JP4652506B2 - Scanning optical device - Google Patents

Scanning optical device Download PDF

Info

Publication number
JP4652506B2
JP4652506B2 JP32560999A JP32560999A JP4652506B2 JP 4652506 B2 JP4652506 B2 JP 4652506B2 JP 32560999 A JP32560999 A JP 32560999A JP 32560999 A JP32560999 A JP 32560999A JP 4652506 B2 JP4652506 B2 JP 4652506B2
Authority
JP
Japan
Prior art keywords
scanning direction
sub
scanning
optical element
imaging optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32560999A
Other languages
Japanese (ja)
Other versions
JP2001142017A (en
JP2001142017A5 (en
Inventor
浩司 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP32560999A priority Critical patent/JP4652506B2/en
Publication of JP2001142017A publication Critical patent/JP2001142017A/en
Publication of JP2001142017A5 publication Critical patent/JP2001142017A5/ja
Application granted granted Critical
Publication of JP4652506B2 publication Critical patent/JP4652506B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、レーザービームプリンタやデジタル複写機等に用いられる走査光学装置に関し、特に、温度変化に伴うピント変化を低減して、高精細度の画像を出力させる走査光学装置に関する。
【0002】
【従来の技術】
従来、レーザービームプリンタやデジタル複写機等に用いられている走査光学装置は、光源から射出された光束を偏向手段で偏向し、前記偏向された光束を走査光学手段により被走査面である感光ドラム面上にスポット状に結像させ、前記被走査面上を光走査する。
【0003】
図17は、従来の走査光学装置の主走査方向断面図である。半導体レーザー等より成る光源手段11から射出した光束は、コリメータレンズ12によって略平行光束に変換される。変換された略平行光束は、開口絞り13によって最適なビーム形状に整形されシリンドリカルレンズ14に入射する。前記シリンドリカルレンズ14は副走査方向にのみパワーを有し、回転多面鏡等より成る偏向手段15の偏向面15a近傍に、主走査方向に長手の線状光束として結像する。ここで主走査方向とは偏向走査方向に平行な方向、副走査方向とは偏向走査方向に垂直な方向である。前記線状光束は偏向手段15により等角速度で反射偏向され、fθ特性を有するfθレンズ系より成る走査光学手段16により、被走査面18である感光ドラム等より成る記録媒体上にスポット形状として、等速度で結像走査される。
【0004】
近年、この種の走査光学装置における走査光学手段は低価格化及びコンパクト化の要求から、プラスチックレンズを使用したものが主流となっている。しかし、プラスチックレンズは温度変化に伴い屈折率が変化するため、プラスチックレンズを用いた走査光学装置では環境変動によるピント変化等が生じる。このようなピント変動を低減することは、たとえば、レンズ面上に回折光学素子を形成し、走査光学装置の温度変動に伴うピント変化を、前記走査光学手段の屈折部と回折部とのパワー変化と、前記光源である半導体レーザーの波長変動により補正することによって可能となる。
【0005】
図18は、従来の屈折部と回折部とを備えた走査光学装置の主走査方向の要部断面図(主走査断面図)である。
【0006】
図19は、この従来の屈折部と回折部とを備えた走査光学装置の副走査方向の要部断面図(副走査断面図)である。
【0007】
図18、図19において、半導体レーザー等より成る光源1から射出した光束は、コリメータレンズ2によって略平行光束に変換される。変換された略平行光束は、開口絞り3によって最適なビーム形状に整形されシリンドリカルレンズ4に入射する。前記シリンドリカルレンズ4は副走査方向にのみパワーを有し、回転多面鏡等より成る偏向手段5の偏向面5a近傍に、主走査方向に長手の線状光束として結像する。前記線状光束は偏向手段5により等角速度で反射偏向され、fθ特性を有する走査光学手段6により、被走査面8である感光ドラム等より成る記録媒体上にスポット形状として等速度で結像走査される。走査光学手段6の第2光学素子の被走査面側には回折光学素子Dが形成されており、走査光学装置の温度変動に伴う副走査方向のピント変化を、前記走査光学手段6の屈折部と回折部とのパワー変化と、前記光源である半導体レーザー1の波長変動により補正されるようにしている。
【0008】
図20は、この従来の屈折部と回折部とを備えた走査光学装置の具体例を示す表である。
【0009】
図21は、この従来の屈折部と回折部とを備えた走査光学装置の走査光学手段の非球面係数及び位相係数を示す表である。
【0010】
【発明が解決しようとする課題】
しかし、上述した従来の屈折部と回折部とでピント変化等を補正する走査光学装置では、像面湾曲の温度変化が十分小さいとはいえない。
【0011】
図22は、昇温前後における副走査方向像面湾曲を示している。同図において点線は常温での像面湾曲、実線は25℃昇温した時の像面湾曲を表わしている。図に示したグラフから分かる通り、副走査方向像面湾曲が昇温により増加している。
【0012】
又、走査光学手段6の副走査方向における横倍率|β|は約3.7倍の高倍率になっている。このため、走査光学装置を構成する各光学部品の位置精度を厳しく抑える必要があり、コスト高の要因となる。
【0013】
また近年高速化の要求から複数の光束を用いて走査する光学装置が考えられている。しかし副走査方向の倍率が像高ごとにばらついていると、被走査面上における複数の走査線の間隔にも誤差が生じ、良好な画像を得ることが出来なくなる。 図23は、各像高の副走査方向倍率比を表したグラフである。横軸に像高、縦軸に軸上の倍率に対する各像高の倍率比誤差を示す。同図より最軸外の倍率は、軸上に対し5%近く誤差が生じていることが分かる。
【0014】
そこで、本発明は、従来に比べて更に、走査光学手段の副走査方向倍率の低減を図り、高精細な印字、及び環境変動(温度変化)に強く、また複数光束の走査にも対応可能であるコンパクトな走査光学装置を提供することを課題としている。
【0015】
【課題を解決するための手段および作用】
上記課題を解決するために、半導体レーザと、前記半導体レーザより射出された光束を偏向走査する偏向手段と、前記偏向手段の偏向面にて偏向走査された光束を被走査面上に結像させる結像光学手段と、を有する走査光学装置であって、
前記結像光学手段は、前記半導体レーザ側から順に、主走査方向及び副走査方向ともに凸の屈折パワーからなるプラスチック製の第1の結像光学素子と、プラスチック製の第2の結像光学素子とから成り、
前記第2の結像光学素子は、入射面が副走査方向に凸の屈折パワーを備え、出射面が主走査方向及び副走査方向ともに凸の回折パワーを備えた光学素子であり、
前記第1の結像光学素子の出射面及び前記第2の結像光学素子の入射面の副走査方向の曲率半径を主走査方向において前記結像光学手段の光軸から離れるに従い連続的に変化させ、かつ、前記第2の結像光学素子の出射面の副走査方向の回折パワーを主走査方向において前記結像光学手段の光軸から離れるに従い連続的に変化させることで、前記結像光学手段の軸上の副走査方向の横倍率βに対する各像高の副走査方向の横倍率誤差が全像高にわたり1%以下となっており、かつ、
前記結像光学手段の軸上の副走査方向の横倍率βは、
1<|β|<3
を満足することを特徴とする。
【0016】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態について説明する。
【0017】
[実施形態1]
図1は本発明の実施形態1の主走査方向の要部断面図(主走査断面図)である。
【0018】
図2は副走査方向の要部断面図(副走査断面図)である。
【0019】
図1、図2において、1は例えば半導体レーザーより成る光源である。2はコリメータレンズであり、光源1から射出した発散光束を略平行光束に変換している。3は開口絞りであり、コリメータレンズ2から射出した光束を所望の最適なビーム形状に整形している。4はシリンドリカルレンズであり、副走査方向にのみ所定のパワーを有し、開口絞り3から射出した光束を後述する偏向手段5の偏向面5a上付近に副走査断面内において結像(主走査断面においては長手の線像)する。5は例えば回転多面鏡より成る偏向手段であり、図示しないモーター等の駆動手段により図中矢印A方向に一定速度で回転している。
【0020】
6はfθ特性を有するfθレンズ系6a,6bより成る走査光学手段である。第1光学素子6aは、主走査方向、副走査方向ともに凸の異なるパワーを有するアナモフィックレンズであり、第1面、第2面ともにトーリック面で構成されている。主走査方向は第2面が非球面形状である。第2光学素子6bは、第1面が副走査方向に凸のパワーを有するシリンドリカル面、第2面は平面C上に主走査方向、副走査方向ともに凸のパワーを有するように回折光学素子が形成されている。これらのfθレンズ系6a,6bは、ともにプラスチック材料で成形される。さらに本走査光学手段は、副走査方向において偏向面5aと被走査面7との間を共役関係にすることにより、倒れ補正機能を有している。
【0021】
半導体レーザー1より射出した発散光束は、コリメータレンズ2により略平行光束に変換され、開口絞り3によって所望のビーム形状に整形される。そして、前記光束はシリンドリカルレンズ4により偏向手段5の偏向面5a付近に、副走査方向に関して結像される。その後偏向面5aにより反射偏向された光束は、走査光学手段6により被走査面7(感光ドラム面)上にスポット形状に結像され、前記偏向手段5を矢印A方向に回転させることによって前記感光ドラム面7上を矢印B方向に等速度で光走査される。
【0022】
図3は、第1光学素子6aの形状を表す式である。
【0023】
図4は、第2光学素子6bの形状を表す式である。
【0024】
図3、図4に示す式においては、各光学素子面と光軸との交点を原点とし、光軸方向をX軸、主走査断面内において光軸に垂直な方向をY軸、副走査断面内において光軸に垂直な方向をZ軸としている。
【0025】
図5は、実施形態1における光学配置の具体例を示す表である。
【0026】
図6は、実施形態1の走査光学装置の屈折系の非球面係数及び回折系の位相係数を示す表である。
【0027】
実施形態1では、第2光学素子の第1面を副走査方向に凸のパワーを有するシリンドリカル面にすることにより、副走査方向における第2光学素子の凸パワーを強め、走査光学手段6全系の副走査方向倍率の低減を図っている。走査光学手段6の副走査方向横倍率βについては、|β|=2.84であるので、
1<|β|<3 (1)
を満たしており、公差を緩和することが可能となる。
【0028】
条件式(1)の下限を越えると走査光学手段6の光学素子が被走査面側に近づき、光学素子及び走査光学装置全体が大型化して良くない。また、条件式(1)の上限を越えると走査光学手段6の副走査方向倍率が高くなり、公差が厳しくなるので良くない。
【0029】
実施形態1では回折系のパワーを、副走査方向に所望の凸パワーに設定している。回折系のパワーを所望の凸に設定することにより、走査光学手段6の環境変動によるレンズ材質の屈折率変化で生じるピント移動を、光源の波長変動に起因する回折パワーの変化によって補正することが可能となる。
【0030】
図7は、実施形態1における昇温前後の副走査方向の像面湾曲を示している。同図において、点線は常温での像面湾曲、実線は25℃昇温した時の像面湾曲を表している。ここで、25℃昇温した時の光学素子6a,6bの屈折率n* 、及び光源手段1の波長λ* はそれぞれ、
* =1.5221
λ* =786.4nm
とする。同図よりピント移動が良好に補正されていることが解る。
【0031】
実施形態1における回折格子形状は、鋸歯状のブレーズド格子であるが、階段状の回折格子から成るバイナリー回折格子でも良い。
【0032】
以上のことにより、本実施形態1において、走査光学手段の副走査方向倍率の低減による公差の緩和を可能とし、高精細な印字、及び環境変動(温度変化)に強いコンパクトな走査光学装置の提供が可能になる。
【0033】
[実施形態2]
図8は、実施形態2の副走査方向の要部断面図(副走査断面図)である。主走査方向に関しては本実施形態1と同一形状である。
【0034】
6はfθ特性を有するfθレンズ系6a,6bより成る走査光学手段である。第1光学素子6aは、主走査方向、副走査方向ともに凸の異なるパワーを有するアナモフィックレンズであり、第1面、第2面ともにトーリック面で構成されている。主走査方向は第2面が非球面形状である。第2光学素子6bは、第1面が平面であり、第2面は副走査方向に凸のパワーを有するシリンドリカル面で構成され、且つ前記シリンドリカル面C上に主走査方向、副走査方向ともに凸のパワーを有するように回折光学素子が形成されている。これらのfθレンズ系6a,6bは、ともにプラスチック材料で成形される。さらに本走査光学手段は、副走査方向において偏向面5aと被走査面7との間を共役関係にすることにより、倒れ補正機能を有している。
【0035】
図9は、実施形態2の光学配置の具体例を示す表である。
【0036】
図10は、実施形態2の走査光学装置の屈折系の非球面係数及び回折系の位相係数を示す表である。
【0037】
実施形態2では、第2光学素子の第2面を副走査方向に凸のパワーを有するシリンドリカル面にすることにより、副走査方向における第2光学素子の凸パワーを強め、走査光学手段6全系の副走査方向倍率の低減を図っている。走査光学手段6の副走査方向横倍率βについては、|β|=2.78であるので、条件式(1)を満たしている。条件式(1)の下限を越えると走査光学手段6の光学素子が被走査面側に近づき、光学素子及び走査光学装置全体が大型化して良くない。また、条件式(1)の上限を越えると走査光学手段6の副走査方向倍率が高くなり、公差が厳しくなるので良くない。
【0038】
実施形態2では回折系のパワーを、副走査方向に所望の凸パワーに設定し、走査光学装置全系において温度補償効果を有している。
【0039】
図11は、実施形態2における昇温前後の副走査方向の像面湾曲を示している。同図において、点線は常温での像面湾曲、実線は25℃昇温した時の像面湾曲を表している。ここで、25℃昇温した時の光学素子26a,26bの屈折率n* 、及び光源手段1の波長λ* はそれぞれ、
* =1.5221
λ* =786.4nm
とする。同図よりピント移動が良好に補正されていることが解る。
【0040】
本実施形態2における回折格子形状は、鋸歯状のブレーズド格子であるが、階段状の回折格子から成るバイナリー回折格子でも良い。
【0041】
以上のことにより、実施形態2において、走査光学手段の副走査方向倍率の低減による公差の緩和を可能とし、高精細な印字、及び環境変動(温度変化)に強いコンパクトな走査光学装置の提供が可能になる。
【0042】
[実施形態3]
図12は、実施形態3の副走査方向の要部断面図(副走査断面図)である。主走査方向に関しては本実施形態1と同一形状である。
【0043】
6はfθ特性を有するfθレンズ系6a,6bより成る走査光学手段である。第1光学素子6aは、主走査方向、副走査方向ともに凸の異なるパワーを有するアナモフィックレンズであり、第1面、第2面ともにトーリック面で構成されている。また、第2面は主走査方向が非球面形状であり、副走査方向は曲率半径が光軸から離れるに従い連続的に変化している。第2光学素子6bは、第1面が副走査方向に凸のパワーを有するシリンドリカル面であり、曲率半径が光軸から離れるに従い連続的に変化している。第2面は平面C上に主走査方向、副走査方向ともに凸のパワーを有するように回折光学素子が形成されている。これらのfθレンズ系6a,6bは、ともにプラスチック材料で成形される。さらに本走査光学手段は、副走査方向において偏向面5aと被走査面7との間を共役関係にすることにより、倒れ補正機能を有している。
【0044】
図13は、実施形態3の光学配置の具体例を示す表である。
【0045】
図14は、実施形態3の走査光学装置の屈折系の非球面係数及び回折系の位相係数を示す表である。
【0046】
実施形態3では、第2光学素子の第1面を副走査方向に凸のパワーを有するシリンドリカル面にすることにより、副走査方向における第2光学素子の凸パワーを強め、走査光学手段6全系の副走査方向倍率の低減を図っている。走査光学手段6の副走査方向横倍率βについては、|β|=2.54であるので、条件式(1)を満たしている。条件式(1)の下限を越えると走査光学手段6の光学素子が被走査面側に近づき、光学素子及び走査光学装置全体が大型化して良くない。また、条件式(1)の上限を越えると走査光学手段6の副走査方向倍率が高くなり、公差が厳しくなるので良くない。
【0047】
実施形態3では回折系のパワーを、副走査方向に所望の凸パワーに設定し、走査光学装置全系において温度補償効果を有している。
【0048】
図15は、実施形態3における昇温前後の副走査方向の像面湾曲を示している。同図において、点線は常温での像面湾曲、実線は25℃昇温した時の像面湾曲を表している。ここで、25℃昇温した時の光学素子6a,6bの屈折率n* 、及び光源手段1の波長λ* はそれぞれ、
* =1.5221
λ* =786.4nm
とする。同図よりピント移動が良好に補正されていることが解る。
【0049】
又、実施形態3では、第1光学素子第2面と第2光学素子第1面の副走査方向曲率半径を光軸から離れるに従い連続的に変化させている。このことにより、全像高において副走査方向の倍率をほぼ一定に補正し、複数の光束を走査する場合に生じる走査線間隔の誤差を良好なレベルに抑えることが可能になる。
【0050】
図16は、実施形態3における各像高の副走査方向倍率比を表したグラフである。横軸に像高、縦軸に軸上の倍率に対する各像高の倍率比誤差を示す。同図より、副走査方向倍率比誤差が全像高にわたり1%以下に補正されていることが分かる。
【0051】
実施形態3における回折格子形状は、鋸歯状のブレーズド格子であるが、階段状の回折格子から成るバイナリー回折格子でも良い。
【0052】
以上のことにより、本実施形態3において、走査光学手段の副走査方向倍率の低減を図っている。又、回折面を有する前記第2光学素子において、第1面をトーリック面等にすることにより主走査方向コマ収差を低減させたり、第2面を球面、トーリック面等にすることにより回折パワーを副走査方向に所望の凸パワーに設定している。
【0053】
【発明の効果】
以上説明した本発明によれば、光源から射出された少なくとも1つの光束を偏向手段により偏向し、前記偏向手段により偏向された光束を走査光学手段により被走査面上にスポット状に結像させ、前記被走査面上を光走査する走査光学装置において、前記走査光学手段が主走査方向、副走査方向ともに異なるパワーを有するアナモフィックレンズより成る第1光学素子と、回折面を有する第2光学素子の2枚より構成され、前記第2光学素子は少なくとも1面副走査方向に屈折によるパワーを有することにより、走査光学手段の副走査方向倍率の低減を図り、高精細な印字、及び環境変動(温度変化)に強く、また複数光束の走査にも対応可能であるコンパクトな走査光学装置の提供が可能になる。
【図面の簡単な説明】
【図1】本発明の実施形態1の走査光学装置の主走査方向断面図
【図2】実施形態1の走査光学装置の副走査方向断面図
【図3】実施形態1の走査光学装置の第1光学素子の形状を表す式
【図4】実施形態1の走査光学装置の第2光学素子の形状を表す式
【図5】実施形態1の走査光学装置の具体例を示す表
【図6】実施形態1の走査光学装置の屈折系の非球面係数及び回折系の位相係数を示す表
【図7】実施形態1の走査光学装置の昇温前後の像面湾曲を示すグラフ
【図8】実施形態2の走査光学装置の副走査方向断面図
【図9】実施形態2の走査光学装置の具体例を示す表
【図10】実施形態2の走査光学装置の屈折系の非球面係数及び回折系の位相係数を示す表
【図11】実施形態2の走査光学装置の昇温前後の像面湾曲を示すグラフ
【図12】実施形態3の走査光学装置の副走査方向断面図
【図13】実施形態3の走査光学装置の具体例を示す表
【図14】実施形態3の走査光学装置の屈折系の非球面係数及び回折系の位相係数を示す表
【図15】実施形態3の走査光学装置の昇温前後の像面湾曲を示すグラフ
【図16】実施形態3の走査光学装置の各像高における副走査方向倍率比を示すグラフ
【図17】従来の走査光学装置の主走査方向断面図
【図18】屈折部と回折部とを備えた従来の走査光学装置の主走査方向断面図
【図19】屈折部と回折部とを備えた従来の走査光学装置の副走査方向断面図
【図20】屈折部と回折部とを備えた従来の走査光学装置の具体例を示す表
【図21】屈折部と回折部とを備えた従来の走査光学装置の屈折系の非球面係数及び回折系の位相係数を示す表
【図22】屈折部と回折部とを備えた従来の走査光学装置の昇温前後の像面湾曲を示すグラフ
【図23】屈折部と回折部とを備えた従来の走査光学装置の各像高における副走査方向倍率比を示すグラフ
【符号の説明】
1,11 光源手段(半導体レーザー)
2,12 コリメータレンズ
3,13 開口絞り
4,14 シリンドリカルレンズ
5,15 偏向手段(回転多面鏡)
5a,15a 偏向面
6,16 走査光学手段
6a 第1光学素子
6b 第2光学素子
C,D 回折格子面
7,18 被走査面(感光ドラム面)
[0001]
[Technical field to which the invention belongs]
The present invention relates to a scanning optical device used in a laser beam printer, a digital copying machine, and the like, and more particularly, to a scanning optical device that reduces a focus change accompanying a temperature change and outputs a high-definition image.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a scanning optical device used in a laser beam printer, a digital copying machine, etc. deflects a light beam emitted from a light source by a deflecting unit, and the deflected light beam is a photosensitive drum that is a surface to be scanned by the scanning optical unit. A spot image is formed on the surface, and the surface to be scanned is optically scanned.
[0003]
FIG. 17 is a cross-sectional view of the conventional scanning optical apparatus in the main scanning direction. A light beam emitted from the light source means 11 made of a semiconductor laser or the like is converted into a substantially parallel light beam by the collimator lens 12. The converted substantially parallel light beam is shaped into an optimum beam shape by the aperture stop 13 and enters the cylindrical lens 14. The cylindrical lens 14 has power only in the sub-scanning direction, and forms an image as a linear light beam that is long in the main scanning direction in the vicinity of the deflecting surface 15a of the deflecting means 15 such as a rotating polygon mirror. Here, the main scanning direction is a direction parallel to the deflection scanning direction, and the sub-scanning direction is a direction perpendicular to the deflection scanning direction. The linear light beam is reflected and deflected at a constant angular velocity by the deflecting means 15 and is spot-shaped on a recording medium made up of a photosensitive drum or the like that is the surface to be scanned 18 by a scanning optical means 16 comprising an fθ lens system having fθ characteristics. Imaging scanning is performed at a constant speed.
[0004]
In recent years, the scanning optical means in this type of scanning optical apparatus is mainly using a plastic lens because of demands for cost reduction and compactness. However, since the refractive index of a plastic lens changes with a change in temperature, the scanning optical device using the plastic lens causes a focus change due to environmental fluctuations. To reduce such focus fluctuation, for example, a diffractive optical element is formed on the lens surface, and a focus change caused by a temperature fluctuation of the scanning optical device is detected as a power change between the refractive part and the diffractive part of the scanning optical means. This can be done by correcting the wavelength variation of the semiconductor laser as the light source.
[0005]
FIG. 18 is a cross-sectional view (main scanning cross-sectional view) of a main part in the main scanning direction of a scanning optical apparatus having a conventional refracting part and diffractive part.
[0006]
FIG. 19 is a cross-sectional view (sub-scanning cross-sectional view) of the main part in the sub-scanning direction of the scanning optical apparatus provided with this conventional refracting part and diffractive part.
[0007]
18 and 19, the light beam emitted from the light source 1 made of a semiconductor laser or the like is converted into a substantially parallel light beam by the collimator lens 2. The converted substantially parallel light beam is shaped into an optimum beam shape by the aperture stop 3 and enters the cylindrical lens 4. The cylindrical lens 4 has power only in the sub-scanning direction, and forms an image as a linear light beam that is long in the main scanning direction in the vicinity of the deflecting surface 5a of the deflecting means 5 such as a rotating polygon mirror. The linear light beam is reflected and deflected by the deflecting means 5 at a constant angular velocity, and image scanning is performed at a constant speed as a spot shape on a recording medium composed of a photosensitive drum or the like as the surface to be scanned 8 by a scanning optical means 6 having fθ characteristics. Is done. A diffractive optical element D is formed on the surface to be scanned of the second optical element of the scanning optical means 6, and the change in focus in the sub-scanning direction accompanying the temperature fluctuation of the scanning optical device is detected by the refracting portion of the scanning optical means 6. And the power change between the diffraction part and the wavelength variation of the semiconductor laser 1 serving as the light source.
[0008]
FIG. 20 is a table showing a specific example of the conventional scanning optical apparatus including the refracting section and the diffracting section.
[0009]
FIG. 21 is a table showing aspherical coefficients and phase coefficients of the scanning optical means of the scanning optical apparatus having the conventional refracting part and diffractive part.
[0010]
[Problems to be solved by the invention]
However, it cannot be said that the temperature change of the field curvature is sufficiently small in the conventional scanning optical device that corrects the focus change and the like by the conventional refracting unit and the diffractive unit.
[0011]
FIG. 22 shows the field curvature in the sub-scanning direction before and after the temperature rise. In the figure, the dotted line represents the field curvature at room temperature, and the solid line represents the field curvature when the temperature is raised by 25 ° C. As can be seen from the graph shown in the figure, the field curvature in the sub-scanning direction increases as the temperature rises.
[0012]
Further, the lateral magnification | β | in the sub-scanning direction of the scanning optical means 6 is a high magnification of about 3.7 times. For this reason, it is necessary to strictly control the positional accuracy of each optical component constituting the scanning optical apparatus, which causes an increase in cost.
[0013]
In recent years, an optical apparatus that scans using a plurality of light beams has been considered in order to increase the speed. However, if the magnification in the sub-scanning direction varies for each image height, an error also occurs in the interval between a plurality of scanning lines on the surface to be scanned, and a good image cannot be obtained. FIG. 23 is a graph showing the sub-scanning direction magnification ratio of each image height. The horizontal axis represents the image height, and the vertical axis represents the magnification ratio error of each image height with respect to the magnification on the axis. From the figure, it can be seen that the off-axis magnification has an error of nearly 5% with respect to the axis.
[0014]
Therefore, the present invention further reduces the magnification of the scanning optical means in the sub-scanning direction, is resistant to high-definition printing and environmental fluctuations (temperature changes), and can handle scanning of a plurality of light beams. It is an object to provide a compact scanning optical device.
[0015]
[Means and Actions for Solving the Problems]
In order to solve the above problems, a semiconductor laser, deflection means for deflecting and scanning a light beam emitted from the semiconductor laser, and a light beam deflected and scanned by a deflection surface of the deflection means are imaged on a surface to be scanned. A scanning optical device having imaging optical means,
The imaging optical means includes, in order from the semiconductor laser side, a first imaging optical element made of plastic having a refractive power convex in both the main scanning direction and the sub-scanning direction, and a second imaging optical element made of plastic And
The second imaging optical element is an optical element in which the incident surface has a refractive power convex in the sub-scanning direction, and the output surface has a diffraction power convex in both the main scanning direction and the sub-scanning direction,
The curvature radii in the sub-scanning direction of the exit surface of the first imaging optical element and the incident surface of the second imaging optical element continuously change in the main scanning direction as the distance from the optical axis of the imaging optical means increases. And continuously changing the diffraction power in the sub-scanning direction of the exit surface of the second imaging optical element in the main scanning direction as the distance from the optical axis of the imaging optical means increases. The lateral magnification error in the sub-scanning direction of each image height with respect to the lateral magnification β in the sub-scanning direction on the axis of the means is 1% or less over the entire image height, and
The lateral magnification β in the sub-scanning direction on the axis of the imaging optical means is
1 <| β | <3
It is characterized by satisfying.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0017]
[Embodiment 1]
FIG. 1 is a sectional view (main scanning sectional view) of the main part in the main scanning direction of Embodiment 1 of the present invention.
[0018]
FIG. 2 is a sectional view (sub-scanning sectional view) of the main part in the sub-scanning direction.
[0019]
1 and 2, reference numeral 1 denotes a light source made of, for example, a semiconductor laser. A collimator lens 2 converts a divergent light beam emitted from the light source 1 into a substantially parallel light beam. An aperture stop 3 shapes the light beam emitted from the collimator lens 2 into a desired optimum beam shape. A cylindrical lens 4 has a predetermined power only in the sub-scanning direction, and the light beam emitted from the aperture stop 3 is imaged in the sub-scan section in the vicinity of the deflection surface 5a of the deflecting means 5 described later (main scan section). In the case of a longitudinal line image). Denoted at 5 is a deflecting means composed of, for example, a rotating polygon mirror, and is rotated at a constant speed in the direction of arrow A in the figure by a driving means such as a motor (not shown).
[0020]
Reference numeral 6 denotes scanning optical means comprising fθ lens systems 6a and 6b having fθ characteristics. The first optical element 6a is an anamorphic lens having different convex powers in the main scanning direction and the sub-scanning direction, and both the first surface and the second surface are constituted by toric surfaces. In the main scanning direction, the second surface is aspherical. The second optical element 6b has a cylindrical surface having a convex power in the sub-scanning direction on the first surface, and a diffractive optical element so that the second surface has a convex power in the main scanning direction and the sub-scanning direction on the plane C. Is formed. These fθ lens systems 6a and 6b are both molded of a plastic material. Further, this scanning optical means has a tilt correction function by providing a conjugate relationship between the deflection surface 5a and the scanned surface 7 in the sub-scanning direction.
[0021]
The divergent light beam emitted from the semiconductor laser 1 is converted into a substantially parallel light beam by the collimator lens 2 and shaped into a desired beam shape by the aperture stop 3. Then, the light beam is imaged by the cylindrical lens 4 in the vicinity of the deflecting surface 5a of the deflecting means 5 in the sub-scanning direction. Thereafter, the light beam reflected and deflected by the deflecting surface 5a is imaged in a spot shape on the surface to be scanned 7 (photosensitive drum surface) by the scanning optical means 6, and the photosensitive means is rotated by rotating the deflecting means 5 in the direction of arrow A. Optical scanning is performed on the drum surface 7 in the direction of arrow B at a constant speed.
[0022]
FIG. 3 is an equation representing the shape of the first optical element 6a.
[0023]
FIG. 4 is an equation representing the shape of the second optical element 6b.
[0024]
In the equations shown in FIGS. 3 and 4, the intersection of each optical element surface and the optical axis is the origin, the optical axis direction is the X axis, the direction perpendicular to the optical axis in the main scanning section is the Y axis, and the sub-scanning section The direction perpendicular to the optical axis is the Z axis.
[0025]
FIG. 5 is a table showing a specific example of the optical arrangement in the first embodiment.
[0026]
FIG. 6 is a table showing the aspherical coefficient of the refractive system and the phase coefficient of the diffraction system of the scanning optical apparatus according to the first embodiment.
[0027]
In Embodiment 1, the convex surface of the second optical element in the sub-scanning direction is strengthened by making the first surface of the second optical element a cylindrical surface having a convex power in the sub-scanning direction. The magnification in the sub-scanning direction is reduced. Since the lateral magnification β in the sub-scanning direction of the scanning optical means 6 is | β | = 2.84,
1 <| β | <3 (1)
It is possible to relax tolerances.
[0028]
If the lower limit of conditional expression (1) is exceeded, the optical element of the scanning optical means 6 approaches the surface to be scanned, and the entire optical element and the scanning optical apparatus may not be enlarged. If the upper limit of conditional expression (1) is exceeded, the magnification in the sub-scanning direction of the scanning optical means 6 becomes high and the tolerance becomes strict, which is not good.
[0029]
In the first embodiment, the power of the diffraction system is set to a desired convex power in the sub-scanning direction. By setting the power of the diffractive system to a desired convexity, the focus shift caused by the change in the refractive index of the lens material due to the environmental change of the scanning optical means 6 can be corrected by the change in the diffraction power caused by the wavelength change of the light source. It becomes possible.
[0030]
FIG. 7 shows field curvature in the sub-scanning direction before and after the temperature increase in the first embodiment. In the figure, the dotted line represents the field curvature at room temperature, and the solid line represents the field curvature when the temperature is raised by 25 ° C. Here, the refractive index n * of the optical elements 6a and 6b when the temperature is raised by 25 ° C. and the wavelength λ * of the light source means 1 are respectively
n * = 1.5221
λ * = 786.4 nm
And It can be seen from the figure that the focus movement is corrected well.
[0031]
The diffraction grating shape in the first embodiment is a sawtooth blazed grating, but may be a binary diffraction grating composed of stepped diffraction gratings.
[0032]
As described above, in the first embodiment, it is possible to reduce the tolerance by reducing the magnification in the sub-scanning direction of the scanning optical unit, and to provide a high-definition printing and a compact scanning optical device that is resistant to environmental fluctuations (temperature changes). Is possible.
[0033]
[Embodiment 2]
FIG. 8 is a sectional view (sub-scanning sectional view) of the main part in the sub-scanning direction according to the second embodiment. The main scanning direction is the same as that of the first embodiment.
[0034]
Reference numeral 6 denotes scanning optical means comprising fθ lens systems 6a and 6b having fθ characteristics. The first optical element 6a is an anamorphic lens having different convex powers in the main scanning direction and the sub-scanning direction, and both the first surface and the second surface are constituted by toric surfaces. In the main scanning direction, the second surface is aspherical. In the second optical element 6b, the first surface is a flat surface, the second surface is a cylindrical surface having a convex power in the sub-scanning direction, and is convex on the cylindrical surface C in both the main scanning direction and the sub-scanning direction. The diffractive optical element is formed to have the following power. These fθ lens systems 6a and 6b are both molded of a plastic material. Further, this scanning optical means has a tilt correction function by providing a conjugate relationship between the deflection surface 5a and the scanned surface 7 in the sub-scanning direction.
[0035]
FIG. 9 is a table showing a specific example of the optical arrangement of the second embodiment.
[0036]
FIG. 10 is a table showing the aspherical coefficient of the refractive system and the phase coefficient of the diffraction system of the scanning optical apparatus according to the second embodiment.
[0037]
In Embodiment 2, the convex surface of the second optical element in the sub-scanning direction is strengthened by making the second surface of the second optical element a cylindrical surface having a convex power in the sub-scanning direction. The magnification in the sub-scanning direction is reduced. Since the horizontal magnification β in the sub-scanning direction of the scanning optical means 6 is | β | = 2.78, the conditional expression (1) is satisfied. If the lower limit of conditional expression (1) is exceeded, the optical element of the scanning optical means 6 approaches the surface to be scanned, and the entire optical element and the scanning optical apparatus may not be enlarged. If the upper limit of conditional expression (1) is exceeded, the magnification in the sub-scanning direction of the scanning optical means 6 becomes high and the tolerance becomes strict, which is not good.
[0038]
In the second embodiment, the power of the diffraction system is set to a desired convex power in the sub-scanning direction, and the entire scanning optical apparatus has a temperature compensation effect.
[0039]
FIG. 11 shows field curvature in the sub-scanning direction before and after the temperature increase in the second embodiment. In the figure, the dotted line represents the field curvature at room temperature, and the solid line represents the field curvature when the temperature is raised by 25 ° C. Here, the refractive index n * of the optical elements 26a and 26b when the temperature is raised by 25 ° C. and the wavelength λ * of the light source means 1 are respectively
n * = 1.5221
λ * = 786.4 nm
And It can be seen from the figure that the focus movement is corrected well.
[0040]
The diffraction grating shape in the second embodiment is a sawtooth blazed grating, but may be a binary diffraction grating composed of stepped diffraction gratings.
[0041]
As described above, in the second embodiment, it is possible to reduce tolerance by reducing the magnification in the sub-scanning direction of the scanning optical unit, and to provide a high-definition printing and a compact scanning optical device that is resistant to environmental fluctuations (temperature changes). It becomes possible.
[0042]
[Embodiment 3]
FIG. 12 is a sectional view (sub-scanning sectional view) of the main part in the sub-scanning direction of the third embodiment. The main scanning direction is the same as that of the first embodiment.
[0043]
Reference numeral 6 denotes scanning optical means comprising fθ lens systems 6a and 6b having fθ characteristics. The first optical element 6a is an anamorphic lens having different convex powers in the main scanning direction and the sub-scanning direction, and both the first surface and the second surface are constituted by toric surfaces. Further, the second surface has an aspherical shape in the main scanning direction, and in the sub-scanning direction, the radius of curvature continuously changes as the distance from the optical axis increases. The second optical element 6b is a cylindrical surface whose first surface has a convex power in the sub-scanning direction, and the radius of curvature continuously changes as the distance from the optical axis increases. On the second surface, a diffractive optical element is formed on the plane C so as to have a convex power in both the main scanning direction and the sub-scanning direction. These fθ lens systems 6a and 6b are both molded of a plastic material. Further, this scanning optical means has a tilt correction function by providing a conjugate relationship between the deflection surface 5a and the scanned surface 7 in the sub-scanning direction.
[0044]
FIG. 13 is a table showing a specific example of the optical arrangement of the third embodiment.
[0045]
FIG. 14 is a table showing the aspherical coefficient of the refractive system and the phase coefficient of the diffraction system of the scanning optical apparatus according to the third embodiment.
[0046]
In Embodiment 3, the convex surface of the second optical element in the sub-scanning direction is strengthened by making the first surface of the second optical element a cylindrical surface having a convex power in the sub-scanning direction. The magnification in the sub-scanning direction is reduced. Since the horizontal magnification β in the sub-scanning direction of the scanning optical means 6 is | β | = 2.54, the conditional expression (1) is satisfied. If the lower limit of conditional expression (1) is exceeded, the optical element of the scanning optical means 6 approaches the surface to be scanned, and the entire optical element and the scanning optical apparatus may not be enlarged. If the upper limit of conditional expression (1) is exceeded, the magnification in the sub-scanning direction of the scanning optical means 6 becomes high and the tolerance becomes strict, which is not good.
[0047]
In the third embodiment, the power of the diffraction system is set to a desired convex power in the sub-scanning direction, and the entire scanning optical apparatus has a temperature compensation effect.
[0048]
FIG. 15 shows field curvature in the sub-scanning direction before and after the temperature increase in the third embodiment. In the figure, the dotted line represents the field curvature at room temperature, and the solid line represents the field curvature when the temperature is raised by 25 ° C. Here, the refractive index n * of the optical elements 6a and 6b when the temperature is raised by 25 ° C. and the wavelength λ * of the light source means 1 are respectively
n * = 1.5221
λ * = 786.4 nm
And It can be seen from the figure that the focus movement is corrected well.
[0049]
In Embodiment 3, the curvature radius in the sub-scanning direction of the first optical element second surface and the second optical element first surface is continuously changed as the distance from the optical axis increases. This makes it possible to correct the magnification in the sub-scanning direction to be almost constant at the entire image height, and to suppress the error of the scanning line interval that occurs when scanning a plurality of light beams to a good level.
[0050]
FIG. 16 is a graph showing the sub-scanning direction magnification ratio of each image height in the third embodiment. The horizontal axis represents the image height, and the vertical axis represents the magnification ratio error of each image height with respect to the magnification on the axis. From the figure, it can be seen that the magnification ratio error in the sub-scanning direction is corrected to 1% or less over the entire image height.
[0051]
The diffraction grating shape in the third embodiment is a sawtooth blazed grating, but may be a binary diffraction grating composed of stepped diffraction gratings.
[0052]
As described above, the magnification in the sub-scanning direction of the scanning optical unit is reduced in the third embodiment. In the second optical element having a diffractive surface, the coma aberration in the main scanning direction can be reduced by making the first surface a toric surface or the like, or the diffractive power can be increased by making the second surface spherical or toric. A desired convex power is set in the sub-scanning direction.
[0053]
【The invention's effect】
According to the present invention described above, at least one light beam emitted from the light source is deflected by the deflecting unit, and the light beam deflected by the deflecting unit is imaged in a spot shape on the surface to be scanned by the scanning optical unit, In the scanning optical device for optically scanning the surface to be scanned, the scanning optical means includes a first optical element composed of an anamorphic lens having different powers in both the main scanning direction and the sub-scanning direction, and a second optical element having a diffractive surface. The second optical element is composed of two sheets, and the second optical element has power by refraction in at least one surface sub-scanning direction, thereby reducing the sub-scanning direction magnification of the scanning optical means, high-definition printing, and environmental fluctuations (temperature It is possible to provide a compact scanning optical device that is resistant to (change) and that can handle scanning of a plurality of light beams.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view in the main scanning direction of the scanning optical device according to the first embodiment of the present invention. FIG. 2 is a cross-sectional view in the sub-scanning direction of the scanning optical device in the first embodiment. 1 represents the shape of the optical element. FIG. 4 represents the shape of the second optical element of the scanning optical apparatus of the first embodiment. FIG. 5 represents a specific example of the scanning optical apparatus of the first embodiment. FIG. 7 is a graph showing the field curvature before and after the temperature rise of the scanning optical device of the first embodiment. FIG. 8 is a graph showing the aspherical coefficient of the refractive system and the phase coefficient of the diffraction system of the scanning optical device of the first embodiment. FIG. 9 is a cross-sectional view in the sub-scanning direction of the scanning optical device according to the second embodiment. FIG. 9 is a table showing a specific example of the scanning optical device according to the second embodiment. FIG. 11 is a graph showing the field curvature before and after the temperature rise of the scanning optical apparatus of the second embodiment. 12 is a cross-sectional view in the sub-scanning direction of the scanning optical device of Embodiment 3. FIG. 13 is a table showing a specific example of the scanning optical device of Embodiment 3. FIG. 14 is a refractive aspherical surface of the scanning optical device of Embodiment 3. FIG. 15 is a graph showing the curvature of field before and after the temperature rise of the scanning optical device of the third embodiment. FIG. 16 is a sub-scan at each image height of the scanning optical device of the third embodiment. FIG. 17 is a cross-sectional view in the main scanning direction of a conventional scanning optical device. FIG. 18 is a cross-sectional view in the main scanning direction of a conventional scanning optical device having a refracting portion and a diffracting portion. FIG. 20 is a cross-sectional view in the sub-scanning direction of a conventional scanning optical device provided with a diffractive portion and a diffraction portion. Aspherical coefficient of refraction system and position of diffraction system of conventional scanning optical device with diffraction section FIG. 22 is a graph showing the curvature of field before and after the temperature rise of a conventional scanning optical apparatus having a refracting part and a diffractive part. Graph showing the magnification ratio in the sub-scanning direction at each image height of the device
1,11 Light source means (semiconductor laser)
2,12 Collimator lens 3,13 Aperture stop 4,14 Cylindrical lens 5,15 Deflection means (rotating polygon mirror)
5a, 15a Deflection surfaces 6, 16 Scanning optical means 6a First optical element 6b Second optical elements C, D Diffraction grating surfaces 7, 18 Surface to be scanned (photosensitive drum surface)

Claims (2)

半導体レーザと、前記半導体レーザより射出された光束を偏向走査する偏向手段と、前記偏向手段の偏向面にて偏向走査された光束を被走査面上に結像させる結像光学手段と、を有する走査光学装置であって、
前記結像光学手段は、前記半導体レーザ側から順に、主走査方向及び副走査方向ともに凸の屈折パワーからなるプラスチック製の第1の結像光学素子と、プラスチック製の第2の結像光学素子とから成り、
前記第2の結像光学素子は、入射面が副走査方向に凸の屈折パワーを備え、出射面が主走査方向及び副走査方向ともに凸の回折パワーを備えた光学素子であり、
前記第1の結像光学素子の出射面及び前記第2の結像光学素子の入射面の副走査方向の曲率半径主走査方向において前記結像光学手段の光軸から離れるに従い連続的に変化させ、かつ、前記第2の結像光学素子の出射面の副走査方向の回折パワー主走査方向において前記結像光学手段の光軸から離れるに従い連続的に変化させることで、前記結像光学手段の軸上の副走査方向の横倍率βに対する各像高の副走査方向の横倍率誤差が全像高にわたり1%以下となっており、かつ、
前記結像光学手段の軸上の副走査方向の横倍率βは、
1<|β|<3
を満足することを特徴とする走査光学装置。
A semiconductor laser; deflection means for deflecting and scanning a light beam emitted from the semiconductor laser; and imaging optical means for forming an image of the light beam deflected and scanned by the deflection surface of the deflection means on the surface to be scanned. A scanning optical device,
The imaging optical means includes, in order from the semiconductor laser side, a first imaging optical element made of plastic having a refractive power convex in both the main scanning direction and the sub-scanning direction, and a second imaging optical element made of plastic And
The second imaging optical element is an optical element in which the incident surface has a refractive power convex in the sub-scanning direction, and the output surface has a diffraction power convex in both the main scanning direction and the sub-scanning direction,
The curvature radii in the sub-scanning direction of the exit surface of the first imaging optical element and the incident surface of the second imaging optical element continuously change in the main scanning direction as the distance from the optical axis of the imaging optical means increases. is, and the sub-scanning direction of the diffraction power of the exit surface of the second imaging optical element by continuously changed in accordance with distance from the optical axis of the imaging optical means in the main scanning direction, the imaging optical The lateral magnification error in the sub-scanning direction of each image height with respect to the lateral magnification β in the sub-scanning direction on the axis of the means is 1% or less over the entire image height, and
The lateral magnification β in the sub-scanning direction on the axis of the imaging optical means is
1 <| β | <3
A scanning optical device characterized by satisfying the above.
請求項1に記載の走査光学装置を有することを特徴とするレーザビームプリンタ。  A laser beam printer comprising the scanning optical device according to claim 1.
JP32560999A 1999-11-16 1999-11-16 Scanning optical device Expired - Fee Related JP4652506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32560999A JP4652506B2 (en) 1999-11-16 1999-11-16 Scanning optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32560999A JP4652506B2 (en) 1999-11-16 1999-11-16 Scanning optical device

Publications (3)

Publication Number Publication Date
JP2001142017A JP2001142017A (en) 2001-05-25
JP2001142017A5 JP2001142017A5 (en) 2006-12-28
JP4652506B2 true JP4652506B2 (en) 2011-03-16

Family

ID=18178788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32560999A Expired - Fee Related JP4652506B2 (en) 1999-11-16 1999-11-16 Scanning optical device

Country Status (1)

Country Link
JP (1) JP4652506B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04172314A (en) * 1990-11-05 1992-06-19 Nec Corp Lens ftheta
JPH04277715A (en) * 1991-03-05 1992-10-02 Asahi Optical Co Ltd Anamorphic optical system
JPH04328591A (en) * 1991-04-30 1992-11-17 Minolta Camera Co Ltd Laser printer
JPH0915520A (en) * 1995-06-29 1997-01-17 Canon Inc Optical device for optical scanning
JPH09179019A (en) * 1995-10-27 1997-07-11 Ricoh Co Ltd Scanning image-formation lens and optical scanner
JPH10186225A (en) * 1996-12-27 1998-07-14 Ricoh Co Ltd Scanning image-forming lens system
JPH10319317A (en) * 1997-05-19 1998-12-04 Ricoh Co Ltd Scanning and image forming lens system
JPH11119133A (en) * 1997-10-09 1999-04-30 Canon Inc Optically scanning optical system
JPH11223784A (en) * 1998-02-06 1999-08-17 Canon Inc Color picture forming device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04172314A (en) * 1990-11-05 1992-06-19 Nec Corp Lens ftheta
JPH04277715A (en) * 1991-03-05 1992-10-02 Asahi Optical Co Ltd Anamorphic optical system
JPH04328591A (en) * 1991-04-30 1992-11-17 Minolta Camera Co Ltd Laser printer
JPH0915520A (en) * 1995-06-29 1997-01-17 Canon Inc Optical device for optical scanning
JPH09179019A (en) * 1995-10-27 1997-07-11 Ricoh Co Ltd Scanning image-formation lens and optical scanner
JPH10186225A (en) * 1996-12-27 1998-07-14 Ricoh Co Ltd Scanning image-forming lens system
JPH10319317A (en) * 1997-05-19 1998-12-04 Ricoh Co Ltd Scanning and image forming lens system
JPH11119133A (en) * 1997-10-09 1999-04-30 Canon Inc Optically scanning optical system
JPH11223784A (en) * 1998-02-06 1999-08-17 Canon Inc Color picture forming device

Also Published As

Publication number Publication date
JP2001142017A (en) 2001-05-25

Similar Documents

Publication Publication Date Title
US6094286A (en) Scanning optical apparatus
EP0872754B1 (en) Scanning optical apparatus with a diffractive lens for compensating temperature dependent focus changes
US6133935A (en) Optical scanning apparatus
JP3466863B2 (en) Scanning optical device and image recording device using the same
US4818046A (en) Light beam scanning device
JP3397638B2 (en) Optical scanning optical system and image forming apparatus using the same
KR20020094917A (en) Light scanning device and image forming apparatus using the same
JP3559711B2 (en) Scanning optical device and multi-beam scanning optical device
JP4438025B2 (en) Scanning optical device
US5966232A (en) Scanning optical system
JP5269169B2 (en) Scanning optical device and laser beam printer having the same
JP2956169B2 (en) Scanning optical device
JP3576817B2 (en) Scanning optical device
JP3559710B2 (en) Diffractive optical element and scanning optical device using the same
JP4652506B2 (en) Scanning optical device
JP3554157B2 (en) Optical scanning optical system and laser beam printer
JP2000338435A (en) Scanning optical device and image forming device
JP2000131633A (en) Scanning optical device
JPH1144854A (en) Optical scanning optical device
JPH1138343A (en) Optical scanner
JP2000098283A (en) Optical scanning optical system and image forming device using the same
JPS6353512A (en) Scanning optical system for correcting surface inclination

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081001

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090324

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100525

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100818

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees