記載の水質チェッカ回路。The detection signal voltage from the first operational amplifier for signal amplification is input to the non-inverting input terminal of each comparator, the reference voltage is input to the inverting input terminal of each comparator, and the detection signal voltage input is lower than the reference voltage. 4. The water quality checker circuit according to claim 1, wherein a comparator is turned on to operate the display means. 上記電源が電池電源を安定化する定電圧回路の出力により構成して成ることを特徴とする請求項1乃至4の何れか記載の記載の水質チェッカ回路。  5. The water quality checker circuit according to claim 1, wherein the power source is constituted by an output of a constant voltage circuit for stabilizing the battery power source.
JP2001014866A 2001-01-23 2001-01-23 Water quality checker circuit Expired - Fee Related JP4658342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001014866A JP4658342B2 (en) 2001-01-23 2001-01-23 Water quality checker circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001014866A JP4658342B2 (en) 2001-01-23 2001-01-23 Water quality checker circuit

Publications (2)

Publication Number Publication Date
JP2002214220A JP2002214220A (en) 2002-07-31
JP4658342B2 true JP4658342B2 (en) 2011-03-23

Family

ID=18881497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001014866A Expired - Fee Related JP4658342B2 (en) 2001-01-23 2001-01-23 Water quality checker circuit

Country Status (1)

Country Link
JP (1) JP4658342B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8025779B2 (en) 2003-11-14 2011-09-27 Tanita Corporation Water quality analyzer
WO2005080956A1 (en) * 2004-02-20 2005-09-01 Tanita Corporation Chlorometer
WO2005047880A1 (en) * 2003-11-14 2005-05-26 Tanita Corporation Water examiner
JP4530203B2 (en) * 2004-05-21 2010-08-25 株式会社タニタ Redox potentiometer
JP4530205B2 (en) 2004-06-23 2010-08-25 株式会社タニタ Polarographic densitometer
JP4652119B2 (en) * 2005-05-11 2011-03-16 日研システム株式会社 Water quality continuous monitoring method
JP4575861B2 (en) * 2005-08-22 2010-11-04 エフアイエス株式会社 Detector with temperature compensation function
JP4905019B2 (en) * 2006-09-25 2012-03-28 三菱マテリアル株式会社 Power module substrate manufacturing method, power module substrate, and power module
JP6518937B2 (en) * 2014-12-11 2019-05-29 国立大学法人横浜国立大学 Solid-type residual chlorine sensor and water meter equipped with the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309240A (en) * 1989-05-24 1990-12-25 Yokogawa Electric Corp Ph converter
JPH09105733A (en) * 1995-10-12 1997-04-22 Horiba Ltd Resistance conversion device
JPH10221285A (en) * 1997-01-31 1998-08-21 Horiba Ltd Measuring device for electric conductivity or ph
JP2002532716A (en) * 1998-12-16 2002-10-02 エンドレス ウント ハウザー コンダクタ ゲゼルシャフト フュア メス− ウント レーゲルテヒニク ミット ベシュレンクテル ハフツング ウント コンパニー Device for measuring ion concentration in measurement solution

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309240A (en) * 1989-05-24 1990-12-25 Yokogawa Electric Corp Ph converter
JPH09105733A (en) * 1995-10-12 1997-04-22 Horiba Ltd Resistance conversion device
JPH10221285A (en) * 1997-01-31 1998-08-21 Horiba Ltd Measuring device for electric conductivity or ph
JP2002532716A (en) * 1998-12-16 2002-10-02 エンドレス ウント ハウザー コンダクタ ゲゼルシャフト フュア メス− ウント レーゲルテヒニク ミット ベシュレンクテル ハフツング ウント コンパニー Device for measuring ion concentration in measurement solution

Also Published As

Publication number Publication date
JP2002214220A (en) 2002-07-31

Similar Documents

Publication Publication Date Title
JP4658342B2 (en) Water quality checker circuit
CN111246757A (en) Attraction component generation device, method for controlling attraction component generation device, and program
JPWO2019077707A1 (en) Suction component generation device, method for controlling suction component generation device, and program
KR102467946B1 (en) Suction component generating device, method for controlling suction component generating device, suction component generating system, and program
US20030057889A1 (en) Automatic shut-off for flashlights
JPWO2019082249A1 (en) Suction component generation device, method for controlling suction component generation device, and program
US4122389A (en) Moisture sensor
CN111246762A (en) Attraction component generation device, method for controlling attraction component generation device, and program
JP2001522464A (en) Electrochemical sensing circuit
SE523016C2 (en) Device for determining the internal resistance of a lambda probe
US5902467A (en) Oxygen sensor based on a metal-air battery
ATE399327T1 (en) DEVICE AND METHOD FOR MEASURING SENSOR CAPACITY
EP0749687B1 (en) A fish-bite indicator
JP4673747B2 (en) Water quality meter
JPS5952373B2 (en) Exposure warning circuit
TW200832939A (en) Remote control transmitter
CA2219474A1 (en) Electronic moisture-meter with alarm
IE20000165A1 (en) A gas sensing alarm device
JP2002084670A (en) Charging-current detecting device
JP5243110B2 (en) The main body of the ear-type body temperature measuring device
JP4739536B2 (en) Water quality sensor
JP7289960B2 (en) Suction component generation device, method for controlling suction component generation device, suction component generation system, and program
JP6748328B2 (en) Suction component generation device, method for controlling suction component generation device, and program
CN209803225U (en) Voltage detection device and voltmeter
JP3282389B2 (en) Pyroelectric infrared sensor circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees