JP4657400B2 - Molecular compounds and light emitting materials using them - Google Patents

Molecular compounds and light emitting materials using them Download PDF

Info

Publication number
JP4657400B2
JP4657400B2 JP12768599A JP12768599A JP4657400B2 JP 4657400 B2 JP4657400 B2 JP 4657400B2 JP 12768599 A JP12768599 A JP 12768599A JP 12768599 A JP12768599 A JP 12768599A JP 4657400 B2 JP4657400 B2 JP 4657400B2
Authority
JP
Japan
Prior art keywords
mmol
compound
chemical
light emitting
reference example
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12768599A
Other languages
Japanese (ja)
Other versions
JP2000026451A (en
Inventor
収 堀田
敬 玉置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
National Institute of Advanced Industrial Science and Technology AIST
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
National Institute of Advanced Industrial Science and Technology AIST
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, National Institute of Advanced Industrial Science and Technology AIST, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP12768599A priority Critical patent/JP4657400B2/en
Publication of JP2000026451A publication Critical patent/JP2000026451A/en
Application granted granted Critical
Publication of JP4657400B2 publication Critical patent/JP4657400B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、化学工業及び電子工業の分野で利用し得る新規の機能性分子化合物およびその発光材料としての応用技術に関するものである。
【0002】
【従来の技術】
従来、機能性有機材料を用いた有機電界発光(EL)デバイスが提案され、それ以来、有機電界発光デバイスにおける発光効率の向上、発光色の制御などを目的に様々な材料が開発されて今日に至っている。これらに関する記載は、例えばC.W. Tang, S. A. VanSlyke, and C. H. Chen, J. Appl. Phys. 65, 3610 (1989)などの文献にみられる。
【0003】
【発明が解決しようとする課題】
しかしながら、これまでに開発された材料を用いた有機ELデバイスの性能は、実用に供するには未だ不十分である。この主要な理由として、機能性有機材料を構成する分子化合物(低分子、オリゴマー分子および高分子の全般にわたる)によって発光色の制御を行ない、しかも当該分子化合物を用いて効率がよく、輝度の高い発光を行なうという作用を両立させることが困難であったことが挙げられる。即ち、従来材料においては、例えば広く用いられているアルミノキノリン系の低分子化合物等に関しては、高効率・高輝度の発光は比較的容易であるが、発光色の制御は困難であり、オリゴチオフェンなどの、電子系の共役長を変化させて発光色を制御することが比較的容易な化合物については、高効率・高輝度の発光を実現することは困難であった。
【0004】
これらの課題解決のために、オリゴチオフェンセグメントとトリフェニルアミンセグメントとを組み合わせた新規の分子化合物も提案されているが(野田哲也、小川浩充、野間直樹、城田靖彦、日本化学会第74春季年会、講演予稿集I、第129ページ、1998年)、目的が十分に達成されているとはいえない。
【0005】
これらの事情については上述のTangらの文献の他に、例えばS. Hotta, in Handbook of Organic Conductive Molecules and Polymers (Ed. H. S. Nalwa), John Wiley & Sons, Chichester, 1997, Vol. 2, Chapter 8や小倉克之、矢内宏幸、赤染元浩、田中哲、福田辰男、日本化学会第74春季年会、講演予稿集I、第129ページ、1998年などに、関連の記載がみられる。
【0006】
本発明は上記従来の問題点に鑑みてなされたもので、その目的は、比較的容易に発光色を制御することができ、また高効率・高輝度の発光を実現することのできる分子化合物及びそれらを用いた発光材料並びに発光素子を提供することである。
【0007】
【課題を解決するための手段】
本発明では、これらの課題を解決して発光色の制御を行なうことと効率がよく、輝度の高い発光を実現することを容易に両立させることのできる分子化合物及びそれらを用いた発光材料を提供する。
【0008】
【発明の実施の形態】
本発明の分子化合物は、分子構造を、
【化3】

Figure 0004657400
(ただし、R1、R2は水素、アルキル基、アルケニル基、ハロゲン基のうちのいずれか1つであり、且つ、n、mは1である。)としたものであり、チオフェン環とベンゼン環が交互に配列されることにより抜きん出て高い輝度の光を発する発光材料を実現するという作用を有する。
【0009】
本発明の発光材料は、用いる分子化合物の分子構造を、
【化4】
Figure 0004657400
(ただし、R1、R2は水素、アルキル基、アルケニル基、ハロゲン基のうちのいずれか1つであり、且つ、n、mはいずれも1である。)としたものであり、チオフェン環とベンゼン環が交互に配列されることにより抜きん出て高い輝度の光を発することができるという作用を有する。
【0010】
本発明の有機電界発光素子は、一対の電極に挟まれた発光層を少なくとも有する有機電界発光素子において、発光層が本発明の分子化合物を含有することを特徴とする有機電界発光素子であり、色調の変化が容易でかつ蛍光収率の高い材料を発光層に用いることにより、多色化が容易になり、素子の発光効率が向上するという作用を有する。
【0011】
本発明の他の有機電界発光素子は、一対の電極に挟まれた発光層を少なくとも有する有機電界発光素子において、発光層に本発明の分子化合物および、これら以外の分子化合物からなる複合体であることを特徴とする電界発光素子であり、さらに多様な発光色を実現し、同時に、より高効率で長期的に安定な動作特性を保つ素子を実現するという作用を有する。ここでいう複合体には、2種あるいはそれ以上の分子化合物を混合したもの、ホストとなる分子化合物に他の種類の分子化合物を分散(ドープ)させたもの、さらには、これらの分子化合物からなる層を適宜積層したものなどが含まれる。
【0012】
続いて、本発明による電界発光素子について、図面を参照しながら説明する。図1は本発明による有機電界発光素子の概略構成を示す断面図である。図1に示された有機電界発光素子は、ガラス基板1上に陽極(透明電極)2を形成し、その上に正孔輸送層3、発光層4、電子輸送層5、上部電極6をこの順に積み重ねた状態で形成したものである。発光層4は正孔輸送層3または電子輸送層5と兼ねることもできる。あるいは必要に応じて、新たな層を挿入することもできる。具体的な例としては、透明電極2と正孔輸送層3の間に挿入される正孔注入層、発光層4と電子輸送層5の間に挿入される正孔ブロッキング層、電子輸送層5と陰極(上部電極)6の間に挿入される電子注入層などがあげられる。さらには、発光層4に積層構成を持たせて複数の発光層を同時に発光させることも可能である。
【0013】
発光層4は、通常抵抗加熱による真空蒸着法によって形成するが、ポリカーボネートなどのポリマー中に分散したものをスピンコート法などにより成膜することも可能である。発光層の厚さは、通常は10nm(ナノメートル)以上であるが、さらに望ましい範囲としては、通常20nmないし300nmの範囲で選択される。
【0014】
本発明による分子化合物は、発光層を構成する材料として用いることができる。他の公知の分子化合物と組み合わせて使用することも容易であり、白色などより多様な発光色を得ることが可能となる。
【0015】
例えば、適当なホスト材料に本発明による分子化合物を分散させて、ドーパントとして使用することができる。この場合におけるホスト材料としては、キノリノール金属錯体、オキサゾール誘導体、チアゾール誘導体、イミダゾール誘導体、スチリル誘導体、ジスチリルアリーレン誘導体、クマリン誘導体、ブタジエン誘導体、トリフェニルアミン誘導体などがあげられる。また、ドーピングの濃度としては0.1〜10mol%が望ましい。
【0016】
さらに、本発明による分子化合物をホスト材料として、他の発光材料を分散させることによって発光層とすることもできる。この場合におけるドーパントの例としては、キナクリドン誘導体、クマリン誘導体、スチリル誘導体、縮合多環芳香族化合物、キノリノール誘導体などがあげられる。ドーピングの濃度は使用するドーパントにもよるが、0.05〜5mol%が望ましい。
【0017】
次いで、本発明の実施例に係わる新規の分子化合物についての合成方法とこれらの分子化合物の発光材料としての評価に関して図面を参照しながら説明する。
【0018】
参考例1)
分子両末端にフェニル基を有する分子化合物(以下「化A」という)の合成方法について説明する。この分子化合物は下記の分子構造を持つ化合物である。
【化5】
Figure 0004657400
【0018】
この分子化合物を製造するには、まず、500mL(ミリリットル)の三口フラスコにマグネシウム4.62g(0.19モル)を加え入れ、三口フラスコを真空に吸引し、ヒートガンで強熱して乾燥させた。これに無水のジエチルエーテル(和光純薬社製)100mL を加えてよく撹拌し、この液の中にさらにブロモベンゼン(東京化成製)29.8g(0.19モル)を溶解させた無水のジエチルエーテル溶液50mLを滴下ロートを通して滴下した。
【0019】
さらに撹拌を続け、ブロモベンゼンへのマグネシウムの挿入反応による発熱で反応溶液がリフラックスし始めた後、マグネシウムの挿入反応の速度が適正に保たれるように溶液を氷浴した。
【0020】
全てのマグネシウムが反応してグリニヤール試薬の合成が完結したことを確認してから、542mg(1mモル)の1,3-ビス(ジフェニルフォスフィノ)プロパンニッケル(II)クロライド(ストレム社製)を反応溶液に投入し、次いで2-ブロモチオフェン26.1g(0.16モル)を溶解させたジエチルエーテル溶液50mLを滴下ロートを通して滴下した。さらに1昼夜撹拌を続け、その後6時間の間反応溶液をオイルバス上で加熱し、リフラックスさせた。この後、溶液を氷浴して冷却し、滴下ロートを通して2規定の塩酸100mLを滴下して未反応のグリニヤール試薬をクェンチして合成反応を完了した。さらにこの溶液を水、飽和の炭酸水素ナトリウム水溶液及び水を用いて順次洗浄し、無水の塩化カルシウムで乾燥した。これを濾過し後、ロータリーエバポレータでジエチルエーテルを留去し、26.9gの2-フェニルチオフェン固体を得た。
【0021】
次に、このようにして合成した2-フェニルチオフェン3.21g(20mモル)を20mLのメタノールに溶解させ、一方N-ブロモこはく酸イミド(和光純薬社製)3.92g(22mモル)を40mLのメタノールに溶解させた溶液を前者の溶液中に加えたところ、直ちに白色の沈殿(2-フェニル-5-ブロモチオフェン)を生じた。この反応溶液を冷蔵庫に入れ、さらに沈殿の生成を確実にした。この沈殿を濾過して後、大量の水・メタノール等量混合液で十分に洗浄して1昼夜乾燥させ、2-フェニル-5-ブロモチオフェンの白色結晶(2.4g)を得た。
【0022】
次の段階として、上記の2-フェニル-5-ブロモチオフェン結晶から239.1mg(1mモル)を分取し、これを24.3mgのマグネシウムと共に30mLの1口なす型フラスコに投入して、真空に吸引し、ヒートガンで穏やかに加熱して乾燥させた。これに無水のジエチルエーテル10mLを加えて2-フェニル-5-ブロモチオフェンを溶解させ、撹拌しながらグリニヤール試薬を調整した。
【0023】
全てのマグネシウムが反応したことを確認した後、10mgの1,3-ビス(ジフェニルフォスフィノ)プロパンニッケル(II)クロライドを反応溶液に投入し、さらにあらかじめ乾燥したアルドリッチ社製の2,5-ジヨードチオフェン134.4mg(0.4mモル)を5mLの無水ジエチルエーテルに溶解させた溶液を混合した。
【0024】
混合と共に黄色の沈殿(5,5"-ジフェニル-2,2':5',2"-ターチオフェン;化A)が直ちに生成した。これを1昼夜撹拌して後さらに6時間リフラックスさせ、次いでこれを水浴上で冷却して2規定の塩酸1mLを加え、未反応のグリニヤール試薬をクェンチした。これを濾過し、沈殿をアセトンでよく洗浄して140mgの黄色結晶(5,5"-ジフェニル-2,2':5',2"-ターチオフェン;化A)を得た。
【0025】
図2に化Aの赤外スペクトルを示す。図2において、1439.6cm-1および790.7cm-1のピークは、それぞれ2,5-ジ置換チオフェン環の環伸縮振動及びCH面外変角振動に帰属される。また、1483.8cm-1のピークはモノ置換ベンゼン環の環伸縮振動に帰属され、750.2 cm-1及び683.8cm-1のピークは、同じくモノ置換ベンゼン環のCH面外変角振動に帰属される。
【0026】
なお、本実施例及び以下の実施例において、スペクトルは、上記結晶を適当な溶媒から再結晶して得た試料から数片の固体片を分取し、これを臭化カリウム中に粉砕・分散させた後、加圧成型した錠剤について赤外分光光度計(パーキンエルマー・システム2000FT-IR)を用いて測定した。
【0027】
参考例2
分子両末端にフェニル基を有する別の分子化合物(以下「化B」という)の合成方法について説明する。この分子化合物は下記の分子構造を持つ化合物である。
【化6】
Figure 0004657400
【0028】
この分子化合物を製造するには、参考例1において合成した2-フェニル-5-ブロモチオフェン結晶から239.1mg(1mモル)を分取し、これを参考例1と同様に24.3mgのマグネシウムと共に30mLの1口なす型フラスコに投入して、真空に吸引し、ヒートガンで穏やかに加熱して乾燥させた。これに無水のジエチルエーテル10mLを加えて2-フェニル-5-ブロモチオフェンを溶解させ、撹拌しながらグリニヤール試薬を調整した。
【0029】
全てのマグネシウムが反応したことを確認した後、窒素ガスを吹き込んでジエチルエーテルを蒸発させた。次いで、これに無水のアニソール(アルドリッチ社製)10mLを加え、次いで10mgの1,3-ビス(ジフェニルフォスフィノ)プロパンニッケル(II)クロライドを投入し、さらにあらかじめ調整し、真空乾燥した5,5'-ジヨード-2,2'-ビチオフェン167mg(0.4mモル)を固形のまま投入した。
【0030】
これを1昼夜撹拌して後さらに6時間、100℃に加熱し、次いでこれを水浴上で冷却して2規定の塩酸1mLを加え、未反応のグリニヤール試薬をクェンチした。これを濾過し、沈殿をアセトンでよく洗浄して20mgの橙色結晶(5,5'"-ジフェニル-2,2':5',2":5",2'"-クォータチオフェン;化B)を得た。
【0031】
なお、5,5'-ジヨード-2,2'-ビチオフェンの調整方法は、以下の通りである。ビチオフェン(アルドリッチ社製)1.663g(10mモル)を100mLのメタノールに溶解させ、この溶液中にN-ヨードこはく酸イミド(アルドリッチ社製)4.95g(22mモル)を溶解させた50mLのメタノール溶液を注いだ。溶液を撹拌しながら、これに1.87mLの濃塩酸(22mモル)を徐々に滴下すると、白色の沈殿が生じると共に反応液が粘稠になったので、50mLのメタノールを加えた。さらに、2時間撹拌を続けた後、3.06mLのアンモニア水(22mモル)を滴下し、反応を完結させた。これを濾過し、得られた沈殿を大量の水で洗浄して1昼夜真空乾燥し、2.0gの無色結晶(5,5'-ジヨード-2,2'-ビチオフェン)を得た。
【0032】
図3に化Bの赤外スペクトルを示す。図3において、1439.6cm-1及び790.7cm-1のピークは、それぞれ2,5-ジ置換チオフェン環の環伸縮振動及びCH面外変角振動に帰属される。また、1487.5cm-1のピークはモノ置換ベンゼン環の環伸縮振動に帰属され、746.5cm-1及び683.8 cm-1のピークは、同じくモノ置換ベンゼン環のCH面外変角振動に帰属される。
【0033】
参考例3
分子両末端にフェニル基を有する別の分子化合物(以下「化C」という)の合成方法について説明する。この分子化合物は下記の分子構造を持つ化合物である。
【化7】
Figure 0004657400
【0034】
この分子化合物を製造するには、参考例1において合成した2-フェニルチオフェン結晶から1.60g(10mモル)を分取し、これをN-ヨードこはく酸イミド(アルドリッチ社製)4.50g(20mモル)と共に三角フラスコに入れ、これにメタノール10mLを加えて溶解させた。これにさらに酢酸1.14mL(20mモル)を加えて撹拌すると、しばらくして白色の沈殿を生じた。これを冷蔵庫に入れ、さらに沈殿の生成を確実にした。この沈殿を濾過して後、大量の水・メタノール等量混合液で十分に洗浄して1昼夜乾燥させ、2-フェニル-5-ヨードチオフェンの白色結晶(2.5g)を得た。
【0035】
次の段階として、上記の2-フェニル-5-ヨードチオフェン結晶から286.1mg(1mモル)を分取し、これを24.3mg(1mモル)のマグネシウムと共に30mLの1口なす型フラスコに投入して、真空に吸引し、ヒートガンで穏やかに加熱して乾燥させた。これに無水のジエチルエーテル10mLを加えて2-フェニル-5-ヨードチオフェンを溶解させ、撹拌しながらグリニヤール試薬を調整した。
【0036】
全てのマグネシウムが反応したことを確認した後、窒素ガスを吹き込んでジエチルエーテルを蒸発させた。次いで、これに無水のアニソール10mLを加え、次いで10mgの1,3-ビス(ジフェニルフォスフィノ)プロパンニッケル(II)クロライドを投入し、さらにあらかじめ調整し、真空乾燥した5,5"-ジヨード-2,2':5',2"-ターチオフェン200mg(0.4mモル)を固形のまま投入した。
【0037】
これを1昼夜撹拌して後さらに6時間、100℃に加熱し、次いでこれを水浴上で冷却して2規定の塩酸1mLを加え、未反応のグリニヤール試薬をクェンチした。これを濾過し、沈殿をアセトンでよく洗浄して10mgの赤橙色結晶(5,5""-ジフェニル-2,2':5',2": 5",2'":5'",2""-クィンケチオフェン;化C)を得た。
【0038】
なお、5,5"-ジヨード-2,2':5',2"-ターチオフェンの調整方法は、以下の通りである。ターチオフェン(アルドリッチ社製)248.4mg(1mモル)とN-ヨードこはく酸イミド(アルドリッチ社製)495mg(2.2mモル)を20mLのメタノールに溶解させ、この溶液に酢酸4滴(約120μL)を滴下した。しばらくすると黄緑色の沈殿を生じたので、これを冷蔵庫に入れ、さらに沈殿の生成を確実にした。
【0039】
この沈殿を濾過して後、大量のメタノールで十分に洗浄して1昼夜乾燥させ、5,5"-ジヨード-2,2':5',2"-ターチオフェンの黄緑色結晶(440mg)を得た。
【0040】
図4に化Cの赤外スペクトルを示す。図4において、1439.6cm-1の及び790.7cm-1のピークは、それぞれ2,5-ジ置換チオフェン環の環伸縮振動及びCH面外変角振動に帰属される。また、1487.5 cm-1のピークはモノ置換ベンゼン環の環伸縮振動に帰属され、750.2 cm-1及び683.8cm-1のピークは、同じくモノ置換ベンゼン環のCH面外変角振動に帰属される。
【0041】
合成した化Cは、これを溶解させる適当な溶剤がなかったため、再結晶を経ずにスペクトル測定を行った。図中、3000cm-1、1500cm-1及び500cm-1付近の丸みを帯びた強いピークは、合成の過程で試料中に取り込まれたイオン性の物質により化Cがドープされて生じたものと思われる。
【0042】
参考例4
分子両末端にビフェニリル基を有する別の分子化合物(以下「化D」という)の合成方法について説明する。この分子化合物は下記の分子構造を持つ化合物である。
【化8】
Figure 0004657400
【0043】
この分子化合物を製造するには、まず、300mLの三口フラスコにマグネシウム1.10g(45.3mモル)を入れ、三口フラスコを真空に吸引し、ヒートガンで強熱して乾燥させた。これに無水のジエチルエーテル50mLを加えてよく撹拌し、この液の中にさらに2-ヨードチオフェン(アルドリッチ社製)9.51g(45.3mモル)を溶解させた無水のジエチルエーテル溶液30mLを滴下ロートを通して滴下した。
【0044】
さらに撹拌を続け、2-ヨードチオフェンへのマグネシウムの挿入反応による発熱で反応溶液がリフラックスし始めた後、マグネシウムの挿入反応の速度が適正に保たれるように溶液を氷浴した。
【0045】
全てのマグネシウムが反応してグリニヤール試薬の合成が完結したことを確認してから、130mg(0.24mモル)の1,3-ビス(ジフェニルフォスフィノ)プロパンニッケル(II)クロライドを反応溶液に投入し、次いであらかじめ真空乾燥させた4-ブロモビフェニル(東京化成社製)8.45g(36.2mモル)を固形のまま投入した。さらに1昼夜撹拌を続け、その後8時間の間反応溶液をオイルバス上で加熱し、リフラックスさせた。
【0046】
この後、溶液を氷浴して冷却し、滴下ロートを通して2規定の塩酸25mLを滴下して未反応のグリニヤール試薬をクェンチして合成反応を完了した。生成した沈殿を濾過して後、大量の水・メタノール等量混合液で十分に洗浄して1昼夜乾燥させ、中間体の分子化合物として1.2gの2-(4-ビフェニリル)チオフェン(以下「化E」という)を得た。この2-(4-ビフェニリル)チオフェンは下記の分子構造を有する分子化合物である。
【化9】
Figure 0004657400
【0047】
次いで、このようにして合成した上記の2-(4-ビフェニリル)チオフェン結晶から472.7mg(2mモル)を分取して、20mLのアセトンに溶解させ、一方N-ブロモこはく酸イミド391.6mg(2.2mモル)を10mLのメタノールに溶解させた溶液を前者の溶液中に加えたところ、しばらくして後、白色の沈殿2-(4-ビフェニリル)-5-ブロモチオフェンを生じた。この反応溶液を冷蔵庫に入れ、さらに沈殿の生成を確実にした。この沈殿を濾過して後、大量の水・メタノール等量混合液で十分に洗浄して1昼夜乾燥させ、2-(4-ビフェニリル)-5-ブロモチオフェンの白色結晶(375mg)を得た。
【0048】
さらに、ビス(トリフェニルフォスフィン)ニッケル(II)ジクロリド(東京化成社製)130.8mg(0.2mモル)、テトラブチルアンモニウムヨージド(東京化成製)738.7mg(2mモル)及び亜鉛粉末(和光純薬製)261.6mg(4mモル)を30mLの1口なす型フラスコに投入して、真空に吸引し、ヒートガンで穏やかに加熱して乾燥させた。これに無水のテトラヒドロフラン10mL(同仁化学製、核酸合成用グレード)を加え、撹拌すると液が濃い赤褐色に変化した。
【0049】
この液中に、上に得た2-(4-ビフェニリル)-5-ブロモチオフェン結晶157.6mg(0.5mモル)を固形のまま加えて100℃で約4時間加熱しながら撹拌した。この後、反応液を室温に冷却して2規定の塩酸4mLを加えてよく撹拌し、反応を完結させた。これを大量の塩化メチレンで洗浄し、27mgの黄色結晶、5,5'-ビス(4-ビフェニリル)-2,2'-ビチオフェン(化D)を得た。
【0050】
図5に化Dの赤外スペクトルを示す。図5において、1443.3cm-1の及び794.4cm-1のピークは、それぞれ2,5-ジ置換チオフェン環の環伸縮振動及びCH面外変角振動に帰属される。また、1480.1 cm-1及び1406.4 cm-1のピークは、それぞれ4-ビフェニリル基中のモノ置換ベンゼン環及び1,4-ジ置換ベンゼン環の環伸縮振動に帰属され、757.6 cm-1及び687.5 cm-1のピークは、同じく4-ビフェニリル基中のモノ置換ベンゼン環のCH面外変角振動に帰属される。さらに、831.3cm-1のピークは、4-ビフェニリル基中の1,4-ジ置換ベンゼン環のCH面外変角振動に帰属される。
【0051】
また、図6に化Eの赤外スペクトルを示す。図6において、1424.8cm-1のピークは2-置換チオフェン環の環伸縮振動に帰属される。また、1483.8cm-1及び1406.4 cm-1のピークはそれぞれ4-ビフェニリル基中のモノ置換ベンゼン環及び1,4-ジ置換ベンゼン環の環伸縮振動に帰属され、761.2cm-1及び683.8cm-1のピークは、同じく4-ビフェニリル基中のモノ置換ベンゼン環のCH面外変角振動に帰属される。さらに、820.2cm-1のピークは、4-ビフェニリル基中の1,4-ジ置換ベンゼン環のCH面外変角振動に帰属される。
【0052】
(実施
本発明の分子化合物にはチオフェン環とベンゼン環が交互に配列される化合物があり、実施例として、そのうちの一つの分子化合物(以下「化F」という)の合成方法について説明する。この分子化合物は下記の分子構造を持つ新規化合物である。
【化10】
Figure 0004657400
【0053】
この分子化合物を製造するには、参考例3において合成した2-フェニル-5-ヨードチオフェンから286.1mg(1mモル)を分取し、これを24.3mg(1mモル)のマグネシウムと共に30mLの1口なす型フラスコに投入して、真空に吸引し、ヒートガンで穏やかに加熱して乾燥させた。これに無水のジエチルエーテル10mLを加えて2-フェニル-5-ヨードチオフェンを溶解させ、撹拌しながらグリニヤール試薬を調整した。
【0054】
全てのマグネシウムが反応したことを確認した後、5mgの1,3-ビス(ジフェニルフォスフィノ)プロパンニッケル(II)クロライドを反応溶液に投入し、次いであらかじめ真空乾燥した1,4-ジヨードベンゼン(アルドリッチ社製)132mg(0.4mモル)を固形のまま投入した。さらに1昼夜撹拌を続け、その後8時間の間反応溶液をオイルバス上で加熱し、リフラックスさせた。
【0055】
この後、溶液を氷浴して冷却し、滴下ロートを通して2 規定の塩酸1mL を滴下して未反応のグリニヤール試薬をクェンチして合成反応を完了した。これを濾過して後、大量のアセトンで十分に洗浄して1昼夜乾燥させ、36mgの黄色結晶、1,4-ビス(5-フェニルチオフェン-2-イル)ベンゼン(化F)を得た。
【0056】
図7に化Fの赤外スペクトルを示す。図7において1443.3cm-1及び794.4cm-1のピークは、それぞれ2,5-ジ置換チオフェン環の環伸縮振動及びCH面外変角振動に帰属される。また、1483.8cm-1のピークはモノ置換ベンゼン環の環伸縮振動に帰属され、750.2cm-1及び683.8cm-1のピークは、同じくモノ置換ベンゼン環のCH面外変角振動に帰属される。さらに、831.3cm-1のピークは、1,4-ジ置換ベンゼン環のCH面外変角振動に帰属される。
【0057】
参考例5
チオフェン環とベンゼン環が結合された非対称の化合物として、そのうちの1つの分子化合物(以下「化G」という)の合成方法について説明する。この分子化合物は下記の分子構造を持つ化合物である。
【化11】
Figure 0004657400
【0058】
この分子化合物を製造するには、参考例4で合成した2-(4-ビフェニリル)-5-ブロモチオフェンから31.5mg(0.1mモル)を分取し、2-チオフェンボロニックアシッド(アルドリッチ社製)51.2mg(0.4mモル)と共に三角フラスコに入れ、これにベンゼン10mLを加えて加熱、溶解させ、さらに溶存酸素を除去する目的で30分間窒素ガスをバブルした。
【0059】
この後、テトラキス(トリフェニルフォスフィン)パラジウム(0)(アルドリッチ社製)11.6mg(10μモル)を加え、さらに炭酸ナトリウム(和光純薬製)106mg(1mモル)の水溶液5mLを加えて反応器を窒素置換の状態に保ったまま1昼夜リフラックスした。
この後、反応器を室温に冷却して反応溶液を0.1mLの過酸化水素水でクェンチした。これを水洗後、ロータリーエバポレーターでベンゼンを留去し、20mgの5-(4-ビフェニリル)-2,2'-ビチオフェン(化G)固体を得た。
【0060】
また、図8に化Gの赤外スペクトルを示す。図8において、1428.5cm-1のピークは2-置換チオフェン環の環伸縮振動に帰属される。また、1483.8cm-1及び1406.4 cm-1のピークはそれぞれ4-ビフェニリル基中のモノ置換ベンゼン環及び1,4-ジ置換ベンゼン環の環伸縮振動に帰属され、757.6cm-1及び687.5cm-1のピークは、同じく4-ビフェニリル基中のモノ置換ベンゼン環のCH面外変角振動に帰属される。さらに、831.3cm-1のピークは、4-ビフェニリル基中の1,4-ジ置換ベンゼン環のCH面外変角振動に帰属される。
【0061】
参考例6
チオフェン環とベンゼン環が結合された非対称の分子化合物の他の1つ(以下「化H」という)の合成方法について説明する。この分子化合物は下記の分子構造を持つ化合物である。
【化12】
Figure 0004657400
【0062】
この分子化合物を製造するには、参考例4と同様の方法で、マグネシウム150.6mg(6.2mモル)と2-ヨードチオフェン1.30g(6.2mモル)とからグリニヤール試薬を調整した。
これに20mgの1,3-ビス(ジフェニルフォスフィノ)プロパンニッケル(II)クロライドを反応溶液に投入し、次いで参考例1で調整した2-フェニル-5-ブロモチオフェン1.185g(4.96mモル)をあらかじめ真空乾燥させ、これを上記のグリニヤール試薬の溶液に固形のまま投入した。さらに1昼夜撹拌を続け、その後4時間の間反応溶液をオイルバス上で加熱し、リフラックスさせた。
【0063】
この後、溶液を氷浴して冷却し、滴下ロートを通して2規定の塩酸4mLを滴下して未反応のグリニヤール試薬をクェンチして合成反応を完了した。さらにこの溶液を水、飽和の炭酸水素ナトリウム水溶液及び水を用いて順次洗浄し、無水の塩化カルシウムで乾燥した。これを濾過して後、ロータリーエバポレータでジエチルエーテルを留去し、1.0gの5-フェニル-2,2'-ビチオフェン(化H)固体を得た。
【0064】
また、図9に化Hの赤外スペクトルを示す。図9において、1421.1cm-1のピークは2-置換チオフェン環の環伸縮振動に帰属される。また、1443.3cm-1及び798.1cm-1のピークは、それぞれ2,5-ジ置換チオフェン環の環伸縮振動及びCH面外変角振動に帰属される。また、1491.2cm-1のピークはモノ置換ベンゼン環の環伸縮振動に帰属され、753.9cm-1及び683.8cm-1のピークは、同じくモノ置換ベンゼン環のCH面外変角振動に帰属される。
【0065】
参考例及び実施例
以上の例で説明した化合物が発光材料として有用であることを示すために、以下において、これについて説明する。
【0066】
上記参考例及び実施例からスパチェラで固形試料を数片取り出し、試料管に入れて密栓した。これらの試料管に紫外ランプ(波長365nm)を照射して試料から発せられる蛍光の色調及び輝度を目視で観察した。結果を以下の表1にまとめる。
【0067】
【表1】
Figure 0004657400
【0068】
なお、既知の比較例として、例えばS. Hotta and K. Waragai, J. Mater. Chem. 1, 835 (1991)などに記載のあるオリゴチオフェン化合物がある。これらについても固形試料を試料管に入れて密栓し、これらの試料管に紫外ランプ(波長365nm)を照射して試料から発せられる蛍光の色調及び輝度を目視で観察した。このときのオリゴチオフェン化合物の観察結果を以下の表2にまとめる。
【0069】
なお、化A、化Bおよび化Cは、一般式
【化13】
Figure 0004657400
おいて、m1=m2=1で、nがそれぞれ3、4および5にしたものに対応し、nの数に応じて種々に色調が変化することが分かる。
【0070】
【表2】
Figure 0004657400
【0071】
上記の2つの表を比較して、オリゴチオフェンを用いた発光体は、ある程度の色調の変化がとれるものの、輝度はいずれも本発明の実施例や参考例と比べて劣ることが分かった。
【0072】
参考例8
以下に、化合物としては公知であるが、発光材料として有用であり、しかもこの有用性が報告されていない(或いは知られていない)化合物について、合成方法の概要について説明するとともに発光材料としての特性について記述する。
【0073】
i) 2,5-ジフェニルチオフェンこの分子化合物は下記の分子構造を持つ既知の化合物である。
【化14】
Figure 0004657400
【0074】
この分子化合物を製造するには、参考例1と同様の方法で、ブロモベンゼン298mg(1.90mモル)とマグネシウム46.2mg(1.90mモル)とからグリニヤール試薬を調整した。これに20mgの1,3-ビス(ジフェニルフォスフィノ)プロパンニッケル(II)クロライドを反応溶液に投入し、次いで参考例1で調整した2-フェニル-5-ブロモチオフェン227mg(0.95mモル)をあらかじめ真空乾燥させ、これを上記のグリニヤール試薬の溶液に固形のまま投入した。さらに1昼夜撹拌を続け、その後4時間の間反応溶液をオイルバス上で加熱し、リフラックスさせた。この反応溶液を参考例1と同様に処理して60mgの標記化合物(無色結晶)を得た。
【0075】
ii) 5,5'-ジフェニル-2,2'-ビチオフェンこの分子化合物は下記の分子構造を持つ既知の化合物である。
【化15】
Figure 0004657400
【0076】
この分子化合物を製造するには、マグネシウム24.3mg(1mモル)を30mLの一口なす型フラスコに投入し、強熱下で真空乾燥した。同時に、参考例1で調整した2-フェニル-5-ブロモチオフェン239.1mg(1mモル)を別の30mLの一口なす型フラスコ中で穏やかに加熱しながら真空乾燥した。次いで、この2-フェニル-5- ブロモチオフェンを15mLの無水ジエチルエーテルに溶解させてこれをマグネシウムの入ったフラスコ中に注ぎ、撹拌しながらグリニヤール試薬を調整した。
【0077】
マグネシウムが完全に消滅したのを確認して、10mgの1,3-ビス(ジフェニルフォスフィノ)プロパンニッケル(II)クロライドを反応溶液に投入し、次いであらかじめ真空乾燥させた2-フェニル-5-ブロモチオフェン191.3mg(0.8mモル)を上記のグリニヤール試薬の溶液に固形のまま投入した。さらに1昼夜撹拌を続け、その後4時間の間反応溶液をオイルバス上で加熱し、リフラックスさせた。そして、生成した淡黄色沈殿を濾過し、大量のメタノールで洗浄して175mg の標記化合物を得た。
【0078】
iii) 1,4-ビス(2-チェニル)ベンゼンこの分子化合物は下記の分子構造を持つ既知の化合物である。
【化16】
Figure 0004657400
【0079】
この分子化合物を製造するには、参考例4と同様の方法で、2-ヨードチオフェン761mg(3.62mモル)とマグネシウム88mg(3.62mモル)とからグリニヤール試薬を調整した。これに30mgの1,3-ビス(ジフェニルフォスフィノ)プロパンニッケル(II)クロライドを反応溶液に投入し、次いであらかじめ真空乾燥させた1,4-ジヨードベンゼン(アルドリッチ社製)478mg(1.45mモル)を上記のグリニヤール試薬の溶液に固形のまま投入した。さらに1昼夜撹拌を続け、その後4時間の間反応溶液をオイルバス上で加熱し、リフラックスさせた。そして、生成した沈殿を濾過し、大量の冷メタノールで洗浄して60mgの標記化合物(無色結晶)を得た。
【0080】
iv) 4,4'-ビス(2-チェニル)ビフェニルこの分子化合物は下記の分子構造を持つ既知の化合物である。
【化17】
Figure 0004657400
【0081】
この分子化合物を製造するには、参考例4と同様の方法で、2-ヨードチオフェン8.675g(41.3mモル)とマグネシウム1.004g(41.3mモル)とからグリニヤール試薬を調整した。これに320mg の1,3-ビス(ジフェニルフォスフィノ)プロパンニッケル(II)クロライドを反応溶液に投入し、次いであらかじめ真空乾燥させた4,4'-ジヨードビフェニル(東京化成社製)6.50g(16.0mモル)を上記のグリニヤール試薬の溶液に固形のまま投入した。さらに1昼夜撹拌を続け、その後8時間の間反応溶液をオイルバス上で加熱し、リフラックスさせた。そして、生成した沈殿を濾過し、大量のメタノールとアセトンで洗浄して4.3gの標記化合物(淡黄色結晶)を得た。
次いで、これらの化合物について参考例7と同様の方法で蛍光特性を評価した。結果を以下の表3に示す。
【0082】
【表3】
Figure 0004657400
【0083】
なお、例えば上述のiii)及びiv) の化合物に関してはT. Mitsuhara, K. Kaeriyama, and S. Tanaka, J. Chem. Soc., Chem. Commun. 1987, 764などに合成方法等が開示されている。しかしながら、これらは導電性材料としての応用に関するもので、本発明と用途や目的は全く異なる。
【0084】
また、上記では、紫外ランプの照射による蛍光特性に関してのみ記述し、電界発光特性については言及しなかった。しかしながら、蛍光特性と電界発光特性との間では、発光のスペクトルやメカニズムについて共通するところが多く、これらについては、例えば、D. Braun and A. J. Heeger, Appl. Phys. Lett. 58, 1982 (1991)や筒井哲夫, 応用物理, 66, 109 (1997) 等に関連の記載が見られる。このため、光照射による蛍光特性の評価は、電界発光特性を評価するための簡便かつ実用的な基準となる。それのみならず、本発明の分子化合物および発光材料は、色素レーザの原料としても有効に利用できるものと考えられる。
【0085】
さらに、上記においては、チオフェン環やベンゼン環が置換されていないもののみを扱ったが、これらが適宜アルキル基やアルケニル基、もしくはハロゲン基で置換された化合物も有効に用い得る。また、上記の表1及び表3からも分かるように、上記分子化合物(或いは発光材料)においてチオフェン環及びベンゼン環の合計の個数とその結合順序を変化させることによって様々な色調の光を高輝度で発生させることが可能である。とりわけ、上記実施例において取り上げた分子化合物(化F:これはまた請求項に挙げた分子化合物に属する)のように、チオフェン環とベンゼン環が交互に配列された分子化合物は全般的にみてその輝度がきわめて強い、というよりも、他のチオフェン環及びベンゼン環の結合順序を採った分子化合物よりも抜きん出て強い輝度が得られる傾向が認められた。
【0086】
なお、表1および表3に記載した色調について、例えば「黄」や「黄緑」と同じ語句で表したものにも、分子化合物の違いに応じて微妙な色調の変化や差異が見られる。また、上記分子化合物の複数種を組み合わせ、これに紫外ランプを照射して試料から発せられる蛍光の色調及び輝度を観察するとそれぞれの分子化合物の発光特性に応じて得られた色調が混合(調合)され、さらに微妙な色調の変化を起こさせることも判明した。これにより、所望の色調を自在に実現する優れた発光材料を提供することができるといえる。
なお、本発明の分子化合物および発光材料は、安定なチオフェン環およびベンゼン環から成る分子骨格を有するので、耐環境性などに優れている。このことも本発明の重要な作用、効果の一つである。
【0087】
参考例9
分子両末端にフェニル基を有する化合物(以下化Iという)の合成方法について説明する。この分子化合物は下記の分子構造を持つ化合物である。
【化18】
Figure 0004657400
【0088】
この分子化合物を製造するには、まず、ビチオフェン(アルドリッチ社製)4.29g(25mモル)を40mLのメタノールに溶解させ、この溶液中にN-ヨードこはく酸イミド(アルドリッチ社製)5.92g(25mモル)を溶解させた40mLのメタノール溶液を注いだ。溶液を撹拌しながら、これに1.43mLの酢酸(25mモル)を徐々に滴下すると、しばらくして白色の沈殿を生じた。これを冷蔵庫に入れ4時間静置して沈殿の生成を完結させた後、濾過して白色の沈殿を取り除き、濾液に80mLの水と120mLのジエチルエーテルを加え、これを水、10%水酸化カリウム水溶液および水を用いて順次洗浄し、無水の塩化カルシウムで乾燥した。これを濾過して後、ロータリーエバポレータでジエチルエーテルを留去し、3.7gの5-ヨード-2,2'-ビチオフェンを得た。
【0089】
次に、参考例3に記述した方法で得た2-フェニル-5-ヨードチオフェン結晶、583.9mg(2.04mモル)と49.6mgのマグネシウムとを30mLの1口なす型フラスコに投入して、参考例3と同様に真空に吸引し、ヒートガンで穏やかに加熱して乾燥させた。これに無水のジエチルエーテル10mLを加えて2-フェニル-5-ヨードチオフェンを溶解させ、撹拌しながらグリニヤール試薬を調整した。
【0090】
全てのマグネシウムが反応したことを確認した後、20mgの1,3-ビス(ジフェニルフォスフィノ)プロパンニッケル(II)クロライドを投入し、さらにあらかじめ上に調製し、5mLの無水のジエチルエーテルに溶解させた5-ヨード-2,2'-ビチオフェン397.5mg(1.36mモル)を投入した。
【0091】
これを1昼夜撹拌して後さらに6時間、リフラックスさせ、次いでこれを水浴上で冷却して2規定の塩酸1mLを加え、未反応のグリニヤール試薬をクェンチした。生成した沈殿を濾過し、メタノールでよく洗浄して420mgの黄色結晶(5-フェニル-2,2':5',2"-ターチオフェン;以下化Jという)を得た。この分子化合物は下記の分子構造を持つ化合物である。
【化19】
Figure 0004657400
【0092】
5-フェニル-2,2':5',2"-ターチオフェン(化J)を用いてさらに次の合成を実施した。即ち、上に合成した5-フェニル-2,2':5',2"-ターチオフェン194.7mg(0.6mモル)とN-ヨードこはく酸イミド(アルドリッチ社製)177.6mg(0.75mモル)を20mLの塩化メチレンに溶解させ、これに酢酸43μLを加えて氷浴上、2時間撹拌した。これを濾過して、メタノールで十分に洗浄し、146mg(0.32mモル)の5-フェニル-5"-ヨード-2,2':5',2"-ターチオフェンの黄金色結晶を得た。
【0093】
次いで、ビス(トリフェニルフォスフィン)ニッケル(II)ジクロリド(東京化成社製)84.8mg(0.128mモル)、テトラブチルアンモニウムヨージド(東京化成製)478.9mg(1.28mモル)及び亜鉛粉末(和光純薬製)169.6mg(2.56mモル)を30mLの1口なす型フラスコに投入して、真空に吸引し、ヒートガンで穏やかに加熱して乾燥させた。これに無水のテトラヒドロフラン15mL(同仁化学製、核酸合成用グレード)を加え、撹拌すると液が濃い赤褐色に変化した。
【0094】
この液中に、上に得た5-フェニル-5"-ヨード-2,2':5',2"-ターチオフェン結晶146mg(0.32mモル)を固形のまま加えて100℃で約7時間加熱しながら撹拌した。この後、反応液を室温に冷却して2規定の塩酸3mLを加えてよく撹拌し、反応を完結させた。これを大量の塩化メチレンで洗浄し、20mgの赤色結晶、5,5""'-ジフェニル-2, 2':5',2":5",2'":5'",2"":5"",2""'-セクシチオフェン(化I)を得た。
【0095】
図10に化Iの赤外スペクトルを示す。図10において、1441.8cm-1のピーク及び792.5cm-1のピークは、それぞれ2,5-ジ置換チオフェン環の環伸縮振動及びCH面外変角振動に帰属される。また、1488.0cm-1のピークはモノ置換ベンゼン環の環伸縮振動に帰属され、750.3cm-1及び686.0cm-1のピークは、同じくモノ置換ベンゼン環のCH面外変角振動に帰属される。
【0096】
また、図11に化Jの赤外スペクトルを示す。図11において、1447.0cm -1 および1424.7cm-1のピークはそれぞれ、2,5-ジ置換チオフェン環および2-置換チオフェン環の環伸縮振動に帰属される。また、1488.9cm-1のピークはモノ置換ベンゼン環の環伸縮振動に帰属され、751.7cm-1及び684.7cm-1のピークは、同じくモノ置換ベンゼン環のCH面外変角振動に帰属される。
【0097】
参考例10
分子両末端にビフェニリル基を有する化合物(以下化Kという)の合成方法について説明する。この分子化合物は下記の分子構造を持つ化合物である。
【化20】
Figure 0004657400
【0098】
この分子化合物を製造するには、2,5-ジヨードチオフェン(アルドリッチ社製)335.9mg(1mモル)、4-ビフェニルボロニックアシッド(ランカスター社製)792.1mg(4mモル)およびテトラキス(トリフェニルフォスフィン)パラジウム(0)(アルドリッチ社製)138.7mg(120μモル)を共に300mLの三角フラスコに入れ、これにベンゼン80mLを加えて加熱、溶解させ、さらに溶存酸素を除去する目的で30分間窒素ガスをバブルした。
この後、炭酸ナトリウム(和光純薬製)848mg(8mモル)の水溶液5mLを加えて反応器を窒素置換の状態に保ったまま6時間リフラックスした。この後、反応器を氷浴して反応溶液を1mLの過酸化水素水でクェンチした。反応溶液を濾過して得られた淡黄色沈殿をメタノールで十分に洗浄し、393mgの2,5-ビス(4-ビフェニリル)チオフェン(化K)固体を得た。
【0099】
図12に化Kの赤外スペクトルを示す。図12において、1445.9cm-1のピーク及び800.7cm-1のピークは、それぞれ2,5-ジ置換チオフェン環の環伸縮振動及びCH面外変角振動に帰属される。また、1484.9cm-1及び1409.0cm-1のピークは、それぞれ4-ビフェニリル基中のモノ置換ベンゼン環及び1,4-ジ置換ベンゼン環の環伸縮振動に帰属される。さらに、759.9cm-1及び687.1cm-1のピークは、同じく4-ビフェニリル基中のモノ置換ベンゼン環のCH面外変角振動に帰属され、839.4cm-1のピークは、4-ビフェニリル基中の1,4-ジ置換ベンゼン環のCH面外変角振動に帰属される。
【0100】
参考例11
分子両末端にビフェニリル基を有するもうひとつの化合物(以下化Lという)の合成方法について説明する。この分子化合物は下記の分子構造を持つ化合物である。
【化21】
Figure 0004657400
【0101】
この分子化合物を製造するために、参考例3の方法で合成した5,5"-ジヨード-2,2':5',2"-ターチオフェン125.0mg(0.25mモル)、4-ビフェニルボロニックアシッド(ランカスター社製)198.0mg(1mモル)およびテトラキス(トリフェニルフォスフィン)パラジウム(0)(アルドリッチ社製)34.7mg(30μモル)を共に50mLの三角フラスコに入れ、これに1,2,4-トリクロロベンゼン20mLを加えて加熱、溶解させ、さらに溶存酸素を除去する目的で30分間窒素ガスをバブルした。
この後、炭酸ナトリウム(和光純薬製)212mg(2mモル)の水溶液5mLを加えて反応器を窒素置換の状態に保ったまま80℃で1昼夜撹拌した。この後、反応器を氷浴して反応溶液を0.5mLの過酸化水素水でクェンチした。反応溶液を濾過して得られた黄金色沈殿をアセトンで十分に洗浄し、130mgの5,5"-ビス(4-ビフェニリル) -2,2':5',2"-ターチオフェン(化L)固体を得た。
【0102】
図13に化Lの赤外スペクトルを示す。図13において、1442.1cm-1及び792.5cm-1のピークは、それぞれ2,5-ジ置換チオフェン環の環伸縮振動及びCH面外変角振動に帰属される。また、1484.4cm-1及び1408.4cm-1のピークは、それぞれ4-ビフェニリル基中のモノ置換ベンゼン環及び1,4-ジ置換ベンゼン環の環伸縮振動に帰属される。さらに、760.8cm-1及び688.7cm-1のピークは、同じく4-ビフェニリル基中のモノ置換ベンゼン環のCH面外変角振動に帰属され、835.1cm-1のピークは、4-ビフェニリル基中の1,4-ジ置換ベンゼン環のCH面外変角振動に帰属される。
【0103】
参考例12
分子両末端にビフェニリル基を有するさらに別の化合物(以下化Mという)の合成方法について説明する。この分子化合物は下記の分子構造を持つ化合物である。
【化22】
Figure 0004657400
【0104】
この分子化合物を製造するには、参考例5において得られた5-(4-ビフェニリル)-2,2'-ビチオフェン(化G)を用いる。即ち、5-(4-ビフェニリル)-2,2'-ビチオフェン318.5mg(1mモル)とN-ヨードこはく酸イミド(アルドリッチ社製)296.0mg(1.25mモル)を50mLの塩化メチレンに溶解させ、これに酢酸72μLを加えて氷浴上、2時間撹拌した。生成した沈殿を濾過して、メタノールで十分に洗浄し、293mg(0.66mモル)の5-(4-ビフェニリル)-5'-ヨード-2,2'-ビチオフェンの黄色結晶を得た。
【0105】
次いで、ビス(トリフェニルフォスフィン)ニッケル(II)ジクロリド(東京化成社製)172.5mg(0.264mモル)、テトラブチルアンモニウムヨージド(東京化成製)974.2mg(2.64mモル)及び亜鉛粉末(和光純薬製)344.9mg(5.28mモル)を30mLの1口なす型フラスコに投入して、真空に吸引し、ヒートガンで穏やかに加熱して乾燥させた。これに蒸留したテトラヒドロフラン15mLを加え、撹拌すると液が濃い赤褐色に変化した。
この液中に、上に得た5-(4-ビフェニリル)-5'-ヨード-2,2'-ビチオフェン結晶293mg(0.66mモル)を固形のまま加えて80℃で約27時間加熱しながら撹拌した。この後、反応液を室温に冷却して2規定の塩酸6mLを加えてよく撹拌し、反応を完結させた。これを大量の塩化メチレンで洗浄し、120mgの橙色結晶、(5,5'"-ビス(4-ビフェニリル)-2,2':5',2":5",2'"-クォータチオフェン;化M)を得た。
【0106】
図14に化Mの赤外スペクトルを示す。図14において、1441.4cm-1のピーク及び792.2cm-1のピークは、それぞれ2,5-ジ置換チオフェン環の環伸縮振動及びCH面外変角振動に帰属される。また、1484.7cm-1及び1407.9cm-1のピークは、それぞれ4-ビフェニリル基中のモノ置換ベンゼン環及び1,4-ジ置換ベンゼン環の環伸縮振動に帰属される。さらに、759.7cm-1及び688.4 cm-1のピークは、同じく4-ビフェニリル基中のモノ置換ベンゼン環のCH面外変角振動に帰属され、833.8cm-1のピークは、4-ビフェニリル基中の1,4-ジ置換ベンゼン環のCH面外変角振動に帰属される。
【0107】
参考例13
分子両末端にトリル基を有する化合物(以下化Nという)の合成方法について説明する。この分子化合物は下記の分子構造を持つ化合物である。
【化23】
Figure 0004657400
【0108】
この分子化合物を製造するには、参考例2の方法で合成した5,5'-ジヨード-2,2'-ビチオフェン418.1mg(1mモル)、4-メチルベンゼンボロニックアシッド(ランカスター社製)543.8mg(4mモル)およびテトラキス(トリフェニルフォスフィン)パラジウム(0)(アルドリッチ社製)138.7mg(120μモル)を共に300mLの三角フラスコに入れ、これにベンゼン80mLを加えて加熱、溶解させ、さらに溶存酸素を除去する目的で30分間窒素ガスをバブルした。
この後、炭酸ナトリウム(和光純薬製)848mg(8mモル)の水溶液5mLを加えて反応器を窒素置換の状態に保ったまま2昼夜室温下で撹拌した。この後、反応器を氷浴して反応溶液を1mLの過酸化水素水でクェンチした。反応溶液を濾過して得られた黄色沈殿をメタノールで十分に洗浄し、305mgの5,5'-ビス(4-トリル)-2,2'-ビチオフェン(化N)固体を得た。
【0109】
図15に化Nの赤外スペクトルを示す。図15において、1447.9cm-1のピーク及び797.5cm-1のピークは、それぞれ2,5-ジ置換チオフェン環の環伸縮振動及びCH面外変角振動に帰属される。また、1499.1cm-1のピークおよび818.4cm-1のピークは、それぞれ4-トリル基の環伸縮振動およびCH面外変角振動に帰属される。
【0110】
参考例14
分子両末端にナフチル基を有する化合物(以下化Oという)の合成方法について説明する。この分子化合物は下記の分子構造を持つ化合物である。
【化24】
Figure 0004657400
【0111】
この分子化合物を製造するために、参考例2の方法で合成した5,5'-ジヨード-2,2'-ビチオフェン209mg(0.5mモル)、2-ナフタレンボロニックアシッド(ランカスター社製)344mg(2mモル)およびテトラキス(トリフェニルフォスフィン)パラジウム(0)(アルドリッチ社製)69.3mg(60μモル)を共に50mLの三角フラスコに入れ、これにクロロベンゼン20mLを加えて加熱、溶解させ、さらに溶存酸素を除去する目的で30分間窒素ガスをバブルした。
この後、炭酸ナトリウム(和光純薬製)424mg(4mモル)の水溶液5mLを加えて反応器を窒素置換の状態に保ったまま80°Cで6時間、撹拌した。この後、反応器を氷浴して反応溶液を0.5mLの過酸化水素水でクェンチした。反応溶液を濾過して得られた黄色沈殿をアセトンで十分に洗浄し、190mgの5,5'-ビス(2-ナフチル)-2,2'-ビチオフェン(化O)固体を得た。
【0112】
図16に化Oの赤外スペクトルを示す。図16において、144.1cm-1のピーク及び794.9 cm-1のピークは、それぞれ2,5-ジ置換チオフェン環の環伸縮振動及びCH面外変角振動に帰属される。また、1594.9cm-1及び1497.6cm-1のピークは2-ナフチル基の環伸縮振動に帰属され、741.8cm-1及び857.0cm-1のピークは、同じく2-ナフチル基のCH面外変角振動に帰属される。
【0113】
参考例15
分子両末端にナフチル基を有する、もう一つの化合物(以下化Pという)の合成方法について説明する。この分子化合物は下記の分子構造を持つ化合物である。
【化25】
Figure 0004657400
【0114】
この分子化合物を製造するために、参考例3の方法で合成した5,5"-ジヨード-2,2':5',2"-ターチオフェン125.0mg(0.25mモル)、2-ナフタレンボロニックアシッド(ランカスター社製)172.0mg(1mモル)およびテトラキス(トリフェニルフォスフィン)パラジウム(0)(アルドリッチ社製)34.7mg(30μモル)を共に50mLの三角フラスコに入れ、これに1,2,4-トリクロロベンゼン20mLを加えて加熱、溶解させ、さらに溶存酸素を除去する目的で30分間窒素ガスをバブルした。
この後、炭酸ナトリウム(和光純薬製)212mg(2mモル)の水溶液5mLを加えて反応器を窒素置換の状態に保ったまま80°Cで1昼夜撹拌した。この後、反応器を氷浴して反応溶液を0.5mLの過酸化水素水でクェンチした。反応溶液を濾過して得られた黄金色沈殿をアセトンで十分に洗浄し、80mgの5,5"-ビス(2-ナフチル) -2,2':5',2"-ターチオフェン(化P)固体を得た。
【0115】
図17に化Pの赤外スペクトルを示す。図17において、1438.5cm-1のピーク及び791.8cm-1のピークは、それぞれ2,5-ジ置換チオフェン環の環伸縮振動及びCH面外変角振動に帰属される。また、1595.2cm-1及び1497.9cm-1のピークは2-ナフチル基の環伸縮振動に帰属され、741.5cm-1及び859.7cm-1のピークは、同じく2-ナフチル基のCH面外変角振動に帰属される。
【0116】
参考例16
以上の例で説明した化合物に関して元素分析を行い、かつ融点を測定した。これらの結果を表4にまとめる。
【0117】
【表4】
Figure 0004657400
【0118】
参考例17
以上の例で説明した化合物が発光材料として有用であることについて説明する。
記例において合成した化合物固体からスパチェラで固形試料を数片取り出し、試料管に入れて密栓した。これらの試料管に紫外ランプ(波長365nm)を照射して試料から発せられる蛍光の色調及び輝度を目視で観察した。結果を以下の表5にまとめる。
【0119】
【表5】
Figure 0004657400
【0120】
続いて、以下に上記分子化合物を有機電界発光素子に応用した例について説明する。
参考例18
透明なガラス基板上に透明電極としてインジウム錫酸化物(ITO)をあらかじめ形成したものを充分に洗浄した。真空蒸着装置内に洗浄した基板および材料をセットし10-4Paまで排気した。その後、正孔輸送層としてN,N'-ジフェニル-N,N'-ビス(3-メチルフェニル)-1,1'-ビフェニ-4,4'-ジアミン(以下TPDと略する)を抵抗加熱蒸着法により、50nmに製膜した。続けて、発光層として化Bからなる厚さ50nmの薄膜を製膜した。さらに、電極としてマグネシウム/銀電極を蒸着して有機電界発光素子とした。
得られた素子に電圧を印加したところ、573nmにピークを有する黄色の均一な発光が得られた。100cd/m2のときの効率は0.5 lm/Wであった。
【0121】
参考例19
発光層として化Cを用いた以外は参考例18と同様にして有機電界発光素子を作製した。得られた素子に電圧を印加したところ、603nmにピークを有する橙色の均一な発光が得られた。
【0122】
参考例20
透明なガラス基板上に透明電極としてインジウム錫酸化物をあらかじめ形成したものを充分に洗浄した。真空蒸着装置内に洗浄した基板および材料をセットし10-4Paまで排気した。その後、正孔輸送層としてTPDを抵抗加熱蒸着法により50nmに製膜した。続けて、発光層として化Bからなる厚さ25nmの薄膜を製膜した後、電子輸送層としてトリス(8-ヒドロキシキノリン)アルミニウム(以下Alqと略する)を同様に25nmに製膜した。さらに、電極としてマグネシウム/銀電極を蒸着して有機電界発光素子とした。
得られた素子に電圧を印加したところ、570nmにピークを有する黄色の均一な発光が得られた。
【0123】
参考例21
発光層として化Cを用いた以外は参考例20と同様にして有機電界発光素子を作製した。得られた素子に電圧を印加したところ、602nmにピークを有する橙色の均一な発光が得られた。
【0124】
参考例22
透明なガラス基板上に透明電極としてITOをあらかじめ形成したものを充分に洗浄した。真空蒸着装置内に洗浄した基板および材料をセットし10-4Paまで排気した。その後、正孔輸送層としてTPDを抵抗加熱蒸着法により50nmに製膜した。続けて化BとAlqの混合膜を共蒸着法により25nm厚に作製し、発光層とした。Alqに対する化Bの濃度は1mol%とした。続いて、電子輸送層としてAlqを25nm厚に蒸着した。さらに電極としてマグネシウム/銀電極を蒸着して有機電界発光素子とした。
得られた素子に電圧を印加したところ、508nmと540nmにピークを有する緑色の均一な発光が得られた。100cd/m2のときの効率は2.5 lm/Wであった。この素子を初期輝度1000cd/m2で連続駆動したところ、輝度が初期輝度の半分である500cd/m2になるまでの時間(以後、輝度半減時間と呼ぶ)は100hであった。
【0125】
参考例23
発光層としてAlqと化Cの混合膜を用いた以外は参考例22と同様にして有機電界発光素子を作製した。得られた素子に電圧を印加したところ、538nmと568nmにピークを有する黄色の均一な発光が得られた。100cd/m2のときの効率は4.0 lm/Wであった。
この素子を初期輝度1000cd/m2で連続駆動したところ、輝度半減時間は120hであった。
【0126】
(比較例)
なお、比較例としてITOをあらかじめ形成したガラス基板上に正孔輸送層としてTPDを50nm、発光層兼電子輸送層としてAlqを抵抗加熱法により50nm厚に製膜し、ついでマグネシウム/銀電極を蒸着した有機電界発光素子を作製した。この素子に電圧を印加したところ、530nmにピークを有する緑色の均一な発光が得られた。100cd/m2のときの効率は1.5 lm/Wであった。この素子を初期輝度1000cd/ m2で連続駆動したところ、輝度半減時間は25hであった。
【0127】
参考例18〜23からも分かるように、本発明による有機電界発光素子を用いて多色化が容易に達成され、とくに他の分子化合物と複合化させることを通して、従来の素子に比べてより高効率で長期的に安定な動作特性を保つ素子を容易に実現できることが明らかとなった。
【0128】
【発明の効果】
以上説明したように、本発明によれば、発光色の制御を行なうことと効率がよく、輝度の高い発光を実現することを容易に両立させることのできる分子化合物及び発光材料を提供する。
また、本発明に係る分子化合物は、チオフェン環とベンゼン環とが直接に結合することを特徴とし、幅広い発光を高い効率で実現することが可能になる。
したがって、化学工業及び電子工業の分野で利用し得る新規の機能性分子化合物およびそれらを用いた、効率がよく輝度の高い発光材料を提供することができるという効果が得られる。
【0129】
また、本発明に関する分子化合物を発光材料として用いる場合、その形態は固体では粉末や薄膜あるいは適当なマトリクス中に分散させた形態などが可能である。液体においても、溶液、懸濁液などの種々の形態が考えられる。これらいずれの場合においても、発光材料として優れた効果を発揮する。
【図面の簡単な説明】
【図1】本発明による有機発光素子の概略構成を示す断面図である。
【図2】参考例1にかかる分子化合物(化A)の赤外スペクトルを示す図である。
【図3】参考例2にかかる分子化合物(化B)の赤外スペクトルを示す図である。
【図4】参考例3にかかる分子化合物(化C)の赤外スペクトルを示す図である。
【図5】参考例4にかかる分子化合物(化D)の赤外スペクトルを示す図である。
【図6】参考例4において中間体として得られた分子化合物(化E)の赤外スペクトルを示す図である。
【図7】本発明の実施例にかかる分子化合物(化F)の赤外スペクトルを示す図である。
【図8】参考例5にかかる分子化合物(化G)の赤外スペクトルを示す図である。
【図9】参考例6にかかる分子化合物(化H)の赤外スペクトルを示す図である。
【図10】参考例9にかかる分子化合物(化I)の赤外スペクトルを示す図である。
【図11】参考例9において中間体として得られた分子化合物(化J)の赤外スペクトルを示す図である。
【図12】参考例10にかかる分子化合物(化K)の赤外スペクトルを示す図である。
【図13】参考例11にかかる分子化合物(化L)の赤外スペクトルを示す図である。
【図14】参考例12にかかる分子化合物(化M)の赤外スペクトルを示す図である。
【図15】参考例13にかかる分子化合物(化N)の赤外スペクトルを示す図である。
【図16】参考例14にかかる分子化合物(化O)の赤外スペクトルを示す図である。
【図17】参考例15にかかる分子化合物(化P)の赤外スペクトルを示す図である。
【符号の説明】
1 ガラス基板
2 陽極(透明電極)
3 正孔輸送層
4 発光層
5 電子輸送層
6 陰極(上部電極)[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a novel functional molecular compound that can be used in the fields of the chemical industry and the electronics industry, and its application technology as a luminescent material.
[0002]
[Prior art]
  Conventionally, organic electroluminescent (EL) devices using functional organic materials have been proposed. Since then, various materials have been developed for the purpose of improving the luminous efficiency of organic electroluminescent devices and controlling the emission color. Has reached. The description about these can be found in documents such as C.W. Tang, S.A. VanSlyke, and C.H. Chen, J. Appl. Phys. 65, 3610 (1989).
[0003]
[Problems to be solved by the invention]
  However, the performance of organic EL devices using materials developed so far is still insufficient for practical use. The main reason for this is that the emission color is controlled by the molecular compounds that make up the functional organic materials (low molecular, oligomeric molecules and high polymers in general), and the molecular compounds are used to achieve high efficiency and high brightness. For example, it was difficult to achieve both the effects of emitting light. That is, in conventional materials, for example, aluminoquinoline-based low molecular weight compounds that are widely used can emit light with high efficiency and high brightness relatively easily, but it is difficult to control the emission color. It has been difficult to achieve high-efficiency and high-luminance emission with respect to a compound that is relatively easy to control the emission color by changing the conjugate length of the electron system.
[0004]
  To solve these problems, novel molecular compounds combining oligothiophene and triphenylamine segments have been proposed (Tetsuya Noda, Hiromitsu Ogawa, Naoki Noma, Yasuhiko Shirota, The Chemical Society of Japan, 74th Spring Year Meeting, Lecture Proceedings I, 129, 1998), the goal is not fully achieved.
[0005]
  Regarding these circumstances, in addition to the above-mentioned Tang et al. Document, for example, S. Hotta, in Handbook of Organic Conductive Molecules and Polymers (Ed.HS Nalwa), John Wiley & Sons, Chichester, 1997, Vol. 2, Chapter 8 Related entries can be found in Yatsuo Ogura, Hiroyuki Yauchi, Motohiro Akame, Satoshi Tanaka, Tatsuo Fukuda, The 74th Annual Meeting of the Chemical Society of Japan, Proceedings I, page 129, 1998, etc.
[0006]
  The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a molecular compound that can control the emission color relatively easily and can realize high-efficiency and high-luminance emission. It is to provide a light emitting material and a light emitting element using them.
[0007]
[Means for Solving the Problems]
  In the present invention, it is possible to easily achieve both of these problems to solve these problems and to control the emission color and to realize light emission with high efficiency and high luminance.MinuteChild compounds and luminescent materials using themThe
[0008]
DETAILED DESCRIPTION OF THE INVENTION
  Minutes of the present inventionChild compoundIs the minuteChild structure,
[Chemical 3]
Figure 0004657400
(However, R1 and R2 are any one of hydrogen, an alkyl group, an alkenyl group, and a halogen group, and n and m are1is there. )Ri, chiBy alternately arranging offen rings and benzene rings, it has the effect of realizing a light emitting material that emits light with high brightness.
[0009]
  Luminescent material of the present inventionForThe molecular structure of the molecular compound
[Formula 4]
Figure 0004657400
(However, R1 and R2 are any one of hydrogen, an alkyl group, an alkenyl group, and a halogen group, and n and m are both1is there. )Ri, chiBy arranging the offene ring and the benzene ring alternately, it has the function of being able to emit light with high brightness.
[0010]
  The present inventionThe organic electroluminescent element ofIn an organic electroluminescent element having at least a light emitting layer sandwiched between a pair of electrodes, the light emitting layer isMinutes of the present inventionOrganic electroluminescent device characterized in that it contains an organic compound. By using a material that can easily change its color tone and has a high fluorescence yield for the light emitting layer, it is easy to achieve multiple colors, and the luminous efficiency of the device. Has the effect of improving.
[0011]
  The present inventionOther organic electroluminescent elements areIn an organic electroluminescent device having at least a light emitting layer sandwiched between a pair of electrodes, the light emitting layerThe minutes of the present inventionAn electroluminescent device characterized in that it is a complex composed of a child compound and a molecular compound other than these, and further realizes various emission colors, and at the same time maintains more efficient and stable operating characteristics over the long term. It has the effect of realizing the element. The complex here includes a mixture of two or more kinds of molecular compounds, a substance obtained by dispersing (doping) other kinds of molecular compounds in a host molecular compound, and further from these molecular compounds. And the like in which appropriate layers are laminated.
[0012]
  Next, the electroluminescent device according to the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing a schematic configuration of an organic electroluminescent device according to the present invention. In the organic electroluminescent device shown in FIG. 1, an anode (transparent electrode) 2 is formed on a glass substrate 1, and a hole transport layer 3, a light emitting layer 4, an electron transport layer 5 and an upper electrode 6 are formed thereon. It is formed in a stacked state in order. The light emitting layer 4 can also serve as the hole transport layer 3 or the electron transport layer 5. Alternatively, a new layer can be inserted as necessary. Specific examples include a hole injection layer inserted between the transparent electrode 2 and the hole transport layer 3, a hole blocking layer inserted between the light emitting layer 4 and the electron transport layer 5, and an electron transport layer 5. And an electron injection layer inserted between the cathode (upper electrode) 6 and the like. Furthermore, the light emitting layer 4 can have a stacked structure, and a plurality of light emitting layers can emit light simultaneously.
[0013]
  The light emitting layer 4 is usually formed by a vacuum vapor deposition method by resistance heating, but it is also possible to form a film dispersed in a polymer such as polycarbonate by a spin coating method or the like. The thickness of the light emitting layer is usually 10 nm (nanometers) or more, but a more desirable range is usually selected in the range of 20 nm to 300 nm.
[0014]
  According to the present inventionMinuteThe child compound can be used as a material constituting the light emitting layer.The otherIt is also easy to use in combination with known molecular compounds, and it is possible to obtain various luminescent colors such as white.
[0015]
  For example, the molecular compound according to the present invention can be dispersed in a suitable host material and used as a dopant. Examples of the host material in this case include quinolinol metal complexes, oxazole derivatives, thiazole derivatives, imidazole derivatives, styryl derivatives, distyrylarylene derivatives, coumarin derivatives, butadiene derivatives, and triphenylamine derivatives. The doping concentration is preferably 0.1 to 10 mol%.
[0016]
  Furthermore, the light emitting layer can be formed by dispersing another light emitting material using the molecular compound according to the present invention as a host material. Examples of the dopant in this case include quinacridone derivatives, coumarin derivatives, styryl derivatives, condensed polycyclic aromatic compounds, quinolinol derivatives and the like. Although the concentration of doping depends on the dopant used, 0.05 to 5 mol% is desirable.
[0017]
  Next, the present inventionThe fruitA method for synthesizing novel molecular compounds according to the examples and evaluation of these molecular compounds as light emitting materials will be described with reference to the drawings.
[0018]
  (Reference example1)
  moleculeA method for synthesizing a molecular compound having phenyl groups at both ends (hereinafter referred to as “Chemical Formula A”) will be described. This molecular compound has the following molecular structure:FertilizationIt is a compound.
[Chemical formula 5]
Figure 0004657400
[0018]
  In order to produce this molecular compound, first, 4.62 g (0.19 mol) of magnesium was added to a 500 mL (milliliter) three-necked flask, the three-necked flask was sucked into vacuum, and ignited with a heat gun and dried. Add 100 mL of anhydrous diethyl ether (manufactured by Wako Pure Chemical Industries, Ltd.) and stir well. 50 mL of anhydrous diethyl ether solution in which 29.8 g (0.19 mol) of bromobenzene (manufactured by Tokyo Chemical Industry) was further dissolved in this solution. Was dropped through a dropping funnel.
[0019]
  Stirring was continued, and after the reaction solution began to reflux due to the exotherm caused by the insertion reaction of magnesium into bromobenzene, the solution was bathed in an ice bath so that the rate of the magnesium insertion reaction was maintained appropriately.
[0020]
  After confirming that all the magnesium had reacted to complete the synthesis of the Grignard reagent, reacted with 542 mg (1 mmol) of 1,3-bis (diphenylphosphino) propanenickel (II) chloride (manufactured by Strem) Then, 50 mL of a diethyl ether solution in which 26.1 g (0.16 mol) of 2-bromothiophene was dissolved was dropped through a dropping funnel. Stirring was continued for another day and night, and the reaction solution was heated on an oil bath for 6 hours to be refluxed. Thereafter, the solution was cooled in an ice bath, and 100 mL of 2N hydrochloric acid was added dropwise through a dropping funnel to quench the unreacted Grignard reagent to complete the synthesis reaction. Further, this solution was washed successively with water, a saturated aqueous sodium hydrogen carbonate solution and water, and dried over anhydrous calcium chloride. Filter thisTheThereafter, diethyl ether was distilled off with a rotary evaporator to obtain 26.9 g of 2-phenylthiophene solid.
[0021]
  Next, 3.21 g (20 mmol) of 2-phenylthiophene synthesized in this manner was dissolved in 20 mL of methanol, while 3.92 g (22 mmol) of N-bromosuccinimide (manufactured by Wako Pure Chemical Industries, Ltd.) When the solution dissolved in methanol was added to the former solution, a white precipitate (2-phenyl-5-bromothiophene) was immediately formed. This reaction solution was placed in the refrigerator to further ensure precipitation. This precipitate was filtered, washed thoroughly with a large amount of a mixed solution of water and methanol, and dried for one day to obtain white crystals (2.4 g) of 2-phenyl-5-bromothiophene.
[0022]
  As the next step, 239.1 mg (1 mmol) was taken from the above 2-phenyl-5-bromothiophene crystal, put into a 30 mL one-necked flask with 24.3 mg of magnesium, and sucked in vacuum. Then, it was dried by gently heating with a heat gun. To this was added 10 mL of anhydrous diethyl ether to dissolve 2-phenyl-5-bromothiophene, and a Grignard reagent was prepared while stirring.
[0023]
  After confirming that all of the magnesium had reacted, 10 mg of 1,3-bis (diphenylphosphino) propanenickel (II) chloride was added to the reaction solution, and dried in advance. A solution in which 134.4 mg (0.4 mmol) of iodothiophene was dissolved in 5 mL of anhydrous diethyl ether was mixed.
[0024]
  A yellow precipitate (5,5 "-diphenyl-2,2 ': 5', 2" -terthiophene; Compound A) formed immediately upon mixing. The mixture was stirred for one day and then refluxed for another 6 hours, then cooled on a water bath, 1 mL of 2N hydrochloric acid was added, and unreacted Grignard reagent was quenched. This was filtered, and the precipitate was washed well with acetone to obtain 140 mg of yellow crystals (5,5 "-diphenyl-2,2 ': 5', 2" -terthiophene; Compound A).
[0025]
  FIG. 2 shows an infrared spectrum of Chemical A. In FIG. 2, 1439.6cm-1And 790.7cm-1Are attributed to the ring stretching vibration and CH out-of-plane bending vibration of the 2,5-disubstituted thiophene ring, respectively. Moreover, 1483.8cm-1The peak of is attributed to the ring stretching vibration of the mono-substituted benzene ring, 750.2 cm-1And 683.8cm-1The peak of is also attributed to the CH out-of-plane bending vibration of the mono-substituted benzene ring.
[0026]
  In this example and the following examples, the spectrum is obtained by separating several solid pieces from a sample obtained by recrystallizing the above crystals from an appropriate solvent, and pulverizing and dispersing them in potassium bromide. Then, the pressure-molded tablets were measured using an infrared spectrophotometer (Perkin Elmer System 2000FT-IR).
[0027]
  (Reference example 2)
  moleculeA method for synthesizing another molecular compound having a phenyl group at both ends (hereinafter referred to as “Chemical Formula B”) will be described. This molecular compound has the following molecular structure:FertilizationIt is a compound.
[Chemical 6]
Figure 0004657400
[0028]
  To make this molecular compound,Reference example 1239.1 mg (1 mmol) was fractionated from 2-phenyl-5-bromothiophene crystals synthesized inReference example 1In the same manner as above, it was put into a 30 mL one-necked flask together with 24.3 mg of magnesium, sucked in vacuum, and gently heated with a heat gun to dry. To this was added 10 mL of anhydrous diethyl ether to dissolve 2-phenyl-5-bromothiophene, and a Grignard reagent was prepared while stirring.
[0029]
  After confirming that all of the magnesium had reacted, nitrogen gas was blown to evaporate diethyl ether. Next, 10 mL of anhydrous anisole (manufactured by Aldrich) was added thereto, and then 10 mg of 1,3-bis (diphenylphosphino) propanenickel (II) chloride was added, and the mixture was further adjusted in advance and vacuum-dried 5,5 167 mg (0.4 mmol) of '-diiodo-2,2'-bithiophene was charged as a solid.
[0030]
  This was stirred for one day and then heated to 100 ° C. for another 6 hours, then cooled on a water bath, 1 mL of 2N hydrochloric acid was added, and the unreacted Grignard reagent was quenched. This was filtered, and the precipitate was washed well with acetone to give 20 mg of orange crystals (5,5 '"-diphenyl-2,2': 5 ', 2": 5 ", 2'"-quaterthiophene; chemical B) Got.
[0031]
  The method for adjusting 5,5′-diiodo-2,2′-bithiophene is as follows. Bithiophene (Aldrich) 1.663 g (10 mmol) was dissolved in 100 mL of methanol, and N-iodosuccinimide (Aldrich) 4.95 g (22 mmol) was dissolved in this solution. Poured. While stirring the solution, 1.87 mL of concentrated hydrochloric acid (22 mmol) was gradually added dropwise thereto, and a white precipitate was formed and the reaction solution became viscous. 50 mL of methanol was added. Further, after stirring for 2 hours, 3.06 mL of aqueous ammonia (22 mmol) was added dropwise to complete the reaction. This was filtered, and the resulting precipitate was washed with a large amount of water and vacuum-dried overnight to obtain 2.0 g of colorless crystals (5,5′-diiodo-2,2′-bithiophene).
[0032]
  FIG. 3 shows an infrared spectrum of Chemical B. In FIG. 3, 1439.6cm-1And 790.7cm-1Are attributed to the ring stretching vibration and CH out-of-plane bending vibration of the 2,5-disubstituted thiophene ring, respectively. Moreover, 1487.5cm-1The peak of is attributed to the ring stretching vibration of the mono-substituted benzene ring, 746.5cm-1And 683.8 cm-1The peak of is also attributed to the CH out-of-plane bending vibration of the mono-substituted benzene ring.
[0033]
  (Reference example 3)
  moleculeA method for synthesizing another molecular compound having a phenyl group at both ends (hereinafter referred to as “Chemical C”) will be described. This molecular compound has the following molecular structure:PossessionIt is a compound.
[Chemical 7]
Figure 0004657400
[0034]
  To make this molecular compound,Reference example 11.60 g (10 mmol) was fractionated from the 2-phenylthiophene crystal synthesized in 1) and placed in an Erlenmeyer flask together with 4.50 g (20 mmol) of N-iodosuccinimide (Aldrich), and 10 mL of methanol was added to it. In addition, it was dissolved. To this, 1.14 mL (20 mmol) of acetic acid was further added and stirred, and a white precipitate was formed after a while. This was placed in the refrigerator to further ensure precipitation. The precipitate was filtered, washed thoroughly with a large amount of a mixed solution of water and methanol, and dried for one day to obtain white crystals (2.5 g) of 2-phenyl-5-iodothiophene.
[0035]
  As the next step, 286.1 mg (1 mmol) was taken from the above 2-phenyl-5-iodothiophene crystals and put into a 30 mL one-necked flask together with 24.3 mg (1 mmol) of magnesium. The mixture was sucked into a vacuum and gently heated with a heat gun to dry. To this was added 10 mL of anhydrous diethyl ether to dissolve 2-phenyl-5-iodothiophene, and a Grignard reagent was prepared while stirring.
[0036]
  After confirming that all of the magnesium had reacted, nitrogen gas was blown to evaporate diethyl ether. Next, 10 mL of anhydrous anisole was added thereto, and then 10 mg of 1,3-bis (diphenylphosphino) propanenickel (II) chloride was added thereto, and further prepared and vacuum-dried 5,5 "-diiodo-2 , 2 ': 5', 2 "-terthiophene 200 mg (0.4 mmol) was charged as a solid.
[0037]
  This was stirred for one day and then heated to 100 ° C. for another 6 hours, then cooled on a water bath, 1 mL of 2N hydrochloric acid was added, and the unreacted Grignard reagent was quenched. This was filtered and the precipitate was washed well with acetone to give 10 mg of reddish orange crystals (5,5 ""-diphenyl-2,2 ': 5', 2 ": 5", 2 '": 5'", 2 "" -Quinkethiophene; Chemical C) was obtained.
[0038]
  The method for adjusting 5,5 "-diiodo-2,2 ': 5', 2" -terthiophene is as follows. Dissolve 248.4 mg (1 mmol) of terthiophene (Aldrich) and 495 mg (2.2 mmol) of N-iodosuccinimide (Aldrich) in 20 mL of methanol, and add 4 drops (about 120 μL) of acetic acid to this solution. It was dripped. After a while, a yellowish green precipitate was formed, which was placed in a refrigerator to further ensure precipitation.
[0039]
  After filtering this precipitate, it was washed thoroughly with a large amount of methanol and dried for a whole day and night to give 5,5 "-diiodo-2,2 ': 5', 2" -terthiophene yellow-green crystals (440 mg). Obtained.
[0040]
  FIG. 4 shows an infrared spectrum of Chemical C. In FIG. 4, 1439.6cm-1Of 790.7cm-1Are attributed to the ring stretching vibration and CH out-of-plane bending vibration of the 2,5-disubstituted thiophene ring, respectively. Also 1487.5 cm-1The peak of is attributed to the ring stretching vibration of the mono-substituted benzene ring, 750.2 cm-1And 683.8cm-1The peak of is also attributed to the CH out-of-plane bending vibration of the mono-substituted benzene ring.
[0041]
  CompositionSince there was no suitable solvent for dissolving the compound C, the spectrum was measured without recrystallization. In the figure, 3000cm-1, 1500cm-1And 500cm-1It is probable that the strong rounded peak in the vicinity is caused by the doping of C with an ionic substance incorporated in the sample during the synthesis process.
[0042]
  (Reference example 4)
  moleculeA method for synthesizing another molecular compound having a biphenylyl group at both ends (hereinafter referred to as “compound D”) will be described. This molecular compound has the following molecular structure:FertilizationIt is a compound.
[Chemical 8]
Figure 0004657400
[0043]
  In order to produce this molecular compound, first, 1.10 g (45.3 mmol) of magnesium was put into a 300 mL three-necked flask, and the three-necked flask was sucked into vacuum and ignited with a heat gun and dried. Add 50 mL of anhydrous diethyl ether and stir well. Add 30 mL of anhydrous diethyl ether solution in which 9.51 g (45.3 mmol) of 2-iodothiophene (Aldrich) was further dissolved in this liquid through a dropping funnel. It was dripped.
[0044]
  Stirring was further continued, and after the reaction solution began to reflux due to the exotherm caused by the insertion reaction of magnesium into 2-iodothiophene, the solution was bathed in an ice bath so that the rate of the insertion reaction of magnesium was maintained appropriately.
[0045]
  After confirming that all the magnesium had reacted and the synthesis of the Grignard reagent was completed, 130 mg (0.24 mmol) of 1,3-bis (diphenylphosphino) propanenickel (II) chloride was added to the reaction solution. Then, 8.45 g (36.2 mmol) of 4-bromobiphenyl (manufactured by Tokyo Chemical Industry Co., Ltd.), which had been previously dried in a vacuum, was charged as a solid. Stirring was continued for another day and night, and the reaction solution was heated on an oil bath for 8 hours to be refluxed.
[0046]
  Thereafter, the solution was cooled in an ice bath, and 25 mL of 2N hydrochloric acid was added dropwise through a dropping funnel to quench the unreacted Grignard reagent to complete the synthesis reaction. The produced precipitate is filtered, washed thoroughly with a large volume of water / methanol equivalent mixture and dried overnight, and 1.2 g of 2- (4-biphenylyl) thiophene (hereinafter referred to as “chemical compound”) as an intermediate molecular compound. E ”). This 2- (4-biphenylyl) thiophene is a molecular compound having the following molecular structure.
[Chemical 9]
Figure 0004657400
[0047]
  Subsequently, 472.7 mg (2 mmol) was fractionated from the above-prepared 2- (4-biphenylyl) thiophene crystals and dissolved in 20 mL of acetone, while N-bromosuccinimide 391.6 mg (2.2 mg) was dissolved. A solution of (mmol) dissolved in 10 mL of methanol was added to the former solution. After a while, a white precipitate 2- (4-biphenylyl) -5-bromothiophene was formed. This reaction solution was placed in the refrigerator to further ensure precipitation. The precipitate was filtered, washed thoroughly with a large amount of a mixed solution of water and methanol, and dried overnight to obtain 2- (4-biphenylyl) -5-bromothiophene white crystals (375 mg).
[0048]
  Furthermore, bis (triphenylphosphine) nickel (II) dichloride (Tokyo Kasei Co., Ltd.) 130.8 mg (0.2 mmol), tetrabutylammonium iodide (Tokyo Kasei) 738.7 mg (2 mmol) and zinc powder (Wako Pure) 261.6 mg (4 mmol) (medicine) was put into a 30 mL single-necked flask, sucked in vacuum, and gently heated with a heat gun to dry. To this was added 10 mL of anhydrous tetrahydrofuran (manufactured by Dojin Chemical Co., Ltd., grade for nucleic acid synthesis), and when stirred, the solution turned dark reddish brown.
[0049]
  To this solution, 157.6 mg (0.5 mmol) of the 2- (4-biphenylyl) -5-bromothiophene crystal obtained above was added as a solid and stirred while heating at 100 ° C. for about 4 hours. Thereafter, the reaction solution was cooled to room temperature, 2N hydrochloric acid (4 mL) was added, and the mixture was stirred well to complete the reaction. This was washed with a large amount of methylene chloride to obtain 27 mg of yellow crystals, 5,5′-bis (4-biphenylyl) -2,2′-bithiophene (Chemical Formula D).
[0050]
  FIG. 5 shows an infrared spectrum of Chemical D. In Figure 5, 1443.3cm-1Of 794.4cm-1Are attributed to the ring stretching vibration and CH out-of-plane bending vibration of the 2,5-disubstituted thiophene ring, respectively. 1480.1 cm-1And 1406.4 cm-1Are assigned to the ring stretching vibrations of the mono-substituted benzene ring and the 1,4-disubstituted benzene ring in the 4-biphenylyl group, respectively.-1And 687.5 cm-1This peak is also attributed to the CH out-of-plane bending vibration of the mono-substituted benzene ring in the 4-biphenylyl group. Furthermore, 831.3cm-1This peak is attributed to the CH out-of-plane bending vibration of the 1,4-disubstituted benzene ring in the 4-biphenylyl group.
[0051]
  FIG. 6 shows an infrared spectrum of Chemical E. In FIG. 6, 1424.8cm-1The peak of is attributed to the ring stretching vibration of the 2-substituted thiophene ring. Moreover, 1483.8cm-1And 1406.4 cm-1Are assigned to the ring stretching vibrations of the mono-substituted benzene ring and 1,4-disubstituted benzene ring in the 4-biphenylyl group, respectively.-1And 683.8cm-1This peak is also attributed to the CH out-of-plane bending vibration of the mono-substituted benzene ring in the 4-biphenylyl group. 820.2cm-1This peak is attributed to the CH out-of-plane bending vibration of the 1,4-disubstituted benzene ring in the 4-biphenylyl group.
[0052]
  (ImplementationExample)
  The molecular compound of the present invention includes a compound in which thiophene rings and benzene rings are alternately arranged,ImplementationAs an example, a method for synthesizing one of the molecular compounds (hereinafter referred to as “Chemical F”) will be described. This molecular compound is a novel compound having the following molecular structure.
Embedded image
Figure 0004657400
[0053]
  To make this molecular compound,Reference example 3286.1 mg (1 mmol) was fractionated from 2-phenyl-5-iodothiophene synthesized in 1 and put into a 30 mL single-necked flask together with 24.3 mg (1 mmol) of magnesium and vacuumed. Gently heated with a heat gun to dry. To this was added 10 mL of anhydrous diethyl ether to dissolve 2-phenyl-5-iodothiophene, and a Grignard reagent was prepared while stirring.
[0054]
  After confirming that all of the magnesium had reacted, 5 mg of 1,3-bis (diphenylphosphino) propanenickel (II) chloride was added to the reaction solution, and then 1,4-diiodobenzene ( 132 mg (0.4 mmol) (Aldrich) was charged as a solid. Stirring was continued for another day and night, and the reaction solution was heated on an oil bath for 8 hours to be refluxed.
[0055]
  Thereafter, the solution was cooled in an ice bath, and 1 mL of 2N hydrochloric acid was added dropwise through a dropping funnel to quench the unreacted Grignard reagent to complete the synthesis reaction. This was filtered, washed thoroughly with a large amount of acetone, and dried for a whole day and night to obtain 36 mg of yellow crystals, 1,4-bis (5-phenylthiophen-2-yl) benzene (Chemical Formula F).
[0056]
  FIG. 7 shows an infrared spectrum of Chemical F. In FIG. 7, 1443.3cm-1And 794.4cm-1Are attributed to the ring stretching vibration and CH out-of-plane bending vibration of the 2,5-disubstituted thiophene ring, respectively. Moreover, 1483.8cm-1The peak of is attributed to the ring stretching vibration of the mono-substituted benzene ring, 750.2 cm-1And 683.8cm-1The peak of is also attributed to the CH out-of-plane bending vibration of the mono-substituted benzene ring. Furthermore, 831.3cm-1The peak of is attributed to the CH out-of-plane bending vibration of the 1,4-disubstituted benzene ring.
[0057]
  (Reference Example 5)
  ThioAsymmetrical combination of phen and benzene ringsThings andA method for synthesizing one of the molecular compounds (hereinafter referred to as “Chemical G”) will be described. This molecular compound has the following molecular structure:FertilizationIt is a compound.
Embedded image
Figure 0004657400
[0058]
  To make this molecular compound,Reference example 431.5 mg (0.1 mmol) was fractionated from 2- (4-biphenylyl) -5-bromothiophene synthesized in step 1 and placed in an Erlenmeyer flask together with 51.2 mg (0.4 mmol) of 2-thiopheneboronic acid (Aldrich). Into this, 10 mL of benzene was added, heated and dissolved, and nitrogen gas was bubbled for 30 minutes for the purpose of removing dissolved oxygen.
[0059]
  Then, 11.6 mg (10 μmol) of tetrakis (triphenylphosphine) palladium (0) (Aldrich) was added, and 5 mL of an aqueous solution of 106 mg (1 mmol) of sodium carbonate (manufactured by Wako Pure Chemical Industries) was added to the reactor. Was refluxed for one day and night while maintaining the state of nitrogen substitution.
  Thereafter, the reactor was cooled to room temperature, and the reaction solution was quenched with 0.1 mL of hydrogen peroxide. After washing with water, benzene was distilled off with a rotary evaporator to obtain 20 mg of 5- (4-biphenylyl) -2,2′-bithiophene (compound G) solid.
[0060]
  FIG. 8 shows an infrared spectrum of Chemical G. In FIG. 8, 1428.5cm-1The peak of is attributed to the ring stretching vibration of the 2-substituted thiophene ring. Moreover, 1483.8cm-1And 1406.4 cm-1Are assigned to the ring stretching vibrations of the mono-substituted benzene ring and 1,4-disubstituted benzene ring in the 4-biphenylyl group, respectively.-1And 687.5cm-1This peak is also attributed to the CH out-of-plane bending vibration of the mono-substituted benzene ring in the 4-biphenylyl group. Furthermore, 831.3cm-1This peak is attributed to the CH out-of-plane bending vibration of the 1,4-disubstituted benzene ring in the 4-biphenylyl group.
[0061]
  (Reference Example 6)
  ThioA synthesis method of another one of the asymmetric molecular compounds in which a phen ring and a benzene ring are bonded (hereinafter referred to as “Chemical H”) will be described. This molecular compound has the following molecular structure:FertilizationIt is a compound.
Embedded image
Figure 0004657400
[0062]
  To make this molecular compound,Reference example 4In the same manner as above, a Grignard reagent was prepared from 150.6 mg (6.2 mmol) of magnesium and 1.30 g (6.2 mmol) of 2-iodothiophene.
  20 mg of 1,3-bis (diphenylphosphino) propanenickel (II) chloride is added to the reaction solution, and thenReference example 11.185 g (4.96 mmol) of 2-phenyl-5-bromothiophene prepared in Step 1 was previously dried in vacuo, and this was charged as a solid into the above Grignard reagent solution. Stirring was continued for another day and night, and the reaction solution was heated on an oil bath for 4 hours to be refluxed.
[0063]
  Thereafter, the solution was cooled in an ice bath, and 4 mL of 2N hydrochloric acid was added dropwise through a dropping funnel to quench the unreacted Grignard reagent to complete the synthesis reaction. Further, this solution was washed successively with water, a saturated aqueous sodium hydrogen carbonate solution and water, and dried over anhydrous calcium chloride. After filtration, diethyl ether was distilled off with a rotary evaporator to obtain 1.0 g of 5-phenyl-2,2′-bithiophene (compound H) solid.
[0064]
  FIG. 9 shows an infrared spectrum of Chemical H. In FIG. 9, 1421.1cm-1The peak of is attributed to the ring stretching vibration of the 2-substituted thiophene ring. 1443.3cm-1And 798.1cm-1Are attributed to the ring stretching vibration and CH out-of-plane bending vibration of the 2,5-disubstituted thiophene ring, respectively. Moreover, 1491.2cm-1The peak of is attributed to the ring stretching vibration of the mono-substituted benzene ring, 753.9 cm-1And 683.8cm-1The peak of is also attributed to the CH out-of-plane bending vibration of the mono-substituted benzene ring.
[0065]
  (Reference examples and examples)
  more thanExampleIn order to show that the compound described in 1 is useful as a luminescent material,Less thanNow, this will be described.
[0066]
  the aboveReference examples andSeveral solid samples were taken out from the examples with a spatula, placed in a sample tube and sealed. These sample tubes were irradiated with an ultraviolet lamp (wavelength 365 nm) to visually observe the color tone and luminance of the fluorescence emitted from the sample. The results are summarized in Table 1 below.
[0067]
[Table 1]
Figure 0004657400
[0068]
  As a known comparative example, there is an oligothiophene compound described in, for example, S. Hotta and K. Waragai, J. Mater. Chem. 1, 835 (1991). Also in these cases, solid samples were put in sample tubes and sealed, and these sample tubes were irradiated with an ultraviolet lamp (wavelength 365 nm) to visually observe the color tone and luminance of the fluorescence emitted from the samples. The observation results of the oligothiophene compound at this time are summarized in Table 2 below.
[0069]
  Chemical formula A, chemical formula B and chemical formula C have the general formula
Embedded image
Figure 0004657400
  InIt can be seen that m1 = m2 = 1, n corresponds to 3, 4 and 5, respectively, and the color tone varies depending on the number of n.
[0070]
[Table 2]
Figure 0004657400
[0071]
  Comparing the above two tables, the phosphor using oligothiophene can change the color tone to some extent, but the luminance is an example of the present invention.And reference examplesIt turned out to be inferior to
[0072]
  (Reference Example 8)
  In the following, an outline of a synthesis method is described for a compound that is known as a compound but is useful as a luminescent material and has not been reported (or is not known), and characteristics as a luminescent material are described. Describe.
[0073]
i) 2,5-Diphenylthiophene This molecular compound is a known compound having the following molecular structure.
Embedded image
Figure 0004657400
[0074]
  To make this molecular compound,Reference example 1In the same manner as above, Grignard reagent was prepared from 298 mg (1.90 mmol) of bromobenzene and 46.2 mg (1.90 mmol) of magnesium. 20 mg of 1,3-bis (diphenylphosphino) propanenickel (II) chloride is added to the reaction solution, and thenReference example 1227 mg (0.95 mmol) of 2-phenyl-5-bromothiophene prepared in the above was vacuum-dried in advance, and this was charged as a solid into the above Grignard reagent solution. Stirring was continued for another day and night, and the reaction solution was heated on an oil bath for 4 hours to be refluxed. This reaction solutionReference example 1To give 60 mg of the title compound (colorless crystals).
[0075]
ii) 5,5′-Diphenyl-2,2′-bithiophene This molecular compound is a known compound having the following molecular structure.
Embedded image
Figure 0004657400
[0076]
  In order to produce this molecular compound, 24.3 mg (1 mmol) of magnesium was put into a 30 mL single-necked flask and vacuum dried under high heat. at the same time,Reference example 1239.1 mg (1 mmol) of 2-phenyl-5-bromothiophene prepared in the above was vacuum-dried with gentle heating in another 30 mL single-necked flask. Next, this 2-phenyl-5-bromothiophene was dissolved in 15 mL of anhydrous diethyl ether and poured into a flask containing magnesium, and a Grignard reagent was prepared while stirring.
[0077]
  After confirming the complete disappearance of magnesium, 10 mg of 1,3-bis (diphenylphosphino) propanenickel (II) chloride was added to the reaction solution, and then 2-phenyl-5-bromo which had been previously dried in vacuum. 191.3 mg (0.8 mmol) of thiophene was charged as a solid into the above Grignard reagent solution. Stirring was continued for another day and night, and the reaction solution was heated on an oil bath for 4 hours to be refluxed. The produced pale yellow precipitate was filtered and washed with a large amount of methanol to obtain 175 mg of the title compound.
[0078]
iii) 1,4-bis (2-chenyl) benzene This molecular compound is a known compound having the following molecular structure.
Embedded image
Figure 0004657400
[0079]
  To make this molecular compound,Reference example 4In the same manner as above, Grignard reagent was prepared from 761 mg (3.62 mmol) of 2-iodothiophene and 88 mg (3.62 mmol) of magnesium. To this, 30 mg of 1,3-bis (diphenylphosphino) propanenickel (II) chloride was added to the reaction solution, and then 478 mg (1.45 mmol) of 1,4-diiodobenzene (manufactured by Aldrich) previously dried in vacuum. ) Was charged as a solid into the above Grignard reagent solution. Stirring was continued for another day and night, and the reaction solution was heated on an oil bath for 4 hours to be refluxed. The produced precipitate was filtered and washed with a large amount of cold methanol to obtain 60 mg of the title compound (colorless crystals).
[0080]
iv) 4,4′-bis (2-Cenyl) biphenyl This molecular compound is a known compound having the following molecular structure.
Embedded image
Figure 0004657400
[0081]
  To make this molecular compound,Reference example 4In the same manner as above, Grignard reagent was prepared from 8.675 g (41.3 mmol) of 2-iodothiophene and 1.004 g (41.3 mmol) of magnesium. To this, 320 mg of 1,3-bis (diphenylphosphino) propanenickel (II) chloride was added to the reaction solution, and then vacuum-dried 4,4'-diiodobiphenyl (Tokyo Kasei Co., Ltd.) 6.50 g ( 16.0 mmol) was charged as a solid into the above Grignard reagent solution. Stirring was continued for another day and night, and the reaction solution was heated on an oil bath for 8 hours to be refluxed. The produced precipitate was filtered and washed with a large amount of methanol and acetone to obtain 4.3 g of the title compound (pale yellow crystals).
  Then about these compoundsReference Example 7The fluorescence characteristics were evaluated by the same method. The results are shown in Table 3 below.
[0082]
[Table 3]
Figure 0004657400
[0083]
  For example, with respect to the compounds iii) and iv) described above, synthesis methods and the like are disclosed in T. Mitsuhara, K. Kaeriyama, and S. Tanaka, J. Chem. Soc., Chem. Commun. 1987, 764, etc. Yes. However, these relate to applications as conductive materials, and the uses and purposes of the present invention are completely different.
[0084]
  Also,the aboveThen, only the fluorescence characteristic by the irradiation of the ultraviolet lamp was described, and the electroluminescence characteristic was not mentioned. However, the fluorescence characteristics and the electroluminescence characteristics have much in common with respect to the spectrum and mechanism of light emission. For example, D. Braun and AJ Heeger, Appl. Phys. Lett. 58, 1982 (1991) and A related description can be found in Tetsuo Tsutsui, Applied Physics, 66, 109 (1997). For this reason, evaluation of fluorescence characteristics by light irradiation is a simple and practical standard for evaluating electroluminescence characteristics. In addition, it is considered that the molecular compound and the light emitting material of the present invention can be effectively used as a raw material for a dye laser.
[0085]
  further,AboveIn the above, only those in which the thiophene ring or benzene ring is not substituted have been dealt with, but compounds in which these are appropriately substituted with an alkyl group, an alkenyl group, or a halogen group can also be used effectively. As can be seen from Table 1 and Table 3 above,the aboveBy changing the total number of thiophene rings and benzene rings and the bonding order thereof in the molecular compound (or light emitting material), it is possible to generate light of various colors with high luminance. Above all, the above implementationFor exampleMolecular compounds taken up in (Chemical F: This is also claimed)1In general, molecular compounds in which thiophene rings and benzene rings are alternately arranged have a very strong brightness, but the order of bonding of other thiophene rings and benzene rings It was found that there was a tendency to obtain a higher luminance than a molecular compound using the above.
[0086]
  Note that the color tone described in Tables 1 and 3 is expressed in the same words as, for example, “yellow” and “yellow-green”, and subtle changes in color tone or differences are observed depending on the difference in molecular compounds. Also,the aboveCombining multiple types of molecular compounds, irradiating them with an ultraviolet lamp and observing the color and brightness of the fluorescence emitted from the sample, the colors obtained according to the emission characteristics of each molecular compound are mixed (prepared). It was also found to cause subtle changes in color. ThisDesiredIt can be said that it is possible to provide an excellent light emitting material that can freely realize the color tone.
  In addition, since the molecular compound and the light emitting material of the present invention have a molecular skeleton composed of a stable thiophene ring and a benzene ring, they are excellent in environmental resistance. This is also one of the important actions and effects of the present invention.
[0087]
  (Reference Example 9)
  moleculeA method for synthesizing a compound having a phenyl group at both ends (hereinafter referred to as Chemical I) will be described. This molecular compound has the following molecular structure:FertilizationIt is a compound.
Embedded image
Figure 0004657400
[0088]
  To produce this molecular compound, first, 4.29 g (25 mmol) of bithiophene (Aldrich) was dissolved in 40 mL of methanol, and N-iodosuccinimide (Aldrich) 5.92 g (25 m) was added to this solution. Mol) was dissolved in 40 mL of methanol solution. While stirring the solution, 1.43 mL of acetic acid (25 mmol) was slowly added dropwise thereto, and a white precipitate was formed after a while. This was placed in a refrigerator for 4 hours to complete the formation of the precipitate, and then filtered to remove the white precipitate, and 80 mL of water and 120 mL of diethyl ether were added to the filtrate. The extract was washed successively with an aqueous potassium solution and water, and dried over anhydrous calcium chloride. After filtering this, diethyl ether was distilled off with a rotary evaporator to obtain 3.7 g of 5-iodo-2,2′-bithiophene.
[0089]
  next,Reference example 32-phenyl-5-iodothiophene crystals, 583.9 mg (2.04 mmol) and 49.6 mg magnesium obtained by the method described in 1) were put into a 30 mL single-necked flask,Reference example 3In the same manner as above, vacuum was applied, and the mixture was gently heated with a heat gun and dried. To this was added 10 mL of anhydrous diethyl ether to dissolve 2-phenyl-5-iodothiophene, and a Grignard reagent was prepared while stirring.
[0090]
  After confirming that all of the magnesium had reacted, add 20 mg of 1,3-bis (diphenylphosphino) propanenickel (II) chloride, and prepared in advance above and dissolved in 5 mL of anhydrous diethyl ether. Then, 397.5 mg (1.36 mmol) of 5-iodo-2,2′-bithiophene was added.
[0091]
  The mixture was stirred for one day and then refluxed for another 6 hours, then cooled on a water bath, 1 mL of 2N hydrochloric acid was added, and the unreacted Grignard reagent was quenched. The resulting precipitate was filtered and washed thoroughly with methanol to obtain 420 mg of yellow crystals (5-phenyl-2,2 ′: 5 ′, 2 ″ -terthiophene; hereinafter referred to as Chemical J). Has the molecular structureFertilizationIt is a compound.
Embedded image
Figure 0004657400
[0092]
  Further synthesis was carried out using 5-phenyl-2,2 ': 5', 2 "-terthiophene (Chemical J), namely 5-phenyl-2,2 ': 5', synthesized above. Dissolve 24.7-terthiophene (194.7 mg, 0.6 mmol) and N-iodosuccinimide (Aldrich) (177.6 mg, 0.75 mmol) in 20 mL of methylene chloride, add 43 μL of acetic acid to the ice bath. And stirred for 2 hours. This was filtered and washed thoroughly with methanol to give 146 mg (0.32 mmol) of 5-phenyl-5 "-iodo-2,2 ': 5', 2" -terthiophene golden crystals.
[0093]
  Next, bis (triphenylphosphine) nickel (II) dichloride (Tokyo Kasei) 84.8 mg (0.128 mmol), tetrabutylammonium iodide (Tokyo Kasei) 478.9 mg (1.28 mmol) and zinc powder (sum) 169.6 mg (2.56 mmol) (manufactured by Koyo Pure Chemical) was put into a 30 mL single-necked flask, sucked in vacuum, and gently heated with a heat gun to dry. To this was added 15 mL of anhydrous tetrahydrofuran (manufactured by Dojindo Chemicals, grade for nucleic acid synthesis), and when stirred, the liquid turned dark reddish brown.
[0094]
  To this solution, 146 mg (0.32 mmol) of the 5-phenyl-5 "-iodo-2,2 ': 5', 2" -terthiophene crystal obtained above was added as a solid and added at 100 ° C for about 7 hours. Stir while heating. Thereafter, the reaction solution was cooled to room temperature, 3 mL of 2N hydrochloric acid was added, and the mixture was stirred well to complete the reaction. This is washed with a large amount of methylene chloride and 20 mg of red crystals, 5,5 "" '-diphenyl-2, 2': 5 ', 2 ": 5", 2' ": 5 '", 2 "": 5 "", 2 "" '-Sexcithiophene (Formula I) was obtained.
[0095]
  FIG. 10 shows an infrared spectrum of Chemical I. In FIG. 10, 1441.8cm-1No peak and 792.5cm-1Are attributed to the ring stretching vibration and CH out-of-plane bending vibration of the 2,5-disubstituted thiophene ring, respectively. Moreover, 1488.0cm-1The peak of is attributed to the ring stretching vibration of the mono-substituted benzene ring, 750.3 cm-1And 686.0cm-1The peak of is also attributed to the CH out-of-plane bending vibration of the mono-substituted benzene ring.
[0096]
  FIG. 11 shows an infrared spectrum of Chemical J. In FIG. 11, 1447.0cm -1 And 1424.7cm-1These peaks are attributed to the ring stretching vibrations of the 2,5-disubstituted thiophene ring and the 2-substituted thiophene ring, respectively. Moreover, 1488.9cm-1The peak of is attributed to the ring stretching vibration of the mono-substituted benzene ring, 751.7 cm-1And 684.7cm-1The peak of is also attributed to the CH out-of-plane bending vibration of the mono-substituted benzene ring.
[0097]
  (Reference Example 10)
  moleculeA method for synthesizing a compound having a biphenylyl group at both ends (hereinafter referred to as Chemical K) will be described. This molecular compound has the following molecular structure:FertilizationIt is a compound.
Embedded image
Figure 0004657400
[0098]
  To prepare this molecular compound, 335.9 mg (1 mmol) of 2,5-diiodothiophene (Aldrich), 792.1 mg (4 mmol) of 4-biphenylboronic acid (Lancaster) and tetrakis (triphenyl) Phosphine) Palladium (0) (Aldrich) 138.7 mg (120 μmol) was placed in a 300 mL Erlenmeyer flask, and 80 mL of benzene was added to it, heated and dissolved, and nitrogen was removed for 30 minutes for the purpose of removing dissolved oxygen. Gas bubbled.
  Thereafter, 5 mL of an aqueous solution of 848 mg (8 mmol) of sodium carbonate (manufactured by Wako Pure Chemical Industries, Ltd.) was added and refluxed for 6 hours while maintaining the reactor in a nitrogen-substituted state. After this, the reactor was bathed in ice and the reaction solution was quenched with 1 mL of hydrogen peroxide. The pale yellow precipitate obtained by filtering the reaction solution was thoroughly washed with methanol to obtain 393 mg of 2,5-bis (4-biphenylyl) thiophene (Chemical K) solid.
[0099]
  FIG. 12 shows an infrared spectrum of Chemical K. In Figure 12, 1445.9cm-1Peak and 800.7cm-1Are attributed to the ring stretching vibration and CH out-of-plane bending vibration of the 2,5-disubstituted thiophene ring, respectively. Moreover, 1484.9cm-1And 1409.0cm-1These peaks are attributed to the ring stretching vibrations of the mono-substituted benzene ring and the 1,4-disubstituted benzene ring in the 4-biphenylyl group, respectively. Furthermore, 759.9cm-1And 687.1cm-1Is also attributed to the CH out-of-plane bending vibration of the mono-substituted benzene ring in the 4-biphenylyl group, 839.4 cm-1This peak is attributed to the CH out-of-plane bending vibration of the 1,4-disubstituted benzene ring in the 4-biphenylyl group.
[0100]
  (Reference Example 11)
  moleculeA method for synthesizing another compound having a biphenylyl group at both ends (hereinafter referred to as “L”) will be described. This molecular compound has the following molecular structure:FertilizationIt is a compound.
Embedded image
Figure 0004657400
[0101]
  In order to produce this molecular compound,Reference example 35,5 "-diiodo-2,2 ': 5', 2" -terthiophene 125.0 mg (0.25 mmol), 4-biphenylboronic acid (Lancaster) 198.0 mg (1 mmol) And 34.7 mg (30 μmol) of tetrakis (triphenylphosphine) palladium (0) (Aldrich) were placed in a 50 mL Erlenmeyer flask, and 20 mL of 1,2,4-trichlorobenzene was added to this and heated to dissolve. Further, nitrogen gas was bubbled for 30 minutes for the purpose of removing dissolved oxygen.
  Thereafter, 5 mL of an aqueous solution of 212 mg (2 mmol) of sodium carbonate (manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the reactor was stirred at 80 ° C. for one day and night, while maintaining the state of nitrogen substitution. After this, the reactor was bathed in ice and the reaction solution was quenched with 0.5 mL of hydrogen peroxide. The golden precipitate obtained by filtering the reaction solution was thoroughly washed with acetone, and 130 mg of 5,5 "-bis (4-biphenylyl) -2,2 ': 5', 2" -terthiophene ) A solid was obtained.
[0102]
  FIG. 13 shows an infrared spectrum of Chemical L. In FIG. 13, 1442.1cm-1And 792.5cm-1Are attributed to the ring stretching vibration and CH out-of-plane bending vibration of the 2,5-disubstituted thiophene ring, respectively. Moreover, 1484.4cm-1And 1408.4cm-1These peaks are attributed to the ring stretching vibrations of the mono-substituted benzene ring and the 1,4-disubstituted benzene ring in the 4-biphenylyl group, respectively. Furthermore, 760.8cm-1And 688.7cm-1Is also attributed to the CH out-of-plane bending vibration of the mono-substituted benzene ring in the 4-biphenylyl group, 835.1 cm-1This peak is attributed to the CH out-of-plane bending vibration of the 1,4-disubstituted benzene ring in the 4-biphenylyl group.
[0103]
  (Reference Example 12)
  moleculeA method for synthesizing still another compound having a biphenylyl group at both ends (hereinafter referred to as Chemical M) will be described. This molecular compound has the following molecular structure:FertilizationIt is a compound.
Embedded image
Figure 0004657400
[0104]
  To make this molecular compound,Reference Example 55- (4-biphenylyl) -2,2′-bithiophene (Chemical G) obtained in the above is used. Specifically, 318.5 mg (1 mmol) of 5- (4-biphenylyl) -2,2′-bithiophene and 296.0 mg (1.25 mmol) of N-iodosuccinimide (Aldrich) were dissolved in 50 mL of methylene chloride. To this was added 72 μL of acetic acid, and the mixture was stirred on an ice bath for 2 hours. The resulting precipitate was filtered and washed thoroughly with methanol to obtain 293 mg (0.66 mmol) of 5- (4-biphenylyl) -5′-iodo-2,2′-bithiophene yellow crystals.
[0105]
  Next, bis (triphenylphosphine) nickel (II) dichloride (Tokyo Kasei Co., Ltd.) 172.5 mg (0.264 mmol), tetrabutylammonium iodide (Tokyo Kasei) 974.2 mg (2.64 mmol) and zinc powder (sum 344.9 mg (5.28 mmol) (manufactured by Koyo Pure Chemical) was put into a 30 mL single-necked flask, sucked in vacuum, and gently heated with a heat gun to dry. Distilled tetrahydrofuran (15 mL) was added thereto, and the mixture turned to dark reddish brown when stirred.
  In this liquid, 293 mg (0.66 mmol) of the 5- (4-biphenylyl) -5′-iodo-2,2′-bithiophene crystal obtained above was added as a solid and heated at 80 ° C. for about 27 hours. Stir. Thereafter, the reaction solution was cooled to room temperature, 6 mL of 2N hydrochloric acid was added and stirred well to complete the reaction. This is washed with a large amount of methylene chloride and 120 mg of orange crystals, (5,5 '"-bis (4-biphenylyl) -2,2': 5 ', 2": 5 ", 2'"-quaterthiophene; Compound M) was obtained.
[0106]
  FIG. 14 shows an infrared spectrum of Chemical M. In FIG. 14, 1441.4 cm-1No peak and 792.2cm-1Are attributed to the ring stretching vibration and CH out-of-plane bending vibration of the 2,5-disubstituted thiophene ring, respectively. Moreover, 1484.7cm-1And 1407.9cm-1These peaks are attributed to the ring stretching vibrations of the mono-substituted benzene ring and the 1,4-disubstituted benzene ring in the 4-biphenylyl group, respectively. Furthermore, 759.7cm-1And 688.4 cm-1Is also attributed to the CH out-of-plane bending vibration of the mono-substituted benzene ring in the 4-biphenylyl group, 833.8 cm-1This peak is attributed to the CH out-of-plane bending vibration of the 1,4-disubstituted benzene ring in the 4-biphenylyl group.
[0107]
  (Reference Example 13)
  moleculeA method for synthesizing a compound having a tolyl group at both ends (hereinafter referred to as Chemical N) will be described. This molecular compound has the following molecular structure:FertilizationIt is a compound.
Embedded image
Figure 0004657400
[0108]
  To make this molecular compound,Reference example 25,5'-Diiodo-2,2'-bithiophene 418.1 mg (1 mmol), 4-methylbenzeneboronic acid (Lancaster) 543.8 mg (4 mmol) and tetrakis (triphenylphosphine) ) Palladium (0) (Aldrich) 138.7 mg (120 μmol) was placed in a 300 mL Erlenmeyer flask, and 80 mL of benzene was added to it, heated and dissolved, and nitrogen gas was added for 30 minutes to remove dissolved oxygen. Bubbled.
  Thereafter, 5 mL of an aqueous solution of 848 mg (8 mmol) of sodium carbonate (manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the reactor was stirred for 2 days and night at room temperature while keeping the state of nitrogen substitution. After this, the reactor was bathed in ice and the reaction solution was quenched with 1 mL of hydrogen peroxide. The yellow precipitate obtained by filtering the reaction solution was thoroughly washed with methanol to obtain 305 mg of 5,5′-bis (4-tolyl) -2,2′-bithiophene (compound N) solid.
[0109]
  FIG. 15 shows an infrared spectrum of Chemical N. In FIG. 15, 1447.9 cm-1Peak and 797.5cm-1Are attributed to the ring stretching vibration and CH out-of-plane bending vibration of the 2,5-disubstituted thiophene ring, respectively. In addition, 1499.1cm-1Peak and 818.4cm-1These peaks are attributed to the ring stretching vibration and CH out-of-plane bending vibration of the 4-tolyl group, respectively.
[0110]
  (Reference Example 14)
  A method for synthesizing a compound having a naphthyl group at both molecular ends (hereinafter referred to as chemical O) will be described. This molecular compound has the following molecular structure:FertilizationIt is a compound.
Embedded image
Figure 0004657400
[0111]
  In order to produce this molecular compound, 5,5′-diiodo-2,2′-bithiophene 209 mg (0.5 mmol) synthesized by the method of Reference Example 2, 2-naphthaleneboronic acid (manufactured by Lancaster) 344 mg ( 29.3 mol) and tetrakis (triphenylphosphine) palladium (0) (Aldrich) 69.3 mg (60 μmol) are placed in a 50 mL Erlenmeyer flask, and 20 mL of chlorobenzene is added to it, heated and dissolved, and dissolved oxygen is added. For the purpose of removing nitrogen gas, nitrogen gas was bubbled for 30 minutes.
  Thereafter, 5 mL of an aqueous solution of 424 mg (4 mmol) of sodium carbonate (manufactured by Wako Pure Chemical Industries, Ltd.) was added and stirred at 80 ° C. for 6 hours while keeping the reactor in a nitrogen-substituted state. After this, the reactor was bathed in ice and the reaction solution was quenched with 0.5 mL of hydrogen peroxide. The yellow precipitate obtained by filtering the reaction solution was thoroughly washed with acetone to obtain 190 mg of 5,5′-bis (2-naphthyl) -2,2′-bithiophene (Chemical O) solid.
[0112]
  FIG. 16 shows an infrared spectrum of Chemical O. In FIG. 16, 144.1cm-1Peak and 794.9 cm-1Are attributed to the ring stretching vibration and CH out-of-plane bending vibration of the 2,5-disubstituted thiophene ring, respectively. Also 1594.9cm-1And 1497.6cm-1The peak of is attributed to the ring stretching vibration of 2-naphthyl group, 741.8 cm-1And 857.0cm-1This peak is also attributed to the CH out-of-plane bending vibration of the 2-naphthyl group.
[0113]
  (Reference Example 15)
  moleculeA method for synthesizing another compound (hereinafter referred to as “P”) having a naphthyl group at both ends will be described. This molecular compound has the following molecular structure:FertilizationIt is a compound.
Embedded image
Figure 0004657400
[0114]
  In order to produce this molecular compound,Reference example 35,5 "-diiodo-2,2 ': 5', 2" -terthiophene 125.0 mg (0.25 mmol), 2-naphthaleneboronic acid (Lancaster) 172.0 mg (1 mmol) And 34.7 mg (30 μmol) of tetrakis (triphenylphosphine) palladium (0) (Aldrich) were placed in a 50 mL Erlenmeyer flask, and 20 mL of 1,2,4-trichlorobenzene was added to this and heated to dissolve. Further, nitrogen gas was bubbled for 30 minutes for the purpose of removing dissolved oxygen.
  Thereafter, 5 mL of an aqueous solution of 212 mg (2 mmol) of sodium carbonate (manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the reactor was stirred at 80 ° C. for one day and night while keeping the state of nitrogen substitution. After this, the reactor was bathed in ice and the reaction solution was quenched with 0.5 mL of hydrogen peroxide. The golden precipitate obtained by filtering the reaction solution was thoroughly washed with acetone, and 80 mg of 5,5 "-bis (2-naphthyl) -2,2 ': 5', 2" -terthiophene ) A solid was obtained.
[0115]
  FIG. 17 shows an infrared spectrum of Chemical P. In FIG. 17, 1438.5cm-1No peak and 791.8cm-1Are attributed to the ring stretching vibration and CH out-of-plane bending vibration of the 2,5-disubstituted thiophene ring, respectively. Also, 1595.2cm-1And 1497.9cm-1The peak of is attributed to the ring stretching vibration of 2-naphthyl group, 741.5 cm-1And 859.7cm-1This peak is also attributed to the CH out-of-plane bending vibration of the 2-naphthyl group.
[0116]
  (Reference Example 16)
  more thanExampleElemental analysis was performed on the compound described in 1 and the melting point was measured. These results are summarized in Table 4.
[0117]
[Table 4]
Figure 0004657400
[0118]
  (Reference Example 17)
  more thanExampleThe compound described in 1 is useful as a luminescent materialNitsuAnd explain.
  UpExampleSeveral pieces of solid samples were taken out from the compound solids synthesized with a spatula and placed in a sample tube and sealed. These sample tubes were irradiated with an ultraviolet lamp (wavelength 365 nm) to visually observe the color tone and luminance of the fluorescence emitted from the sample. The results are summarized in Table 5 below.
[0119]
[Table 5]
Figure 0004657400
[0120]
  Then, belowthe aboveApplying molecular compounds to organic electroluminescent devicesExampleWill be described.
  (Reference Example 18)
  What pre-formed indium tin oxide (ITO) as a transparent electrode on a transparent glass substrate was sufficiently washed. Set the cleaned substrate and material in the vacuum evaporation system.-FourEvacuated to Pa. Then, N, N'-diphenyl-N, N'-bis (3-methylphenyl) -1,1'-biphenyl-4,4'-diamine (hereinafter abbreviated as TPD) is heated by resistance as a hole transport layer. A film was formed to 50 nm by a vapor deposition method. Subsequently, a thin film having a thickness of 50 nm made of Chemical B was formed as a light emitting layer. Furthermore, a magnesium / silver electrode was deposited as an electrode to obtain an organic electroluminescent element.
  When voltage was applied to the resulting device, yellow uniform light emission having a peak at 573 nm was obtained. 100cd / m2The efficiency at this time was 0.5 lm / W.
[0121]
  (Reference Example 19)
  Except for using C as the light emitting layerReference Example 18An organic electroluminescent element was produced in the same manner as described above. When voltage was applied to the resulting device, uniform orange light emission having a peak at 603 nm was obtained.
[0122]
  (Reference Example 20)
  An indium tin oxide previously formed as a transparent electrode on a transparent glass substrate was sufficiently washed. Set the cleaned substrate and material in the vacuum evaporation system.-FourEvacuated to Pa. Thereafter, TPD was deposited to a thickness of 50 nm by resistance heating vapor deposition as a hole transport layer. Subsequently, a thin film having a thickness of 25 nm composed of Chemical B was formed as the light emitting layer, and then tris (8-hydroxyquinoline) aluminum (hereinafter abbreviated as Alq) was similarly formed at 25 nm as the electron transport layer. Furthermore, a magnesium / silver electrode was deposited as an electrode to obtain an organic electroluminescent element.
  When voltage was applied to the obtained device, yellow uniform light emission having a peak at 570 nm was obtained.
[0123]
  (Reference Example 21)
  Except for using C as the light emitting layerReference Example 20An organic electroluminescent element was produced in the same manner as described above. When voltage was applied to the resulting device, uniform orange light emission having a peak at 602 nm was obtained.
[0124]
  (Reference Example 22)
  What formed ITO beforehand as a transparent electrode on the transparent glass substrate was fully wash | cleaned. Set the cleaned substrate and material in the vacuum evaporation system.-FourEvacuated to Pa. Thereafter, TPD was deposited to a thickness of 50 nm by resistance heating vapor deposition as a hole transport layer. Subsequently, a mixed film of Compound B and Alq was formed to a thickness of 25 nm by a co-evaporation method to form a light emitting layer. The concentration of compound B with respect to Alq was 1 mol%. Subsequently, Alq was deposited to a thickness of 25 nm as an electron transport layer. Further, a magnesium / silver electrode was deposited as an electrode to obtain an organic electroluminescent element.
  When voltage was applied to the obtained device, green uniform light emission having peaks at 508 nm and 540 nm was obtained. 100cd / m2The efficiency at that time was 2.5 lm / W. This device has an initial luminance of 1000cd / m.2When continuously driven at 500 cd / m, the brightness is half of the initial brightness.2The time required to become (hereinafter referred to as luminance half-life time) was 100 hours.
[0125]
  (Reference Example 23)
  Except for using a mixed film of Alq and C as the light emitting layerReference Example 22An organic electroluminescent element was produced in the same manner as described above. When voltage was applied to the obtained device, uniform yellow light emission having peaks at 538 nm and 568 nm was obtained. 100cd / m2The efficiency at that time was 4.0 lm / W.
  This device has an initial luminance of 1000cd / m.2When continuously driven, the luminance half time was 120 hours.
[0126]
  (Comparative example)
  As a comparative example, on a glass substrate on which ITO was previously formed, TPD was deposited to a thickness of 50 nm as a hole transport layer, and Alq was deposited to a thickness of 50 nm as a light emitting layer / electron transport layer by a resistance heating method, and then a magnesium / silver electrode was deposited. An organic electroluminescent device was prepared. When voltage was applied to the device, green uniform light emission having a peak at 530 nm was obtained. 100cd / m2The efficiency at that time was 1.5 lm / W. This device has an initial luminance of 1000 cd / m.2When continuously driven, the luminance half time was 25 hours.
[0127]
  Reference Examples 18-23As can be seen, multicolorization can be easily achieved by using the organic electroluminescent device according to the present invention, and in particular, by combining with other molecular compounds, it is more efficient and long-term compared to conventional devices. It has become clear that an element that maintains stable operating characteristics can be easily realized.
[0128]
【The invention's effect】
  As described above, according to the present invention, it is possible to easily achieve both light emission color control and efficient light emission with high brightness.MinuteChild compounds andDepartureProvide optical materialsTo do.
  In addition, the molecular compound according to the present invention isTheIt is characterized by the direct bonding of the offene ring and the benzene ring.And widthWide light emission can be realized with high efficiency.
  Therefore, it is possible to provide a novel functional molecular compound that can be used in the fields of the chemical industry and the electronic industry, and a light-emitting material having high efficiency and high brightness using them.
[0129]
  AlsoWhen the molecular compound according to the present invention is used as a light emitting material, the solid form may be a powder, a thin film or a dispersed form in an appropriate matrix. Also in the liquid, various forms such as a solution and a suspension are conceivable. In any of these cases, an excellent effect as a light emitting material is exhibited.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a schematic configuration of an organic light emitting device according to the present invention.
[Figure 2]Reference example 1It is a figure which shows the infrared spectrum of the molecular compound (Formula A) concerning.
[Fig. 3]Reference example 2It is a figure which shows the infrared spectrum of the molecular compound concerning (Chemical formula B).
[Fig. 4]Reference example 3It is a figure which shows the infrared spectrum of the molecular compound (compound C) concerning.
[Figure 5]Reference example 4It is a figure which shows the infrared spectrum of the molecular compound (chemical formula D) concerning.
[Fig. 6]Reference example 4It is a figure which shows the infrared spectrum of the molecular compound (compound E) obtained as an intermediate in (2).
FIG. 7 shows the present invention.The fruitIt is a figure which shows the infrared spectrum of the molecular compound (chemical F) concerning an Example.
[Fig. 8]Reference Example 5It is a figure which shows the infrared spectrum of the molecular compound (chemical G) concerning.
FIG. 9Reference Example 6It is a figure which shows the infrared spectrum of the molecular compound (chemical H) concerning.
FIG. 10Reference Example 9It is a figure which shows the infrared spectrum of the molecular compound (Formula I) concerning.
FIG. 11Reference Example 9It is a figure which shows the infrared spectrum of the molecular compound (chemical formula J) obtained as an intermediate in (2).
FIG.Reference Example 10It is a figure which shows the infrared spectrum of the molecular compound (chemical formula K) concerning.
FIG. 13Reference Example 11It is a figure which shows the infrared spectrum of the molecular compound (chemical L) concerning.
FIG. 14Reference Example 12It is a figure which shows the infrared spectrum of the molecular compound (chemical M) concerning.
FIG. 15Reference Example 13It is a figure which shows the infrared spectrum of the molecular compound (chemical N) concerning.
FIG. 16Reference Example 14It is a figure which shows the infrared spectrum of the molecular compound (chemical O) concerning.
FIG. 17Reference Example 15It is a figure which shows the infrared spectrum of the molecular compound (chemical P) concerning.
[Explanation of symbols]
1 Glass substrate
2 Anode (transparent electrode)
3 Hole transport layer
4 Light emitting layer
5 Electron transport layer
6 Cathode (upper electrode)

Claims (3)

下記の分子構造を有する分子化合物を用いた発光材料
Figure 0004657400
(ただし、R1、R2は水素、アルキル基、アルケニル基、ハロゲン基のうちのいずれか1つであり、且つ、n、mはいずれも1である。)
A light emitting material using a molecular compound having the following molecular structure.
Figure 0004657400
(However, R1 and R2 are any one of hydrogen, an alkyl group, an alkenyl group, and a halogen group, and n and m are all 1.)
一対の電極に挟まれた発光層を少なくとも有する有機電界発光素子において、発光層が、下記の分子構造を有する分子化合物を用いることを特徴とする有機電界発光素子。
Figure 0004657400
(ただし、R1、R2は水素、アルキル基、アルケニル基、ハロゲン基のうちのいずれか1つであり、且つ、n、mはいずれも1である。)
An organic electroluminescent device having at least a light emitting layer sandwiched between a pair of electrodes, wherein the light emitting layer uses a molecular compound having the following molecular structure.
Figure 0004657400
(However, R1 and R2 are any one of hydrogen, an alkyl group, an alkenyl group, and a halogen group, and n and m are all 1.)
一対の電極に挟まれた発光層を少なくとも有する有機電界発光素子において、発光層が、下記の分子構造を有する分子化合物および、これら以外の分子化合物からなる複合体であることを特徴とする有機電界発光素子。
Figure 0004657400
(ただし、R1、R2は水素、アルキル基、アルケニル基、ハロゲン基のうちのいずれか1つであり、且つ、n、mはいずれも1である。)
An organic electroluminescent device having at least a light emitting layer sandwiched between a pair of electrodes, wherein the light emitting layer is a complex composed of a molecular compound having the following molecular structure and other molecular compounds: Light emitting element.
Figure 0004657400
(However, R1 and R2 are any one of hydrogen, an alkyl group, an alkenyl group, and a halogen group, and n and m are all 1.)
JP12768599A 1998-05-08 1999-05-07 Molecular compounds and light emitting materials using them Expired - Lifetime JP4657400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12768599A JP4657400B2 (en) 1998-05-08 1999-05-07 Molecular compounds and light emitting materials using them

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP12646598 1998-05-08
JP10-126465 1998-05-08
JP12768599A JP4657400B2 (en) 1998-05-08 1999-05-07 Molecular compounds and light emitting materials using them

Publications (2)

Publication Number Publication Date
JP2000026451A JP2000026451A (en) 2000-01-25
JP4657400B2 true JP4657400B2 (en) 2011-03-23

Family

ID=26462653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12768599A Expired - Lifetime JP4657400B2 (en) 1998-05-08 1999-05-07 Molecular compounds and light emitting materials using them

Country Status (1)

Country Link
JP (1) JP4657400B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220392A (en) * 2001-01-26 2002-08-09 Matsushita Electric Ind Co Ltd Organic boric acid compound
JP4737854B2 (en) * 2001-03-22 2011-08-03 パナソニック株式会社 Laser oscillation device
JP4542740B2 (en) * 2002-07-26 2010-09-15 住友精化株式会社 Method for producing (thiophene / phenylene) co-oligomers
JP4331951B2 (en) * 2002-08-30 2009-09-16 富士フイルム株式会社 Novel compound and optical element using the same
DE50309671D1 (en) * 2002-09-13 2008-06-05 Starck H C Gmbh Organic compounds with core-shell structure
JP2007197358A (en) * 2006-01-26 2007-08-09 Sumitomo Seika Chem Co Ltd (thiophene/phenylene) cooligomer and light-emitting material containing the same
JP5063004B2 (en) * 2006-01-26 2012-10-31 住友精化株式会社 (Thiophene / phenylene) co-oligomer and light-emitting material containing them
JP2009114074A (en) * 2007-11-01 2009-05-28 Sumitomo Seika Chem Co Ltd (thiophene/phenylene) co-oligomer
WO2009104733A1 (en) * 2008-02-22 2009-08-27 東洋インキ製造株式会社 Organic electroluminescent device material and organic electroluminescent device
JP5429607B2 (en) * 2008-03-17 2014-02-26 株式会社リコー New organic semiconductor materials
TWI396687B (en) 2009-03-23 2013-05-21 Eternal Chemical Co Ltd Thiophene derivatives and its applications

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0353667A1 (en) * 1988-08-04 1990-02-07 BASF Aktiengesellschaft Bithienyl derivatives, process for their preparation, and compositions containing them
WO1991003142A1 (en) * 1989-08-18 1991-03-07 Idemitsu Kosan Co., Ltd. Organic electroluminescent element
US5077142A (en) * 1989-04-20 1991-12-31 Ricoh Company, Ltd. Electroluminescent devices

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5037256B2 (en) * 1973-02-07 1975-12-01
FR2527618A1 (en) * 1982-05-25 1983-12-02 Thomson Csf POLYMERS CONTAINING HETEROCYCLES AND AROMATIC CORES AND CONDUCTIVE ORGANIC MATERIALS FORMED THEREFROM
JPH04164370A (en) * 1990-04-13 1992-06-10 Idemitsu Kosan Co Ltd Thiophene derivative, organic semiconductor composed of the thiophene derivative, semiconductor element using the organic semiconductor, and diode element using the organic semiconductor
JPH04297430A (en) * 1991-03-15 1992-10-21 Idemitsu Kosan Co Ltd Polyphenyl derivative and production thereof
JP2653626B2 (en) * 1993-09-16 1997-09-17 科学技術振興事業団 Organic light emitting element
JP2975530B2 (en) * 1994-06-01 1999-11-10 三菱電機株式会社 Organic superlattice material, method for producing the same, and device using the material
JP3506281B2 (en) * 1995-01-26 2004-03-15 出光興産株式会社 Organic electroluminescence device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0353667A1 (en) * 1988-08-04 1990-02-07 BASF Aktiengesellschaft Bithienyl derivatives, process for their preparation, and compositions containing them
US5077142A (en) * 1989-04-20 1991-12-31 Ricoh Company, Ltd. Electroluminescent devices
WO1991003142A1 (en) * 1989-08-18 1991-03-07 Idemitsu Kosan Co., Ltd. Organic electroluminescent element

Also Published As

Publication number Publication date
JP2000026451A (en) 2000-01-25

Similar Documents

Publication Publication Date Title
JP3816969B2 (en) Organic EL device
KR101426109B1 (en) Gold complex, method for production of the gold complex, and organic ultraviolet electroluminescent element using the gold complex
EP0672741B1 (en) Polymeric fluorescent substance and organic electroluminescence device
US8872422B2 (en) Dinaphthyl ethylene derivativce, process for preparing it, film prepared from it, and OLED including the film
WO2004096945A1 (en) 1,3,6,8-tetrasubstituted pyrene compounds, organic el device and organic el display
JP5533645B2 (en) Substituted ethynyl gold-cyclic alkylaminocarbene complex and organic electroluminescence device
JP4026273B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP4657400B2 (en) Molecular compounds and light emitting materials using them
US6355365B1 (en) Molecular compound, luminous material using the same, and luminous element
JP2003026616A (en) Compound for organic el(electroluminescent) device and organic el device using it
JP3994573B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP3642606B2 (en) Organic EL device
JPWO2003050201A1 (en) Organic electroluminescence element material
JP4918810B2 (en) Substituted phenylethynylcopper-nitrogen-containing heterocyclic carbene complex and organic electroluminescence device using the same
JP3899698B2 (en) Organic electroluminescent device material and organic electroluminescent device using the same
JP3817957B2 (en) Organic fluorescent material and organic electroluminescence device
JP2004292766A (en) Organic electroluminescent element material
JP2009197144A (en) Material for organic electroluminescent element and organic electroluminescent element
JP4211191B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP3951316B2 (en) Polymer phosphor thin film, method for producing the same, and organic electroluminescence device
JP3674973B2 (en) Organic electroluminescence device
JP3440565B2 (en) Polymer fluorescent substance and organic electroluminescence device
JP3707081B2 (en) Polymer fluorescent substance and organic electroluminescence device
JP3894216B2 (en) Polymer fluorescent substance and organic electroluminescence device
TW201114769A (en) Optoelectronic devices and organic compounds used therein

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060414

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061220

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term