JP4654626B2 - 樹脂粒子の接合方法および樹脂粒子の製造システム - Google Patents

樹脂粒子の接合方法および樹脂粒子の製造システム Download PDF

Info

Publication number
JP4654626B2
JP4654626B2 JP2004214966A JP2004214966A JP4654626B2 JP 4654626 B2 JP4654626 B2 JP 4654626B2 JP 2004214966 A JP2004214966 A JP 2004214966A JP 2004214966 A JP2004214966 A JP 2004214966A JP 4654626 B2 JP4654626 B2 JP 4654626B2
Authority
JP
Japan
Prior art keywords
dispersion
toner
particles
resin
dispersion medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004214966A
Other languages
English (en)
Other versions
JP2005194495A5 (ja
JP2005194495A (ja
Inventor
宏治 秋岡
覚 三浦
健 井熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2004214966A priority Critical patent/JP4654626B2/ja
Priority to US11/010,723 priority patent/US7247414B2/en
Publication of JP2005194495A publication Critical patent/JP2005194495A/ja
Publication of JP2005194495A5 publication Critical patent/JP2005194495A5/ja
Application granted granted Critical
Publication of JP4654626B2 publication Critical patent/JP4654626B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Description

本発明は、樹脂粒子の接合方法および樹脂粒子の製造システムに関するものである。
電子写真法としては、多数の方法が知られているが、一般には、光導電性物質を利用し、種々の手段により感光体上に電気的潜像を形成する工程(露光工程)と、該潜像をトナーを用いて現像する現像工程と、紙等の転写材にトナー画像を転写する転写工程と、定着ローラを用いた加熱、加圧等により、前記トナー画像を定着する工程とを有している。
このような電子写真法で用いられるトナーの製造方法としては、粉砕法、重合法、スプレードライ法が用いられている。
粉砕法は、主成分である樹脂(以下、単に「樹脂」ともいう。)と、着色剤とを含む原料を、樹脂の軟化点以上の温度で混練して混練物を得、その後、前記混練物を冷却、粉砕する方法である(例えば、非特許文献1参照)。このような粉砕法は、原料の選択の幅が広く、比較的容易にトナーを製造することができる点で優れている。しかしながら、粉砕法で得られるトナーは、各粒子間での形状のバラツキが大きく、その粒径分布も広くなりやすいという欠点を有している。その結果、各トナー粒子間での帯電特性、定着特性等のバラツキが大きくなり、トナー全体としての信頼性が低下する。
重合法は、樹脂の構成成分である単量体を用いて、液相中等で、重合反応を行い、目的とする樹脂を生成することにより、トナー粒子を製造するものである(例えば、特許文献1参照)。このような重合法は、得られるトナー粒子の形状を、比較的真球度の高いもの(幾何学的に完全な球形に近い形状)にすることができるという点で優れている。しかしながら、重合法では、各粒子間で粒径のバラツキを十分に小さくすることができない場合がある。また、重合法では、樹脂材料の選択の幅が狭く、目的とする特性のトナーを得るのが困難となる場合がある。
スプレードライ法は、高圧のガスを用いて、溶媒に溶解したトナー製造用の原料を噴霧させることにより、微細化された粉末をトナーとして得る方法である。スプレードライ法では、前述したような粉砕工程が不要であるという利点がある。しかしながら、このようなスプレードライ法では、高圧のガスを用いて、原料の噴霧を行うため、原料の噴霧条件を正確に制御するのが困難である。このため、例えば、目的とする形状、大きさのトナー粒子を効率良く製造するのが困難である。また、スプレードライ法では、噴霧により形成された粒子の大きさのバラツキが大きいため、各粒子の移動速度のバラツキも大きい。このため、噴霧された原料が固化する前に、噴霧された粒子間での衝突、凝集が起こり異形状の粉末が形成され、最終的に得られるトナー粒子の形状、大きさのバラツキがさらに大きくなることもある。このように、スプレードライ法で得られるトナーは、各粒子間での形状、大きさのバラツキが大きいため、各トナー粒子間での帯電特性、定着特性等のバラツキが大きくなり、トナー全体としての信頼性が低下する。
また、従来のスプレードライ法(噴霧乾燥法)では、一般に、溶媒に溶解したトナー製造用の原料を、高温雰囲気下に噴霧するため、溶媒の揮発が急激に進行し、中空粒子が発生し易いという問題点があった。
電子写真学会監修「電子写真の基礎と応用」コロナ社発行、1988年、p482−486 特開平6−332257号公報(第2頁28〜35行目)
本発明の目的は、均一な形状を有し、粒度分布の幅の小さいトナーを提供すること、また、このようなトナーを製造することができる樹脂粒子の製造方法を提供することにある。
このような目的は、下記の本発明により達成される。
本発明の樹脂粒子の製造方法は、樹脂材料を含む分散質が、分散媒中微分散した分散液を用いて、主として樹脂材料で構成された樹脂粒子を接合する方法であって、
ガラス転移点が50〜70℃の前記樹脂材料を含む分散質を、水を含む分散媒中で微分散し、前記分散質の平均粒径を0.1〜0.8μmにするとともに、前記分散液の粘度を0.5〜200mPa・sに調整する分散液調製工程と、
前記分散液を前記樹脂材料のガラス転移点よりも低い温度により10〜200μmの直径を有するヘッド部より吐出することにより微粒子化し、前記樹脂材料のガラス転移点以下の温度の固化部内を微粒子化された前記分散液を搬送させつつ、前記分散媒を除去し、5〜10wt%の含水量の複数個の微粒子が凝集した凝集体を得る分散媒除去工程と、
前記樹脂材料のガラス転移点以上でかつ前記樹脂材料の融点以下の温度で前記凝集体を構成する複数個の前記微粒子同士を体積基準の平均粒径で4〜10μmの粒子に溶融接合する接合工程と、
を有することを特徴とする。
これにより、均一な形状を有し、粒度分布の幅の小さい樹脂粒子(特に、トナー粒子)を提供することができる。
また、異形状の樹脂粒子、特に、中空粒子が発生するのを効果的に防止することができ、その結果、各粒子間での形状、大きさのバラツキがより小さい樹脂粒子を得ることができるとともに、製造される樹脂粒子を真球度の高いもの(幾何学的に完全な球形に近い形状)にすることが比較的容易にできる。また、トナー粒子の機械的強度(耐久性)も優れたものとすることができる。
また、ヘッド部内で分散液を構成する分散媒が揮発し、吐出される分散液の組成(濃度)が経時的に変化するのを効果的に防止することができる。また、ヘッド部の吐出部付近において、吐出される前の(液切れする前の)分散液から分散媒が揮発することにより、吐出部が目詰まりを起こすのを効果的に防止することができる。
また、構成成分の劣化、変性を十分に防止しつつ、凝集体を構成する複数個の微粒子同士をより確実に接合することができ、最終的に得られるトナー粒子の機械的強度(機械的安定性)を特に優れたものとすることができる。また、最終的に得られるトナー粒子の円形度(真球度)を、容易かつ確実に比較的大きいものとすることができる。
また、分散質由来の微粒子の溶融接合を、より円滑に進行させることができる。また、凝集体中に比較的多量の分散媒等が含まれる場合であっても、分散媒等の含有量(残存量)を効果的に低減させることができ、さらには、最終的な樹脂粒子中に実質的に分散媒等が残存しないようにすることができる。
本発明の樹脂粒子の製造システムは、樹脂材料を含む分散質が分散媒中で微分散した分散液を吐出するヘッド部と、ヘッド部から吐出された前記分散液を前記樹脂材料のガラス転移点以下の処理温度に調整される分散媒除去部と、前記樹脂材料のガラス転移点以上の処理温度に調整される接合工程部と、を有し、
前記分散液は、ガラス転移点が50〜70℃の前記樹脂材料を含む前記分散質が、水を含む前記分散媒中で微分散したものであり、前記分散質の平均粒径が0.1〜0.8μmであり、かつ、粘度が0.5〜200mPa・sのものであり、
前記ヘッド部は、直径が10〜200μmであり、前記分散液を前記樹脂材料のガラス転移点以下の温度により吐出するものであり、
前記分散媒除去部は、前記樹脂材料のガラス転移点よりも低い温度で、微粒子化された前記分散液を搬送させつつ、前記分散媒を除去し、5〜10wt%の含水量の複数個の微粒子が凝集した凝集体を得る部位であり、
前記接合工程部は、前記樹脂材料のガラス転移点以上でかつ前記樹脂材料の融点以下の温度で前記凝集体を構成する複数個の前記微粒子同士を体積基準の平均粒径で4〜10μmの粒子に溶融接合する部位であることを特徴とする。
これにより、均一な形状を有し、粒度分布の幅の小さい樹脂粒子(特に、トナー粒子)を提供することができる。
また、異形状の樹脂粒子、特に、中空粒子が発生するのを効果的に防止することができ、その結果、各粒子間での形状、大きさのバラツキがより小さい樹脂粒子を得ることができるとともに、製造される樹脂粒子を真球度の高いもの(幾何学的に完全な球形に近い形状)にすることが比較的容易にできる。また、トナー粒子の機械的強度(耐久性)も優れたものとすることができる。
また、ヘッド部内で分散液を構成する分散媒が揮発し、吐出される分散液の組成(濃度)が経時的に変化するのを効果的に防止することができる。また、ヘッド部の吐出部付近において、吐出される前の(液切れする前の)分散液から分散媒が揮発することにより、吐出部が目詰まりを起こすのを効果的に防止することができる。
また、構成成分の劣化、変性を十分に防止しつつ、凝集体を構成する複数個の微粒子同士をより確実に接合することができ、最終的に得られるトナー粒子の機械的強度(機械的安定性)を特に優れたものとすることができる。また、最終的に得られるトナー粒子の円形度(真球度)を、容易かつ確実に比較的大きいものとすることができる。
また、分散質由来の微粒子の溶融接合を、より円滑に進行させることができる。また、凝集体中に比較的多量の分散媒等が含まれる場合であっても、分散媒等の含有量(残存量)を効果的に低減させることができ、さらには、最終的な樹脂粒子中に実質的に分散媒等が残存しないようにすることができる。
以下、本発明の樹脂粒子の製造方法(トナー粒子の製造方法)およびトナーの好適な実施形態について、添付図面を参照しつつ詳細に説明する。本発明の樹脂粒子の製造方法で得られる樹脂粒子は、主として樹脂材料で構成されたものであればいかなるものであってもよいが、樹脂粒子としては、トナー粒子またはトナー粒子の製造に用いられる粒子(例えば、トナー母粒子)が好ましい。各種樹脂粒子の中でも、トナーは、各粒子間での大きさ、形状の均一性がより厳密に求められるものであり、本発明に適用することによる効果が特に顕著に現れるものである。したがって、以下の説明では、樹脂粒子の一例として代表的にトナー粒子を挙げて、説明する。なお、本明細書中において、「樹脂粒子」とは、主として樹脂材料で構成された粒子(粉末)のことを指し、樹脂材料以外の成分を含むものであってもよい。
図1は、本発明のトナーの製造に用いられるトナー製造装置の第1実施形態を模式的に示す縦断面図、図2は、図1に示すトナー製造装置のヘッド部付近の拡大断面図である。
[分散液]
まず、本発明で用いる分散液6について説明する。本発明のトナーは、分散液6を用いて製造されるものである。分散液としては、例えば、懸濁液(サスペンション)や乳化液(エマルション、乳濁液、乳状液)等が挙げられる。なお、本明細書中において、「懸濁液」とは、液状の分散媒中に、固体(固形)の分散質(懸濁粒子)が分散した分散液(懸濁コロイドを含む)のことを指し、「乳化液(エマルション、乳濁液、乳状液)」とは、液状の分散媒中に、液状の分散質(分散粒子)が分散した分散液のことを指す。また、分散液中には、固体状の分散質と、液状の分散質とが併存していてもよい。このような場合、分散液中における分散質のうち、固体状の分散質の占める割合が液状の分散質の占める割合よりも大きいものを懸濁液といい、液状の分散質の占める割合が固体状の分散質の占める割合よりも大きいものを乳化液という。また、特に、本発明で用いる分散液は脱気処理が施されたものであるのが好ましい。脱気処理については、後に詳述する。
分散液6は、分散媒62中に分散質(分散相)61が微分散した構成となっている。
<分散媒>
分散媒62は、後述する分散質61を分散可能なものであればいかなるものであってもよいが、主として、一般に溶媒として用いられているような材料(以下、「溶媒材料」ともいう)で構成されたものであるのが好ましい。
このような材料としては、例えば、水、二硫化炭素、四塩化炭素等の無機溶媒や、メチルエチルケトン(MEK)、アセトン、ジエチルケトン、メチルイソブチルケトン(MIBK)、メチルイソプロピルケトン(MIPK)、シクロヘキサノン、3−ヘプタノン、4−ヘプタノン等のケトン系溶媒、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、i−ブタノール、t−ブタノール、3−メチル−1−ブタノール、1−ペンタノール、2−ペンタノール、n−ヘキサノール、シクロヘキサノール、1−ヘプタノール、1−オクタノール、2−オクタノール、2−メトキシエタノール、アリルアルコール、フルフリルアルコール、フェノール等のアルコール系溶媒、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、1,2−ジメトキシエタン(DME)、1,4−ジオキサン、テトラヒドロフラン(THF)、テトラヒドロピラン(THP)、アニソール、ジエチレングリコールジメチルエーテル(ジグリム)、2−メトキシエタノール等のエーテル系溶媒、メチルセロソルブ、エチルセロソルブ、フェニルセロソルブ等のセロソルブ系溶媒、ヘキサン、ペンタン、ヘプタン、シクロヘキサン、メチルシクロヘキサン、オクタン、ジデカン、メチルシクロヘキセン、イソプレン等の脂肪族炭化水素系溶媒、トルエン、キシレン、ベンゼン、エチルベンゼン、ナフタレン等の芳香族炭化水素系溶媒、ピリジン、ピラジン、フラン、ピロール、チオフェン、2−メチルピリジン、3−メチルピリジン、4−メチルピリジン、フルフリルアルコール等の芳香族複素環化合物系溶媒、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMA)等のアミド系溶媒、ジクロロメタン、クロロホルム、1,2−ジクロロエタン、トリクロロエチレン、クロロベンゼン等のハロゲン化合物系溶媒、アセチルアセトン、酢酸エチル、酢酸メチル、酢酸イソプロピル、酢酸イソブチル、酢酸イソペンチル、クロロ酢酸エチル、クロロ酢酸ブチル、クロロ酢酸イソブチル、ギ酸エチル、ギ酸イソブチル、アクリル酸エチル、メタクリル酸メチル、安息香酸エチル等のエステル系溶媒、トリメチルアミン、ヘキシルアミン、トリエチルアミン、アニリン等のアミン系溶媒、アクリロニトリル、アセトニトリル等のニトリル系溶媒、ニトロメタン、ニトロエタン等のニトロ系溶媒、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、ペンタナール、アクリルアルデヒド等のアルデヒド系溶媒等の有機溶媒等が挙げられ、これらから選択される1種または2種以上を混合したものを用いることができる。
上記の材料の中でも、分散媒62としては、主として水および/または水との相溶性に優れる液体(例えば、25℃における水100gに対する溶解度が30g以上の液体)で構成されたものであるのが好ましい。これにより、例えば、分散媒62中における分散質61の分散性を高めることができ、分散液6中における分散質61を、粒径が比較的小さく、かつ、大きさのバラツキの少ないものとすることができる。その結果、最終的に得られるトナー(トナー粒子)は、粒子間での大きさ、形状のバラツキが小さく、円形度の大きいものとなる。また、特に、分散媒62が、水で構成されたものであると、例えば、トナーの製造工程において、実質的に有機溶媒を揮発しないようにすることができる。その結果、環境に対して悪影響を極めて与えにくい方法、すなわち、環境に優しい方法でトナーを製造することができる。
また、分散媒62の構成材料として複数の成分の混合物を用いる場合、分散媒の構成材料としては、前記混合物を構成する少なくとも2種の成分の間で、共沸混合物(最低沸点共沸混合物)を形成し得るものを用いるのが好ましい。これにより、後述するトナー製造装置の固化部において、分散媒62を効率良く除去することが可能となる。また、後述するトナー製造装置の固化部において、比較的低い温度で分散媒62を除去することが可能となり、最終的に得られるトナー(トナー粒子)の特性の劣化をより効果的に防止できる。例えば、水との間で、共沸混合物を形成し得る液体としては、二硫化炭素、四塩化炭素、メチルエチルケトン(MEK)、アセトン、シクロヘキサノン、3−ヘプタノン、4−ヘプタノン、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、i−ブタノール、t−ブタノール、3−メチル−1−ブタノール、1−ペンタノール、2−ペンタノール、n−ヘキサノール、シクロヘキサノール、1−ヘプタノール、1−オクタノール、2−オクタノール、2−メトキシエタノール、アリルアルコール、フルフリルアルコール、フェノール、ジプロピルエーテル、ジブチルエーテル、1,4−ジオキサン、アニソール、2−メトキシエタノール、ヘキサン、ヘプタン、シクロヘキサン、メチルシクロヘキサン、オクタン、ジデカン、メチルシクロヘキセン、イソプレン、トルエン、ベンゼン、エチルベンゼン、ナフタレン、ピリジン、2−メチルピリジン、3−メチルピリジン、4−メチルピリジン、フルフリルアルコール、クロロホルム、1,2−ジクロロエタン、トリクロロエチレン、クロロベンゼン、アセチルアセトン、酢酸エチル、酢酸メチル、酢酸イソプロピル、酢酸イソブチル、酢酸イソペンチル、クロロ酢酸エチル、クロロ酢酸ブチル、クロロ酢酸イソブチル、ギ酸エチル、ギ酸イソブチル、アクリル酸エチル、メタクリル酸メチル、安息香酸エチル、トリメチルアミン、ヘキシルアミン、トリエチルアミン、アニリン、アクリロニトリル、アセトニトリル、ニトロメタン、ニトロエタン、アクリルアルデヒド等が挙げられる。
また、分散媒62の沸点は、特に限定されないが、180℃以下であるのが好ましく、150℃以下であるのがより好ましく、35〜130℃であるのがさらに好ましい。このように、分散媒62の沸点が比較的低いものであると、後述するトナー製造装置の固化部において、分散媒62を比較的容易に除去することが可能となる。また、分散媒62としてこのような材料を用いることにより、最終的に得られるトナー粒子中における分散媒62の残留量を特に少ないものにすることができる。その結果トナーとしての信頼性がさらに高まる。
なお、分散媒62中には、上述した材料以外の成分が含まれていてもよい。例えば、分散媒62中には、後に分散質61の構成成分として例示する材料や、シリカ、酸化チタン、酸化鉄等の無機系微粉末、脂肪酸、脂肪酸金属塩等の有機系微粉末等の各種添加剤等が含まれていてもよい。
<分散質>
分散質61は、通常、少なくとも、主成分としての樹脂またはその前駆体(以下、これらを総称して、「樹脂材料」とも言う)を含む材料で構成されている。樹脂の前駆体としては、例えば、当該樹脂のモノマー、ダイマー、オリゴマー等が挙げられる。
以下、分散質61の構成材料について説明する。
1.樹脂(バインダー樹脂)
樹脂(バインダー樹脂)としては、例えば、(メタ)アクリル系樹脂、ポリカーボネート樹脂、ポリスチレン、ポリ−α−メチルスチレン、クロロポリスチレン、スチレン−クロロスチレン共重合体、スチレン−プロピレン共重合体、スチレン−ブタジエン共重合体、スチレン−塩化ビニル共重合体、スチレン−酢酸ビニル共重合体、スチレン−マレイン酸共重合体、スチレン−アクリル酸エステル共重合体、スチレン−メタクリル酸エステル共重合体、スチレン−アクリル酸エステル−メタクリル酸エステル共重合体、スチレン−α−クロルアクリル酸メチル共重合体、スチレン−アクリロニトリル−アクリル酸エステル共重合体、スチレン−ビニルメチルエーテル共重合体等のスチレン系樹脂でスチレンまたはスチレン置換体を含む単重合体または共重合体、ポリエステル樹脂、エポキシ樹脂、ウレタン変性エポキシ樹脂、シリコーン変性エポキシ樹脂、塩化ビニル樹脂、ロジン変性マレイン酸樹脂、フェニール樹脂、ポリエチレン、ポリプロピレン、アイオノマー樹脂、ポリウレタン樹脂、シリコーン樹脂、ケトン樹脂、エチレン−エチルアクリレート共重合体、キシレン樹脂、ポリビニルブチラール樹脂、テルペン樹脂、フェノール樹脂、脂肪族または脂環族炭化水素樹脂等が挙げられ、これらのうち1種または2種以上を組み合わせて用いることができる。また、後述するトナー製造装置の固化部において、分散質61中の原料を重合反応させることによりトナーを製造する場合には、通常、上記の樹脂材料のモノマー、ダイマー、オリゴマー等を用いる。
分散質61中における樹脂の含有量は、特に限定されないが、2〜98wt%であるのが好ましく、5〜95wt%であるのがより好ましい。
また、分散質61を構成する樹脂のガラス転移点は、50〜70℃であるのが好ましい。これにより、後述する分散媒除去工程において、好適な凝集体9を効率良く得ることができる。なお、分散質61を構成する樹脂材料が複数種の樹脂材料(樹脂成分)で構成されたものである場合、樹脂のガラス転移点として、これらの各成分の重量基準の加重平均値として求められる値を採用することができる。
また、分散質61を構成する樹脂の融点は、90〜150℃であるのが好ましい。これにより、後述する接合工程を効率良く行うことができる。なお、分散質61を構成する樹脂材料が複数種の樹脂材料(樹脂成分)で構成されたものである場合、樹脂の融点として、これらの各成分の重量基準の加重平均値として求められる値を採用することができる。
2.溶媒
分散質61中には、その成分の少なくとも一部を溶解する溶媒が含まれていてもよい。これにより、例えば、分散液6中における分散質61の流動性を高めることができ、分散液6中における分散質61を、粒径が比較的小さく、かつ、大きさのバラツキの少ないものとすることができる。その結果、最終的に得られるトナー(トナー粒子)は、粒子間での大きさ、形状のバラツキが小さく、円形度の大きいものとなる。
溶媒としては、分散質61を構成する成分の少なくとも一部を溶解するものであればいかなるものであってもよいが、後述するようなトナー製造装置の固化部において、容易に除去されるものであるのが好ましい。
また、溶媒は、前述した分散媒62との相溶性が低いもの(例えば、25℃における分散媒100gに対する溶解度が30g以下のもの)であるのが好ましい。これにより、分散液6中において、分散質61を安定した状態で微分散させることができる。
また、溶媒の組成は、例えば、前述した樹脂、着色剤の組成や、分散媒の組成等に応じて適宜選択することができる。
例えば、溶媒としては、水、二硫化炭素、四塩化炭素等の無機溶媒や、メチルエチルケトン(MEK)、アセトン、ジエチルケトン、メチルイソブチルケトン(MIBK)、メチルイソプロピルケトン(MIPK)、シクロヘキサノン、3−ヘプタノン、4−ヘプタノン等のケトン系溶媒、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、i−ブタノール、t−ブタノール、3−メチル−1−ブタノール、1−ペンタノール、2−ペンタノール、n−ヘキサノール、シクロヘキサノール、1−ヘプタノール、1−オクタノール、2−オクタノール、2−メトキシエタノール、アリルアルコール、フルフリルアルコール、フェノール等のアルコール系溶媒、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、1,2−ジメトキシエタン(DME)、1,4−ジオキサン、テトラヒドロフラン(THF)、テトラヒドロピラン(THP)、アニソール、ジエチレングリコールジメチルエーテル(ジグリム)、2−メトキシエタノール等のエーテル系溶媒、メチルセロソルブ、エチルセロソルブ、フェニルセロソルブ等のセロソルブ系溶媒、ヘキサン、ペンタン、ヘプタン、シクロヘキサン、メチルシクロヘキサン、オクタン、ジデカン、メチルシクロヘキセン、イソプレン等の脂肪族炭化水素系溶媒、トルエン、キシレン、ベンゼン、エチルベンゼン、ナフタレン等の芳香族炭化水素系溶媒、ピリジン、ピラジン、フラン、ピロール、チオフェン、2−メチルピリジン、3−メチルピリジン、4−メチルピリジン、フルフリルアルコール等の芳香族複素環化合物系溶媒、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMA)等のアミド系溶媒、ジクロロメタン、クロロホルム、1,2−ジクロロエタン、トリクロロエチレン、クロロベンゼン等のハロゲン化合物系溶媒、アセチルアセトン、酢酸エチル、酢酸メチル、酢酸イソプロピル、酢酸イソブチル、酢酸イソペンチル、クロロ酢酸エチル、クロロ酢酸ブチル、クロロ酢酸イソブチル、ギ酸エチル、ギ酸イソブチル、アクリル酸エチル、メタクリル酸メチル、安息香酸エチル等のエステル系溶媒、トリメチルアミン、ヘキシルアミン、トリエチルアミン、アニリン等のアミン系溶媒、アクリロニトリル、アセトニトリル等のニトリル系溶媒、ニトロメタン、ニトロエタン等のニトロ系溶媒、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、ペンタナール、アクリルアルデヒド等のアルデヒド系溶媒等の有機溶媒等が挙げられ、これらから選択される1種または2種以上を混合したものを用いることができる。この中でも特に、有機溶媒を含むものであるのが好ましく、エーテル系溶媒、セロソルブ系溶媒、脂肪族炭化水素系溶媒、芳香族炭化水素系溶媒、芳香族複素環化合物系溶媒、アミド系溶媒、ハロゲン化合物系溶媒、エステル系溶媒、ニトリル系溶媒、ニトロ系溶媒、アルデヒド系溶媒から選択される1種または2種以上を含むものであるのがより好ましい。このような溶媒を用いることにより、分散質61中において、比較的容易に、前述したような各成分を十分均一に分散させることができる。
また、分散液6中には、通常、着色剤が含まれている。着色剤としては、例えば、顔料、染料等を使用することができる。このような顔料、染料としては、例えば、カーボンブラック、スピリットブラック、ランプブラック(C.I.No.77266)、マグネタイト、チタンブラック、黄鉛、カドミウムイエロー、ミネラルファストイエロー、ネーブルイエロー、ナフトールイエローS、ハンザイエローG、パーマネントイエローNCG、クロムイエロー、ベンジジンイエロー、キノリンイエロー、タートラジンレーキ、赤口黄鉛、モリブデンオレンジ、パーマネントオレンジGTR、ピラゾロンオレンジ、ベンジジンオレンジG、カドミウムレッド、パーマネントレッド4R、ウオッチングレッドカルシウム塩、エオシンレーキ、ブリリアントカーミン3B、マンガン紫、ファストバイオレットB、メチルバイオレットレーキ、紺青、コバルトブルー、アルカリブルーレーキ、ビクトリアブルーレーキ、ファーストスカイブルー、インダンスレンブルーBC、群青、アニリンブルー、フタロシアニンブルー、カルコオイルブルー、クロムグリーン、酸化クロム、ピグメントグリーンB、マラカイトグリーンレーキ、フタロシアニングリーン、ファイナルイエローグリーンG、ローダミン6G、キナクリドン、ローズベンガル(C.I.No.45432)、C.I.ダイレクトレッド1、C.I.ダイレクトレッド4、C.I.アシッドレッド1、C.I.ベーシックレッド1、C.I.モーダントレッド30、C.I.ピグメントレッド48:1、C.I.ピグメントレッド57:1、C.I.ピグメントレッド122、C.I.ピグメントレッド184、C.I.ダイレクトブルー1、C.I.ダイレクトブルー2、C.I.アシッドブルー9、C.I.アシッドブルー15、C.I.ベーシックブルー3、C.I.ベーシックブルー5、C.I.モーダントブルー7、C.I.ピグメントブルー15:1、C.I.ピグメントブルー15:3、C.I.ピグメントブルー5:1、C.I.ダイレクトグリーン6、C.I.ベーシックグリーン4、C.I.ベーシックグリーン6、C.I.ピグメントイエロー17、C.I.ピグメントイエロー93、C.I.ピグメントイエロー97、C.I.ピグメントイエロー12、C.I.ピグメントイエロー180、C.I.ピグメントイエロー162、ニグロシン染料(C.I.No.50415B)、金属錯塩染料、シリカ、酸化アルミニウム、マグネタイト、マグヘマイト、各種フェライト類、酸化第二銅、酸化ニッケル、酸化亜鉛、酸化ジルコニウム、酸化チタン、酸化マグネシウム等の金属酸化物や、Fe、Co、Niのような磁性金属を含む磁性材料等が挙げられ、これらのうち1種または2種以上を組み合わせて用いることができる。このような着色剤は、通常、分散液6においては、分散質61中に含まれる。
分散液6中における着色剤の含有量は、特に限定されないが、0.1〜10wt%であるのが好ましく、0.3〜3.0wt%であるのがより好ましい。着色剤の含有量が前記下限値未満であると、着色剤の種類によっては、十分な濃度の可視像を形成するのが困難になる可能性がある。一方、着色剤の含有量が前記上限値を超えると、最終的に得られるトナーの定着特性や帯電特性が低下する可能性がある。
また、分散液6中には、ワックスが含まれていてもよい。ワックスは、通常、離型性を向上させる目的で用いられるものである。このようなワックスとしては、例えば、キャンデリラワックス、カルナウバワックス、ライスワックス、綿ロウ、木ロウ等の植物系ワックス・ロウ、ミツロウ、ラノリン等の動物系ワックス・ロウ、モンタンワックス、オゾケライト、セレシン等の鉱物系ワックス・ロウ、パラフィンワックス、マイクロワックス、マイクロクリスタリンワックス、ペトロラタム等の石油ワックス・ロウ等の天然ワックス・ロウや、フィッシャー・トロプシュワックス、ポリエチレンワックス(ポリエチレン樹脂)、ポリプロピレンワックス(ポリプロピレン樹脂)、酸化型ポリエチレンワックス、酸化型ポリプロピレンワックス等の合成炭化水素ワックス、12−ヒドロキシステアリン酸アミド、ステアリン酸アミド、無水フタル酸イミド、塩素化炭化水素等の脂肪酸アミド、エステル、ケトン、エーテル等の合成ワックス・ロウ等が挙げられ、これらのうち1種または2種以上を組み合わせて用いることができる。また、ワックスとしては、さらに低分子量の結晶性高分子樹脂を使用してもよく、例えば、ポリn−ステアリルメタクリレート、ポリn−ラウリルメタクリレート等のポリアクリレートのホモ重合体あるいは共重合体(例えば、n−ステアリルアクリレート−エチルメタクリレートの共重合体等)等、側鎖に長いアルキル基を有する結晶性高分子等を使用することもできる。
分散液6中におけるワックスの含有量は、特に限定されないが、1.0wt%以下であるのが好ましく、0.5wt%以下であるのがより好ましい。ワックスの含有量が多すぎると、最終的に得られるトナー粒子中において、ワックスが遊離、粗大化して、トナー粒子表面へのワックスのしみ出し等が顕著に起こり、トナーの転写効率が低下する傾向を示す。
ワックスの軟化点は、特に限定されないが、50〜180℃であるのが好ましく、60〜160℃であるのがより好ましい。
また、分散液6中には、これら以外の成分が含まれていてもよい。このような成分としては、例えば、乳化分散剤、帯電制御剤、磁性粉末等が挙げられる。この中でも、乳化分散剤を用いた場合、例えば、分散液6中における分散質61の分散性を向上させることが可能となる。ここで、乳化分散剤としては、例えば、乳化剤、分散剤、分散助剤等が挙げられる。
分散剤としては、例えば、燐酸三カルシウム等の無機系分散剤、ポリビニルアルコール、カルボキシメチルセルロース、ポリエチレングリコール等の非イオン性有機分散剤、トリステアリン酸金属塩(例えば、アルミニウム塩等)、ジステアリン酸金属塩(例えば、アルミニウム塩、バリウム塩等)、ステアリン酸金属塩(例えば、カルシウム塩、鉛塩、亜鉛塩等)、リノレン酸金属塩(例えば、コバルト塩、マンガン塩、鉛塩、亜鉛塩等)、オクタン酸金属塩(例えば、アルミニウム塩、カルシウム塩、コバルト塩等)、オレイン酸金属塩(例えば、カルシウム塩、コバルト塩等)、パルミチン酸金属塩(例えば、亜鉛塩等)、ナフテン酸金属塩(例えば、カルシウム塩、コバルト塩、マンガン塩、鉛塩、亜鉛塩等)、レジン酸金属塩(例えば、カルシウム塩、コバルト塩、マンガン鉛塩、亜鉛塩等)、ポリアクリル酸金属塩(例えば、ナトリウム塩等)、ポリメタクリル酸金属塩(例えば、ナトリウム塩等)、ポリマレイン酸金属塩(例えば、ナトリウム塩等)、アクリル酸−マレイン酸共重合体金属塩(例えば、ナトリウム塩等)、ポリスチレンスルホン酸金属塩(例えば、ナトリウム塩等)等のアニオン性有機分散剤、4級アンモニウム塩等のカチオン性有機分散剤等が挙げられる。この中でも、非イオン性有機分散剤またはアニオン性有機分散剤が特に好ましい。
分散液6中における分散剤の含有量は、特に限定されないが、3.0wt%以下であるのが好ましく、0.01〜1.0wt%であるのがより好ましい。
また、分散助剤としては、例えば、アニオン、カチオン、非イオン性界面活性剤等が挙げられる。
分散助剤は、分散剤と併用するものであるのが好ましい。分散液6が分散剤を含むものである場合、分散液6中における分散助剤の含有量は、特に限定されないが、2.0wt%以下であるのが好ましく、0.005〜0.5wt%であるのがより好ましい。
前記帯電制御剤としては、例えば、安息香酸の金属塩、サリチル酸の金属塩、アルキルサリチル酸の金属塩、カテコールの金属塩、含金属ビスアゾ染料、ニグロシン染料、テトラフェニルボレート誘導体、第四級アンモニウム塩、アルキルピリジニウム塩、塩素化ポリエステル、ニトロフミン酸等が挙げられる。
前記磁性粉末としては、例えば、マグネタイト、マグヘマイト、各種フェライト類、酸化第二銅、酸化ニッケル、酸化亜鉛、酸化ジルコニウム、酸化チタン、酸化マグネシウム等の金属酸化物や、Fe、Co、Niのような磁性金属を含む磁性材料で構成されたもの等が挙げられる。
また、分散液6中には、上記のような材料のほかに、例えば、ステアリン酸亜鉛、酸化亜鉛、酸化セリウム等が添加されていてもよい。
また、分散液6中には、分散質61以外の成分が、不溶分として分散していてもよい。例えば、分散液6中には、シリカ、酸化チタン、酸化鉄等の無機系微粉末、脂肪酸、脂肪酸金属塩等の有機系微粉末等が分散していてもよい。
分散液6では、分散質61が分散媒62中に微分散した状態となっている。
分散液6中における分散質61の平均粒径は、特に限定されないが、0.05〜1.0μmであるのが好ましく、0.1〜0.8μmであるのがより好ましい。分散質61の平均粒径がこのような範囲の値であると、最終的に得られるトナー粒子は、十分に円形度が高く、各粒子間での特性、形状の均一性に優れたものとなる。
分散液6中における分散質61の含有量は、特に限定されないが、1〜99wt%であるのが好ましく、5〜95wt%であるのがより好ましい。分散質61の含有量が前記下限値未満であると、最終的に得られるトナー粒子の円形度が低下する傾向を示す。一方、分散質61の含有量が前記上限値を超えると、分散媒62の組成等によっては、分散液6の粘性が高くなり、最終的に得られるトナー(トナー粒子)の形状、大きさのバラツキが大きくなる傾向を示す。
分散液6中においては、分散質61は、固体状のものであってもよいし、液状のものであってもよいし、これらが併存していてもよい。すなわち、分散液6は懸濁液であってもよいし、乳化液であってもよい。
分散質61が液状(例えば、溶液状態、溶融状態)のものである場合、分散媒62中に微分散した分散質61の平均粒径を、比較的容易に、上記のような範囲の値にすることができる。また、分散質61が液状のものである場合、各分散質61間での形状、大きさのバラツキを特に小さいものとすることができるため、最終的に得られるトナーは、各トナー粒子間での形状、大きさのバラツキが特に小さいものとなる。
また、分散質61が固体状のものである場合、最終的に得られるトナー中に溶媒等の不要成分が残存するのをより効果的に防止することができる。その結果、トナーの信頼性は特に優れたものとなる。また、分散質61が固体状のものである場合、すなわち、分散液6が懸濁液である場合、例えば、分散液6としての懸濁液は、乳化液を経由して調製されたものであってもよい。これにより、上述したような、分散質61が固体状のものである場合の利点を十分に発揮しつつ、分散質61が液状のものである場合の利点も効果的に発揮される。
また、分散媒62中に分散している分散質61は、例えば、各粒子間で、ほぼ同一の組成を有するものであってもよいし、異なる組成を有するものであってもよい。例えば、分散液6は、分散質61として、主として樹脂材料で構成されたものと、主としてワックスで構成されたものとを含むようなものであってもよい。
また、分散液6が乳化液(エマルション)である場合、当該分散液6は、O/W型エマルション、すなわち、水性の分散媒62中に、油性(ここでは、水に対する溶解度が小さい液体のことを指す)の分散質61が分散したものであるのが好ましい。これにより、各粒子間での形状、大きさのバラツキが小さいトナーを安定的に製造することができる。また、分散媒62に水性の液体を用いることにより、後述するようなトナー製造装置の固化部における有機溶媒の揮発量を少なく、または実質的に有機溶媒を揮発しないものとすることができる。その結果、環境に対して悪影響を極めて与えにくい方法でトナーを製造することができる。
また、分散液6中における分散質61の平均粒径をDm[μm]、トナー粒子の平均粒径をDt[μm]としたとき、0.005≦Dm/Dt≦0.5の関係を満足するのが好ましく、0.01≦Dm/Dt≦0.2の関係を満足するのがより好ましい。このような関係を満足することにより、各粒子間での、形状、大きさのバラツキが特に小さいトナーを得ることができる。
以上説明したような分散液6は、例えば、以下のような方法(第1の方法)を用いて調製することができる。
まず、水または水との相溶性に優れる液体(水溶性の液体)に、必要に応じて分散剤および/または分散媒を添加した水性溶液を用意する。
一方、トナーの主成分となる樹脂またはその前駆体(以下、これらを総称して、「樹脂材料」とも言う)を含む樹脂液を調製する。樹脂液の調製には、例えば、樹脂材料に加えて前述した溶媒を用いてもよい。また、樹脂液は、樹脂材料を加熱することにより得られる溶融した液体であってもよい。
次に、上記樹脂液を、攪拌した状態の水性溶液中に、徐々に滴下しながら加えていくことにより、水性の分散媒62中に、樹脂材料を含む分散質61が分散した分散液6が得られる。このような方法で、分散液6を調製することにより、分散液6中における分散質61の円形度をさらに高めることができる。その結果、最終的に得られるトナー粒子は、円形度が特に高く、各粒子間での形状のバラツキが特に小さいものとなる。なお、樹脂液の滴下を行う際、水性溶液および/または樹脂液を加熱してもよい。また、樹脂液の調製に溶媒を用いた場合、例えば、上記のような滴下を行った後に、得られた分散液6を加熱したり、減圧雰囲気下に置くこと等により、分散質61中に含まれる溶媒の少なくとも一部を除去してもよい。例えば、分散質61中に含まれる溶媒の大部分を除去することにより、分散液6を懸濁液として得ることができる。
以上、分散液6の調製方法の一例について説明したが、分散液はこのような方法により調製されたものに限定されない。例えば、分散液6は、以下のような方法(第2の方法)によっても、調製することができる。
まず、水または水との相溶性に優れる液体に、必要に応じて分散剤および/または分散媒を添加した水性溶液を用意する。
一方、樹脂材料を含む、粉末状または粒状の材料を用意する。
次に、この粉末状または粒状の材料を、攪拌した状態の水性溶液中に、徐々に投入していくことにより、水性の分散媒62中に、樹脂材料を含む分散質61が分散した分散液6が得られる。このような方法で、分散液6を調製した場合、後述するようなトナー製造装置の固化部において、実質的に有機溶媒を揮発しないようにすることができる。その結果、環境に対して悪影響を極めて与えにくい方法でトナーを製造することができる。なお、前記材料を投入する際、例えば、水性溶液を加熱しておいてもよい。
また、分散液6は、以下のような方法(第3の方法)によっても、調製することができる。
まず、少なくとも樹脂材料を分散してなる樹脂分散液と、少なくとも着色剤を分散してなる着色剤分散液とを調製する。
次に、樹脂分散液と、着色剤分散液とを混合・攪拌する。このとき、必要に応じて、攪拌しながら無機金属塩等の凝集剤を加えてもよい。
所定時間、攪拌することにより、樹脂材料、着色剤等が凝集した凝集物が形成される。その結果、前記凝集物が分散質61として分散した分散液6が得られる。
また、上記のような分散液の調製方法において、樹脂材料(結着樹脂)を含む混練物を用いてもよい。すなわち、上述した第1の方法、第3の方法での「樹脂材料」として、樹脂材料を含む混練物を用いてもよいし、第2の方法での「粉末状または粒状の材料」として、樹脂材料を含む混練物を用いてもよい。これにより、例えば、トナー粒子を、各構成成分がより均一に混ざり合ったものとして得ることができる。特に、トナーの構成成分として、分散性、相溶性に劣る2種以上の成分を含む場合であっても、上記のような効果を得ることができる。なお、混練物としては、例えば、樹脂成分以外の成分(例えば、着色剤、ワックス、帯電制御剤等の成分)を含むものを用いることができる。これにより、上記のような効果はさらに顕著なものとなる。
また、分散液6の調製には、例えば、特願2003−113428号明細書に記載された方法を適用してもよい。すなわち、粉末状または粒状の樹脂材料(混練物)を含む液体を複数のノズルから噴射させ、各ノズルから噴射した前記液体同士を衝突させて、前記樹脂材料(混練物)を微粒化させ、微粒化した分散質61を含む分散液6を得る方法を適用してもよい。これにより、分散液6中に含まれる分散質61の大きさを、容易に、比較的小さいもの(前述した範囲の大きさ)とすることができ、また、各分散質61の大きさのバラツキを小さくすることができる。
また、上記のような方法で得られた分散液6を、後述するトナー製造装置での吐出に供する前に、脱気処理を施す(脱気工程に供する)のが好ましい。これにより、分散液6中の気体の溶存量を低減させることができ、後述するトナー製造装置の固化部において、液滴状に吐出された分散液6から分散媒62を除去する際に、当該分散液6中に気泡等が発生するのを効果的に防止することができる。その結果、最終的に得られるトナー中に異形状のトナー粒子(中空粒子、欠落粒子等)が混入するのを効果的に防止することができる。したがって、各トナー粒子が均一な形状を有し、粒度分布の幅の小さいトナーを容易かつ確実に得ることができる。また、これにより、最終的に得られるトナーを、転写性、流動性、クリーニング性等の特性が特に優れたものとすることができる。また、分散液6に脱気処理を施すことにより、最終的に得られるトナー粒子中における空孔(空隙)の割合を小さいものとすることができる。その結果、トナーに信頼性はさらに向上する。
脱気処理の方法は、特に限定されないが、例えば、分散液に超音波振動を与える方法(超音波振動法)や、分散液を減圧雰囲気中に置く方法(減圧法)等を用いることができる。
脱気処理の方法として減圧法を用いる場合、分散液が置かれる雰囲気の圧力は、80kPa以下であるのが好ましく、0.1〜40kPaであるのがより好ましく、1〜27kPaであるのがさらに好ましい。脱気処理時における雰囲気圧力がこのような範囲内の値であると、分散液6中における分散質61の形状を十分に保持しつつ、溶存する気体を効率良く除去することができる。
本発明の樹脂粒子(トナー粒子)の製造方法は、分散液を微粒子化してヘッド部から噴射し、固化部内を搬送させつつ、分散液を構成する分散媒を除去し、前記分散質由来の複数個の微粒子が凝集した凝集体を得る分散媒除去工程と、前記凝集体を構成する複数個の前記微粒子同士を溶融接合する接合工程とを有する点に特徴を有する。分散媒除去工程は、例えば、図示のようなトナー製造装置1を用いて行うことができる。以下、トナー製造装置1およびトナー製造装置1を用いた凝集体、トナー粒子の製造方法について詳細に説明する。
[トナー製造装置]
トナー製造装置1は、上述したような分散液6(特に、脱気処理を施した分散液6)を吐出するヘッド部2と、ヘッド部2に分散液6を供給する分散液供給部4と、ヘッド部2から吐出された分散液6が搬送される固化部3と、製造された凝集体9を回収する回収部5とを有している。ヘッド部2から吐出された分散液6は、固化部3において分散媒61が除去される。その結果、分散質61由来の複数個の微粒子が凝集した凝集体9が得られる(分散媒除去工程)。分散媒除去工程は、後述する接合工程より温和な条件で行うのが好ましい。これにより、ヘッド部2から吐出された液滴状の分散液6の形状(略球形状)を保持しつつ、分散媒62を除去することができ、得られる凝集体9は比較的円形度の大きいものとなる。
分散液供給部4には、上述したような分散液6が蓄えられており、当該分散液6は、ヘッド部2に送り込まれる。
分散液供給部4は、ヘッド部2に分散液6を供給する機能を有するものであればよいが、図示のように、分散液6を攪拌する攪拌手段41を有するものであってもよい。これにより、例えば、分散質61が分散媒中に分散しにくいものであっても、分散質61が十分均一に分散した状態の分散液6を、ヘッド部2内に供給することができる。
ヘッド部2は、分散液貯留部21と、圧電素子22と、吐出部23とを有している。
分散液貯留部21には、上述したような分散液6が貯留されている。
分散液貯留部21に貯留された分散液6は、圧電素子22の圧力パルス(圧電パルス)により、吐出部23から固化部3に吐出される。
このように、本発明では、吐出液として分散液を用いる点に特徴を有する。これにより、以下のような効果が得られる。
すなわち、吐出液として分散液を用いることにより、吐出部から吐出液(分散液)を吐出する際に、微視的に粘度の低い分散媒の部分で選択的に切断され、液滴として吐出される。このため、吐出される分散液の大きさは、各液滴で大きさのバラツキが小さいものとなる。したがって、最終的に得られるトナーは、各粒子(トナー粒子)間での大きさのバラツキが小さいものとなる。
そして、吐出部から吐出された液滴は、分散媒の表面張力により、吐出後速やかに球形状となる。さらに、分散液で構成された液滴は、固化部内を搬送される際においても、形状の安定性に優れており、略球形状を保持した状態で固化する。したがって、最終的に得られるトナー(トナー粒子)は、円形度が大きく、各粒子間での形状のバラツキが小さいものとなる。
これに対し、吐出液として溶液や溶融液を用いた場合、このような効果は得られない。すなわち、このような吐出液は、微視的に見ても一様な粘度を有しているため、吐出部から吐出される際に、いわゆる液切れが悪い状態になり易く、液滴が尾を引くような形状になりやすい。また、固化部内を搬送される際においても、上記のような尾を引いたような形状になり易い。したがって、吐出液として溶液や溶融液を用いた場合、最終的に得られるトナー(トナー粒子)は、各粒子間での大きさ、形状のバラツキが大きく、トナー粒子の円形度が小さいものになり易い。
吐出部23の形状は、特に限定されないが、略円形状であるのが好ましい。これにより、吐出される分散液6や、固化部内において形成される凝集体9、さらには、最終的に得られるトナー粒子の真球度を高めることができる。
吐出部23が略円形状のものである場合、その直径(ノズル径)は、例えば、5〜500μmであるのが好ましく、10〜200μmであるのがより好ましい。吐出部23の直径が前記下限値未満であると、目詰まりが発生し易くなり、吐出される分散液6の大きさのバラツキが大きくなる場合がある。一方、吐出部23の直径が前記上限値を超えると、分散液貯留部21の負圧と、ノズルの表面張力との力関係によっては、吐出される分散液6が気泡を抱き込んでしまう可能性がある。
また、ヘッド部2の吐出部23付近(特に、吐出部23の開口内面や、ヘッド部2の吐出部23が設けられている側の面(図中の下側の面))は、分散液6に対し撥液性を有するのが好ましい。これにより、分散液6が吐出部付近に付着するのを効果的に防止することができる。その結果、いわゆる、液切れの悪い状態になったり、分散液6の吐出不良が発生するのを効果的に防止することができる。また、吐出部付近への分散液6の付着が効果的に防止されることにより、吐出される液滴の形状の安定性が向上し(各液滴間での形状、大きさのバラツキが小さくなり)、最終的に得られるトナー粒子の形状、大きさのバラツキも小さくなる。
このような撥液性を有する材料としては、例えば、ポリテトラフルオロエチレン(PTFE)等のフッ素系樹脂や、シリコーン系材料等が挙げられる。
また、ヘッド部2の吐出部23付近(特に、吐出部23の開口内面や、ヘッド部2の吐出部23が設けられている側の面(図中の下側の面))は、疎水化処理が施されているのが好ましい。これにより、例えば、分散液6の分散媒62が主として水で構成されたものである場合に、上記のような撥液性をより好適に発揮することができ、上記のような効果がより顕著なものとして現れる。疎水化処理の方法としては、例えば、疎水性材料(例えば、前述した撥液性を有する材料)で構成された被膜の形成等が挙げられる。ところで、水は、各種液体の中でも比較的高い粘性を有するものであるが、このような水を分散媒62の構成材料として用いても、分散液6が吐出部付近に付着すること等による不都合の発生が効果的に防止される。したがって、ヘッド部2の吐出部23付近に疎水化処理が施されていると、有機溶媒を実質的に含まない、または、ほとんど含まない分散液6を好適に用いることができ、環境に対して悪影響を極めて与えにくい方法でトナーを製造することができる。
図2に示すように、圧電素子22は、下部電極(第1の電極)221、圧電体222および上部電極(第2の電極)223が、この順で積層されて構成されている。換言すれば、圧電素子22は、上部電極223と下部電極221との間に、圧電体222が介挿された構成とされている。
この圧電素子22は、振動源として機能するものであり、振動板24は、圧電素子(振動源)22の振動により振動し、分散液貯留部21の内部圧力を瞬間的に高める機能を有するものである。
ヘッド部2は、圧電素子駆動回路(図示せず)から所定の吐出信号が入力されていない状態、すなわち、圧電素子22の下部電極221と上部電極223との間に電圧が印加されていない状態では、圧電体222に変形が生じない。このため、振動板24にも変形が生じず、分散液貯留部21には容積変化が生じない。したがって、吐出部23から分散液6は吐出されない。
一方、圧電素子駆動回路から所定の吐出信号が入力された状態、すなわち、圧電素子22の下部電極221と上部電極223との間に所定の電圧が印加された状態では、圧電体222に変形が生じる。これにより、振動板24が大きくたわみ(図2中下方にたわみ)、分散液貯留部21の容積の減少(変化)が生じる。このとき、分散液貯留部21内の圧力が瞬間的に高まり、吐出部23から粒状の分散液6が吐出される。
1回の分散液6の吐出が終了すると、圧電素子駆動回路は、下部電極221と上部電極223との間への電圧の印加を停止する。これにより、圧電素子22は、ほぼ元の形状に戻り、分散液貯留部21の容積が増大する。なお、このとき、分散液6には、分散液供給部4から吐出部23へ向かう圧力(正方向への圧力)が作用している。このため、空気が吐出部23から分散液貯留部21へ入り込むことが防止され、分散液6の吐出量に見合った量の分散液6が分散液供給部4から分散液貯留部21へ供給される。
上記のような電圧の印加を所定の周期で行うことにより、圧電素子22が振動し、粒状の分散液6が繰り返し吐出される。
このように、分散液6の吐出(噴射)を、圧電体222の振動による圧力パルスで行うことにより、分散液6を一滴ずつ間欠的に吐出することができ、また、吐出される分散液6の形状が安定する。その結果、各粒子(各トナー粒子)間での形状、大きさのバラツキの小さい樹脂粒子(トナー)を得ることができるとともに、製造されるトナー粒子を真球度の高いもの(幾何学的に完全な球形に近い形状)にすることが比較的容易にできる。
また、上記のようにして分散液を吐出(噴射)することにより、圧電体の振動数、吐出部の開口面積(ノズル径)、分散液の温度・粘度、分散液の一滴分の吐出量、分散液中に占める分散質の含有率、分散液中における分散質の粒径等を比較的正確にコントロールすることができ、製造すべきトナーを所望の形状、大きさに制御することが容易にできる。また、これらの条件等をコントロールすることにより、例えば、トナーの製造量等を容易かつ確実に管理することができる。
また、分散液の吐出に圧電体の振動を用いることにより、より確実に分散液を所定間隔で吐出することができる。このため、吐出される粒状の分散液同士が、衝突、凝集するのを効果的に防止することができ、異形状の粉末の形成をより効果的に防止することができる。
ヘッド部2から固化部3に吐出される分散液6の初速度は、例えば、0.1〜10m/秒であるのが好ましく、2〜8m/秒であるのがより好ましい。分散液6の初速度が前記下限値未満であると、凝集体9、トナーの生産性が低下する。一方、分散液6の初速度が前記上限値を超えると、最終的に得られるトナー粒子の真球度が低下する傾向を示す。
また、ヘッド部2から吐出される分散液6の粘度は、特に限定されないが、例えば、0.5〜200[mPa・s]であるのが好ましく、1〜25[mPa・s]であるのがより好ましい。分散液6の粘度が前記下限値未満であると、吐出される粒子(粒状の分散液6)の大きさを十分に制御するのが困難となり、最終的に得られるトナー粒子のバラツキが大きくなる場合がある。一方、分散液6の粘度が前記上限値を超えると、形成される粒子の径が大きくなり、分散液6の吐出速度が遅くなるとともに、分散液6の吐出に要するエネルギー量も大きくなる傾向を示す。また、分散液6の粘度が特に大きい場合には、分散液6を液滴として吐出できなくなる。
また、ヘッド部2から吐出される分散液6(ヘッド部2内での分散液6)の温度は、特に限定されないが、後に詳述する固化部3内の温度(分散媒除去工程における処理温度)とほぼ同等またはそれより低いものであるのが好ましい。これにより、ヘッド部2内で分散媒62が揮発し、吐出される分散液6の組成(濃度)が経時的に変化するのを効果的に防止することができる。また、吐出部23付近において、吐出される前の(液切れする前の)分散液6から分散媒62が揮発することにより、吐出部23が目詰まりを起こすのを効果的に防止することができる。特に、ヘッド部2から吐出される分散液6(ヘッド部2内での分散液6)の温度をT[℃]、後に詳述する固化部3内の温度(分散媒除去工程における処理温度)をT[℃]としたとき、−5≦T−T≦60の関係を満足するのが好ましく、−5≦T−T≦50の関係を満足するのがより好ましく、5≦T−T≦40の関係を満足するのがさらに好ましい。このような関係を満足することにより、上述したような効果をさらに顕著なものとすることができる。
また、ヘッド部2から吐出される分散液6は、予め加温されたもの(特に、後に詳述する固化部3内の温度以下の温度に加温されたもの)であってもよい。このように分散液6を加温することにより、例えば、分散質61が室温で固体状態(または粘度が比較的高い状態)のものであっても、吐出時において、分散質を溶融状態(または粘度が比較的低い状態、軟化状態)にさせることができる。その結果、後述する固化部3において、粒状の分散液6中に含まれる分散質61の凝集が円滑に進行し、得られる凝集体9の円形度が特に高いものとなり、その結果、最終的に得られるトナー粒子についても円形度が高いものとすることができる。
また、分散液6の一滴分の吐出量は、分散液6中に占める分散質61の含有率等により若干異なるが、0.05〜500plであるのが好ましく、0.5〜5plであるのがより好ましい。分散液6の一滴分の吐出量をこのような範囲の値にすることにより、凝集体9を適度な粒径のものにすることができる。その結果、最終的に得られるトナー粒子についても、適度な粒径のものにすることができる。
ところで、ヘッド部2から吐出される粒状の分散液6は、一般に、分散液6中の分散質61に比べて十分に大きいものである。すなわち、粒状の分散液6中には、多数個の分散質61が分散した状態となっている。このため、分散質61の粒径のバラツキが比較的大きいものであっても、吐出される粒状の分散液6中に占める分散質61の割合は、各液滴でほぼ均一である。したがって、分散質61の粒径のバラツキが比較的大きい場合であっても、分散液6の吐出量をほぼ均一とすることにより、本工程で得られる凝集体9は粒径のバラツキの小さいものとなる。このような傾向は、より顕著なものとなる。例えば、吐出される分散液6の平均粒径をDd[μm]、分散液6中における分散質61の平均粒径をDm[μm]としたとき、Dm/Dd<0.5の関係を満足するのが好ましく、Dm/Dd<0.2の関係を満足するのがより好ましい。
また、吐出される分散液6の平均粒径をDd[μm]、製造されるトナー粒子の平均粒径をDt[μm]としたとき、0.05≦Dt/Dd≦1.0の関係を満足するのが好ましく、0.1≦Dt/Dd≦0.8の関係を満足するのがより好ましい。このような関係を満足することにより、十分に微細で、かつ、円形度が大きく、粒度分布がシャープなトナーを比較的容易に得ることができる。
圧電素子22の振動数(圧電パルスの周波数)は、特に限定されないが、1kHz〜500MHzであるのが好ましく、5kHz〜200MHzであるのがより好ましい。圧電素子22の振動数が前記下限値未満であると、トナーの生産性が低下する。一方、圧電素子22の振動数が前記上限値を超えると、粒状の分散液6の吐出が追随できなくなり、分散液6一滴分の大きさのバラツキが大きくなる可能性がある。
図示の構成のトナー製造装置1は、ヘッド部2を複数個有している。そして、これらのヘッド部2から、それぞれ、粒状の分散液6が固化部3に吐出される。
各ヘッド部2は、ほぼ同時に分散液6を吐出するものであってもよいが、少なくとも隣り合う2つのヘッド部で、分散液6の吐出タイミングが異なるように制御されたものであるのが好ましい。これにより、隣接するヘッド部2から吐出された粒状の分散液6が固化する前(凝集体9になる前)に、粒状の分散液(液滴)同士が衝突し、これらが凝集するのをより効果的に防止することができる。
また、図2に示すように、トナー製造装置1は、ガス流供給手段10を有しており、このガス流供給手段10から供給されたガスが、ダクト101を介して、ヘッド部2−ヘッド部2間に設けられた各ガス噴射口7から、ほぼ均一の圧力で噴射される構成となっている。これにより、吐出部23から間欠的に吐出された粒状の分散液6の間隔を保ちつつ、分散液6を搬送し、凝集体を得る(固化させる)ことができる。その結果、吐出される粒状の分散液6(液滴)同士の衝突、凝集がより効果的に防止される。
また、ガス流供給手段10から供給されたガスをガス噴射口7から噴射することにより、固化部3において、ほぼ一方向(図中、下方向)に流れるガス流を形成することができる。このようなガス流が形成されると、固化部3内の粒状の分散液6(凝集体9)をより効率良く搬送することができる。
また、ガス噴射口7からガスが噴射されることにより、各ヘッド部2から吐出される粒子の間に気流カーテンが形成され、例えば、隣り合うヘッド部から吐出された各粒子間での衝突、凝集をより効果的に防止することが可能となる。
また、ガス流供給手段10には、熱交換器11が取り付けられている。これにより、ガス噴射口7から噴射されるガスの温度を好ましい値に設定することができ、固化部3に吐出された粒状の分散液6を効率良く固化させることができる。
また、このようなガス流供給手段10を有すると、ガス流の供給量を調整すること等により、吐出部23から吐出された分散液6の固化速度等を容易にコントロールすることも可能となる。
ガス噴射口7から噴射されるガスの温度は、分散液6中に含まれる分散質61、分散媒62の組成等により異なるが、通常、0〜70℃であるのが好ましく、15〜60℃であるのがより好ましい。ガス噴射口7から噴射されるガスの温度がこのような範囲の値であると、得られる凝集体9の形状の均一性、安定性を十分に高いものとしつつ、分散液6中に含まれる分散媒62を効率良く除去することができ、結果として、トナーの生産性を特に優れたものとすることができる。
また、ガス噴射口7から噴射されるガスの湿度は、例えば、50%RH以下であるのが好ましく、30%RH以下であるのがより好ましい。ガス噴射口7から噴射されるガスの湿度が50%RH以下であると、後述する固化部3において、分散液6に含まれる分散媒62を効率良く除去することが可能となり、凝集体9(トナー)の生産性がさらに向上する。
また、粒状の分散液6が吐出される固化部3内の温度(分散媒除去工程における処理温度(雰囲気温度))は、分散液6中に含まれる分散質61、分散媒62の組成等により異なるが、通常、0〜50℃であるのが好ましく、15〜40℃であるのがより好ましい。固化部3内の温度がこのような範囲の値であると、得られる凝集体9の形状の均一性、安定性を十分に高いものとしつつ、分散液6中に含まれる分散媒62を効率良く除去することができ、結果として、トナーの生産性を特に優れたものとすることができる。また、凝集体9の形成をより円滑に進行させることができるため、トナー製造装置1の小型化に寄与することができる。
また、粒状の分散液6が吐出される固化部3内の温度(分散媒除去工程における処理温度)は、分散質61を構成する樹脂材料のガラス転移点以下の処理温度で行うのが好ましい。これにより、固化部3内(分散媒除去工程)において、分散質61由来の複数個の微粒子が軟化しこれらの微粒子同士が接合するのをより効果的に防止しつつ、分散媒61を除去することができ、得られる凝集体9の形状の均一性、安定性を十分に高いものとすることができる。また、異形状の樹脂粒子、特に、中空粒子が発生するのを効果的に防止することができ、その結果、各粒子間での形状、大きさのバラツキがより小さい樹脂粒子を得ることができるとともに、製造される樹脂粒子を真球度の高いもの(幾何学的に完全な球形に近い形状)にすることが比較的容易にできる。なお、分散質61が複数種の樹脂材料(樹脂成分)で構成されたものである場合、Tgとして、これらの各成分の重量基準の加重平均値として求められる値を採用することができる。
また、特に、粒状の分散液6が吐出される固化部3内の温度(分散媒除去工程における処理温度)は、分散質61を構成する樹脂材料のガラス転移点との間で、以下のような関係を満足するのが好ましい。すなわち、粒状の分散液6が吐出される固化部3内の温度(分散媒除去工程における処理温度)をT[℃]、分散質61を構成する樹脂材料のガラス転移点をTg[℃]としたとき、0≦Tg−T≦70の関係を満足するのが好ましく、0≦Tg−T≦60の関係を満足するのがより好ましく、0≦Tg−T≦30の関係を満足するのがさらに好ましく、5≦Tg−T≦26の関係を満足するのが最も好ましい。このような関係を満足することにより、得られる凝集体9の形状の均一性、安定性を十分に高いものとしつつ、分散液6中に含まれる分散媒62を効率良く除去することができ、結果として、トナーの生産性を特に優れたものとすることができる。なお、分散質61が複数種の樹脂材料(樹脂成分)で構成されたものである場合、Tgとして、これらの各成分の重量基準の加重平均値として求められる値を採用することができる。
ヘッド部2から吐出された粒状の分散液6は、固化部3を搬送されつつ固化することにより、分散質61由来の複数個の微粒子が凝集した凝集体9となる。すなわち、吐出された分散液6中の分散媒62が除去されるのに伴い、分散液6中に含まれる分散質61が凝集し、その結果、凝集体9が得られる。なお、分散質61中に前述したような溶媒が含まれる場合には、通常、当該溶媒も固化部3において除去される。また、本工程で得られる凝集体9は、後述する接合工程に供されるまでの間、その形状を保持するだけの安定性を有していればよく、例えば、その内部に分散媒61の一部が残存していてもよい。このような場合であっても、後述するような接合工程等を行うことにより、残存する分散媒等を十分に除去することができる。
分散液6中に含まれる分散質61の粒径は、通常、得られる凝集体9(吐出される粒状の分散液6)に比べて、十分に小さいものである。したがって、得られる凝集体9は、十分に円形度の大きいものとなる。
また、固化部3内において分散媒61が除去されるため、得られる凝集体9は、通常、吐出部23から吐出される液滴状の分散液6に比べて小さいものとなる。このため、吐出部23の面積(開口面積)が比較的大きい場合であっても、得られる凝集体9の大きさを比較的小さいものとすることができる。したがって、本発明では、ヘッド部2が、特別な精密加工を施すことにより得られたものでなくても(比較的容易に製造できるものであっても)、十分に微細な凝集体9、トナー粒子を得ることができる。
また、上記のように、本発明では吐出部23の面積を極端に小さくする必要がないので、比較的容易に、各ヘッド部2から吐出される分散液6の粒度分布を、十分にシャープなものとすることができる。その結果、最終的に得られるトナーも、各粒子間での粒径のバラツキの小さいもの、すなわち、粒度分布がシャープなものとなる。
固化部3は、筒状のハウジング31で構成されている。
トナーの製造時において、ハウジング31内は、所定範囲の温度に保たれているのが好ましい。これにより、製造条件の差による各トナー粒子(凝集体9)間での特性のバラツキを少なくすることができ、トナー全体としての信頼性が向上する。また、例えば、ハウジング31内は、その長手方向(分散液6、凝集体の搬送方向)に、互いに異なる温度の複数の領域を有していてもよい。これにより、異形状の凝集体9(トナー粒子)が発生するのを防止しつつ、より円滑に分散媒62を除去し、凝集体9(トナー粒子)の生産性の向上等を図ることができる。
このように、ハウジング31内の温度を所定の範囲に保つ目的で、例えば、ハウジング31の内側または外側に熱源、冷却源を設置したり、ハウジング31を、熱媒体または冷却媒体の流路が形成されたジャケットとしてもよい。
また、図示の構成では、ハウジング31内の圧力は、圧力調整手段12により調整される構成となっている。このように、ハウジング31内の圧力を調整することにより、吐出された分散液6中の分散媒62を効率良く除去することが可能となり、トナーの生産性が向上する。なお、図示の構成では、圧力調製手段12は、接続管121でハウジング31に接続されている。また、接続管121のハウジング31と接続する端部付近には、その内径が拡大した拡径部122が形成されており、さらに、凝集体9等の吸い込みを防止するためのフィルター123が設けられている。
ハウジング31内の圧力は、特に限定されないが、150kPa以下であるのが好ましく、100〜120kPaであるのがより好ましく、100〜105kPaであるのがさらに好ましい。ハウジング31内の圧力が前記範囲内の値であると、例えば、異形状の凝集体9の発生等を十分に防止しつつ、液滴状の分散液6から分散媒62(分散媒62を構成する溶媒材料)を、より円滑に除去することができる。
また、上記の説明では、固化部3において、分散液6から分散媒62が除去されることにより、粒状の分散液6中の分散質61が凝集し、凝集体9が得られるものとして説明したが、凝集体9は、このようにして得られるものに限定されない。例えば、分散質61中に樹脂材料の前駆体(例えば、前記樹脂材料に対応するモノマー、ダイマー、オリゴマー等)が含まれる場合、固化部3において、分散媒61の除去とともに、重合反応を進行させることにより、凝集体9を得るような方法であってもよい。言い換えると、凝集体9は、その構成材料が分散質61の構成材料と実質的に同一なものであってもよいし、異なるものであってもよい。
また、ハウジング31には、電圧を印加するための電圧印加手段8が接続されている。電圧印加手段8で、ハウジング31の内面側に、粒状の分散液6(凝集体9)と同じ極性の電圧を印加することにより、これにより、以下のような効果が得られる。
通常、トナー粒子や、その製造中間体としての凝集体9は、正または負に帯電している。このため、凝集体9(分散液6)と異なる極性に帯電した帯電物があると、凝集体9は、当該帯電物に、静電的に引き付けられ付着するという現象が起こる。一方、凝集体9と同じ極性に帯電した帯電物があると、当該帯電物と凝集体9とは、互いに反発しあい、前記帯電物表面に凝集体9が付着するという現象を効果的に防止することができる。したがって、ハウジング31の内面側に、粒状の分散液6(凝集体9)と同じ極性の電圧を印加することにより、ハウジング31の内面に分散液6(凝集体9)が付着するのを効果的に防止することができる。これにより、異形状のトナー粉末の発生をより効果的に防止することができるとともに、凝集体9の回収効率も向上する。
ハウジング31は、回収部5付近に、図1中の下方向に向けて、その内径が小さくなる縮径部311を有している。このような縮径部311が形成されることにより、凝集体9の回収を効率良く回収することができる。なお、前述したように、吐出部23から吐出された分散液6は、固化部3において固化される(凝集体9となっている)が、回収部5付近においてはこのような固化(凝集体9の形成)はほぼ完全に完了しており、縮径部311付近では、各粒子が接触しても凝集等の問題はほとんど発生しない。
粒状の分散液6を固化することにより得られた凝集体9は、回収部5に回収される。
上記のような分散媒除去工程の処理時間(分散液6液滴状に噴射されてから凝集体9が回収部5に回収されるまでの時間)は、5〜120秒であるのが好ましく、5〜60秒であるのがより好ましく、5〜20秒であるのがさらに好ましい。分散媒除去工程の処理時間がこのような範囲内の値であると、得られる凝集体9の強度を十分なものとしつつ(回収部9内や、後述する接合工程に供されるまでに凝集体9が分解、崩壊するのを十分に防止しつつ)、トナーとしての生産性を十分に高めることができる。
上記のようにして得られた凝集体9に対しては、後述する接合工程に供する前に、例えば、エアレーション、真空脱気(減圧脱気)、加温等の各種処理を施してもよい。凝集体9に対してエアレーションを施すことにより、凝集体9中に残存する分散媒の量(例えば、含水量)を低下させることができ、その結果、後述する接合工程(接合処理)をより好適に行うことができる。すなわち、凝集体9中に残存する分散媒の量を低下させることにより、接合工程(接合処理)を、凝集体9の構成材料の劣化、変性等をより効果的に防止しつつ、短時間で効率良く行うことができる。
凝集体9の含水量(含水率)は、特に限定されないが、15wt%以下であるのが好ましく、0.1〜12wt%であるのがより好ましく、0.2〜10wt%であるのがさらに好ましい。凝集体9中の含水量が多過ぎると、後述する接合工程を効率良く行うのが困難になるとともに、最終的なトナー粒子における含水量を十分に少なくするのが困難になる可能性がある。トナー粒子中に比較的多くの水が含まれていると、帯電が不安定になるという問題を生じる可能性がある。なお、本工程(分散媒除去工程)においては、凝集体9の含水量(含水率)を必要以上に低下させる必要はない。すなわち、凝集体9が比較的多量の分散媒(水)を含む場合であっても、後述するような接合工程等において残存する分散媒を除去することができるためである。また、本工程において、凝集体9の含水量(含水率)を必要以上に低下させると、凝集体9の構成材料の劣化、変性等を招きやすくなる。
その後、上記のようにして得られた凝集体9に対して、凝集体9を構成する複数個の微粒子を溶融接合する接合処理を施す(接合工程)。
このように、本発明では、一旦、凝集体を形成した後に、凝集体を構成する微粒子を溶融接合する接合工程を有する点に特徴を有する。これにより、均一な形状を有する(特に、円形度の大きい略球形状の)樹脂粒子(トナー粒子)を、確実に得ることができるとともに、得られる樹脂粒子(トナー粒子)の機械的安定を優れたものとすることができる。すなわち、前述したような分散媒除去工程により、一旦、ある程度の形状の安定性を有し、かつ、円形度が比較的大きい(略球形状の)凝集体を得た後に、接合工程(接合処理)を行うことにより、凝集体の形状、大きさ等を基本的には保持しつつ、凝集体の表面付近に存在する凹凸の程度を緩和し、さらに、凝集体を構成する分散質由来の微粒子同士の結合力(接合強度)を向上させることにより、円形度の大きい略球形状の形状を有し、かつ、機械的安定性に優れた樹脂粒子(トナー粒子)を得ることができる。
これに対し、凝集体に対して、以下に詳述するような接合処理(接合工程)を行わないと、樹脂粒子(トナー粒子)は機械的な強度に劣るものとなり、外力が加わった際に、分解(崩壊)しやすくなる。また、接合処理(接合工程)を行わないと、凝集体の表面付近には、通常、比較的大きな凹凸が多数存在しているため、樹脂粒子(トナー粒子)の円形度も比較的小さいものとなり、各粒子間での形状のバラツキも大きくなる。
このような問題を解決する目的で、分散媒除去工程を高温で行うことも考えられるが、このような場合、以下のような問題を生じる。すなわち、前記微粒子を十分な強度で結合(接合)させるためには、十分に高い温度で処理しなければならない。しかしながら、分散媒除去工程での処理温度を高くし過ぎると、分散媒が除去される過程において、吐出された分散液(液滴状の分散液)がその形状を十分に保持することが困難となる。言い換えると、分散媒除去工程を温和な条件で行う場合には、吐出された分散液(液滴状の分散液)がその形状を十分に保持した状態で、分散媒が除去されていくのに対し、分散媒除去工程を過酷な条件で行った場合、例えば、分散液の表面付近だけでなく、分散液の内部等からも分散媒の除去(分散媒の沸騰)が発生し易くなり、それに伴う気泡等により、吐出直後の分散液の形状を十分に保持することができず、得られる凝集体(樹脂粒子)は、異形状の粒子(例えば、比較的大きな中空部を有する中空粒子や、前記気泡等により、液滴を構成する分散質(前記微粒子)の一部が吹き飛ばされたような形状の粒子)になり易い。
また、分散媒除去工程を、それほど高くない温度で比較的長時間行い、接合工程を省略する方法も考えられるが、このような場合、分散媒除去工程に要する時間が著しく長くなり、樹脂粒子(トナー粒子)の生産性が極めて低くなる。また、分散媒除去工程に要する時間が長くなるため、通常、分散液(凝集体)の搬送経路を極端に長くしなければならなくなり、その結果、樹脂粒子(凝集体)を製造するための装置も大型化するという問題点もある。また、分散媒除去工程に要する時間が長くなるため、処理温度が比較的低いものであっても、分散質(樹脂粒子)の構成材料の劣化、変性が顕著となり、最終的な樹脂粒子が十分な特性を発揮するのが困難となる。
接合処理(接合工程)は、いかなる方法、条件で行うものであってもよいが、前述した分散媒除去工程における処理温度よりも高い温度で、凝集体9に熱処理を施すことにより行うのが好ましい。これにより、容易かつ確実に、凝集体9を構成する複数個の微粒子の溶融接合を進行させることができる。
接合工程(接合処理)における処理温度は、分散媒除去工程における処理温度よりも高いのが好ましい。これにより、微粒子の溶融接合を、より円滑に進行させることができる。また、凝集体9中に比較的多量の分散媒62等が含まれる場合であっても、分散媒等の含有量(残存量)を効果的に低減させることができ、さらには、最終的なトナー粒子中に実質的に分散媒等が残存しないようにすることができる。
より具体的には、分散媒除去工程における処理温度をT[℃]、接合工程における処理温度をT[℃]としたとき、0≦T−T≦200の関係を満足するのが好ましく、10≦T−T≦200の関係を満足するのがより好ましく、20≦T−T≦100の関係を満足するのがさらに好ましく、25≦T−T≦80の関係を満足するのが最も好ましい。このような関係を満足することにより、構成成分の劣化、変性を十分に防止しつつ、得られるトナー粒子の形状の均一性、安定性を十分に高いものとし、さらに、トナー粒子の円形度を比較的大きいものとすることができる。
また、接合工程(接合処理)における処理温度は、前記樹脂粒子を構成する樹脂材料(分散質61を構成する樹脂材料)のガラス転移点以上であるのが好ましい。これにより、凝集体9を構成する複数個の微粒子同士をより確実に接合することができ、最終的に得られるトナー粒子の機械的強度(機械的安定性)を特に優れたものとすることができる。また、樹脂粒子を構成する樹脂材料(分散質61を構成する樹脂材料)のガラス転移点以上の温度で接合工程(接合処理)を行うことにより、最終的に得られるトナー粒子の円形度(真球度)を、容易かつ確実に比較的大きいものとすることができる。
また、接合工程(接合処理)における処理温度をT[℃]、前記樹脂粒子を構成する樹脂材料(分散質61を構成する樹脂材料)の融点をTm[℃]としたとき、−100≦T−Tm≦110の関係を満足するのが好ましく、−80≦T−Tm≦80の関係を満足するのがより好ましく、−50≦T−Tm≦70の関係を満足するのがさらに好ましく、−40≦T−Tm≦30の関係を満足するのが最も好ましい。このような関係を満足することにより、構成成分の劣化、変性を十分に防止しつつ、得られるトナー粒子の形状の均一性、安定性を十分に高いものとし、さらに、トナー粒子の円形度を比較的大きいものとすることができる。なお、樹脂粒子を構成する樹脂材料(分散質61を構成する樹脂材料)が複数種の樹脂材料(樹脂成分)で構成されたものである場合、Tmとして、これらの各成分の重量基準の加重平均値として求められる値を採用することができる。
また、特に、接合工程(接合処理)における処理温度は、前記樹脂粒子を構成する樹脂材料(分散質61を構成する樹脂材料)のガラス転移点以上で、かつ、前記樹脂粒子を構成する樹脂材料(分散質61を構成する樹脂材料)の融点以下の温度であるのが好ましい。これにより、上記のような効果をさらに顕著なものとして発揮させることができる。
また、接合工程(接合処理)における処理温度の具体的な値は、特に限定されないが、接合工程(接合処理)の処理時間が後述するような範囲内の値である場合、通常、50〜200℃であるのが好ましく、60〜150℃であるのがより好ましい。このような関係を満足することにより、構成成分の劣化、変性を十分に防止しつつ、得られるトナー粒子の形状の均一性、安定性を十分に高いものとし、さらに、トナー粒子の円形度を比較的大きいものとすることができる。
上記のような接合工程(接合処理)の処理時間は、特に限定されないが、接合工程(接合処理)の処理温度が前述したような範囲内の値である場合、0.01〜10秒であるのが好ましく、0.05〜10秒であるのがより好ましく、0.1〜5秒であるのがさらに好ましい。接合工程の処理時間がこのような範囲内の値であると、トナーの構成材料の劣化、変性等を十分に防止しつつ、トナー粒子の円形度を十分に大きいものとすることができる。
以上説明したように、本発明では、吐出液として分散液を用いることにより、製造するトナー粒子の粒径が十分に小さい場合であっても、容易に、その円形度を十分に高いものとし、かつ、粒度分布がシャープなものとすることができる。これにより、得られるトナーは、各粒子間での帯電が均一で、かつ、トナーを印刷に用いたときに、現像ローラ上に形成されるトナーの薄層が平準化、高密度化したものとなる。その結果、カブリ等の欠陥を生じ難く、よりシャープな画像を形成することができる。また、トナー粒子の形状、粒径が揃っているため、トナー全体(トナー粒子の集合体)としての嵩密度を大きくすることができる。その結果、同一容積のカートリッジ内へのトナーの充填量をより多くしたり、カートリッジの小型化を図る上でも有利である。
以上のようにして得られたトナーに対しては、必要に応じて、エアレーション、分級処理、外添処理等の各種処理を施してもよい。
分級処理には、例えば、ふるい、気流式分級機等を用いることができる。
また、外添処理に用いられる外添剤としては、例えば、シリカ、酸化アルミニウム、酸化チタン、チタン酸ストロンチウム、酸化セリウム、酸化マグネシウム、酸化クロム、チタニア、酸化亜鉛、アルミナ、マグネタイト等の金属酸化物、窒化珪素等の窒化物、炭化珪素等の炭化物、硫酸カルシウム、炭酸カルシウム、脂肪族金属塩等の無機材料で構成された微粒子、アクリル樹脂、フッ素樹脂、ポリスチレン樹脂、ポリエステル樹脂、脂肪族金属塩等の有機材料で構成された微粒子やこれらの複合物で構成された微粒子等が挙げられる。
また、外添剤としては、上記のような微粒子の表面に、HMDS、シラン系カップリング剤、チタネート系カップリング剤、フッ素含有シラン系カップリング剤、シリコーンオイル等により表面処理を施したものを用いてもよい。
以上のようにして製造される本発明のトナーは、均一な形状を有し、粒度分布のシャープな(幅の小さい)ものである。特に、本発明では、真球に近い形状のトナー粒子を得ることができる。
具体的には、トナー(トナー粒子)は、下記式(I)で表される平均円形度Rが0.95以上であるのが好ましく、0.96以上であるのがより好ましく、0.97以上であるのがさらに好ましく、0.98以上であるのが最も好ましい。平均円形度Rが0.95以上であると、トナーの転写効率は、さらに優れたものとなる。
R=L/L・・・(I)
(ただし、式中、L[μm]は、測定対象のトナー粒子の投影像の周囲長、L[μm]は、測定対象のトナー粒子の投影像の面積に等しい面積の真円(完全な幾何学的円)の周囲長を表す。)
また、トナーは、各粒子間での平均円形度の標準偏差が0.02以下であるのが好ましく、0.015以下であるのがより好ましく、0.01以下であるのがさらに好ましい。各粒子間での平均円形度の標準偏差が0.02以下であると、帯電特性、定着特性等のバラツキが特に小さくなり、トナー全体としての、信頼性がさらに向上する。
以上のようにして得られるトナーの体積基準の平均粒径は、2〜20μmであるのが好ましく、4〜10μmであるのがより好ましい。トナーの平均粒径が前記下限値未満であると、均一に帯電させるのが困難になるとともに、静電潜像担持体(例えば、感光体等)表面への付着力が大きくなり、結果として、転写残トナーの増加を招く場合がある。一方、トナーの平均粒径が前記上限値を超えると、トナーを用いて形成される画像の輪郭部分、特に文字画像やライトパターンの現像での再現性が低下する。
また、トナーは、各粒子間での粒径の標準偏差が1.5μm以下であるのが好ましく、1.3μm以下であるのがより好ましく、1.0μm以下であるのがさらに好ましい。各粒子間での粒径の標準偏差が1.5μm以下であると、帯電特性、定着特性等のバラツキが特に小さくなり、トナー全体としての、信頼性がさらに向上する。
また、トナー粒子の含水量(含水率)は、特に限定されないが、5wt%以下であるのが好ましく、0.01〜4wt%であるのがより好ましく、0.02〜1wt%であるのがさらに好ましい。トナー粒子中の含水量が多過ぎると、帯電が不安定になるという問題を生じる可能性がある。なお、トナー粒子中の含水量を極端に少なくしようとすると、トナーの構成材料の劣化、変性等を招きやすくなるため、必要以上に含水量を少なくする必要はない。
次に、本発明の第2実施形態について説明する。以下、本実施形態について、前述した実施形態との違いを中心に説明し、同様の事項についてはその説明を省略する。
本実施形態は、凝集体(トナー粒子)の製造に用いるトナー製造装置のヘッド部の構成が異なる以外は、前記第1実施形態と同様の構成を有する。
図3は、本実施形態のトナー製造装置のヘッド部付近の構造を模式的に示す図である。
図3に示すように、本実施形態のトナー製造装置では、ヘッド部2に、音響レンズ(凹面レンズ)25が設置されている。このような音響レンズ25が設置されることにより、例えば、圧電素子22が発生した圧力パルス(振動エネルギー)を、吐出部23付近の圧力パルス収束部26で収束させることができる。その結果、圧電素子22が発生した振動エネルギーを、分散液6を吐出させるためのエネルギーとして、効率良く利用することができる。したがって、分散液貯留部21に貯留された分散液6が比較的高粘度のものであっても、確実に吐出部23から吐出させることができる。また、分散液貯留部21に貯留された分散液6が凝集力(表面張力)の比較的大きいものであっても、微細な液滴として吐出することが可能となるため、容易かつ確実に、凝集体9や最終的に得られるトナー粒子の粒径を比較的小さい値にコントロールすることができる。
このように、本実施形態では、分散液6として、より粘度の高い材料や、凝集力の大きい材料を用いた場合であっても、凝集体9を所望の形状、大きさにコントロールすることができるので、材料選択の幅が特に広くなり、所望の特性を有するトナーをさらに容易に得ることができる。
また、本実施形態では、収束した圧力パルスにより分散液6を吐出させるため、吐出部23の面積(開口面積)が比較的大きい場合であっても、吐出する分散液6の大きさを比較的小さいものにすることができる。すなわち、最終的に得られるトナー粒子の粒径を比較的小さくしたい場合であっても、吐出部23の面積を大きくすることができる。これにより、分散液6が比較的高粘度のものであっても、吐出部23における目詰まりの発生等をより効果的に防止することができる。
以上、本発明について、好適な実施形態に基づいて説明したが、本発明はこれに限定されるものではない。
例えば、トナー製造装置を構成する各部は、同様の機能を発揮する任意のものと置換、または、その他の構成を追加することもできる。例えば、前述した実施形態では、粒状の分散液を鉛直下方に向けて吐出する構成について説明したが、分散液の吐出方向は、鉛直上方、水平方向等、いかなる方向であってもよい。また、図7に示すように、分散液6の吐出方向と、ガス噴射口7から噴射されるガスの噴射方向とが、ほぼ垂直となる構成のものであってもよい。この場合、吐出された粒状の分散液6は、ガス流によりその進行方向が変わり、吐出部23からの吐出方向に対してほぼ直角に搬送されることになる。
また、前記第2実施形態では、音響レンズとして凹面レンズを用いた構成について説明したが、音響レンズはこれに限定されるものではない。例えば、音響レンズとして、フレネルレンズ、電子走査レンズ等を用いてもよい。
さらに、前記第2実施形態では、音響レンズ25と吐出部23との間に、分散液6のみを介在させた構成について説明したが、例えば、図4〜図6に示すように、音響レンズ25と吐出部23との間に、吐出部23に向けて、収斂する形状を有する絞り部材13等を配置してもよい。これにより、圧電素子22が発生した圧力パルス(振動エネルギー)の収束を補助することができ、圧電素子22が発生した圧力パルスをさらに効率良く利用することができる。
また、前述した実施形態では圧電パルスによりヘッド部から分散液を間欠的に吐出するものとして説明したが、分散液の吐出方法(噴射方法)としては、他の方法を用いることもできる。例えば、分散液を吐出(噴射)する方法としては、スプレードライ法や、いわゆるバブルジェット(「バブルジェット」は登録商標)法等の方法のほか、「分散液を、ガス流で平滑面に押し付けて薄く引き伸ばして薄層流とし、当該薄層流を前記平滑面から離して微粒子として噴射するようなノズルを用いて、分散液を液滴状に(微粒子として)噴射する方法(特願2002−321889号明細書に記載されたような方法)」等を用いてもよい。スプレードライ法は、高圧のガスを用いて、液体(分散液)を噴射(噴霧)させることにより、液滴を得る方法である。また、いわゆるバブルジェット(「バブルジェット」は登録商標)法を適用した方法としては、特願2002−169348号明細書に記載された方法等が挙げられる。すなわち、分散液を吐出(噴射)する方法として、「気体の体積変化によりヘッド部から分散液を間欠的に吐出する方法」を適用することができる。
また、前述した実施形態では、トナー製造装置を用いて製造された凝集体を一旦回収した後、接合工程を行うものとして説明したが、例えば、凝集体を製造する分散媒除去工程と、接合工程とは連続的に行ってもよい。これにより、トナー粒子(樹脂粒子)の生産性をさらに向上させることができる。また、このような場合、分散媒除去工程(分散媒除去処理)を行う領域と、接合工程(接合処理)を行う領域とは、その一部が重なり合っていてもよい。例えば、分散媒除去工程(分散媒除去処理)を行う領域の一部において、凝集体を構成する複数個の微粒子同士の接合が進行してもよい。また、接合工程(接合処理)を行う領域の一部において、凝集体中に残存する分散媒が除去されるものであってもよい。
また、前述した実施形態では、樹脂粒子としてトナー粒子を製造する方法について説明したが、本発明が適用される樹脂粒子は、トナー粒子に限定されず、いかなるものであってもよい。例えば、粉体塗料などにも好適に適用することができる。
[1]トナーの製造
(実施例1)
まず、結着樹脂としてエポキシ樹脂(ガラス転移点Tg:60℃、融点Tm:110℃):100重量部、着色剤としてフタロシアニン顔料(大日精化社製、フタロシアニンブルー):5重量部、溶媒としてテトラヒドロフラン(和光純薬社製):300重量部を用意した。
これらの各成分をボールミルにて10時間混合分散し、結着樹脂溶液(樹脂液)を調製した。
一方、分散剤としてのポリアクリル酸ナトリウム(和光純薬社製、平均重合度n=2700〜7500):10重量部をイオン交換水:590重量部に溶解した水溶液(水性溶液)を用意した。
次に、この水溶液:600重量部を3リットルの丸底ステンレス容器に入れ、TKホモミキサー(特殊機化工社製)を用いて、回転数:4000rpmで攪拌しながら、結着樹脂溶液:409重量部を10分かけて徐々に滴下した。この際、液温を70℃に保持した。結着樹脂溶液の滴下完了からさらに10分間、液温を70℃に保持しつつ攪拌して、乳化液を得た。
次に、温度:45℃、雰囲気圧力:10〜20kPaの条件下で、乳化液(分散質)中のテトラヒドロフランを除去し、その後、室温まで冷却し、さらに、イオン交換水を加えることにより、固形微粒子が分散した結着樹脂懸濁液(分散液)を得た。
その後、得られた結着樹脂懸濁液(分散液)に脱気処理を施した。脱気処理は、攪拌した状態の結着樹脂懸濁液(分散液)を、14kPaの雰囲気中に10分間置くことにより行った。脱気処理時における雰囲気温度は、25℃であった。このようにして得られた結着樹脂懸濁液(分散液)中における固形分(分散質)濃度は、10wt%であった。また、結着樹脂懸濁液(分散液)の25℃における粘度は、2mPa・sであった。また、結着樹脂懸濁液を構成する分散質の平均粒径Dmは、0.4μmであった。なお、分散質の平均粒径の測定は、レーザ回折/散乱式粒度分布測定装置(堀場製作所社製、LA−920)を用いて行った。
脱気処理済みの分散液(結着樹脂懸濁液)を、図1、図2に示すようなトナー製造装置の分散液供給部内に投入した。分散液供給部内の分散液を攪拌手段で攪拌しつつ、定量ポンプによりヘッド部の分散液貯留部に供給し、吐出部から固化部に吐出させた。吐出部は、直径:26μmの円形状をなすものとした。また、ヘッド部としては、吐出部付近に、フッ素樹脂(ポリテトラフルオロエチレン)コートによる疎水化処理が施されたものを用いた。
分散液の吐出は、ヘッド部内における分散液温度を40℃、圧電体の振動数を10kHz、吐出部から吐出される分散液の初速度を4m/秒、ヘッド部から吐出される分散液の一滴分の吐出量を3pl(粒径Dd:18μm、重量:約3ng)に調整した状態で行った。また、分散液の吐出は、複数個のヘッド部のうち少なくとも隣接しあうヘッド部で、分散液の吐出タイミングがずれるようにして行った。
また、分散液の吐出時には、ガス噴射口から温度:40℃、湿度:27%RH、流速:4m/秒の空気を鉛直下方に噴射し、また、ハウジング内の圧力(雰囲気圧力)は、100〜105kPaとなるように調節した。また、ハウジング内の温度(雰囲気温度)は、35〜40℃となるように調節した。固化部の長さ(搬送方向の長さ)は、2mであった。
固化部内において、吐出した分散液から分散媒が除去され、分散質(微粒子)の凝集体が形成され、形成された凝集体は回収部に回収された(分散媒除去工程)。また、個々の粒子(液滴および該液滴から形成される凝集体)についての分散媒除去工程の処理時間(固化部内を通過するのに要する時間)は、12秒であった。また、得られた凝集体の含水量は、5〜10wt%であった。なお、水分量は、カールフィッシャー法により測定した。
その後、得られた凝集体を50℃に加温した状態で、1時間のエアレーションを行うことにより、凝集体の含水量を約0.5wt%まで低下させた。
その後、凝集体に接合処理を施すことにより、トナー粒子を得た。接合処理は、サーヒュージングシステム(日本ニューマチック工業社製、SFS−3型)を用いて行った。接合処理は、処理温度(熱風温度):70℃、熱風風量:1m/分、分散風量:0.1m/分、原料投入速度:0.5kg/時間、吸引風量:10m/分という条件で行った。また、個々の凝集体(各粒子)についての接合処理時間は、3秒であった。
得られたトナー粒子は、含水量が0.3〜0.5wt%、平均円形度Rが0.981、円形度標準偏差が0.013であった。体積基準の平均粒径Dtは、6.5μmであった。体積基準の粒径標準偏差は0.8μmであった。なお、円形度の測定は、フロー式粒子像解析装置(東亜医用電子社製、FPIA−2000)を用いて、水分散系で行った。ただし、円形度Rは、下記式(I)で表されるものとする。
R=L/L・・・(I)
(ただし、式中、L[μm]は、測定対象の粒子の投影像の周囲長、L[μm]は、測定対象の粒子の投影像の面積に等しい面積の真円の周囲長を表す。)
(実施例2)
結着樹脂として、アクリル樹脂(ガラス転移点Tg:52℃、融点Tm:105℃)を用いた以外は、前記実施例1と同様にしてトナーを製造した。
(実施例3)
結着樹脂として、ポリカーボネート樹脂(ガラス転移点Tg:55℃、融点Tm:95℃)を用いた以外は、前記実施例1と同様にしてトナーを製造した。
(比較例1)
分散液の吐出時における、ガス噴射口から噴射するガス(空気)の温度を110℃とし、ハウジング内の温度(雰囲気温度)を70〜90℃とし、固化部で回収された凝集体に接合工程を施さず、そのままトナー粒子とした以外は、前記実施例1と同様にしてトナーを製造した。
(比較例2)
結着樹脂として、アクリル樹脂(ガラス転移点Tg:52℃、融点Tm:105℃)を用いた以外は、前記比較例1と同様にしてトナーを製造した。
(比較例3)
まず、結着樹脂としてアクリル樹脂(ガラス転移点Tg:52℃、融点Tm:105℃):300重量部、着色剤としてフタロシアニン顔料(大日精化社製、フタロシアニンブルー):15重量部、帯電制御剤としてサリチル酸Cr錯体(ボントロンE−81、オリエント化学工業社製):3重量部、ワックスとしてカルナウバワックス:9重量部、溶媒としてトルエン(和光純薬社製):300重量部を用意した。
これらの各成分を85℃に保ちながら混合攪拌し、結着樹脂溶液(樹脂液)を調製した。得られた結着樹脂溶液の25℃における粘度は、12mPa・sであった。
このようにして得られた結着樹脂溶液(樹脂液)を吐出液として用いた以外は、前記比較例1と同様にしてトナーを製造した。
前記実施例1〜3で得られたトナー粒子について、走査型電子顕微鏡(SEM)を用いて、これらの表面形状を観察した。実施例1〜3のトナー粒子では、その表面に比較的大きな凹凸は認められず、略球形状をなしていることが確認された。一方、各比較例のトナー粒子では、比較的大きな凹凸を有しており、各粒子間での形状のバラツキも大きいことが確認された。
実施例1、比較例1で得られたトナー粒子についての電子顕微鏡写真を、それぞれ、図8、図9に示す。
以上の各実施例および各比較例について、トナーの製造条件を表1に示した。なお、表1中、比較例3の分散媒除去工程での条件に関する欄には、固化部内の条件(溶媒除去工程での条件)を示した。
Figure 0004654626
[2]評価
上記のようにして得られた各トナーについて、耐久性、転写効率の評価を行った。
[2.1]耐久性
前記各実施例および前記各比較例で得られたトナーを、カラーレーザープリンタ(セイコーエプソン社製:LP−2000C)の現像機にセットした。その後、印字しないように、現像機を連続回転させた。12時間後、現像機を取り出し、現像ローラ上のトナー薄層の均一性を目視にて確認し、以下の4段階の基準に従い評価した。
◎:薄層に乱れがまったく認められない。
○:薄層に乱れがほとんど認められない。
△:薄層に多少の乱れが認められる。
×:薄層に筋状の乱れがはっきりと認められる。
[2.2]転写効率
以上のようにして得られた各トナーについて、転写効率の評価を行った。
転写効率は、カラーレーザープリンタ(セイコーエプソン社製、LP−2000C)を用いて、以下のように評価した。
感光体への現像工程直後(転写前)の感光体上のトナーと、転写後(印刷後)の感光体上のトナーとを、別々のテープを用いて採取し、それぞれの重量を測定した。転写前の感光体上のトナー重量をW[g]、転写後の感光体上のトナー重量をW[g]としたとき、(W−W)×100/Wとして求められる値を、転写効率とした。
これらの結果を、トナー粒子の平均円形度R、円形度標準偏差、体積基準の平均粒径Dt、粒径標準偏差とともに表2に示す。
Figure 0004654626
表2から明らかなように、本発明(実施例1〜3)のトナーは、いずれも、円形度が大きく、粒度分布の幅の小さいものであった。また、形状のバラツキ(円形度の標準偏差)も小さかった。
これに対し、各比較例のトナーは、円形度が特に小さく、比較的大きな凸部を有しているトナー粒子が数多く認められた。これは、以下のような理由によるものであると考えられる。
すなわち、実施例1〜3では、ヘッド部から吐出する原料が分散液(懸濁液)であるため、ヘッド部から吐出させる際に、微視的に粘度の低い分散媒の部分で選択的に切断され、吐出液として吐出される。また、水性の分散媒は適度な表面張力を有しているため、吐出液は、吐出後速やかに球形状となる。さらに、実施例1〜3では、分散媒除去処理を施すことにより、一旦凝集体を得た後、当該凝集体に接合処理を施し、トナー粒子を得ているため、分散質の凝集が均一に起こり、凝集体および該凝集体から製造されるトナー粒子は、円形度が大きく、形状のバラツキが小さいものとなる。これに対し、比較例1、2では、凝集体を介してトナー粒子を製造しておらず(分散媒除去工程および接合工程を有するという条件を満足しておらず)、直接トナー粒子を製造しているため、液滴状に吐出された分散液から分散媒が除去される際に、分散質の凝集が均一に進行しないため、得られるトナー粒子は、その表面付近に、比較的大きな凹凸を多数有し、各粒子間での形状、大きさのバラツキが大きいものとなる。また、比較例3では、製造に用いる原料が微視的に見ても一様な粘度を有しているため、ヘッド部から吐出する際に液滴が尾を引くような形状になりやすい。また、比較例3のトナーは、吐出液として溶液を用いて製造されたものであるため、固化部内における溶媒除去の際に上記のような形状(尾を引いたような形状)を保持した状態で固化する。以上のようなことから、比較例では、比較的大きな凸部を有するトナー粒子が発生したものと考えられる。
また、表2から明らかなように、本発明のトナーは、転写効率に優れていた。これに対し、各比較例のトナーは、転写効率に劣っていた。これは、比較例のトナーが各粒子間での形状、大きさ、特性のバラツキが大きいのに対し、本発明のトナーでは、このようなトナー粒子間での形状、大きさ、特性のバラツキが十分に小さいことによるものであると考えられる。また、本発明のトナーが優れた耐久性を有していたのに対し、比較例のトナーは耐久性に劣っていた。
[3]トナーの製造
(実施例4)
まず、結着樹脂としてポリエステル樹脂(ガラス転移点Tg:59℃、融点Tm:155℃):100重量部、着色剤としてフタロシアニン顔料(大日精化社製、フタロシアニンブルー):5重量部、溶媒としてテトラヒドロフラン(和光純薬社製):300重量部を用意した。
これらの各成分をボールミルにて10時間混合分散し、結着樹脂溶液(樹脂液)を調製した。
一方、分散剤としてのポリアクリル酸ナトリウム(和光純薬社製、平均重合度n=2700〜7500):10重量部をイオン交換水:590重量部に溶解した水溶液(水性溶液)を用意した。
次に、この水溶液:600重量部を3リットルの丸底ステンレス容器に入れ、TKホモミキサー(特殊機化工社製)を用いて、回転数:4000rpmで攪拌しながら、結着樹脂溶液:409重量部を10分かけて徐々に滴下した。この際、液温を70℃に保持した。結着樹脂溶液の滴下完了からさらに10分間、液温を70℃に保持しつつ攪拌して、乳化液を得た。
次に、温度:45℃、雰囲気圧力:10〜20kPaの条件下で、乳化液(分散質)中のテトラヒドロフランを除去し、その後、室温まで冷却し、さらに、イオン交換水を加えることにより、固形微粒子が分散した結着樹脂懸濁液(分散液)を得た。
その後、得られた結着樹脂懸濁液(分散液)に脱気処理を施した。脱気処理は、攪拌した状態の結着樹脂懸濁液(分散液)を、14kPaの雰囲気中に10分間置くことにより行った。脱気処理時における雰囲気温度は、25℃であった。このようにして得られた結着樹脂懸濁液(分散液)中における固形分(分散質)濃度は、10wt%であった。また、結着樹脂懸濁液(分散液)の25℃における粘度は、2mPa・sであった。また、結着樹脂懸濁液を構成する分散質の平均粒径Dmは、0.4μmであった。なお、分散質の平均粒径の測定は、レーザ回折/散乱式粒度分布測定装置(堀場製作所社製、LA−920)を用いて行った。
脱気処理済みの分散液(結着樹脂懸濁液)を、図1、図2に示すようなトナー製造装置の分散液供給部内に投入した。分散液供給部内の分散液を攪拌手段で攪拌しつつ、定量ポンプによりヘッド部の分散液貯留部に供給し、吐出部から固化部に吐出させた。吐出部は、直径:26μmの円形状をなすものとした。また、ヘッド部としては、吐出部付近に、フッ素樹脂(ポリテトラフルオロエチレン)コートによる疎水化処理が施されたものを用いた。
分散液の吐出は、ヘッド部内における分散液温度を25℃、圧電体の振動数を10kHz、吐出部から吐出される分散液の初速度を4m/秒、ヘッド部から吐出される分散液の一滴分の吐出量を3pl(粒径Dd:18μm、重量:約3ng)に調整した状態で行った。また、分散液の吐出は、複数個のヘッド部のうち少なくとも隣接しあうヘッド部で、分散液の吐出タイミングがずれるようにして行った。
また、分散液の吐出時には、ガス噴射口から温度:40℃、湿度:27%RH、流速:4m/秒の空気を鉛直下方に噴射し、また、ハウジング内の圧力(雰囲気圧力)は、100〜105kPaとなるように調節した。また、ハウジング内の温度(雰囲気温度)は、35〜40℃となるように調節した。固化部の長さ(搬送方向の長さ)は、2mであった。
固化部内において、吐出した分散液から分散媒が除去され、分散質(微粒子)の凝集体が形成され、形成された凝集体は回収部に回収された(分散媒除去工程)。また、個々の粒子(液滴および該液滴から形成される凝集体)についての分散媒除去工程の処理時間(固化部内を通過するのに要する時間)は、12秒であった。また、得られた凝集体の含水量は、5〜10wt%であった。なお、水分量は、カールフィッシャー法により測定した。
その後、得られた凝集体を50℃に加温した状態で、1時間のエアレーションを行うことにより、凝集体の含水量を約0.5wt%まで低下させた。
その後、凝集体に接合処理を施すことにより、トナー粒子を得た。接合処理は、サーヒュージングシステム(日本ニューマチック工業社製、SFS−3型)を用いて行った。接合処理は、処理温度(熱風温度):70℃、熱風風量:1m/分、分散風量:0.1m/分、原料投入速度:0.5kg/時間、吸引風量:10m/分という条件で行った。また、個々の凝集体(各粒子)についての接合処理時間は、3秒であった。
得られたトナー粒子は、含水量が0.3〜0.5wt%、平均円形度Rが0.978、円形度標準偏差が0.016であった。体積基準の平均粒径Dtは、6.5μmであった。体積基準の粒径標準偏差は0.8μmであった。なお、円形度の測定は、フロー式粒子像解析装置(東亜医用電子社製、FPIA−2000)を用いて、水分散系で行った。
(実施例5〜7)
ヘッド部内での分散液の温度、各工程での処理温度、処理時間を表3に示すように変更した以外は、前記実施例4と同様にしてトナーを製造した。
(実施例8)
結着樹脂として、スチレン−アクリル酸エステル共重合体(ガラス転移点Tg:52℃、融点Tm:105℃)を用いた以外は、前記実施例4と同様にしてトナーを製造した。
(実施例9〜11)
ヘッド部内での分散液の温度、各工程での処理温度、処理時間を表3に示すように変更した以外は、前記実施例8と同様にしてトナーを製造した。
(実施例12)
結着樹脂として、エポキシ樹脂(ガラス転移点Tg:60℃、融点Tm:110℃)を用いた以外は、前記実施例4と同様にしてトナーを製造した。
(実施例13〜15)
ヘッド部内での分散液の温度、各工程での処理温度、処理時間を表3に示すように変更した以外は、前記実施例12と同様にしてトナーを製造した。
(実施例16)
結着樹脂として、アクリル樹脂(ガラス転移点Tg:52℃、融点Tm:105℃)を用いた以外は、前記実施例4と同様にしてトナーを製造した。
(実施例17〜19)
ヘッド部内での分散液の温度、各工程での処理温度、処理時間を表4に示すように変更した以外は、前記実施例16と同様にしてトナーを製造した。
(実施例20)
結着樹脂として、エポキシ樹脂(ガラス転移点Tg:60℃、融点Tm:110℃):50重量部と、アクリル樹脂(ガラス転移点Tg:52℃、融点Tm:105℃):50重量部との混合物を用いた以外は、前記実施例4と同様にしてトナーを製造した。
(実施例21〜23)
ヘッド部内での分散液の温度、各工程での処理温度、処理時間を表4に示すように変更した以外は、前記実施例20と同様にしてトナーを製造した。
(比較例4)
分散液の吐出時における、ガス噴射口から噴射するガス(空気)の温度を110℃とし、ハウジング内の温度(雰囲気温度)を70〜90℃とし、固化部で回収された凝集体に接合工程を施さず、そのままトナー粒子とした以外は、前記実施例4と同様にしてトナーを製造した。
(比較例5)
結着樹脂として、スチレン−アクリル酸エステル共重合体(ガラス転移点Tg:52℃、融点Tm:105℃)を用いた以外は、前記比較例4と同様にしてトナーを製造した。
(比較例6)
結着樹脂として、エポキシ樹脂(ガラス転移点Tg:60℃、融点Tm:110℃)を用いた以外は、前記比較例4と同様にしてトナーを製造した。
(比較例7)
結着樹脂として、アクリル樹脂(ガラス転移点Tg:52℃、融点Tm:105℃)を用いた以外は、前記比較例4と同様にしてトナーを製造した。
(比較例8)
まず、結着樹脂としてエポキシ樹脂(ガラス転移点Tg:60℃、融点Tm:110℃):300重量部、着色剤としてフタロシアニン顔料(大日精化社製、フタロシアニンブルー):15重量部、帯電制御剤としてサリチル酸Cr錯体(ボントロンE−81、オリエント化学工業社製):3重量部、ワックスとしてカルナウバワックス:9重量部、溶媒としてトルエン(和光純薬社製):300重量部を用意した。
これらの各成分を85℃に保ちながら混合攪拌し、結着樹脂溶液(樹脂液)を調製した。得られた結着樹脂溶液の25℃における粘度は、12mPa・sであった。
このようにして得られた結着樹脂溶液(樹脂液)を吐出液として用いた以外は、前記比較例4と同様にしてトナーを製造した。
前記実施例4〜23で得られたトナー粒子について、走査型電子顕微鏡(SEM)を用いて、これらの表面形状を観察した。実施例4〜23のトナー粒子では、その表面に比較的大きな凹凸は認められず、略球形状をなしていることが確認された。一方、各比較例のトナー粒子では、比較的大きな凹凸を有しており、各粒子間での形状のバラツキも大きいことが確認された。
以上の実施例4〜23および比較例4〜8(以下、各実施例および各比較例という)について、トナーの製造条件を表3、表4に示した。なお、表4中、比較例8の分散液の条件、分散媒除去工程での条件に関する欄には、それぞれ、溶液(吐出液)、固化部内の条件(溶媒除去工程での条件)を示した。
Figure 0004654626
Figure 0004654626
[4]評価
上記のようにして得られた各トナーについて、中空粒子の存在比率、耐久性、転写効率の評価を行った。
[4.1]中空粒子の存在比率
前記各実施例および前記各比較例で得られた各トナーについて、透過型電子顕微鏡(TEM)を用いて、それぞれ、トナー粒子の内部構造の観察を行い、中空粒子の存在比率を、以下の4段階の基準に従い評価した。
◎:中空粒子の存在が全く認められない。
○:中空粒子の存在がわずかに認められるが、その存在比率は1%未満。
△:中空粒子の存在比率が1%以上3%未満。
×:中空粒子の存在比率が3%以上。
[4.2]耐久性
前記各実施例および前記各比較例で得られたトナーを、カラーレーザープリンタ(セイコーエプソン社製:LP−2000C)の現像機にセットした。その後、印字しないように、現像機を連続回転させた。12時間後、現像機を取り出し、現像ローラ上のトナー薄層の均一性を目視にて確認し、以下の4段階の基準に従い評価した。
◎:薄層に乱れがまったく認められない。
○:薄層に乱れがほとんど認められない。
△:薄層に多少の乱れが認められる。
×:薄層に筋状の乱れがはっきりと認められる。
[4.3]転写効率
以上のようにして得られた各トナーについて、転写効率の評価を行った。
転写効率は、カラーレーザープリンタ(セイコーエプソン社製、LP−2000C)を用いて、以下のように評価した。
感光体への現像工程直後(転写前)の感光体上のトナーと、転写後(印刷後)の感光体上のトナーとを、別々のテープを用いて採取し、それぞれの重量を測定した。転写前の感光体上のトナー重量をW[g]、転写後の感光体上のトナー重量をW[g]としたとき、(W−W)×100/Wとして求められる値を、転写効率とした。
これらの結果を、トナー粒子の平均円形度R、円形度標準偏差、体積基準の平均粒径Dt、粒径標準偏差とともに表5に示す。
Figure 0004654626
表5から明らかなように、本発明(実施例4〜23)のトナーは、いずれも、円形度が大きく、粒度分布の幅の小さいものであった。また、形状のバラツキ(円形度の標準偏差)が小さく、中空粒子のような異形のトナー粒子が実質的に含まれていなかった。
これに対し、各比較例のトナーは、円形度が特に小さく、比較的大きな凸部を有しているトナー粒子が数多く認められた。これは、以下のような理由によるものであると考えられる。
すなわち、実施例4〜23では、ヘッド部から吐出する原料が分散液(懸濁液)であるため、ヘッド部から吐出させる際に、微視的に粘度の低い分散媒の部分で選択的に切断され、吐出液として吐出される。また、水性の分散媒は適度な表面張力を有しているため、吐出液は、吐出後速やかに球形状となる。さらに、実施例4〜23では、分散媒除去処理を施すことにより、一旦凝集体を得た後、当該凝集体に接合処理を施し、トナー粒子を得ているため、分散質の凝集が均一に起こり、また、分散媒の急激な除去(特に、液滴状の分散液中心部付近からの分散媒の急激な除去(突沸))が確実に防止されるため、凝集体および該凝集体から製造されるトナー粒子は、円形度が大きく、形状のバラツキが小さいものとなり、中空粒子のような異形のトナー粒子を実質的に含まない、または、含むとしてもその存在比率が極めて低いものとなる。これに対し、比較例4〜7では、凝集体を介してトナー粒子を製造しておらず(分散媒除去工程および接合工程を有するという条件を満足しておらず)、直接トナー粒子を製造しているため、液滴状に吐出された分散液から分散媒が除去される際に、分散質の凝集が均一に進行しないため、得られるトナー粒子は、その表面付近に、比較的大きな凹凸を多数有し、各粒子間での形状、大きさのバラツキが大きいものとなる。また、分散媒の除去が急激に進行するため、中空粒子のような異形のトナー粒子の存在比率が高いものとなる。また、比較例8では、製造に用いる原料が微視的に見ても一様な粘度を有しているため、ヘッド部から吐出する際に液滴が尾を引くような形状になりやすい。また、比較例8のトナーは、吐出液として溶液を用いて製造されたものであるため、固化部内における溶媒除去の際に上記のような形状(尾を引いたような形状)を保持した状態で固化する。また、比較例8でも、溶媒の除去が急激に進行するため、中空粒子のような異形のトナー粒子の存在比率が高いものとなる。以上のようなことから、比較例では、比較的大きな凸部を有するトナー粒子が発生したものと考えられる。
また、表5から明らかなように、本発明のトナーは、転写効率に優れていた。これに対し、各比較例のトナーは、転写効率に劣っていた。これは、比較例のトナーが各粒子間での形状、大きさのバラツキが大きく、中空粒子のような異形のトナー粒子が多く含まれるため、各粒子間での特性のバラツキが大きいのに対し、本発明のトナーでは、中空粒子のような異形のトナー粒子を実質的に含まず(または、含むとしてもその存在比率が極めて低く)、前記のようなトナー粒子間での形状、大きさ、特性のバラツキが十分に小さいことによるものであると考えられる。また、本発明のトナーが優れた耐久性を有していたのに対し、比較例のトナーは耐久性に劣っていた。このような結果は、本発明のトナーでは、中空粒子のような異形のトナー粒子を実質的に含まない、または、含むとしてもその存在比率が極めて低いことも寄与しているものと考えられる。
本発明のトナーの製造に用いられるトナー製造装置の第1実施形態を模式的に示す縦断面図である。 図1に示すトナー製造装置のヘッド部付近の拡大断面図である。 第2実施形態のトナー製造装置のヘッド部付近の構造を模式的に示す図である。 他の実施形態のトナー製造装置のヘッド部付近の構造を模式的に示す図である。 他の実施形態のトナー製造装置のヘッド部付近の構造を模式的に示す図である。 他の実施形態のトナー製造装置のヘッド部付近の構造を模式的に示す図である。 他の実施形態のトナー製造装置のヘッド部付近の構造を模式的に示す図である。 本発明のトナーの電子顕微鏡写真の一例である。 比較例のトナーの電子顕微鏡写真の一例である。
符号の説明
1……トナー製造装置 2……ヘッド部 21……分散液貯留部 22……圧電素子 221……下部電極 222……圧電体 223……上部電極 23……吐出部 24……振動板 25……音響レンズ 26……圧力パルス収束部 3……固化部 31……ハウジング 311……縮径部 4……分散液供給部 41……攪拌手段 5……回収部 6……分散液 61……分散質 62……分散媒 7……ガス噴射口 8……電圧印加手段 9……凝集体 10……ガス流供給手段 101……ダクト 11……熱交換器 12……圧力調整手段 121……接続管 122……拡径部 123……フィルター 13……絞り部材

Claims (2)

  1. 樹脂材料を含む分散質が、分散媒中微分散した分散液を用いて、主として樹脂材料で構成された樹脂粒子を接合する方法であって、
    ガラス転移点が50〜70℃の前記樹脂材料を含む分散質を、水を含む分散媒中で微分散し、前記分散質の平均粒径を0.1〜0.8μmにするとともに、前記分散液の粘度を0.5〜200mPa・sに調整する分散液調製工程と、
    前記分散液を前記樹脂材料のガラス転移点よりも低い温度により10〜200μmの直径を有するヘッド部より吐出することにより微粒子化し、前記樹脂材料のガラス転移点以下の温度の固化部内を微粒子化された前記分散液を搬送させつつ、前記分散媒を除去し、5〜10wt%の含水量の複数個の微粒子が凝集した凝集体を得る分散媒除去工程と、
    前記樹脂材料のガラス転移点以上でかつ前記樹脂材料の融点以下の温度で前記凝集体を構成する複数個の前記微粒子同士を体積基準の平均粒径で4〜10μmの粒子に溶融接合する接合工程と、
    を有することを特徴とする樹脂粒子の接合方法。
  2. 樹脂材料を含む分散質が分散媒中で微分散した分散液を吐出するヘッド部と、ヘッド部から吐出された前記分散液を前記樹脂材料のガラス転移点以下の処理温度に調整される分散媒除去部と、前記樹脂材料のガラス転移点以上の処理温度に調整される接合工程部と、を有し、
    前記分散液は、ガラス転移点が50〜70℃の前記樹脂材料を含む前記分散質が、水を含む前記分散媒中で微分散したものであり、前記分散質の平均粒径が0.1〜0.8μmであり、かつ、粘度が0.5〜200mPa・sのものであり、
    前記ヘッド部は、直径が10〜200μmであり、前記分散液を前記樹脂材料のガラス転移点以下の温度により吐出するものであり、
    前記分散媒除去部は、前記樹脂材料のガラス転移点よりも低い温度で、微粒子化された前記分散液を搬送させつつ、前記分散媒を除去し、5〜10wt%の含水量の複数個の微粒子が凝集した凝集体を得る部位であり、
    前記接合工程部は、前記樹脂材料のガラス転移点以上でかつ前記樹脂材料の融点以下の温度で前記凝集体を構成する複数個の前記微粒子同士を体積基準の平均粒径で4〜10μmの粒子に溶融接合する部位であることを特徴とする樹脂粒子の製造システム。
JP2004214966A 2003-12-11 2004-07-22 樹脂粒子の接合方法および樹脂粒子の製造システム Expired - Fee Related JP4654626B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004214966A JP4654626B2 (ja) 2003-12-11 2004-07-22 樹脂粒子の接合方法および樹脂粒子の製造システム
US11/010,723 US7247414B2 (en) 2003-12-11 2004-12-13 Method for producing resin particles and toner using the resin particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003413848 2003-12-11
JP2004214966A JP4654626B2 (ja) 2003-12-11 2004-07-22 樹脂粒子の接合方法および樹脂粒子の製造システム

Publications (3)

Publication Number Publication Date
JP2005194495A JP2005194495A (ja) 2005-07-21
JP2005194495A5 JP2005194495A5 (ja) 2007-08-16
JP4654626B2 true JP4654626B2 (ja) 2011-03-23

Family

ID=34829052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004214966A Expired - Fee Related JP4654626B2 (ja) 2003-12-11 2004-07-22 樹脂粒子の接合方法および樹脂粒子の製造システム

Country Status (1)

Country Link
JP (1) JP4654626B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8758973B2 (en) 2010-09-16 2014-06-24 Ricoh Company, Ltd. Method and apparatus for producing toner
JP5807431B2 (ja) * 2011-08-02 2015-11-10 株式会社リコー トナーの製造方法及びその製造装置並びに樹脂微粒子の製造方法及びその製造装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001247680A (ja) * 2000-03-08 2001-09-11 Catalysts & Chem Ind Co Ltd 樹脂粒子およびこれを配合した化粧料
JP2003262976A (ja) * 2002-03-07 2003-09-19 Seiko Epson Corp トナー製造装置、トナーの製造方法およびトナー

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001247680A (ja) * 2000-03-08 2001-09-11 Catalysts & Chem Ind Co Ltd 樹脂粒子およびこれを配合した化粧料
JP2003262976A (ja) * 2002-03-07 2003-09-19 Seiko Epson Corp トナー製造装置、トナーの製造方法およびトナー

Also Published As

Publication number Publication date
JP2005194495A (ja) 2005-07-21

Similar Documents

Publication Publication Date Title
US7514145B2 (en) Method and apparatus for producing resin particles using granulation-prevention agent, and resin particles produced by the method
EP1372042B1 (en) Method and apparatus for the production of toner
US7247414B2 (en) Method for producing resin particles and toner using the resin particles
JP4155116B2 (ja) トナーの製造方法、トナーおよびトナー製造装置
JP2006000794A (ja) 樹脂微粒子製造装置、樹脂微粒子の製造方法および樹脂微粒子
JP4654626B2 (ja) 樹脂粒子の接合方法および樹脂粒子の製造システム
JP2006072159A (ja) トナーの製造方法およびトナー
JP2006000793A (ja) 微粒子製造装置、微粒子の製造方法および微粒子
JP2005173263A (ja) トナーの製造方法、トナーおよびトナー製造装置
JP2006000796A (ja) 微粒子製造装置、微粒子の製造方法および微粒子
JP2005171103A (ja) 樹脂粒子の製造方法およびトナー
JP2006072156A (ja) トナーの製造方法およびトナー
JP2006106291A (ja) トナーの製造方法およびトナー
JP2006072158A (ja) トナーの製造方法およびトナー
JP2006106292A (ja) トナーの製造方法およびトナー
JP2006143905A (ja) 樹脂微粒子の製造方法および樹脂微粒子
JP2006036802A (ja) 樹脂微粒子の製造方法および樹脂微粒子
JP2006036803A (ja) 樹脂微粒子の製造方法、樹脂微粒子製造装置および樹脂微粒子
JP2006002097A (ja) 樹脂微粒子製造装置、樹脂微粒子の製造方法および樹脂微粒子
JP2006036820A (ja) 樹脂微粒子の製造方法
JP2006077166A (ja) 樹脂微粒子の製造方法および樹脂微粒子
JP2005173262A (ja) トナーの製造方法、トナーおよびトナー製造装置
JP2005195956A (ja) トナーの製造方法およびトナー
JP2006028432A (ja) 樹脂微粒子の製造方法、樹脂微粒子製造装置、樹脂微粒子、樹脂微粒子製造用分散液
JP2006011325A (ja) トナーの製造方法およびトナー

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees