JP4654793B2 - Dust detection device and electric vacuum cleaner using the same - Google Patents

Dust detection device and electric vacuum cleaner using the same Download PDF

Info

Publication number
JP4654793B2
JP4654793B2 JP2005187673A JP2005187673A JP4654793B2 JP 4654793 B2 JP4654793 B2 JP 4654793B2 JP 2005187673 A JP2005187673 A JP 2005187673A JP 2005187673 A JP2005187673 A JP 2005187673A JP 4654793 B2 JP4654793 B2 JP 4654793B2
Authority
JP
Japan
Prior art keywords
dust
unit
dust detection
detection device
amplification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005187673A
Other languages
Japanese (ja)
Other versions
JP2007006921A (en
Inventor
昭人 伊藤
裕夫 大島
聖一 上野
裕之 妹尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005187673A priority Critical patent/JP4654793B2/en
Priority to CNB200610094617XA priority patent/CN100518614C/en
Publication of JP2007006921A publication Critical patent/JP2007006921A/en
Application granted granted Critical
Publication of JP4654793B2 publication Critical patent/JP4654793B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電気掃除機の空気通路上を通過する塵埃を検知する塵埃検知装置に関するものである。   The present invention relates to a dust detection device that detects dust passing over an air passage of a vacuum cleaner.

従来の塵埃検知装置としては、下記に示すような電気掃除機の塵埃検知装置がある。   As a conventional dust detection device, there is a dust detection device for a vacuum cleaner as described below.

従来この種の塵埃検知装置は、図6や図7に示すような構成になっている。図6および図7において、塵埃が流れる空気通路内に光を放つ発光部230と、発光部230からの光を受光し受光量に応じた信号を出力する受光部231は、塵埃が流れる空気通路に発光部230と対向して設けられている(以下、この発光部230と受光部231を合わせてごみセンサー23と称す)。受光部231からの出力信号Vsは増幅手段A232により増幅された後、その信号Vaはパルス変換手段A235によりパルスSaに変換され、ごみ判断手段238に入力される。ごみ判断手段238は、このパルスSaの数を計数すると同時に、パルス幅を計測してパルス幅が広い場合、すなわち塵埃が大きい場合にはパルスSaへ計数する数を増やすよう補正し、制御手段10はごみ判断手段238の計数が多いときにはファンモーター11の入力を上昇させるよう制御する。こうすることで、大きな塵埃ほどより強い吸引力で塵埃を吸引でき、塵埃に応じた最適な吸引力で掃除を行うことができる(例えば、特許文献1参照)。
特公平7−28847号公報
Conventionally, this type of dust detection apparatus has a configuration as shown in FIGS. 6 and 7, a light emitting unit 230 that emits light into an air passage through which dust flows, and a light receiving unit 231 that receives light from the light emitting unit 230 and outputs a signal corresponding to the amount of received light are an air passage through which dust flows. The light emitting unit 230 is provided opposite to the light emitting unit 230 (hereinafter, the light emitting unit 230 and the light receiving unit 231 are collectively referred to as a dust sensor 23). After the output signal Vs from the light receiving unit 231 is amplified by the amplification unit A232, the signal Va is converted to the pulse Sa by the pulse conversion unit A235 and input to the dust determination unit 238. The dust judgment means 238 counts the number of the pulses Sa, and simultaneously measures the pulse width and corrects to increase the number counted to the pulse Sa when the pulse width is wide, that is, when the dust is large. When the count of the dust judgment means 238 is large, control is performed to increase the input of the fan motor 11. By doing so, dust can be sucked with a stronger suction force as the dust becomes larger, and cleaning can be performed with an optimum suction force according to the dust (see, for example, Patent Document 1).
Japanese Patent Publication No. 7-28847

現在、生活環境の変化により、花粉などを含むハウスダストに対する関心が高まり、これらの小さい塵埃を検出できる電気掃除機の塵埃検知装置が要求されている。   At present, due to changes in living environment, interest in house dust including pollen has increased, and a dust detection device for a vacuum cleaner that can detect these small dusts has been demanded.

しかしながら従来の発明においては、パルス幅によって塵埃の大きさを判断する場合、塵埃が受光部231に対して十分小さい場合は塵埃の大きさが変化してもパルス幅はほとんど変化しない。例えば、円形の受光部231を塵埃が通過するときに、通過する塵埃の大きさを直径Xの球体、受光部の大きさを直径Yの円、通過速度をZとすると、通過時間は(X+Y)/Zであるが、ここでX<<Yであるときには通過時間はY/Zとなり、塵埃の大きさによる通過時間の変化はほぼ無くなってしまい、塵埃の大きさの判断は困難である。また、直接Vaの変化を見て塵埃の大きさを判断しようとした場合でも、砂粒と花粉を同時に見ようとすると、受光部231の受光量の変化は受光部231へ当たる光を遮る面積に比例するため、受光部231の大きさが砂粒より大きい場合、(砂粒の直径):(花粉の直径)=100:1とすると、受光量の変化の比率は1002:12=10000:1になり、これだけの変化の幅がある塵埃の大きさを正しく検知することは困難であった。   However, in the conventional invention, when the size of the dust is determined based on the pulse width, the pulse width hardly changes even if the size of the dust changes if the dust is sufficiently smaller than the light receiving unit 231. For example, when dust passes through a circular light receiving unit 231, if the size of the passing dust is a sphere with a diameter X, the size of the light receiving unit is a circle with a diameter Y, and the passing speed is Z, the passing time is (X + Y ) / Z, however, when X << Y, the passing time is Y / Z, and the change in the passing time due to the size of the dust is almost eliminated, and it is difficult to determine the size of the dust. Even if it is attempted to determine the size of the dust by directly looking at the change in Va, if the sand particles and pollen are viewed simultaneously, the change in the amount of light received by the light receiving unit 231 is proportional to the area that blocks the light hitting the light receiving unit 231. Therefore, when the size of the light receiving portion 231 is larger than the sand particles, assuming that (the diameter of the sand particles) :( the diameter of the pollen) = 100: 1, the ratio of the change in the amount of received light is 1002: 12 = 10000: 1, It has been difficult to correctly detect the size of dust having such a wide range of changes.

上記従来の課題を解決するために本発明は、塵埃検知手段と、前記塵埃検知手段からの信号を増幅する増幅手段と、前記増幅手段からの信号に基づき、塵埃の大きさを判別するごみ判別手段と、を備え、前記増幅手段は塵埃の大きさにあわせた複数の増幅度を有するととともに、前記塵埃検知手段からの信号を前記複数の増幅度で増幅した複数の信号を同時に出力しており、前記ごみ判別手段は、前記増幅手段から出力された前記複数の信号に基づき、塵埃の大きさを判別することで、より小さい細塵を含んだごみを大きさ別に検知することができる塵埃検知装置を使用者に提供することができる。 In order to solve the above-described conventional problems, the present invention provides a dust detection unit, an amplification unit that amplifies a signal from the dust detection unit , and a dust determination that determines the size of dust based on the signal from the amplification unit. And amplifying means having a plurality of amplification levels according to the size of dust, and simultaneously outputting a plurality of signals obtained by amplifying signals from the dust detection means with the plurality of amplification degrees. And the dust discriminating means discriminates the size of the dust based on the plurality of signals output from the amplifying means , thereby detecting dust containing smaller fine dust by size. A detection device can be provided to the user.

本発明は、塵埃の大きさにあわせた複数の増幅度を持つ複数の増幅手段を用いることで、より小さい細塵を含んだごみを大きさ別に検知することができるので、その検知した状態を利用してファンモーターへの入力を制御して吸引力を変化させることで、例えば掃除機に用いると、被掃除面に応じた最適な吸引力で掃除を行うことができる。   In the present invention, by using a plurality of amplification means having a plurality of amplification degrees according to the size of dust, dust containing smaller fine dust can be detected by size. By using this to control the input to the fan motor and changing the suction force, for example, when used in a vacuum cleaner, cleaning can be performed with an optimum suction force according to the surface to be cleaned.

第1の発明は、塵埃検知手段と、前記塵埃検知手段からの信号を増幅する増幅手段と、前記増幅手段からの信号に基づき、塵埃の大きさを判別するごみ判別手段と、を備え、前記増幅手段は塵埃の大きさにあわせた複数の増幅度を有するととともに、前記塵埃検知手段からの信号を前記複数の増幅度で増幅した複数の信号を同時に出力しており、前記ごみ判別手段は、前記増幅手段から出力された前記複数の信号に基づき、塵埃の大きさを判別することで、より小さい細塵を含んだ塵埃を大きさ別に検知することができる電気掃除機の塵埃検知装置を使用者に提供することができる。 The first invention includes dust detection means, amplification means for amplifying a signal from the dust detection means , and dust determination means for determining the size of dust based on the signal from the amplification means , The amplification means has a plurality of amplification levels according to the size of dust, and simultaneously outputs a plurality of signals obtained by amplifying signals from the dust detection means with the plurality of amplification degrees. A dust detection device for a vacuum cleaner that can detect dust containing smaller fine dust according to size by determining the size of the dust based on the plurality of signals output from the amplification means. Can be provided to the user.

第2の発明は、第1の発明において、前記増幅手段は塵埃の大きさと通過速度にあわせた帯域の周波数成分を増幅して通過させる複数のフィルター部有するので、塵埃が通過するときの信号以外のノイズなどを除去し、確実に塵埃を検知することが可能な電気掃除機の塵埃検知装置を使用者に提供することができる。 According to a second invention, in the first invention, the amplifying means has a plurality of filter parts that amplify and pass frequency components in a band in accordance with the size and passing speed of the dust. It is possible to provide a user with a dust detection device for a vacuum cleaner that can remove noise and the like and reliably detect dust.

第3の発明は、第1または第2の発明の塵埃検知手段を、塵埃が流れる空気通路内に光を放つ発光部と、前記発光部からの光を受光し、受光量に応じた信号を出力する受光部とで構成したもので、塵埃検知手段をより具体的に構成するものである。   According to a third aspect of the present invention, the dust detection means of the first or second aspect of the invention includes a light emitting unit that emits light into an air passage through which dust flows, a light from the light emitting unit, and a signal corresponding to the amount of light received. It is comprised with the light-receiving part to output, and a dust detection means is comprised more concretely.

第4の発明は、第2の発明において、増幅手段の複数のフィルター部のそれぞれのカットオフ周波数について少なくとも一つは異なるカットオフ周波数を持つので、増幅手段がそれぞれ狙いの大きさの信号を中心に増幅することができるので、より確実に塵埃の大きさを区別して検知することができる。   According to a fourth invention, in the second invention, since at least one of the plurality of filter portions of the amplification means has a different cutoff frequency, each of the amplification means focuses on a signal of a target size. Therefore, it is possible to distinguish and detect the size of the dust more reliably.

第5の発明は、第4の発明に加えて複数の増幅手段を備え、フィルター部のハイパスフィルターのカットオフ周波数が一番低い、又はフィルター部にハイパスフィルターを持たない増幅手段は、他の増幅手段に比べて大きな塵埃を検知することで、大きな塵埃が入ってきたときには、受光部の光の変化時間が長く、また通過速度も遅いため、低い周波数帯の信号が入るのでそれにあわせたフィルターを用いることでより正確に塵埃を検知することができる。   The fifth invention includes a plurality of amplifying means in addition to the fourth invention, and the amplifying means having the lowest cut-off frequency of the high-pass filter of the filter section or having no high-pass filter in the filter section is the other amplifying means. By detecting a large amount of dust compared to the means, when a large amount of dust comes in, the light change time of the light receiving part is long and the passing speed is slow, so a signal in a low frequency band is input. By using it, dust can be detected more accurately.

第6の発明は、第2の発明に加えて複数の増幅手段を備え、少なくとも一つの増幅手段は、他の増幅手段と並列にならべて同じ信号入力を共有したので、その並列に並べた増幅手段は、それぞれ独立に増幅度とフィルター部のカットオフ周波数の設定ができるので、設定の自由度を増すことができる。   The sixth invention includes a plurality of amplification means in addition to the second invention, and at least one amplification means shares the same signal input in parallel with the other amplification means, and therefore, the amplification arranged in parallel. The means can independently set the amplification degree and the cut-off frequency of the filter unit, so that the degree of freedom of setting can be increased.

第7の発明は、第2の発明に加えて複数の増幅手段を備え、少なくとも一つの増幅手段は、他の増幅手段の増幅後の信号を更に増幅する構成にしたので、受光部に対してすべての増幅手段を並列に接続する必要が無いため、受光部の出力に対する増幅手段の入力インピーダンスを高くして受光部の安定性を増すことができ、さらに一旦増幅した信号を再利用して増幅するので増幅度が小さくて済むので、増幅にかかるコストを削減することができる。   The seventh invention includes a plurality of amplifying means in addition to the second invention, and at least one amplifying means is configured to further amplify the signal amplified by the other amplifying means. Since it is not necessary to connect all the amplifying means in parallel, the input impedance of the amplifying means with respect to the output of the light receiving part can be increased to increase the stability of the light receiving part, and further, the amplified signal is reused and amplified. As a result, the degree of amplification can be small, and the cost for amplification can be reduced.

第8の発明は、第1〜7の発明のいずれか1つの塵埃検出装置と、吸引風を発生させるファンモーターとファンモーターへの入力を制御する制御手段を備え、前記制御手段は前記塵埃検出装置の出力に応じて前記ファンモーターへの入力を変化させるので、例えば、電気掃除機に用いた場合は、被掃除面の状況に応じて最適な吸引力で掃除を行うことができる。   An eighth invention includes the dust detection device according to any one of the first to seventh inventions, a fan motor that generates suction air, and a control unit that controls an input to the fan motor, wherein the control unit is configured to detect the dust. Since the input to the fan motor is changed according to the output of the apparatus, for example, when used in a vacuum cleaner, cleaning can be performed with an optimum suction force according to the condition of the surface to be cleaned.

(実施の形態1)
以下、本発明の実施の形態1について図面を用いて説明する。なお、従来と同一構成の部品については同一符号を付し、説明を省略する。
(Embodiment 1)
Hereinafter, Embodiment 1 of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected about the component of the same structure as the past, and description is abbreviate | omitted.

第1図は本発明の実施の形態1における電気掃除機の塵埃検知装置のブロック図である。第1図において、230、231は、塵埃検知手段としての発光部、受光部であり、発光部230は、塵埃が流れる空気通路内に光を放ち、受光部231は、発光部230からの光を受光し受光量に応じた信号を出力するもので、塵埃が流れる空気通路に発光部230と対向して設けられている。受光部231からの出力信号Vsは増幅手段A232と増幅手段B233でそれぞれ増幅される。増幅手段A232は、増幅部A2320と、オペアンプやDSPなどの高速演算処理CPUなどで構成されるフィルター部A2321で構成され、Vsを特定の周波数帯(以降、周波数帯Aと称す)を中心に増幅した信号Vaを出力し、これをパルス変換手段A235がパルスに変換し、その出力信号Saがごみ量やごみの種類を判別するごみ判別手段238に入力される。増幅手段B233も同様に、増幅部B2330と、オペアンプやDSPなどの高速演算処理CPUなどから成るフィルター部B2331で構成され、Vsを特定の周波数帯(以降、周波数帯Bと称す)を中心に増幅した信号Vbを出力し、これをパルス変換手段B236がパルスに変換し、その出力信号Sbがごみ判別手段238に入力される。ごみ判別手段238はこのSaとSbの2つの信号入力によって掃除している場所のごみの大きさと量を判断する。なお、増幅手段A232の増幅度は直径200μm程度の砂粒より大きなごみを検知できるような狙いの増幅度に、増幅手段B233の増幅度は直径20μm程度の花粉から増幅手段Aの狙いの200μmの大きさのごみをそれぞれ検知できるような狙いの増幅度になっている。   FIG. 1 is a block diagram of a dust detection device for a vacuum cleaner according to Embodiment 1 of the present invention. In FIG. 1, reference numerals 230 and 231 denote a light emitting part and a light receiving part as dust detection means. The light emitting part 230 emits light into the air passage through which dust flows, and the light receiving part 231 receives light from the light emitting part 230. And outputs a signal corresponding to the amount of light received, and is provided opposite to the light emitting unit 230 in an air passage through which dust flows. The output signal Vs from the light receiving unit 231 is amplified by the amplification unit A232 and the amplification unit B233, respectively. The amplifying unit A232 includes an amplifying unit A2320 and a filter unit A2321 including a high-speed arithmetic processing CPU such as an operational amplifier and a DSP, and amplifies Vs around a specific frequency band (hereinafter referred to as frequency band A). The signal Va is output, the pulse conversion means A235 converts it into a pulse, and the output signal Sa is input to the dust discrimination means 238 for discriminating the amount and type of dust. Similarly, the amplifying unit B233 includes an amplifying unit B2330 and a filter unit B2331 including a high-speed arithmetic processing CPU such as an operational amplifier and a DSP, and amplifies Vs around a specific frequency band (hereinafter referred to as frequency band B). The signal Vb is output, and this is converted into a pulse by the pulse conversion means B236, and the output signal Sb is input to the dust determination means 238. The dust discriminating means 238 judges the size and amount of dust at the place to be cleaned by inputting two signals Sa and Sb. The amplification means A232 has an amplification degree aimed at detecting dust larger than sand grains having a diameter of about 200 μm, and the amplification means B233 has an amplification degree of about 20 μm from pollen having a diameter of about 200 μm, which is the aim of the amplification means A. The amplification level is aimed at detecting each trash.

以上のように構成された電気掃除機の塵埃検出装置についてその動作を説明する。   The operation of the dust detection device for a vacuum cleaner configured as described above will be described.

掃除中に空気通路内にごみが流れると、発光部230からの光がこのごみにより遮断され、受光部231の受光量は少なくなり出力電圧Vsは小さくなる。このVsをフィルター部A2321を通して増幅部A2320で増幅して、その信号Vaを出力する。フィルター部A2321はカットオフ周波数fa1を持つハイパスフィルターおよびカットオフ周波数fa2を持つローパスフィルタから成るバンドパスフィルターであり、特定の周波数帯A(fa1〜fa2)を中心に増幅する構成となっており、この周波数fa1およびfa2は、ごみがごみセンサー23を通過する速度によって算出される周波数である。   If dust flows into the air passage during cleaning, the light from the light emitting unit 230 is blocked by the dust, and the amount of light received by the light receiving unit 231 decreases and the output voltage Vs decreases. This Vs is amplified by the amplification unit A2320 through the filter unit A2321, and the signal Va is output. The filter unit A2321 is a bandpass filter including a highpass filter having a cutoff frequency fa1 and a lowpass filter having a cutoff frequency fa2, and is configured to amplify around a specific frequency band A (fa1 to fa2). The frequencies fa1 and fa2 are frequencies calculated based on the speed at which the dust passes through the dust sensor 23.

以下に周波数fa1とfa2の算出方法を述べる。発光部230と受光部231をそれぞれ直径Yの円形とし、検知するごみを直径Xの球体とすると、対向する発光部230と受光部231をそれぞれ上底と下底にした円柱(以降、領域Rと称す)の中をごみが通過するときが、受光部231の受光量が一番低下するときであり、そのときのごみの通過の様子を図2に、受光部231の受光量の変化を図3に示す。図2、3において、ごみがごみセンサー23を通過するときには、(ア)ごみが通過する前、(イ)ごみが領域Rの外壁と交わっているとき(領域Rに入るとき)、(ウ)ごみが領域Rの中に入ったとき(エ)ごみが領域Rの外壁と交わっているとき(領域Rから出るとき)、(オ)ごみが通過し終わったときの5つの状態がある。このときの受光部231の受光量の変化は、ごみの大きさやごみセンサー23を通過する速度によって異なり、ごみが大きくなるほど変化量は大きくなってその変化時間も長くなり、通過速度が速くなればなるほど変化時間は短くなる。増幅手段A232はこの(イ)の時の受光量の変化を利用して、受光量の変化をフィルター部A2321でフィルタリングして増幅部A2320で増幅する。   A method for calculating the frequencies fa1 and fa2 will be described below. If each of the light emitting unit 230 and the light receiving unit 231 has a circular shape with a diameter Y, and the dust to be detected is a sphere with a diameter X, a cylinder (hereinafter referred to as region R) with the light emitting unit 230 and the light receiving unit 231 facing each other as an upper base and a lower base, respectively. The amount of light received by the light receiving portion 231 is the lowest when the dust passes through the inside of the light receiving portion 231. FIG. As shown in FIG. 2 and 3, when the dust passes through the dust sensor 23, (a) before the dust passes, (b) when the dust crosses the outer wall of the region R (when entering the region R), (c) There are five states when the waste enters the region R (d) when the waste intersects with the outer wall of the region R (when leaving the region R), and (e) when the waste has passed. The change in the amount of light received by the light receiving unit 231 at this time depends on the size of the dust and the speed of passing through the dust sensor 23. The larger the dust, the larger the amount of change and the longer the change time. The change time becomes shorter. The amplifying unit A232 utilizes the change in the amount of received light at the time of (A), filters the change in the amount of received light with the filter unit A2321, and amplifies it with the amplifier unit A2320.

(イ)の状態の時間Tは、ごみが領域Rの中心を速度Zで進入するときは、ごみが小さく、X≦YであるときにはT=X/Z、ごみが大きく、X≧YであるときにはT=Y/Zになる。   When the dust enters the center of the region R at a speed Z, the time T in (a) is T = X / Z when the dust is small and X ≦ Y, and the dust is large and X ≧ Y. Sometimes T = Y / Z.

したがって受光部231の直径Y=3mmとすると、増幅手段A232の場合、直径200μm程度の砂粒より大きなごみを検知することを考慮すると、検知するごみの大きさの狙いはX≧200μmとなるので、Tは200μm/Z≦T≦3mm/Zとなり、通過速度Zの範囲を設定すればTおよびそれにあわせた周波数fa1、fa2が決定される。増幅手段A232は、入力信号Vsを上記方法で定めた周波数帯fa1〜fa2でフィルタリングして増幅し、その出力信号Vaはパルス変換手段A235に入力される。こうすることで、ノイズを除去してごみがごみセンサー23を通過する信号のみを抽出することができる。   Accordingly, if the diameter Y of the light receiving portion 231 is 3 mm, in the case of the amplifying unit A232, in consideration of detecting dust larger than sand particles having a diameter of about 200 μm, the target of the size of the detected dust is X ≧ 200 μm. T is 200 μm / Z ≦ T ≦ 3 mm / Z. If the range of the passing speed Z is set, T and frequencies fa1 and fa2 corresponding to the T are determined. The amplification means A232 filters and amplifies the input signal Vs with the frequency bands fa1 to fa2 determined by the above method, and the output signal Va is input to the pulse conversion means A235. By doing so, it is possible to remove only noise and extract only the signal that the dust passes through the dust sensor 23.

増幅手段B233は増幅手段A232と同様に、Vsを特定の周波数帯B(fb1〜fb2)を中心に増幅させた信号Vbを出力する構成となっている。fb1とfb2は20μm程度の花粉を主に検知できるようにすることと、200μm以上のごみは増幅手段A232で検出できることを考慮すると、検知するごみの大きさの狙いは20μm≦X<200μmになるため、Tは20μm/Z≦T≦200μm/Zとなり、通過速度Zの範囲を設定すればTおよびそれにあわせた周波数fb1、fb2が決定される。増幅手段B233は、増幅手段A232に比べて周波数帯Bの帯域を狭くすることができるので、ノイズに対してより強くなり、ごみの信号のみをより増幅することができるので、より正確にごみを検知することができる。   Similar to the amplification unit A232, the amplification unit B233 outputs a signal Vb obtained by amplifying Vs around a specific frequency band B (fb1 to fb2). Considering that fb1 and fb2 can mainly detect pollen of about 20 μm, and that dust of 200 μm or more can be detected by the amplification means A232, the target size of the detected dust is 20 μm ≦ X <200 μm. Therefore, T is 20 μm / Z ≦ T ≦ 200 μm / Z. If the range of the passing speed Z is set, T and frequencies fb1 and fb2 corresponding to the T are determined. Since the amplifying unit B233 can narrow the frequency band B compared to the amplifying unit A232, the amplifying unit B233 is more resistant to noise and can amplify only the dust signal, so that the dust can be more accurately collected. Can be detected.

実際の設計においては、fa1、fa2、fb1、fb2については、増幅手段を構成する回路素子や機構、ごみが領域Rを通過する位置などにも左右される。例えばオペアンプの特性や、ごみの通過経路内の発光部230の光の乱反射、ごみが領域Rの中心以外を通過すること、ごみが領域Rの外を通過しても受光部231の受光量が若干変化することなども考慮して設定される。また、通過速度Zについても、掃除機を用いて同じ風量でごみを吸引している場合でも、ごみセンサー23を通過する速度はごみの大きさによって異なり、大きなごみほど通過速度は遅くなるので、例えば、大きなごみを検知するための増幅手段A232のフィルターの設定に用いるZは、増幅手段B233のZよりも低めに設定するなど、検知する狙いのごみによって計算に用いるZの値を合わせる。したがって、フィルター部A2321のハイパスフィルターのカットオフ周波数fa1は、フィルター部B2331のハイパスフィルターのカットオフ周波数fb1よりも低く設定して、大きなごみに合わせた周波数にすることで、より正確にごみを検知することができる。   In actual design, fa1, fa2, fb1, and fb2 depend on circuit elements and mechanisms constituting the amplifying means, a position where dust passes through the region R, and the like. For example, the characteristics of the operational amplifier, the irregular reflection of light from the light emitting unit 230 in the dust passage path, the fact that dust passes outside the center of the region R, and the amount of light received by the light receiving unit 231 even if the dust passes outside the region R It is set in consideration of slight changes. Also, with regard to the passage speed Z, even when dust is sucked in with the same air volume using a vacuum cleaner, the speed passing through the dust sensor 23 varies depending on the size of the dust, and the larger the dust, the slower the passage speed. For example, Z used for setting the filter of the amplifying unit A232 for detecting large dust is set lower than Z of the amplifying unit B233, and the value of Z used for calculation is adjusted according to the target dust to be detected. Therefore, the cut-off frequency fa1 of the high-pass filter of the filter unit A2321 is set lower than the cut-off frequency fb1 of the high-pass filter of the filter unit B2331, and the dust is detected more accurately by setting the frequency according to the large dust. can do.

これらの増幅手段によって増幅された信号Va、Vbは、それぞれパルス変換手段A235とパルス変換手段B236でパルスに変換され、そのパルスSaとパルスSbはごみ判別手段238に入力される。そして、ごみ判別手段238はSaとSbの2つのパルスの数によって掃除している場所のごみの大きさと量を判断する。また、パルスSaについては、大きなごみに対しての信号であるので、Sbとは違い、ごみの大きさによるパルス幅の変化量も大きいので、パルスの幅も検知してごみの大きさを判断する。   The signals Va and Vb amplified by these amplifying means are converted into pulses by the pulse converting means A235 and pulse converting means B236, respectively, and the pulses Sa and Sb are input to the dust discriminating means 238. Then, the dust discriminating means 238 judges the size and amount of dust at the place to be cleaned based on the number of two pulses Sa and Sb. Further, since the pulse Sa is a signal for a large dust, unlike the Sb, the amount of change in the pulse width due to the size of the dust is large, so the pulse width is also detected to determine the size of the dust. To do.

制御手段10はこのごみ判別手段238が判断するごみの大きさと量によってファンモーター11への入力を変化させて、ごみの種類に応じた最適な入力に設定する。例えば、小さな細塵のみが検出されているときは吸引力を上げなくてもごみが吸引できるため、ファンモーター11への入力はそれほど上げず、逆に大きなごみが検出されたときはファンモーター11への入力を上げてごみを吸引できるようにする。こうすることで、被掃除面の状況に応じて最適な吸引力で掃除を行うことができる。   The control means 10 changes the input to the fan motor 11 according to the size and amount of the dust judged by the dust discrimination means 238, and sets the optimum input according to the kind of dust. For example, when only small fine dust is detected, dust can be sucked without increasing the suction force. Therefore, the input to the fan motor 11 does not increase so much. Conversely, when large dust is detected, the fan motor 11 Increase the input to be able to suction the garbage. By carrying out like this, it can clean with the optimal suction | attraction force according to the condition of the surface to be cleaned.

また、表示手段14は、図4に示すようなごみの大きさ別の、砂レベル表示部141とホコリレベル表示部142の2つのレベルメーターになっており、それぞれSaとSbのパルス数に合わせて表示を変化させることで、使用者に被掃除面のごみの状況を知らせることができる。   Further, the display means 14 is composed of two level meters, such as a sand level display unit 141 and a dust level display unit 142, according to the size of the dust as shown in FIG. 4, and according to the number of pulses of Sa and Sb, respectively. By changing the display, the user can be informed of the status of the dust on the surface to be cleaned.

(実施の形態2)
以下、本発明の実施の形態2について図面を用いて説明する。なお、従来および実施の形態1と同一構成の部品については同一符号を付し、説明を省略する。
(Embodiment 2)
The second embodiment of the present invention will be described below with reference to the drawings. Note that parts having the same configurations as those of the conventional and the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

図5は本発明の実施の形態2における電気掃除機の塵埃検知装置のブロック図である。実施の形態1とは増幅手段B233の配置が異なり、増幅手段A232の出力信号Vaが増幅手段B233の入力になっており、小さいごみを検知する側は2段増幅になっている。   FIG. 5 is a block diagram of a dust detection device for a vacuum cleaner according to Embodiment 2 of the present invention. The arrangement of the amplifying means B233 is different from that of the first embodiment, and the output signal Va of the amplifying means A232 is input to the amplifying means B233, and the side that detects small dust is two-stage amplification.

このような構成にすることで、実施の形態1に対して受光部231の出力信号に対する増幅手段の入力インピーダンスを高くできるので、受光部の安定性を増すことができる。更に、増幅手段B233はより小さなごみを検知するために増幅度を上げるが、実施の形態1と違って増幅手段A232と独立して増幅させるよりも増幅度が小さくて済むので、増幅にかかるコストを削減することができる。逆に、実施の形態1の構成では、並列に増幅手段を並べているので、それぞれ独立にフィルター部のカットオフ周波数の設定ができ、また、他の増幅手段が発生するノイズの影響を受けることが無くなるという利点がある。   With such a configuration, the input impedance of the amplifying unit with respect to the output signal of the light receiving unit 231 can be increased as compared with the first embodiment, so that the stability of the light receiving unit can be increased. Further, the amplification means B233 increases the amplification degree in order to detect smaller dust. However, unlike the first embodiment, the amplification degree is smaller than that of the amplification means A232, so that the cost for amplification is low. Can be reduced. On the contrary, in the configuration of the first embodiment, since the amplifying means are arranged in parallel, the cutoff frequency of the filter unit can be set independently of each other, and it may be influenced by noise generated by other amplifying means. There is an advantage that it is lost.

周波数帯Aおよび周波数帯Bの設定については、受光部231の直径Y=3mmとすると、増幅手段A232の場合、直径200μm程度の砂粒より大きなごみを検知することと、出力信号Vaを直径20μm狙いの増幅手段B233が利用することを考慮すると、検知するごみの大きさの狙いはX≧20μmとなるので、Tは20μm/Z≦T≦3mm/Zとなり、通過速度Zの範囲を設定すればTおよびそれにあわせた周波数fa1、fa2が決定される。増幅手段A232は、入力信号Vsを上記方法で定めた周波数帯fa1〜fa2でフィルタリングして増幅し、その出力信号Vaはパルス変換手段A235と増幅手段B233に入力される。   As for the setting of the frequency band A and the frequency band B, when the diameter Y of the light receiving unit 231 is 3 mm, the amplification unit A232 detects dust larger than sand particles having a diameter of about 200 μm and targets the output signal Va to a diameter of 20 μm. In consideration of the use of the amplifying means B233, since the target of the size of dust to be detected is X ≧ 20 μm, T becomes 20 μm / Z ≦ T ≦ 3 mm / Z, and the range of the passing speed Z is set. T and frequencies fa1 and fa2 corresponding to T are determined. The amplification means A232 filters and amplifies the input signal Vs with the frequency bands fa1 to fa2 determined by the above method, and the output signal Va is input to the pulse conversion means A235 and the amplification means B233.

増幅手段B233については、20μm程度の花粉を主に検知できるようにすることと、200μm以上のごみは増幅手段A232で検出できることを考慮すると、検知するごみの大きさの狙いは20μm≦X<200μmになるため、Tは20μm/Z≦T≦200μm/Zとなり、通過速度Zの範囲を設定すればTおよびそれにあわせた周波数fb1、fb2が決定される。増幅手段B233は、増幅手段A232に比べてTの上限が小さくなるため、ハイパスフィルターの周波数fb1は増幅手段A232のfa1に対して高くして周波数帯Bの帯域を狭くすることができるので、ノイズに対してより強くなり、ごみの信号のみをより増幅することができるので、より正確にごみを検知することができる。   As for the amplification means B233, considering that pollen of about 20 μm can be mainly detected, and that the dust of 200 μm or more can be detected by the amplification means A232, the aim of the size of the detected garbage is 20 μm ≦ X <200 μm. Therefore, T is 20 μm / Z ≦ T ≦ 200 μm / Z. If the range of the passing speed Z is set, T and frequencies fb1 and fb2 corresponding to the T are determined. Since the upper limit of T is smaller in the amplifying unit B233 than in the amplifying unit A232, the frequency fb1 of the high pass filter can be made higher than the fa1 of the amplifying unit A232 and the frequency band B can be narrowed. Since only the dust signal can be further amplified, the dust can be detected more accurately.

尚、塵埃検知手段を、受光部、発光部を例にして説明したが、この受光部、発光部と同様に、塵埃検知できるものであれば、どのような手段であってもよい。   The dust detecting means has been described by taking the light receiving section and the light emitting section as an example, but any means may be used as long as dust detection can be performed in the same manner as the light receiving section and the light emitting section.

以上のように、本発明にかかる電気掃除機の塵埃検知装置は、ごみの大きさにあわせた複数の増幅度を持つことで、より小さい細塵を含んだごみを大きさ別に検知することができるので、電気掃除機に用いた場合、ファンモーターへの入力を制御して吸引力を変化させて、被掃除面に応じた最適な吸引力で掃除を行うことが可能になる等、ごみの大きさに応じた制御に有用である。   As described above, the dust detection device for a vacuum cleaner according to the present invention can detect dust containing smaller fine dusts by size by having a plurality of amplification degrees according to the size of the dust. Therefore, when used in a vacuum cleaner, it is possible to change the suction force by controlling the input to the fan motor and to perform cleaning with the optimum suction force according to the surface to be cleaned. Useful for control according to size.

本発明の第1の実施の形態における電気掃除機の塵埃検知装置のブロック図The block diagram of the dust detection apparatus of the vacuum cleaner in the 1st Embodiment of this invention 同実施の形態における、ごみがごみセンサーを通過するときの状態を示す図The figure which shows the state when garbage passes a garbage sensor in the same embodiment 同実施の形態における、ごみがごみセンサーを通過するときの速度別受光部の受光量の変化を示す図The figure which shows the change of the light reception amount of the light-receiving part according to speed when garbage passes a garbage sensor in the same embodiment 表示手段の正面図Front view of display means 本発明の第2の実施の形態における電気掃除機の塵埃検知装置のブロック図The block diagram of the dust detection apparatus of the vacuum cleaner in the 2nd Embodiment of this invention 従来の電気掃除機のブロック図Block diagram of a conventional vacuum cleaner 従来の電気掃除機のごみセンサーの断面図Cross section of a conventional vacuum cleaner dust sensor

符号の説明Explanation of symbols

10 制御手段
11 ファンモーター
14 表示手段
23 ごみセンサー
141 砂レベル表示部
142 ホコリレベル表示部
230 発光部(塵埃検知手段)
231 受光部(塵埃検知手段)
232 増幅手段A
233 増幅手段B
235 パルス変換手段A
236 パルス変換手段B
238 ごみ判別手段
2320 増幅部A
2321 フィルター部A
2330 増幅部B
2331 フィルター部B
DESCRIPTION OF SYMBOLS 10 Control means 11 Fan motor 14 Display means 23 Waste sensor 141 Sand level display part 142 Dust level display part 230 Light emission part (dust detection means)
231 Light-receiving part (dust detection means)
232 Amplifying means A
233 Amplifying means B
235 Pulse conversion means A
236 Pulse conversion means B
238 Waste discrimination means 2320 Amplification part A
2321 Filter part A
2330 Amplifier B
2331 Filter B

Claims (8)

塵埃検知手段と、前記塵埃検知手段からの信号を増幅する増幅手段と、前記増幅手段からの信号に基づき、塵埃の大きさを判別するごみ判別手段と、を備え、前記増幅手段は塵埃の大きさにあわせた複数の増幅度を有するととともに、前記塵埃検知手段からの信号を前記複数の増幅度で増幅した複数の信号を同時に出力しており、前記ごみ判別手段は、前記増幅手段から出力された前記複数の信号に基づき、塵埃の大きさを判別する塵埃検知装置。 A dust detection unit; an amplification unit that amplifies a signal from the dust detection unit; and a dust determination unit that determines a size of the dust based on the signal from the amplification unit. And a plurality of signals obtained by amplifying the signals from the dust detection means at the plurality of amplification degrees at the same time, and the dust discrimination means outputs from the amplification means. A dust detection device that determines the size of dust based on the plurality of signals . 前記増幅手段は塵埃の大きさと通過速度にあわせた帯域の周波数成分を増幅して通過させる複数のフィルター部を有する請求項1に記載の塵埃検知装置。 The dust detection device according to claim 1, wherein the amplifying unit includes a plurality of filter units that amplify and pass a frequency component in a band in accordance with a size and a passing speed of the dust. 塵埃検知手段は、塵埃が流れる空気通路内に光を放つ発光部と、前記発光部からの光を受光し、受光量に応じた信号を出力する受光部とで構成した請求項1または2記載の塵埃検知装置。 3. The dust detection means comprises a light emitting part that emits light into an air passage through which dust flows, and a light receiving part that receives light from the light emitting part and outputs a signal corresponding to the amount of light received. Dust detection device. 増幅手段のフィルター部のそれぞれのカットオフ周波数について、少なくとも一つは異なる周波数を設定した請求項2記載の塵埃検出装置。 3. The dust detection device according to claim 2, wherein at least one different frequency is set for each cutoff frequency of the filter unit of the amplification means. 複数の増幅手段を備え、フィルター部のハイパスフィルターのカットオフ周波数が一番低い、又はフィルター部にハイパスフィルターを持たない増幅手段は、他の増幅手段に比べて大きな塵埃を検知する請求項4記載の塵埃検出装置。 5. The amplifying means comprising a plurality of amplifying means and having the lowest cut-off frequency of the high-pass filter in the filter section or having no high-pass filter in the filter section detects larger dust than other amplifying means. Dust detection device. 複数の増幅手段を備え、少なくとも一つの増幅手段は、他の増幅手段と並列に並べて同じ信号入力を共有した請求項2記載の塵埃検出装置。 3. The dust detection device according to claim 2, further comprising a plurality of amplifying means, wherein at least one amplifying means is arranged in parallel with other amplifying means and shares the same signal input. 複数の増幅手段を備え、少なくとも一つの増幅手段は、他の増幅手段の増幅後の信号を更に増幅する構成にした請求項2記載の塵埃検出装置。 3. The dust detection device according to claim 2, further comprising a plurality of amplifying means, wherein at least one amplifying means further amplifies the signal amplified by the other amplifying means. 請求項1〜7のいずれか1項記載の塵埃検出装置と、吸引風を発生させるファンモーターと前記ファンモーターへの入力を制御する制御手段とを備え、前記制御手段は前記塵埃検出装置の出力に応じて前記ファンモーターへの入力を変化させる電気掃除機。 A dust detection device according to any one of claims 1 to 7, a fan motor that generates suction air, and a control unit that controls input to the fan motor, wherein the control unit outputs an output of the dust detection device. A vacuum cleaner that changes the input to the fan motor according to the condition.
JP2005187673A 2005-06-28 2005-06-28 Dust detection device and electric vacuum cleaner using the same Active JP4654793B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005187673A JP4654793B2 (en) 2005-06-28 2005-06-28 Dust detection device and electric vacuum cleaner using the same
CNB200610094617XA CN100518614C (en) 2005-06-28 2006-06-21 Dust detection device and electric dust collector mounted with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005187673A JP4654793B2 (en) 2005-06-28 2005-06-28 Dust detection device and electric vacuum cleaner using the same

Publications (2)

Publication Number Publication Date
JP2007006921A JP2007006921A (en) 2007-01-18
JP4654793B2 true JP4654793B2 (en) 2011-03-23

Family

ID=37596519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005187673A Active JP4654793B2 (en) 2005-06-28 2005-06-28 Dust detection device and electric vacuum cleaner using the same

Country Status (2)

Country Link
JP (1) JP4654793B2 (en)
CN (1) CN100518614C (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4876986B2 (en) * 2007-03-12 2012-02-15 パナソニック株式会社 Vacuum cleaner
JP5304357B2 (en) * 2009-03-17 2013-10-02 パナソニック株式会社 Electric vacuum cleaner
JP2012070883A (en) * 2010-09-28 2012-04-12 Toshiba Corp Vacuum cleaner
JP5321869B2 (en) * 2011-03-28 2013-10-23 株式会社東芝 Electric vacuum cleaner
JP2013128670A (en) * 2011-12-21 2013-07-04 Toshiba Corp Vacuum cleaner
CN106137043B (en) * 2014-12-24 2018-09-11 江苏美的清洁电器股份有限公司 The control method and control device of sweeping robot and sweeping robot
EP3048502B1 (en) * 2015-01-20 2020-12-23 LG Electronics Inc. Robot cleaner and method for controlling robot cleaner
JP6083660B1 (en) * 2016-01-29 2017-02-22 パナソニックIpマネジメント株式会社 Particle detection sensor, dust sensor, smoke detector, air conditioner, and particle detection method
JP6685755B2 (en) * 2016-02-16 2020-04-22 東芝ライフスタイル株式会社 Autonomous vehicle
CN105686760A (en) * 2016-04-06 2016-06-22 柳州定店科技有限公司 Control method of intelligent sweeping robot
CN108283460B (en) * 2017-01-09 2021-04-09 松下家电研究开发(杭州)有限公司 Dust suction device
KR101971732B1 (en) * 2017-04-24 2019-04-25 주식회사 아이티엠반도체 Optical dust sensor
CN108230373A (en) * 2018-02-06 2018-06-29 时明 Mechanical cleaning devices run trace corrects platform

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05253143A (en) * 1992-03-11 1993-10-05 Matsushita Electric Ind Co Ltd Dust detector for vacuum cleaner
JP2002085929A (en) * 2000-09-18 2002-03-26 Mitsubishi Electric Corp Control device of air cleaner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05253143A (en) * 1992-03-11 1993-10-05 Matsushita Electric Ind Co Ltd Dust detector for vacuum cleaner
JP2002085929A (en) * 2000-09-18 2002-03-26 Mitsubishi Electric Corp Control device of air cleaner

Also Published As

Publication number Publication date
CN1891129A (en) 2007-01-10
JP2007006921A (en) 2007-01-18
CN100518614C (en) 2009-07-29

Similar Documents

Publication Publication Date Title
JP4654793B2 (en) Dust detection device and electric vacuum cleaner using the same
US20100293742A1 (en) Cleaning apparatus and detecting method thereof
JP4315146B2 (en) Electric vacuum cleaner
JP2007117143A5 (en)
JP2007205831A (en) Apparatus and method for detecting particulate
JP5967525B2 (en) Dust detector
CZ321296A3 (en) Method of proving particles in a two-phase flow, dust suction cleaner and method of controlling the suction cleaner
JP2007117144A5 (en)
JP4736608B2 (en) Notification device and vacuum cleaner provided with the same
JP2017116417A (en) Photoelectric type dust sensor and air conditioner
JP2007117143A (en) Vacuum cleaner
JP4736644B2 (en) Vacuum cleaner
JP6883770B2 (en) Particle detection sensor
JP4779568B2 (en) Notification device and vacuum cleaner provided with the same
JP6738993B2 (en) Particle detector
JP2020523572A (en) Chamberless smoke detector with detection and monitoring of indoor air quality
JP2006189337A (en) Fine particle measuring instrument
JP6559346B2 (en) Photoelectric dust sensor device and air conditioner
JP3849752B2 (en) Air cleaner
CN112782048A (en) Circuit processing subsystem of particulate matter monitoring device
JP2007278858A (en) Fog particle sensor and fog sensor
JP4770606B2 (en) Dust detector for vacuum cleaner and vacuum cleaner
CN108120659A (en) A kind of particle concentration detecting system and method having from zero calibration
JP2007068759A (en) Vacuum cleaner
WO2017183597A1 (en) Microbody detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080612

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4654793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3