JPH10319317A - Scanning and image forming lens system - Google Patents

Scanning and image forming lens system

Info

Publication number
JPH10319317A
JPH10319317A JP12818597A JP12818597A JPH10319317A JP H10319317 A JPH10319317 A JP H10319317A JP 12818597 A JP12818597 A JP 12818597A JP 12818597 A JP12818597 A JP 12818597A JP H10319317 A JPH10319317 A JP H10319317A
Authority
JP
Japan
Prior art keywords
lens
scanned
scanning
lens system
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12818597A
Other languages
Japanese (ja)
Inventor
Koji Masuda
浩二 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP12818597A priority Critical patent/JPH10319317A/en
Publication of JPH10319317A publication Critical patent/JPH10319317A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To realize a scanning and image formation lens system constituted of two lenses which is stable with respect to parts tolerance fluctuation and assembling accuracy fluctuation. SOLUTION: This system is constituted by successively arranging first and second lenses 5A and 5B from an optical deflector 4 side to a surface 6 to be scanned side. As to a shape inside a deflecting surface, an incident side surface is convex on the optical deflector side, and an exit side surface is convex on the surface to be scanned side in terms of the lens 5A, and the incident surface side is concave on the optical deflector side, and the exit surface side is convex on the surface to be scanned side in terms of the lens 5B; both surfaces of the lens 5A are symmetrical to an optical axis, and both surfaces of the lens 5B inside the deflecting surface are non-circular shape; and when a distance on an optical axis from the exit side surface of the lens 5A to the incident side surface of the lens 5B is defined as D2 , and a focal distance with respect to the main scanning corresponding direction to an entire system is defined as (fm), the condition of 0.07<=D2 /fm<=0.30 is satisfied.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は光走査装置に用い
られる走査結像レンズ系に関する。
The present invention relates to a scanning imaging lens system used in an optical scanning device.

【0002】[0002]

【従来の技術】光走査装置において偏向光束を被走査面
上に光スポットとして集光させる走査結像レンズ系は、
光走査の等速性を担保するためfθ特性等の等速特性が
良好に補正され、光スポット径の像高による変動を抑え
るため像面湾曲が良好に補正される必要がある。また、
光走査装置の低コスト化やコンパクト化の要請に伴い、
レンズ構成枚数が少なく、低コストで実現できる走査結
像レンズ系が求められている。低コスト且つコンパクト
に実現できる走査結像レンズ系として「プラスチックに
よる単玉レンズ」も提案されているが、プラスチック単
玉レンズには、温・湿度の影響により光学性能が変化す
るという耐環境性の問題がある。
2. Description of the Related Art In an optical scanning apparatus, a scanning image forming lens system for converging a deflected light beam as a light spot on a surface to be scanned is provided by:
It is necessary to satisfactorily correct the constant velocity characteristics such as the fθ characteristic in order to secure the constant velocity of the optical scanning, and to satisfactorily correct the field curvature in order to suppress the fluctuation of the light spot diameter due to the image height. Also,
With the demand for lower cost and more compact optical scanning devices,
There is a need for a scanning imaging lens system that has a small number of lens components and can be realized at low cost. "Single lens made of plastic" has also been proposed as a scanning imaging lens system that can be realized at low cost and compact. However, plastic single lenses have environmental resistance, in which the optical performance changes due to the effects of temperature and humidity. There's a problem.

【0003】特開平6−34900号公報は、コンパク
トな走査結像レンズ系として、プラスチックレンズの2
枚構成のものを提案しているが、コンパクト化のために
2枚のレンズの間隔を狭め、被走査面側に配備される第
2レンズと被走査面との間隔が開いており「光学倍率上
の不利」がある。即ち、第2レンズと被走査面との間隔
が開くと、走査結像レンズ系の結像倍率が大きくなるた
め、光走査装置の光学配置に誤差があると、その影響が
顕著に現れて性能が「設計上の性能」から著しく劣化し
やすい。
Japanese Patent Laid-Open Publication No. Hei 6-34900 discloses a plastic scanning lens system as a compact scanning imaging lens system.
Although a lens configuration is proposed, the distance between the two lenses is reduced for compactness, and the distance between the second lens disposed on the surface to be scanned and the surface to be scanned is increased. There is a disadvantage on top. That is, when the distance between the second lens and the surface to be scanned is increased, the imaging magnification of the scanning image forming lens system is increased. However, it is easily deteriorated significantly from “design performance”.

【0004】また特開平7−174999号公報は、耐
環境性に優れ、性能的にも良好な走査結像レンズ系とし
て、ガラスレンズとプラスチックレンズとを組み合わせ
た2枚構成のものを提案しているが、2枚のレンズの間
隔が非常に狭く、被走査面側のレンズと被走査面との間
隔が大きくなる傾向にあり、光学倍率が大きくなるた
め、上記「光学倍率上の不利」がある。
Japanese Patent Application Laid-Open No. 7-174999 proposes a scanning image forming lens system which is excellent in environmental resistance and excellent in performance and has a two-lens structure combining a glass lens and a plastic lens. However, the distance between the two lenses is very narrow, the distance between the lens on the surface to be scanned and the surface to be scanned tends to be large, and the optical magnification increases. is there.

【0005】即ち、上記各公報に記載された走査結像レ
ンズ系を使用するに当っては、光学配置の公差を相当に
厳しく設定する必要があり、光走査装置の部品精度や組
立て精度が高くなる。
That is, in using the scanning image forming lens system described in each of the above publications, it is necessary to set the tolerance of the optical arrangement to be quite strict, and the component accuracy and the assembly accuracy of the optical scanning device are high. Become.

【0006】[0006]

【発明が解決しようとする課題】この発明は、コンパク
ト性に優れ、部品公差変動や組立て精度変動に対して安
定した、2枚構成の走査結像レンズ系の実現を課題とす
る。この発明はまた、部品公差変動や組立て精度変動に
対して安定しており、耐環境性にも優れた2枚構成の走
査結像レンズ系の実現を別の課題とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a two-element scanning imaging lens system which is excellent in compactness and is stable against fluctuations in component tolerances and fluctuations in assembly accuracy. Another object of the present invention is to realize a two-element scanning imaging lens system which is stable against component tolerance fluctuations and assembly accuracy fluctuations and has excellent environmental resistance.

【0007】[0007]

【課題を解決するための手段】この発明の走査結像レン
ズ系は「主走査対応方向(光源から被走査面に至る光路
を光軸に沿って直線的に展開した仮想的な光路上で、主
走査方向と平行的に対応する方向を言い、上記仮想的な
光路上で副走査方向に平行的に対応する方向を副走査対
応方向と言う)に長い線像に結像した光束を、線像の結
像位置近傍に偏向反射面を有する光偏向器により等角速
度的に偏向させ、偏向光束を走査結像レンズ系により被
走査面上に光スポットとして集光させて被走査面の等速
的な光走査を行う光走査装置における走査結像レンズ
系」であって、光偏向器側から被走査面側へ順次、第
1,第2レンズを配備してなる。
The scanning image forming lens system according to the present invention is arranged in a direction corresponding to the main scanning (on a virtual optical path in which the optical path from the light source to the surface to be scanned is linearly developed along the optical axis, A direction parallel to the main scanning direction, and a direction parallel to the sub-scanning direction on the virtual optical path is referred to as a sub-scanning direction). An optical deflector having a deflecting / reflecting surface in the vicinity of the image forming position deflects the light at a uniform angular velocity, and converges the deflected light beam as a light spot on the surface to be scanned by the scanning image forming lens system, so that the uniform velocity of the surface to be scanned is achieved. Scanning imaging lens system in an optical scanning device that performs effective optical scanning, in which first and second lenses are sequentially provided from the optical deflector side to the scanned surface side.

【0008】光偏向器により理想的に偏向された偏向光
束を想定し、この偏向光束の主光線が、偏向に伴い掃引
することにより形成する平面を「偏向面」と呼ぶ。ま
た、この偏向面に直交する平面の内で、走査結像レンズ
系の光軸に平行なものを「偏向直交面」と呼ぶ。なお、
偏向反射面近傍に「主走査対応方向に長い線像に結像す
る光束」は、主走査対応方向には、平行光束でもよい
し、弱い収束性もしくは弱い発散性の光束でもよい。
[0008] Assuming a deflected light beam ideally deflected by the optical deflector, a plane formed by sweeping the principal ray of the deflected light beam along with the deflection is called a "deflection surface". A plane orthogonal to the deflecting surface and parallel to the optical axis of the scanning and imaging lens system is called a “deflection orthogonal surface”. In addition,
The “light flux that forms a linear image long in the main scanning direction” in the vicinity of the deflecting reflection surface may be a parallel light flux or a weakly convergent or weakly divergent light flux in the main scanning corresponding direction.

【0009】この発明の走査結像レンズ系は、偏向面内
の形状が「第1レンズは、入射側面が光偏向器側に凸、
射出面側は被走査面側に凸」で、「第2レンズは、入射
面側が光偏向器側に凹、射出面側は被走査面側に凸」で
ある。即ち、偏向面内での断面形状は、第1レンズが
「両凸形状」で、第2レンズが「被走査面側に凸のメニ
スカス形状」である。そして、第1レンズは「両面とも
光軸対称で、一方の面が非球面形状」であり第2レンズ
は「少なくとも一方の面が、偏向面内の形状が非円弧形
状」である。
In the scanning imaging lens system according to the present invention, the shape of the deflecting surface of the first lens is such that the incident side surface is convex toward the optical deflector,
The exit surface side is convex to the scanned surface side ", and the" second lens is concave on the incident surface side on the optical deflector side and convex on the exit surface side on the scanned surface side ". That is, the cross-sectional shape within the deflection surface is such that the first lens is “biconvex” and the second lens is “meniscus convex on the surface to be scanned”. The first lens has “both surfaces are symmetrical with respect to the optical axis, and one surface has an aspherical shape”, and the second lens has “at least one surface has a non-arcuate shape in a deflection surface”.

【0010】第1レンズの射出側面から第2レンズの入
射側面に至る光軸上の距離:D2、全系の主走査対応方
向に関する焦点距離:fmは、条件: (1) 0.07≦D2/fm≦0.30 を満足する(請求項1)。
The distance on the optical axis from the exit side surface of the first lens to the entrance side surface of the second lens: D 2 , and the focal length fm in the main scanning corresponding direction of the entire system are as follows: (1) 0.07 ≦ D 2 /fm≦0.30 is satisfied (claim 1).

【0011】「非円弧形状」は、偏向面内における近軸
曲率半径:Rm、円錐定数:K、高次の係数:A,B,
C,D,..を用いて、光軸方向の座標:Xと光軸直交
方向(主走査対応方向)の座標:Yが、 X=Y2/[Rm+Rm√{1−(1+K)Y2/Rm2}] +AY4+BY6+CY8+DY10+... (6) で表される形状において、Rm ,K,A,B,C,
D,..を与えて特定される形状である。高次の係数:
A,B,C,D,.は「Yの冪乗が、順次2乗づつ大き
くなる」ように定められる。この「非円弧形状」をX軸
の回りに回転して得られる形状が上記「非球面形状」で
ある。
The "non-arc shape" is defined as a paraxial radius of curvature in the deflection surface: Rm, a conic constant: K, and higher-order coefficients: A, B,
C, D,. . The coordinates in the optical axis direction: X and the coordinates in the optical axis orthogonal direction (direction corresponding to main scanning): Y are expressed as follows: X = Y 2 / [Rm + Rm√ {1− (1 + K) Y 2 / Rm 2 }] + AY 4 + BY 6 + CY 8 + DY 10 +. . . In the shape represented by (6), Rm, K, A, B, C,
D,. . And the shape specified. Higher order coefficients:
A, B, C, D,. Is determined such that “the power of Y increases sequentially by the square”. The shape obtained by rotating this “non-circular shape” around the X axis is the “aspherical shape”.

【0012】上記請求項1記載の走査結像レンズ系にお
いて、上記距離:D2、偏向反射面から被走査面までの
距離:Lは、条件: (2) 0.05≦D2/L≦0.20 を満足することができる(請求項2)。
In the scanning imaging lens system according to the first aspect, the distance: D 2 and the distance from the deflecting reflection surface to the surface to be scanned: L are as follows: (2) 0.05 ≦ D 2 / L ≦ 0.20 can be satisfied (claim 2).

【0013】請求項1または2記載の走査結像レンズ系
において、第2レンズの射出側面から被走査面に至る光
軸上の距離:D4、前記焦点距離:fmは、条件: (3) 0.6≦D4/fm≦0.9 を満足することができる(請求項3)。
In the scanning imaging lens system according to claim 1 or 2, the distance on the optical axis from the exit side surface of the second lens to the surface to be scanned: D 4 , and the focal length: fm are as follows: 0.6 ≦ D 4 /fm≦0.9 can be satisfied (claim 3).

【0014】上記請求項2または3記載の走査結像レン
ズ系において、上記距離:D4,Lは、条件: (4) 0.4≦D4/L≦0.7 を満足することができる(請求項4)。
In the scanning imaging lens system according to the second or third aspect, the distance: D 4 , L can satisfy the following condition: (4) 0.4 ≦ D 4 /L≦0.7 (Claim 4).

【0015】請求項1または2または3または4記載の
走査結像レンズ系において「第2レンズの偏向直交面内
の形状(副走査対応方向の形状)」は、入射側面を「光
偏向器側に凹」、射出側面を「被走査面側に凸」、即ち
「被走査面側に凸のメニスカス形状」とすることができ
る(請求項5)。この場合において、第2レンズの「偏
向面内において非円弧形状を持つ面」はは「偏向直交面
内の曲率半径が、主走査対応方向に連続的に、且つ、偏
向面内の形状と相関して変化する」ようにできる(請求
項6)。
In the scanning imaging lens system according to claim 1, the "shape of the second lens in the plane orthogonal to the deflection (shape in the direction corresponding to the sub-scanning)" is such that the incident side face is "the optical deflector side" Concave, and the emission side surface may be "convex to the surface to be scanned", that is, "meniscus convex to the surface to be scanned" (claim 5). In this case, the “surface having a non-circular shape in the deflecting surface” of the second lens means that “the radius of curvature in the deflecting orthogonal surface is continuously correlated with the shape in the main scanning corresponding direction and in the deflecting surface. Change "(claim 6).

【0016】即ち、第2レンズは請求項1に関して述べ
たように、少なくとも一方の面が偏向面内において、非
円弧形状であるが、この非円弧形状を持つ面の、偏向直
交面内における曲率半径を、上記非円弧形状と関連して
主走査対応方向へ連続的に変化させるのである。この場
合、当該レンズ面の偏向直交面内における曲率中心を主
走査対応方向へ連ねた線は、一般に、当該レンズ面の偏
向面内の形状(非円弧形状)とは異なる曲線となる。上
記偏向直交面内の曲率半径は、偏向面内の形状と相関し
て、即ち、偏向面内における非円弧形状に応じて、副走
査対応方向の光学特性を良好にするように変化させるの
である。
That is, in the second lens, at least one surface has a non-circular shape in the deflecting surface, and the curvature of the surface having the non-circular shape in the deflecting orthogonal plane. The radius is continuously changed in the main scanning corresponding direction in relation to the non-arc shape. In this case, a line connecting the center of curvature in the plane orthogonal to the deflection of the lens surface in the main scanning corresponding direction generally has a curve different from the shape (non-circular shape) in the deflection surface of the lens surface. The radius of curvature in the plane orthogonal to the deflection is changed so as to improve the optical characteristics in the sub-scanning corresponding direction in correlation with the shape in the deflection plane, that is, according to the non-circular shape in the deflection plane. .

【0017】上記請求項6記載の走査結像レンズ系にお
いて、被走査面上における光線高さ:Hにおける主走査
対応方向に直交する方向の横倍率(光線高さ:Hに入射
する光束の副走査横倍率)をβs(H)とすると、この横
倍率は、有効画像領域内において、条件: (5) 0.95≦|βs(H)/βs(0)|≦1.05 を満足することができる(請求項7)。
In the scanning imaging lens system according to the sixth aspect, the lateral magnification (the light beam height: H of the light beam incident on the H) in the direction orthogonal to the main scanning direction in the light beam height: H on the surface to be scanned. Assuming that the scanning lateral magnification is βs (H), this lateral magnification satisfies the following condition in the effective image area: (5) 0.95 ≦ | βs (H) / βs (0) | ≦ 1.05 (Claim 7).

【0018】請求項6または7記載の走査結像レンズ系
においては、第1および第2レンズとも「プラスチック
で形成」することができ(請求項8)、あるいは、第1
レンズを「ガラス」で形成し、第2レンズを「プラスチ
ック」で形成することができる(請求項9)。
In the scanning imaging lens system according to the sixth or seventh aspect, both the first and second lenses can be "formed of plastic" (claim 8).
The lens can be formed of "glass" and the second lens can be formed of "plastic".

【0019】条件(1)は「光学倍率」に関係する、主
走査対応方向に関する走査結像レンズ系の焦点距離(偏
向面内における焦点距離):fm(光偏向器に入射する
光束が主走査対応方向に関して平行光束であるときは、
主走査対応方向の縦倍率は、fmに比例する)に対する
距離:D2の最適な範囲を規定する条件である。条件
(1)の上限を越えると、主走査方向の像面湾曲と等速
特性が共に劣化する。特に等速特性の劣化が顕著にな
る。下限を越えると、主走査対応方向の縦倍率が大きく
なり、部品公差や組立て公差が厳しくなる。また、第
1,第2レンズの1以上をプラスチックレンズで形成す
る場合(請求項8,9)、耐環境性も劣化する。
Condition (1) relates to the "optical magnification", and the focal length (focal length in the deflecting surface) of the scanning imaging lens system in the main scanning corresponding direction: fm (light beam incident on the optical deflector is main scanning). When the beam is parallel with respect to the corresponding direction,
Longitudinal magnification in the main scanning corresponding direction, distance to be proportional to fm): sets forth the optimum range of D 2. When the value exceeds the upper limit of the condition (1), both the curvature of field in the main scanning direction and the constant velocity characteristic deteriorate. Particularly, the deterioration of the constant velocity characteristic becomes remarkable. If the lower limit is exceeded, the vertical magnification in the direction corresponding to the main scanning increases, and the component tolerance and the assembly tolerance become severe. Further, when at least one of the first and second lenses is formed of a plastic lens (claims 8 and 9), environmental resistance is also deteriorated.

【0020】条件(2)は、光走査装置のサイズを主と
して決定する「偏向反射面から被走査面までの距離:
L」に対する上記距離:D2の最適な範囲を定めてい
る。条件(2)の上限を越えると、条件(1)の場合と
同様、主走査方向の像面湾曲と等速特性が共に劣化し、
特に等速特性の劣化が顕著になる。下限を越えると、第
1,第2レンズの間隔が小さくなって、光学倍率が大き
くなり、部品公差や組立て公差が厳しくなったり、耐環
境性が劣化したり、あるいは、偏向反射面から被走査面
までの距離が大きくなり、光走査装置が大型化する。
The condition (2) is mainly based on a condition that mainly determines the size of the optical scanning device.
The optimum range of the distance: D 2 to “L” is determined. When the value exceeds the upper limit of the condition (2), as in the case of the condition (1), both the field curvature in the main scanning direction and the constant velocity characteristic deteriorate,
Particularly, the deterioration of the constant velocity characteristic becomes remarkable. If the lower limit is exceeded, the distance between the first and second lenses is reduced, the optical magnification is increased, the component tolerance and the assembly tolerance are tightened, the environmental resistance is deteriorated, or scanning from the deflecting reflective surface is performed. The distance to the surface increases, and the size of the optical scanning device increases.

【0021】条件(3)は、焦点距離:fmに対する距
離:D4の最適範囲を定めている。条件(3)は、条件
(1)または条件(1)及び(2)を満足することが前
提であり、条件(3)を満足することにより、条件
(1)のみもしくは(1),(2)のみを満足する場合
よりも、より良好な性能を実現できる。
The condition (3) defines an optimum range of the distance: D 4 with respect to the focal length: fm. The condition (3) is premised on satisfying the condition (1) or the conditions (1) and (2). By satisfying the condition (3), only the condition (1) or (1), (2) is satisfied. ), Better performance can be realized than in the case where only ()) is satisfied.

【0022】条件(3)の上限を越えると、主走査方向
の像面湾曲と等速特性が共に劣化し、特に等速特性の劣
化が顕著になる。下限を越えると、主走査対応方向の縦
倍率が大きくなり、部品公差や組立て公差が厳しくなっ
たり、耐環境性が劣化したりする。
When the value exceeds the upper limit of the condition (3), both the curvature of field in the main scanning direction and the constant velocity characteristic deteriorate, and the deterioration of the constant velocity characteristic becomes particularly remarkable. If the lower limit is exceeded, the vertical magnification in the direction corresponding to the main scanning becomes large, so that component tolerances and assembly tolerances become strict and environmental resistance deteriorates.

【0023】条件(4)は、上記距離:Lに対する距
離:D4の最適範囲を定めている。条件(4)は、条件
(1),(2)、あるいは条件(1),(2),(3)
を満足することが前提であり、これらの条件と共に条件
(4)を満足することにより、性能をより向上させるこ
とができる。
[0023] Condition (4), said distance: distance to L: defining an optimum range of D 4. The condition (4) is the condition (1), (2) or the condition (1), (2), (3)
Is satisfied. By satisfying the condition (4) together with these conditions, the performance can be further improved.

【0024】条件(4)の上限を越えると、主走査方向
の像面湾曲と等速特性が共に劣化し、特に等速特性の劣
化が顕著になる。また下限を越えると、偏向反射面から
被走査面までの距離が大きくなり、光走査装置が大型化
する。
When the value exceeds the upper limit of the condition (4), both the curvature of field in the main scanning direction and the constant velocity characteristic deteriorate, and the deterioration of the constant velocity characteristic becomes particularly remarkable. If the lower limit is exceeded, the distance from the deflecting reflection surface to the surface to be scanned increases, and the size of the optical scanning device increases.

【0025】第2レンズの「偏向直交面内の形状」を、
請求項5記載のように「被走査面側に凸のメニスカス形
状」に定めることにより、副走査対応方向における後側
主点を被走査面側に近付けることができるので、縦倍率
を小さくでき(横倍率も小さくなる)、部品公差や組立
て公差に対する安定性を高め、耐環境性の向上も可能に
なる。
The “shape in the plane orthogonal to the deflection” of the second lens is
Since the rear principal point in the sub-scanning corresponding direction can be made closer to the surface to be scanned by defining the meniscus shape convex to the surface to be scanned as described in claim 5, the vertical magnification can be reduced. The lateral magnification is also reduced), the stability against component tolerance and assembly tolerance is improved, and the environmental resistance can be improved.

【0026】また、第2レンズのレンズ面形状を請求項
6記載のようにすることにより、光線高さによる副走査
方向の倍率変動を抑えて、副走査方向の光スポット径変
動を有効に軽減させることが可能となり、さらに、条件
(5)を満足することにより、光スポット径の変動を有
効に軽減できる。
Further, by making the lens surface shape of the second lens as described in claim 6, fluctuations in magnification in the sub-scanning direction due to the height of the light beam are suppressed, and fluctuations in the light spot diameter in the sub-scanning direction are effectively reduced. By satisfying the condition (5), the fluctuation of the light spot diameter can be effectively reduced.

【0027】請求項8記載の発明のように、第1,第2
レンズを共にプラスチックで形成することにより走査結
像レンズ系を安価に大量生産できる。また、請求項9記
載の発明のように、両面とも光軸対称である第1レンズ
をガラスで形成し、形状の複雑な第2レンズを成形の容
易なプラスチックとすることにより、走査結像レンズ系
を安価に製造でき、また、プラスチックで形成した場合
に環境変化の影響を受けやすい「両凸形状」の第1レン
ズをガラスレンズとすることにより、請求項8の発明の
場合よりも耐環境性を高めることができる。
[0027] According to the eighth aspect of the present invention, the first and second modes are provided.
By forming both lenses from plastic, a scanning imaging lens system can be mass-produced at low cost. Further, as in the ninth aspect of the present invention, the scanning imaging lens is formed by forming the first lens having optical axis symmetry on both surfaces from glass, and forming the second lens having a complicated shape from plastic which is easy to mold. The system can be manufactured at low cost, and the first lens of the “biconvex shape”, which is easily affected by environmental changes when formed of plastic, is a glass lens. Can be enhanced.

【0028】[0028]

【発明の実施の形態】図1は、この発明の走査結像レン
ズ系を用いた光走査装置の1例を説明図的に示してい
る。半導体レーザである光源1から放射された発散性の
レーザ光束はカップリングレンズ2によりカップリング
されて「平行光束」もしくは「弱い収束性の光束」また
は「弱い発散性の光束」になり、シリンダレンズ3によ
り、副走査対応方向(図面に直交する方向)に収束さ
れ、ポリゴンミラー4を用いる光偏向器の偏向反射面4
Aの近傍に「主走査対応方向に長い線像」として結像す
る。なお、シリンダレンズ3は凹シリンダ面鏡により代
替できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory diagram showing an example of an optical scanning device using a scanning image forming lens system according to the present invention. A divergent laser beam emitted from a light source 1 which is a semiconductor laser is coupled by a coupling lens 2 into a “parallel beam” or “weakly convergent beam” or “weakly divergent beam”, and a cylinder lens. 3, the light is converged in the sub-scanning corresponding direction (the direction perpendicular to the drawing), and the deflecting / reflecting surface 4 of the optical deflector using the polygon mirror 4
An image is formed in the vicinity of A as a “long line image in the main scanning corresponding direction”. The cylinder lens 3 can be replaced by a concave cylinder surface mirror.

【0029】偏向反射面4Aによる反射光束はポリゴン
ミラー4の矢印方向への等速回転に伴い等角速度的に偏
向され、偏向光束は「走査結像レンズ系」の第1レンズ
5A、第2レンズ5Bを透過し、走査結像レンズ系の作
用により被走査面6上に光スポットとして集光し、被走
査面6を等速的、即ち実質的に等速に光走査する。図に
おいて、符号A0,B0で示す点の間が「有効画像領域」
であり、その長さが有効書込幅:Wである。
The light beam reflected by the deflecting / reflecting surface 4A is deflected at a constant angular velocity with the rotation of the polygon mirror 4 at a constant speed in the direction of the arrow, and the deflected light beam is a first lens 5A and a second lens of a "scanning and imaging lens system". 5B, the light is condensed as a light spot on the scanned surface 6 by the action of the scanning image forming lens system, and the scanned surface 6 is optically scanned at a constant speed, that is, substantially at a constant speed. In the figure, the area between points indicated by reference signs A 0 and B 0 is an “effective image area”.
And its length is the effective writing width: W.

【0030】走査結像レンズ系は、光偏向器側から被走
査面6側へ順次、第1,第2レンズ5A,5Bを配備し
てなり、「偏向面内の形状」は、図1に示すように、第
1レンズ5Aでは「入射側面が光偏向器側に凸、射出面
側は被走査面6側に凸」であり、第2レンズ5Bでは
「入射面側が光偏向器側に凹、射出面側は被走査面6側
に凸」である。
The scanning image forming lens system is provided with first and second lenses 5A and 5B in order from the optical deflector side to the surface 6 to be scanned. The "shape in the deflecting surface" is shown in FIG. As shown, in the first lens 5A, the “incident side surface is convex toward the optical deflector side, and the exit surface side is convex toward the scanned surface 6 side”, and in the second lens 5B, “the incident surface side is concave toward the optical deflector side”. , The exit surface side is convex to the scanned surface 6 side. "

【0031】第1レンズ5は両面とも「光軸対称」であ
って、そのうちの一方は前述の非球面形状である。従っ
て第1レンズ5は「両凸レンズ」である。第2レンズ5
Bは、少なくとも一方の面が、偏向面(図1に表された
面)内で「非円弧形状」である。
The first lens 5 has "optical axis symmetry" on both surfaces, and one of them has the above-mentioned aspherical shape. Therefore, the first lens 5 is a “biconvex lens”. Second lens 5
In B, at least one surface has a “non-arc shape” within the deflection surface (the surface shown in FIG. 1).

【0032】[0032]

【実施例】以下、具体的な実施例を挙げる。EXAMPLES Specific examples will be described below.

【0033】各実施例は、何れも以下の条件を満たす。 有効書込幅:W:216mm、半画角:44度、使用波
長(光源の発光波長):780nm。光源からの光束は、
カップリングレンズにより「平行光束」にカップリング
され、光偏向器に入射する光束は「主走査対応方向にお
いて平行光束」であり、走査結像レンズ系の「等速特
性」は周知の「fθ特性」である。
Each embodiment satisfies the following conditions. Effective writing width: W: 216 mm, half angle of view: 44 degrees, working wavelength (light emission wavelength of light source): 780 nm. The luminous flux from the light source is
The light beam that is coupled into the “parallel light beam” by the coupling lens and enters the optical deflector is “parallel light beam in the main scanning corresponding direction”, and the “constant velocity characteristic” of the scanning imaging lens system is a known “fθ characteristic”. ".

【0034】以下において、図1に示すように、光偏向
器側から数えて第i番目のレンズ面の偏向面内における
曲率半径(非円弧形状もしくは非球面形状においては近
軸曲率半径)をRmi(i=1〜4)、光軸を含む偏向直交
面内における曲率半径をRsi(i=1〜4)、第i番目の
レンズ面と第i+1番目のレンズ面の面間隔をDi(i=
1〜3)、光偏向器側から数えて第j番目のレンズの、
上記使用波長に対する屈折率をNj(J=1,2)とし、
偏向反射面から第1レンズの入射側面に至る光軸上の距
離をD0(i=0)、第2レンズの射出側レンズ面から被
走査面に至る光軸上の距離をD4(i=4)とする。
In the following, as shown in FIG. 1, the radius of curvature (the paraxial radius of curvature in a non-circular or aspherical shape) in the deflection surface of the i-th lens surface counted from the optical deflector is Rm. i (i = 1 to 4), the radius of curvature in the plane orthogonal to the deflection including the optical axis is Rs i (i = 1 to 4), and the surface distance between the i-th lens surface and the (i + 1) -th lens surface is Di. (i =
1-3), the j-th lens counted from the optical deflector side,
Let N j (J = 1, 2) be the refractive index for the above used wavelength,
The distance on the optical axis from the deflecting reflection surface to the incident side surface of the first lens is D 0 (i = 0), and the distance on the optical axis from the exit lens surface of the second lens to the surface to be scanned is D 4 (i = 4).

【0035】なお、非円弧形状・非球面形状(前記
(6)式における近軸曲率半径:R、円錐定数:K、高
次の非球面係数:A,B,C,..を与えて形状を特定
する)や、偏向直交面内の曲率半径の主走査方向の変化
を表す数値においてEとそれに続く数値は「べき乗」を
意味し、例えば「E−9」は「10の9乗」を意味し、
この数値がその直前の数値にかかるのである。
The aspherical shape and aspherical shape (the paraxial radius of curvature: R, the conic constant: K, and the higher order aspherical coefficients: A, B, C,. And a numerical value representing the change in the radius of curvature in the main scanning direction in the plane perpendicular to the deflection direction, E and the numerical value following it mean “power”, and “E-9” means “10 9”, for example. Means
This number is over the previous number.

【0036】最初に挙げる実施例1は、請求項1〜7,
9記載の走査結像レンズ系の具体的な実施例である。な
お、曲率半径・面間隔の単位は「mm」である。
The first embodiment, which is mentioned first, is described in claims 1 to 7,
9 is a specific embodiment of the scanning imaging lens system described in No. 9. The unit of the radius of curvature / surface interval is “mm”.

【0037】 実施例1 i Rmi Rsii j Nj 0 47.273 1 583.174 583.174 25.000 1 1.511 2 −97.266 −97.266 15.265 3 −3440.264 −59.603 6.000 2 1.524 4 −432.139 −21.486 124.537 。[0037] Example 1 i Rm i Rs i D i j N j 0 47.273 1 583.174 583.174 25.000 1 1.511 2 -97.266 -97.266 15.265 3 -3440. 264-59.603 6.000 21.524 4-432.139-21.486 124.537.

【0038】レンズ面形状 「第1レンズの入射側のレンズ面形状」 光偏向器側に凸の非球面形状 近軸曲率半径:R=Rm1=Rs1=583.174, K=−24.9262,A= 4.8589E−9, B= 3.6254E−12,C=−1.0225E−
15 「第1レンズの射出側のレンズ面形状」 被走査面側に凸の球面 曲率半径:R=Rm1=Rs1=−97.266 「第2レンズの入射側のレンズ面形状」 偏向面内の形状:光偏向器側に凹の非円弧形状 近軸曲率半径:R=Rm3=−3440.264, K= 76.7762,A=−1.5236E−8, B=−5.6835E−12,C= 2.8183E−
17 偏向直交面内の形状:主走査対応方向において光軸から
距離:yの位置における偏向直交面内の曲率半径:Rs
(y)が、多項式: RS(y)=RS0+ay2+by4+cy6+dy8+ey10+ +fy12+gy14+... (7) において、RS0,a,b,...を与えて特定される。
Lens surface shape “Lens surface shape on the incident side of the first lens” Aspherical shape convex on the optical deflector side Paraxial radius of curvature: R = Rm 1 = Rs 1 = 583.174, K = −24. 9262, A = 4.8589E-9, B = 3.6254E-12, C = -1.0225E-
15 "first lens on the exit side of the lens surface shape" of the convex surface to be scanned side spherical curvature radius: R = Rm 1 = Rs 1 = -97.266 "lens surface shape of the incident side of the second lens" deflecting surface Inner shape: Non-arc shape concave on the optical deflector side Paraxial radius of curvature: R = Rm 3 = −3400.264, K = 76.7762, A = −1.5236E−8, B = −5.6835E -12, C = 2.8183E-
17 Shape in the plane orthogonal to deflection: radius of curvature in the plane orthogonal to deflection at the position of distance y from the optical axis in the main scanning direction: Rs
(y) is a polynomial: R S (y) = R S0 + ay 2 + by 4 + cy 6 + dy 8 + ey 10 + + fy 12 + gy 14 +. . . In (7), R S0 , a, b,. . . Given.

【0039】RS0=−59.603(光軸上の曲率半
径), a=−8.8685E−3,b= 2.0121E−
5, c=−2.1373E−8,d= 8.4173E−1
2, e=−1.2065E−15
R S0 = −59.603 (radius of curvature on the optical axis), a = −8.8685E−3, b = 2.0121E−
5, c = -2.1373E-8, d = 8.4173E-1
2, e = -1.2065E-15
.

【0040】「第2レンズの射出側面のレンズ面形状」 偏向面内の形状:被走査面側に凸の非円弧形状 近軸曲率半径:R=Rm4=−432.139, K=−66.5580,A=−3.8648E−8, B= 6.3101E−12,C=−6.7028E−
16 偏向直交面内の形状:偏向直交面内の曲率半径の主走査
方向における変化は、光軸を境として、光走査開始側を
(+)、終了側を(−)とするとき、 (+)側(y>0)の形状が、 RS(y)=RS0+a(+)y2+b(+)y4+c(+)y6+d(+)y8+e(+)y10+..(7+) (−)側(y<0)の形状が、 RS(y)=RS0+a(-)y2+b(-)y4+c(-)y6+d(-)y8+e(-)y10+..(7−) で与えられる。
"Lens surface shape of the exit side surface of the second lens" Shape in the deflecting surface: non-circular shape convex to the scan surface side Paraxial radius of curvature: R = Rm 4 = -432.139, K = -66 .5580, A = -3.8648E-8, B = 6.3101E-12, C = -6.7028E-
16. Shape in the plane orthogonal to the deflection: The change in the radius of curvature in the plane orthogonal to the deflection in the main scanning direction is represented by (+) on the optical scanning start side and (-) on the end side with respect to the optical axis. ) the shape of the side (y> 0), R S (y) = R S0 + a (+) y 2 + b (+) y 4 + c (+) y 6 + d (+) y 8 + e (+) y 10 + .. (7+) The shape on the (−) side (y <0) is R S (y) = R S0 + a (−) y 2 + b (−) y 4 + c (−) y 6 + d (−) y 8 + E (−) y 10 + .. (7−).

【0041】RS0=−21.486(光軸上の曲率半
径), a(+)=−1.1476E−3,b(+)= 7.8192
E−7, c(+)=−8.1181E−10,d(+)= 2.717
4E−13, e(+)=−3.6322E−17 a(-)=−1.3372E−3,b(-)= 1.2765
E−6, c(-)=−1.2961E−9,d(-)= 4.5396
E−13, e(-)=−5.9599E−17
R S0 = −21.486 (radius of curvature on the optical axis), a (+) = − 1.1476E−3, b (+) = 7.8192
E-7, c (+) =-8.1181E-10, d (+) = 2.717
4E-13, e (+) =-3.6322E-17 a (-) =-1.3372E-3, b (-) = 1.2765
E-6, c (-) =-1.2961E-9, d (-) = 4.5396
E-13, e (-) =-5.9599E-17
.

【0042】fm=143.4,L=218.075 条件式(1)〜(4)の各パラメータの値 D2/fm=0.106,D2/L=0.070,D4/f
m=0.868, D4/L=0.571
[0042] fm = 143.4, L = 218.075 conditional expressions (1) to (4) the value D 2 /fm=0.106,D 2 /L=0.070,D 4 / f of each parameter
m = 0.868, D 4 /L=0.571
.

【0043】条件式(5)における|βs(H)/βs(0)
|のHに対する値 H -108 -81 -40 0 40 81 108 |βs(H)/βs(0)| 0.96 0.98 0.99 1.0 0.99 0.97 0.95 図2に実施例1に関する像面湾曲(破線は主走査方向、
実線は副走査方向)と等速特性であるfθ特性を示す。
像面湾曲は主・副走査方向とも極めて良好であり、fθ
特性も極めて良好である。
| Βs (H) / βs (0) in conditional expression (5)
| To H H -108 -81 -40 0 40 81 108 | βs (H) / βs (0) | 0.96 0.98 0.99 1.0 0.99 0.97 0.95 FIG. 2 shows the field curvature relating to the first embodiment (the broken line indicates the main scanning direction). ,
The solid line indicates the fθ characteristic which is a constant velocity characteristic in the sub-scanning direction).
The curvature of field is extremely good in the main and sub-scanning directions, and fθ
The characteristics are also very good.

【0044】以下に挙げる実施例2〜実施例12におい
ては偏向面内に於ける形状のみを与える。副走査対応方
向に関する形状は、実施例1の場合と同様に設定するこ
とが可能である。
In the following Examples 2 to 12, only the shape within the deflection plane is given. The shape in the sub-scanning corresponding direction can be set in the same manner as in the first embodiment.

【0045】 実施例2 i Rmii j Nj 0 43.080 1 552.950 20.000 1 1.511 2 −93.574 20.574 3 −576.202 6.000 2 1.524 4 −265.745 116.088 。[0045] Example 2 i Rm i D i j N j 0 43.080 1 552.950 20.000 1 1.511 2 -93.574 20.574 3 -576.202 6.000 2 1.524 4 -265.745 116.088.

【0046】偏向面内のレンズ面形状 「第1レンズの入射側のレンズ面形状」 光偏向器側に凸の非円弧形状 近軸曲率半径:Rm1=552.950, K=−82.3619,A=−9.9832E−10, B= 7.2173E−12,C=−1.1812E−
15 「第1レンズの射出側のレンズ面形状」 被走査面側に凸の円弧形状 曲率半径:Rm2=−93.574 「第2レンズの入射側面のレンズ面形状」 光偏向器側に凹の円弧形状 曲率半径:Rm3=−576.202 「第2レンズの射出側面のレンズ面形状」 被走査面側に凸の非円弧形状 近軸曲率半径:Rm4=−265.745, K=−27.7855,A=−1.0115E−7, B= 1.8872E−11,C=−9.5083E−
16 。
Lens surface shape in the deflection surface "Lens surface shape on the incident side of the first lens" Non-arc shape convex on the optical deflector side Paraxial radius of curvature: Rm 1 = 552.950, K = -82.3618 , A = -9.9832E-10, B = 7.2173E-12, C = -1.1812E-
15 “Lens surface shape on the exit side of the first lens” Arc shape convex on the scanned surface side Curvature radius: Rm 2 = −93.574 “Lens surface shape on the entrance side surface of the second lens” Concave on the optical deflector side Radius of curvature: Rm 3 = −576.202 “Lens surface shape of the exit side surface of the second lens” Non-arc shape convex to the scanned surface side Paraxial radius of curvature: Rm 4 = −265.745, K = −27.7855, A = −1.0115E−7, B = 1.8872E−11, C = −9.5083E−
16.

【0047】fm=139.1,L=205.742 条件式(1)〜(4)の各パラメータの値 D2/fm=0.148,D2/L=0.100,D4/f
m=0.834, D4/L=0.564
[0047] fm = 139.1, L = 205.742 conditional expressions (1) to (4) the value D 2 /fm=0.148,D 2 /L=0.100,D 4 / f of each parameter
m = 0.834, D 4 /L=0.564
.

【0048】図3に、実施例2に関する主走査方向の像
面湾曲とfθ特性を示す。主走査方向の像面湾曲、fθ
特性とも極めて良好である。
FIG. 3 shows the field curvature in the main scanning direction and the fθ characteristic according to the second embodiment. Field curvature in the main scanning direction, fθ
The characteristics are also very good.

【0049】 実施例3 i Rmii j Nj 0 43.830 1 1358.299 20.000 1 1.511 2 -86.003 14.537 3 -1966.471 6.000 2 1.524 4 -429.779 123.308 。[0049] Example 3 i Rm i D i j N j 0 43.830 1 1358.299 20.000 1 1.511 2 -86.003 14.537 3 -1966.471 6.000 2 1.524 4 -429.779 123.308.

【0050】偏向面内のレンズ面形状 「第1レンズの入射側のレンズ面形状」 光偏向器側に凸の非円弧形状 近軸曲率半径:Rm1=1358.299, K=−1633.42,A=−9.9970E−9, B=−3.9935E−13,C=−6.5790E−
16 「第1レンズの射出側のレンズ面形状」 被走査面側に凸の円弧形状 曲率半径:Rm2=−86.003 「第2レンズの入射側面のレンズ面形状」 光偏向器側に凹の円弧形状 曲率半径:Rm3=−1966.471 「第2レンズの射出側面のレンズ面形状」 被走査面側に凸の非円弧形状 近軸曲率半径:Rm4=−429.779, K=−4.0528,A= 2.4888E−8, B= 9.5216E−13,C=−3.1562E−
16 。
Lens surface shape in the deflection surface "Lens surface shape on the entrance side of the first lens" Non-arc shape convex on the optical deflector side Paraxial radius of curvature: Rm 1 = 1358.299, K = -1633.42 , A = -9.9970E-9, B = -3.9935E-13, C = -6.5790E-
16 "Lens surface shape on the exit side of the first lens" Arc shape convex on the scanned surface side Curvature radius: Rm 2 = -86.003 "Lens surface shape on the incident side surface of the second lens" Concave on the optical deflector side Radius of curvature: Rm 3 = −1966.471 “Lens surface shape of the exit side surface of the second lens” Non-arc shape convex to the scanned surface side Paraxial radius of curvature: Rm 4 = −429.779, K = -4.0528, A = 2.4888E-8, B = 9.5216E-13, C = -3.1562E-
16.

【0051】fm=140.4,L=207.675 条件式(1)〜(4)の各パラメータの値 D2/fm=0.104,D2/L=0.070,D4/f
m=0.878, D4/L=0.594
[0051] fm = 140.4, L = 207.675 conditional expressions (1) to (4) the value D 2 /fm=0.104,D 2 /L=0.070,D 4 / f of each parameter
m = 0.778, D 4 /L=0.594
.

【0052】図4に、実施例3に関する主走査方向の像
面湾曲とfθ特性を示す。主走査方向の像面湾曲、fθ
特性とも極めて良好である。
FIG. 4 shows the field curvature in the main scanning direction and the fθ characteristic according to the third embodiment. Field curvature in the main scanning direction, fθ
The characteristics are also very good.

【0053】 実施例4 i Rmii j Nj 0 42.673 1 518.258 20.000 1 1.511 2 −91.273 28.752 3 −561.567 6.000 2 1.524 4 −286.559 107.947 。[0053] Example 4 i Rm i D i j N j 0 42.673 1 518.258 20.000 1 1.511 2 -91.273 28.752 3 -561.567 6.000 2 1.524 4 -286.559 107.947.

【0054】偏向面内のレンズ面形状 「第1レンズの入射側のレンズ面形状」 光偏向器側に凸の非円弧形状 近軸曲率半径:Rm1=518.258, K=−180.673,A= 4.2655E−9, B= 8.9702E−12,C=−1.8217E−
15 「第1レンズの射出側のレンズ面形状」 被走査面側に凸の円弧形状 曲率半径:Rm2=−91.273 「第2レンズの入射側面のレンズ面形状」 光偏向器側に凹の円弧形状 曲率半径:Rm3=−561.567 「第2レンズの射出側面のレンズ面形状」 被走査面側に凸の非円弧形状 近軸曲率半径:Rm4=−286.559, K=−29.9619,A=−1.1553E−7, B= 1.7679E−11,C=−7.7279E−
16 。
Lens surface shape in the deflection surface "Lens surface shape on the incident side of the first lens" Non-arc shape convex on the optical deflector side Paraxial radius of curvature: Rm 1 = 518.258, K = −180.673 , A = 4.2655E-9, B = 8.9702E-12, C = -1.8217E-
15 “Lens surface shape on the exit side of the first lens” Arc shape convex on the scan surface side Curvature radius: Rm 2 = −91.273 “Lens surface shape on the entrance side surface of the second lens” Concave on the optical deflector side Radius of curvature: Rm 3 = −561.567 “Lens surface shape of the exit side surface of the second lens” Non-arc shape convex to the scanned surface side Paraxial radius of curvature: Rm 4 = −286.559, K = −29.9696, A = −1.1553E−7, B = 1.7679E−11, C = −7.7279E−
16.

【0055】fm=139.2,L=205.372 条件式(1)〜(4)の各パラメータの値 D2/fm=0.207,D2/L=0.140,D4/f
m=0.776, D4/L=0.526
[0055] fm = 139.2, L = 205.372 conditional expressions (1) to (4) the value D 2 /fm=0.207,D 2 /L=0.140,D 4 / f of each parameter
m = 0.776, D 4 /L=0.526
.

【0056】図5に、実施例4に関する主走査方向の像
面湾曲とfθ特性を示す。主走査方向の像面湾曲、fθ
特性とも極めて良好である。
FIG. 5 shows the field curvature and fθ characteristics in the main scanning direction according to the fourth embodiment. Field curvature in the main scanning direction, fθ
The characteristics are also very good.

【0057】 実施例5 i Rmii j Nj 0 43.187 1 520.572 20.000 1 1.511 2 −91.515 37.869 3 −647.625 6.000 2 1.524 4 −360.896 103.324 。[0057] Example 5 i Rm i D i j N j 0 43.187 1 520.572 20.000 1 1.511 2 -91.515 37.869 3 -647.625 6.000 2 1.524 4 -360.896 103.324.

【0058】偏向面内のレンズ面形状 「第1レンズの入射側のレンズ面形状」 光偏向器側に凸の非円弧形状 近軸曲率半径:Rm1=520.572, K=−342.575,A= 6.1453E−9, B= 9.2237E−12,C=−2.1114E−
15 「第1レンズの射出側のレンズ面形状」 被走査面側に凸の円弧形状 曲率半径:Rm2=−91.515 「第2レンズの入射側面のレンズ面形状」 光偏向器側に凹の円弧形状 曲率半径:Rm3=−647.625 「第2レンズの射出側面のレンズ面形状」 被走査面側に凸の非円弧形状 近軸曲率半径:Rm4=−360.896, K=−35.320 ,A=−1.2198E−7, B= 1.7199E−11,C=−7.3454E−
16 。
Lens surface shape in the deflection surface "Lens surface shape on the incident side of the first lens" Non-arc shape convex on the optical deflector side Paraxial radius of curvature: Rm 1 = 520.572, K = -342.575 , A = 6.1453E-9, B = 9.2237E-12, C = −2.1114E−
15 “Lens surface shape on the exit side of the first lens” Arc shape convex on the scanned surface side Radius of curvature: Rm 2 = −91.515 “Lens surface shape on the incident side surface of the second lens” Concave on the optical deflector side Radius of curvature: Rm 3 = −647.625 “Lens surface shape of the exit side surface of the second lens” Non-arc shape convex to the scanned surface side Paraxial radius of curvature: Rm 4 = −360.896, K = -35.320, A = -1.2198E-7, B = 1.7199E-11, C = -7.3454E-
16.

【0059】fm=144.2,L=210.380 条件式(1)〜(4)の各パラメータの値 D2/fm=0.263,D2/L=0.180,D4/f
m=0.717, D4/L=0.491
[0059] fm = 144.2, L = 210.380 conditional expressions (1) to (4) the value D 2 /fm=0.263,D 2 /L=0.180,D 4 / f of each parameter
m = 0.717, D 4 /L=0.391
.

【0060】図6に、実施例5に関する主走査方向の像
面湾曲とfθ特性を示す。主走査方向の像面湾曲、fθ
特性とも極めて良好である。
FIG. 6 shows the field curvature and the fθ characteristic in the main scanning direction according to the fifth embodiment. Field curvature in the main scanning direction, fθ
The characteristics are also very good.

【0061】 実施例6 i Rmii j Nj 0 47.257 1 546.219 23.467 1 1.511 2 −96.641 21.491 3 −553.459 6.935 2 1.524 4 −239.641 115.757 。[0061] Example 6 i Rm i D i j N j 0 47.257 1 546.219 23.467 1 1.511 2 -96.641 21.491 3 -553.459 6.935 2 1.524 4 -239.641 115.575.

【0062】偏向面内のレンズ面形状 「第1レンズの入射側のレンズ面形状」 光偏向器側に凸の非円弧形状 近軸曲率半径:Rm1=546.219, K=−35.6261,A= 4.1877E−10, B= 4.3422E−12,C=−1.0617E−
15 「第1レンズの射出側のレンズ面形状」 被走査面側に凸の円弧形状 曲率半径:Rm2=−96.641 「第2レンズの入射側面のレンズ面形状」 光偏向器側に凹の円弧形状 曲率半径:Rm3=−533.459 「第2レンズの射出側面のレンズ面形状」 被走査面側に凸の非円弧形状 近軸曲率半径:Rm4=−239.641, K=−19.5827,A=−9.8076E−8, B= 1.9787E−12,C=−1.1271E−
15 。
Lens surface shape in the deflection surface “Lens surface shape on the entrance side of the first lens” Non-arc shape convex on the optical deflector side Paraxial radius of curvature: Rm 1 = 546.219, K = −35.6261 , A = 4.1877E-10, B = 4.3422E-12, C = -1.0617E-
15 "Lens surface shape on the exit side of first lens" Arc shape convex on the scanned surface side Curvature radius: Rm 2 = -96.641 "Lens surface shape on the incident side surface of the second lens" Concave on the optical deflector side Radius of curvature: Rm 3 = −533.459 “Lens surface shape of the exit side surface of the second lens” Non-arc shape convex to the scanned surface side Paraxial radius of curvature: Rm 4 = −239.641, K = -19.5827, A = -9.8076E-8, B = 1.9787E-12, C = -1.1271E-
15.

【0063】fm=139.8,L=214.907 条件式(1)〜(4)の各パラメータの値 D2/fm=0.154,D2/L=0.100,D4/f
m=0.828, D4/L=0.539
[0063] fm = 139.8, L = 214.907 conditional expressions (1) to (4) the value D 2 /fm=0.154,D 2 /L=0.100,D 4 / f of each parameter
m = 0.828, D 4 /L=0.439
.

【0064】図7に、実施例6に関する主走査方向の像
面湾曲とfθ特性を示す。主走査方向の像面湾曲、fθ
特性とも極めて良好である。
FIG. 7 shows the field curvature and the fθ characteristic in the main scanning direction according to the sixth embodiment. Field curvature in the main scanning direction, fθ
The characteristics are also very good.

【0065】 実施例7 i Rmii j Nj 0 47.935 1 279.682 25.000 1 1.511 2 −108.637 30.160 3 −278.047 8.000 2 1.524 4 −173.879 104.334 。[0065] Example 7 i Rm i D i j N j 0 47.935 1 279.682 25.000 1 1.511 2 -108.637 30.160 3 -278.047 8.000 2 1.524 4 -173.879 104.334.

【0066】偏向面内のレンズ面形状 「第1レンズの入射側のレンズ面形状」 光偏向器側に凸の非円弧形状 近軸曲率半径:Rm1=279.682, K=−20.0872,A= 2.0701E−8, B= 1.3398E−11,C=−1.6790E−
15 「第1レンズの射出側のレンズ面形状」 被走査面側に凸の円弧形状 曲率半径:Rm2=−108.637, 「第2レンズの入射側面のレンズ面形状」 光偏向器側に凹の円弧形状 曲率半径:Rm3=−278.047 「第2レンズの射出側面のレンズ面形状」 被走査面側に凸の非円弧形状 近軸曲率半径:Rm4=−173.879, K=−8.4709,A=−1.0003E−7, B= 1.6969E−11,C= 2.2040E−
16 。
Lens surface shape in the deflection surface "Lens surface shape on the incident side of the first lens" Non-arc shape convex on the optical deflector side Paraxial radius of curvature: Rm 1 = 279.682, K = -20.0872 , A = 2.0701E-8, B = 1.3398E-11, C = -1.6790E-
15 "first lens on the exit side of the lens surface shape" of the convex surface to be scanned side arc-shaped curvature radius: Rm 2 = -108.637, the optical deflector side "lens surface shape of the incident side surface of the second lens" Concave arc shape Radius of curvature: Rm 3 = −278.047 “Lens surface shape of the exit side surface of the second lens” Non-arc shape convex to the scanned surface side Paraxial radius of curvature: Rm 4 = −173.879, K = -8.4709, A = -1.0003E-7, B = 1.6969E-11, C = 2.2040E-
16.

【0067】fm=139.1,L=215.429 条件式(1)〜(4)の各パラメータの値 D2/fm=0.271,D2/L=0.140,D4/f
m=0.750, D4/L=0.484
[0067] fm = 139.1, L = 215.429 conditional expressions (1) to (4) the value D 2 /fm=0.271,D 2 /L=0.140,D 4 / f of each parameter
m = 0.750, D 4 /L=0.484
.

【0068】図8に、実施例7に関する主走査方向の像
面湾曲とfθ特性を示す。主走査方向の像面湾曲、fθ
特性とも極めて良好である。
FIG. 8 shows the field curvature and the fθ characteristic in the main scanning direction according to the seventh embodiment. Field curvature in the main scanning direction, fθ
The characteristics are also very good.

【0069】 実施例8 i Rmii j Nj 0 49.513 1 424.198 25.000 1 1.511 2 −97.192 39.490 3 −455.524 8.000 2 1.524 4 −221.642 97.387 。[0069] Example 8 i Rm i D i j N j 0 49.513 1 424.198 25.000 1 1.511 2 -97.192 39.490 3 -455.524 8.000 2 1.524 4 -221.642 97.387.

【0070】偏向面内のレンズ面形状 「第1レンズの入射側のレンズ面形状」 光偏向器側に凸の非円弧形状 近軸曲率半径:Rm1=424.198, K=−33.0506,A=−2.8930E−8, B= 3.2923E−12,C=−5.9831E−
16 「第1レンズの射出側のレンズ面形状」 被走査面側に凸の円弧形状 曲率半径:Rm2=−97.192, 「第2レンズの入射側面のレンズ面形状」 光偏向器側に凹の円弧形状 曲率半径:Rm3=−455.524 「第2レンズの射出側面のレンズ面形状」 被走査面側に凸の非円弧形状 近軸曲率半径:Rm4=−221.642, K=−13.4612,A=−8.4264E−8, B= 1.2091E−11,C=−6.8084E−
16 。
Lens surface shape in the deflection surface “Lens surface shape on the entrance side of the first lens” Non-arc shape convex on the optical deflector side Paraxial radius of curvature: Rm 1 = 424.198, K = −33.0506 , A = -2.8930E-8, B = 3.2923E-12, C = -5.9831E-
16 “Lens surface shape on the exit side of the first lens” Arc shape convex on the scanned surface side Curvature radius: Rm 2 = −97.192, “Lens surface shape on the incident side surface of the second lens” On the optical deflector side Concave arc shape Radius of curvature: Rm 3 = −455.524 “Lens surface shape of the exit side surface of the second lens” Non-arc shape convex to the scanned surface side Paraxial radius of curvature: Rm 4 = −221.642, K = -13.4612, A = -8.4264E-8, B = 1.2091E-11, C = -6.80884E-
16.

【0071】fm=139.4,L=219.390 条件式(1)〜(4)の各パラメータの値 D2/fm=0.283,D2/L=0.180,D4/f
m=0.699, D4/L=0.444
[0071] fm = 139.4, L = 219.390 conditional expressions (1) to (4) the value D 2 /fm=0.283,D 2 /L=0.180,D 4 / f of each parameter
m = 0.699, D 4 /L=0.444
.

【0072】図9に、実施例8に関する主走査方向の像
面湾曲とfθ特性を示す。主走査方向の像面湾曲、fθ
特性とも極めて良好である。
FIG. 9 shows the field curvature and the fθ characteristic in the main scanning direction according to the eighth embodiment. Field curvature in the main scanning direction, fθ
The characteristics are also very good.

【0073】 実施例9 i Rmii j Nj 0 45.269 1 523.189 25.000 1 1.511 2 −95.100 14.872 3 −329.921 6.000 2 1.524 4 −196.877 121.310 。[0073] Example 9 i Rm i D i j N j 0 45.269 1 523.189 25.000 1 1.511 2 -95.100 14.872 3 -329.921 6.000 2 1.524 4 -196.877 121.310.

【0074】偏向面内のレンズ面形状 「第1レンズの入射側のレンズ面形状」 光偏向器側に凸の非円弧形状 近軸曲率半径:Rm1=523.189, K=−31.8209,A=−1.0783E−9, B= 6.3452E−12,C=−1.0348E−
15 「第1レンズの射出側のレンズ面形状」 被走査面側に凸の円弧形状 曲率半径:Rm2=−95.100 「第2レンズの入射側面のレンズ面形状」 光偏向器側に凹に非円弧形状 近軸曲率半径:Rm3=−329.921, K= 8.7719,A=−5.0043E−8, B=−1.2518E−12,C=−2.2230E−
16 「第2レンズの射出側面のレンズ面形状」 被走査面側に凸の円弧形状 曲率半径:Rm4=−196.877 fm=139.5,L=212.451 条件式(1)〜(4)の各パラメータの値 D2/fm=0.107,D2/L=0.070,D4/f
m=0.870, D4/L=0.571
Lens surface shape in the deflection surface “Lens surface shape on the entrance side of the first lens” Non-arc shape convex on the optical deflector side Paraxial radius of curvature: Rm 1 = 523.189, K = −31.8209 , A = -1.0783E-9, B = 6.3452E-12, C = -1.0348E-
15 “Lens surface shape on the exit side of the first lens” Arc shape convex on the scan surface side Curvature radius: Rm 2 = −95.100 “Lens surface shape on the entrance side surface of the second lens” Concave on the optical deflector side Non-arc shape Paraxial radius of curvature: Rm 3 = −329.921, K = 8.7719, A = −5.00043E−8, B = −1.2518E−12, C = −2.2230E−
16 "second lens lens surface shape of the exit surface of the" surface to be scanned side in a convex arcuate curvature radius: Rm 4 = -196.877 fm = 139.5 , L = 212.451 conditional expressions (1) to ( values of the parameters 4) D 2 /fm=0.107,D 2 /L=0.070,D 4 / f
m = 0.870, D 4 /L=0.571
.

【0075】図10に、実施例9に関する主走査方向の
像面湾曲とfθ特性を示す。主走査方向の像面湾曲、f
θ特性とも極めて良好である。
FIG. 10 shows the field curvature in the main scanning direction and the fθ characteristic according to the ninth embodiment. Curvature of field in the main scanning direction, f
The θ characteristics are also very good.

【0076】 実施例10 i Rmii j Nj 0 49.698 1 660.078 25.000 1 1.511 2 −88.464 15.266 3 −256.743 6.000 2 1.524 4 −186.233 122.118 。[0076] Example 10 i Rm i D i j N j 0 49.698 1 660.078 25.000 1 1.511 2 -88.464 15.266 3 -256.743 6.000 2 1.524 4 -186.233 122.118.

【0077】偏向面内のレンズ面形状 「第1レンズの入射側のレンズ面形状」 光偏向器側に凸の円弧形状 曲率半径:Rm1=660.078 「第1レンズの射出側のレンズ面形状」 被走査面側に凸の非円弧形状 近軸曲率半径:Rm2=−88.464 K=−0.25185,A= 2.4427E−8, B= 7.9818E−12,C= 4.6606E−
16 「第2レンズの入射側面のレンズ面形状」 光偏向器側に凹の円弧形状 曲率半径:Rm3=−256.743 「第2レンズの射出側面のレンズ面形状」 被走査面側に凸の非円弧形状 近軸曲率半径:Rm4=−186.233 K=−0.74107,A= 2.2082E−8, B=−1.8372E−12,C= 2.3868E−
16 。
Lens surface shape in the deflection surface “Lens surface shape on the entrance side of the first lens” Arc shape convex on the optical deflector side Curvature radius: Rm 1 = 660.0078 “Lens surface on the exit side of the first lens Shape "Non-arc shape convex to the surface to be scanned side Paraxial radius of curvature: Rm 2 = −88.484 K = −0.25185, A = 2.4427E-8, B = 7.9818E-12, C = 4 .6606E-
16 "second lens lens surface shape of the incident side of" the optical deflector concave on the side of the arc-shaped curvature radius: Rm 3 = -256.743 "lens surface shape of the exit surface of the second lens" scanned surface side in a convex Non-circular shape of paraxial radius of curvature: Rm 4 = −186.233 K = −0.74107, A = 2.2082E−8, B = −1.8372E−12, C = 2.3868E−
16.

【0078】fm=140.6,L=218.082 条件式(1)〜(4)の各パラメータの値 D2/fm=0.109,D2/L=0.070,D4/f
m=0.868, D4/L=0.560
[0078] fm = 140.6, L = 218.082 conditional expressions (1) to (4) the value D 2 /fm=0.109,D 2 /L=0.070,D 4 / f of each parameter
m = 0.868, D 4 /L=0.560
.

【0079】図11に、実施例10に関する主走査方向
の像面湾曲とfθ特性を示す。主走査方向の像面湾曲、
fθ特性とも極めて良好である。
FIG. 11 shows the field curvature and fθ characteristics in the main scanning direction according to the tenth embodiment. Curvature of field in the main scanning direction,
The fθ characteristics are also very good.

【0080】 実施例11 i Rmii j Nj 0 49.564 1 1103.859 25.000 1 1.511 2 −85.866 15.424 3 −1768.715 6.000 2 1.524 4 −518.088 124.360 。[0080] Example 11 i Rm i D i j N j 0 49.564 1 1103.859 25.000 1 1.511 2 -85.866 15.424 3 -1768.715 6.000 2 1.524 4 -518.088 124.360.

【0081】偏向面内のレンズ面形状 「第1レンズの入射側のレンズ面形状」 光偏向器側に凸の円弧形状 曲率半径:Rm1=1103.859 「第1レンズの射出側のレンズ面形状」 被走査面側に凸の非円弧形状 近軸曲率半径:Rm2=−85.866 K=−0.26906,A= 1.8695E−8, B= 4.9928E−12,C= 1.2244E−
15 「第2レンズの入射側面のレンズ面形状」 光偏向器側に凹の非円弧形状 近軸曲率半径:Rm3=−1768.715 K=−133.066,A=−2.2037E−8, B= 2.4164E−12,C=−1.0015E−
16 「第2レンズの射出側面のレンズ面形状」 被走査面側に凸の円弧形状 曲率半径:Rm4=−518.088 。
Lens surface shape in the deflecting surface “Lens surface shape on the entrance side of the first lens” Arc shape convex on the optical deflector side Curvature radius: Rm 1 = 1103.859 “Lens surface on the exit side of the first lens Shape] Non-arc shape convex to the surface to be scanned Paraxial radius of curvature: Rm 2 = −85.866 K = −0.26906, A = 1.8955E−8, B = 4.9998E−12, C = 1 .2244E-
15 “Lens surface shape on the incident side surface of the second lens” Non-arc shape concave on the optical deflector side Paraxial radius of curvature: Rm 3 = −1768.715 K = −133.066, A = −2.2037E-8 , B = 2.4164E-12, C = −1.0015E−
16 "Lens surface shape of the exit side surface of the second lens" An arc shape convex on the surface to be scanned side Curvature radius: Rm 4 = −518.088.

【0082】fm=143.2,L=220.348 条件式(1)〜(4)の各パラメータの値 D2/fm=0.108,D2/L=0.070,D4/f
m=0.868, D4/L=0.564
[0082] fm = 143.2, L = 220.348 conditional expressions (1) to (4) the value D 2 /fm=0.108,D 2 /L=0.070,D 4 / f of each parameter
m = 0.868, D 4 /L=0.564
.

【0083】図12に、実施例11に関する主走査方向
の像面湾曲とfθ特性を示す。主走査方向の像面湾曲、
fθ特性とも極めて良好である。
FIG. 12 shows the field curvature and the fθ characteristic in the main scanning direction according to the eleventh embodiment. Curvature of field in the main scanning direction,
The fθ characteristics are also very good.

【0084】 実施例12 i Rmii j Nj 0 48.264 1 367.282 25.000 1 1.511 2 −116.236 15.489 3 −972.743 6.000 2 1.524 4 −277.218 126.522 。[0084] Example 12 i Rm i D i j N j 0 48.264 1 367.282 25.000 1 1.511 2 -116.236 15.489 3 -972.743 6.000 2 1.524 4 -277.218 126.522.

【0085】偏向面内のレンズ面形状 「第1レンズの入射側のレンズ面形状」 光偏向器側に凸の円弧形状 曲率半径:Rm1=367.282 「第1レンズの射出側のレンズ面形状」 被走査面側に凸の非円弧形状 近軸曲率半径:Rm2=−116.236 K=−0.15516,A=−7.7437E−8, B= 4.5621E−13,C=−1.5929E−
15 「第2レンズの入射側面のレンズ面形状」 光偏向器側に凹の非円弧形状 近軸曲率半径:Rm3=−972.743 K= 154.477,A=−5.5872E−8, B=−3.3842E−12,C=−8.6679E−
16 「第2レンズの射出側面のレンズ面形状」 被走査面側に凸の非円弧形状 近軸曲率半径:Rm4=−277.218 K=−17.0968,A=−2.9810E−8, B= 1.7898E−12,C=−8.4356E−
16 。
The lens surface shape in the deflecting surface "Lens surface shape on the entrance side of the first lens" Arc shape convex on the optical deflector side Curvature radius: Rm 1 = 366.282 "The lens surface on the exit side of the first lens" Shape "Non-arc shape convex to the surface to be scanned side Paraxial radius of curvature: Rm 2 = -116.236 K = -0.15516, A = -7.7737E-8, B = 4.5621E-13, C = -1.5929E-
15 “Lens surface shape on the incident side surface of the second lens” Non-arc shape concave on the optical deflector side Paraxial radius of curvature: Rm 3 = −972.743 K = 154.477, A = −5.5872E-8, B = −3.3842E-12, C = −8.6679E−
16 “Lens surface shape of the exit side surface of the second lens” Non-arc shape convex to the surface to be scanned Paraxial radius of curvature: Rm 4 = −277.218 K = −17.0968, A = −2.9810E-8 , B = 1.79898E-12, C = −8.4356E−
16.

【0086】fm=146.0,L=221.275 条件式(1)〜(4)の各パラメータの値 D2/fm=0.106,D2/L=0.070,D4/f
m=0.867, D4/L=0.572
[0086] fm = 146.0, L = 221.275 conditional expressions (1) to (4) the value D 2 /fm=0.106,D 2 /L=0.070,D 4 / f of each parameter
m = 0.767, D 4 /L=0.572
.

【0087】図13に、実施例12に関する主走査方向
の像面湾曲とfθ特性を示す。主走査方向の像面湾曲、
fθ特性とも極めて良好である。
FIG. 13 shows the field curvature and fθ characteristics in the main scanning direction according to the twelfth embodiment. Curvature of field in the main scanning direction,
The fθ characteristics are also very good.

【0088】上記のように、実施例2〜12に関しては
偏向面内におけるレンズ形状のみを与え、それに対応し
て主走査方向の像面湾曲とfθ特性のみを示した。各像
面湾曲とfθ特性の図から明らかなように、主走査方向
の像面湾曲もfθ特性も、極めて良好である。副走査方
向の像面湾曲は、偏向面内におけるレンズ形状を、前述
の式(7)や(7+),(7−)を用いるなどして最適
化することにより良好に補正することができる。
As described above, in Examples 2 to 12, only the lens shape in the deflecting surface is given, and only the field curvature in the main scanning direction and the fθ characteristic are shown. As is clear from the figures of each field curvature and the fθ characteristic, both the field curvature in the main scanning direction and the fθ characteristic are extremely good. The curvature of field in the sub-scanning direction can be satisfactorily corrected by optimizing the lens shape in the deflecting surface using the above-described equations (7), (7+), and (7-).

【0089】[0089]

【発明の効果】以上に説明したように、この発明によれ
ば新規な走査結像レンズ系を実現できる。請求項1〜4
記載の発明の走査結像レンズ系は、主走査方向の像面湾
曲と、fθ特性等の等速特性を極めて良好に補正でき、
且つ、部品公差や組立て公差に対する安定性が高く、ま
た、第1,第2レンズの1以上をプラスチックレンズで
形成する場合、耐環境性が高い。
As described above, according to the present invention, a novel scanning imaging lens system can be realized. Claims 1-4
The scanning imaging lens system of the described invention can very well correct the field curvature in the main scanning direction and the constant velocity characteristics such as the fθ characteristic,
In addition, stability against component tolerance and assembly tolerance is high, and when one or more of the first and second lenses is formed of a plastic lens, environmental resistance is high.

【0090】請求項5記載の発明は、主走査対応方向に
直交する方向において、走査結像レンズ系の後側主点を
被走査面側に近づけることができ、縦倍率を有効に小さ
くすることにより、環境変動や組み付け誤差、部品公差
に対する要求を緩やかにできる。
According to a fifth aspect of the present invention, the rear principal point of the scanning image forming lens system can be made closer to the surface to be scanned in a direction orthogonal to the main scanning corresponding direction, and the longitudinal magnification can be effectively reduced. Accordingly, requirements for environmental fluctuations, assembly errors, and component tolerances can be relaxed.

【0091】請求項6記載の発明の走査結像レンズ系
は、主・副走査方向の像面湾曲、等速特性を良好に補正
しつつ、光線高さによる副走査方向の倍率変動を抑え
て、副走査方向の光スポット径変動を有効に軽減させる
ことが可能となり、請求項7記載の発明の走査結像レン
ズ系は光スポット径の変動を有効に軽減できる。
In the scanning image forming lens system according to the present invention, the variation in magnification in the sub-scanning direction due to the height of the light beam is suppressed while satisfactorily correcting the curvature of field in the main and sub-scanning directions and the uniform velocity characteristics. In addition, it is possible to effectively reduce the variation of the light spot diameter in the sub-scanning direction, and the scanning imaging lens system according to the seventh aspect of the invention can effectively reduce the variation of the light spot diameter.

【0092】また、請求項8記載の発明の走査結像レン
ズ系は安価に大量生産でき、請求項9記載の発明の走査
結像レンズ系は、走査結像レンズ系を安価に製造でき、
請求項8の発明の場合よりもさらに耐環境性を高めるこ
とができる。
Further, the scanning imaging lens system according to the present invention can be mass-produced at low cost, and the scanning imaging lens system according to the ninth invention can manufacture the scanning imaging lens system at low cost.
The environment resistance can be further improved than in the case of the invention of claim 8.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の走査結像レンズ系を説明するための
図であり、実施例1のレンズ形状を表したものである。
FIG. 1 is a diagram for explaining a scanning image forming lens system according to the present invention, and shows a lens shape of a first embodiment.

【図2】実施例1に関する主・副走査方向の像面湾曲と
fθ特性を示す図である。
FIG. 2 is a diagram illustrating field curvature in the main and sub-scanning directions and fθ characteristics according to the first embodiment.

【図3】実施例2に関する主走査方向の像面湾曲とfθ
特性を示す図である。
FIG. 3 shows field curvature and fθ in the main scanning direction according to the second embodiment.
It is a figure showing a characteristic.

【図4】実施例3に関する主走査方向の像面湾曲とfθ
特性を示す図である。
FIG. 4 shows the field curvature and fθ in the main scanning direction according to the third embodiment.
It is a figure showing a characteristic.

【図5】実施例4に関する主走査方向の像面湾曲とfθ
特性を示す図である。
FIG. 5 shows the field curvature and fθ in the main scanning direction according to the fourth embodiment.
It is a figure showing a characteristic.

【図6】実施例5に関する主走査方向の像面湾曲とfθ
特性を示す図である。
FIG. 6 shows the field curvature and fθ in the main scanning direction according to the fifth embodiment.
It is a figure showing a characteristic.

【図7】実施例6に関する主走査方向の像面湾曲とfθ
特性を示す図である。
FIG. 7 shows field curvature and fθ in the main scanning direction according to the sixth embodiment.
It is a figure showing a characteristic.

【図8】実施例7に関する主走査方向の像面湾曲とfθ
特性を示す図である。
FIG. 8 shows field curvature and fθ in the main scanning direction according to the seventh embodiment.
It is a figure showing a characteristic.

【図9】実施例8に関する主走査方向の像面湾曲とfθ
特性を示す図である。
FIG. 9 shows the field curvature and fθ in the main scanning direction according to the eighth embodiment.
It is a figure showing a characteristic.

【図10】実施例9に関する主走査方向の像面湾曲とf
θ特性を示す図である。
FIG. 10 shows the field curvature and f in the main scanning direction according to the ninth embodiment.
FIG. 9 is a diagram illustrating a θ characteristic.

【図11】実施例10に関する主走査方向の像面湾曲と
fθ特性を示す図である。
FIG. 11 is a diagram illustrating field curvature in the main scanning direction and fθ characteristics according to the tenth embodiment.

【図12】実施例11に関する主走査方向の像面湾曲と
fθ特性を示す図である。
FIG. 12 is a diagram illustrating field curvature in the main scanning direction and fθ characteristics according to an eleventh embodiment.

【図13】実施例12に関する主走査方向の像面湾曲と
fθ特性を示す図である。
FIG. 13 is a diagram illustrating field curvature in the main scanning direction and fθ characteristics according to a twelfth embodiment.

【符号の説明】[Explanation of symbols]

4 ポリゴンミラー 5A 第1レンズ 5B 第2レンズ 6 被走査面 4 Polygon mirror 5A First lens 5B Second lens 6 Scanned surface

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】主走査対応方向に長い線像に結像した光束
を、上記線像の結像位置近傍に偏向反射面を有する光偏
向器により等角速度的に偏向させ、偏向光束を走査結像
レンズ系により被走査面上に光スポットとして集光させ
て上記被走査面の等速的な光走査を行う光走査装置にお
ける走査結像レンズ系であって、 光偏向器側から被走査面側へ順次、第1,第2レンズを
配備してなり、 偏向面内の形状が、 上記第1レンズは、入射側面が光偏向器側に凸、射出面
側は被走査面側に凸、 上記第2レンズは、入射面側が光偏向器側に凹、射出面
側は被走査面側に凸であり、 上記第1レンズは両面とも光軸対称で、一方の面が非球
面であり、 上記第2レンズは、少なくとも一方の面が、偏向面内に
非円弧形状を有し、 第1レンズの射出側面から第2レンズの入射側面に至る
光軸上の距離:D2、全系の主走査対応方向に関する焦
点距離:fmが、条件: (1) 0.07≦D2/fm≦0.30 を満足することを特徴とする走査結像レンズ系。
An optical deflector having a deflecting / reflecting surface in the vicinity of an image forming position of the line image deflects a light beam formed into a long linear image in the main scanning direction at a uniform angular velocity. A scanning image forming lens system in an optical scanning device for converging a light spot on a surface to be scanned by an image lens system as a light spot and performing uniform optical scanning on the surface to be scanned. The first lens and the second lens are sequentially arranged on the side, and the shape of the deflecting surface of the first lens is such that the incident side surface is convex on the optical deflector side, the exit surface side is convex on the scanned surface side, The second lens has an incident surface side concave to the optical deflector side, an emission surface side convex to the surface to be scanned, the first lens has optical axis symmetry on both surfaces, and one surface is aspherical, In the second lens, at least one surface has a non-circular shape in the deflection surface, and the second lens has a second shape from the exit side surface of the first lens. The distance on the optical axis reaching the incident side surface of the two lenses: D 2 , and the focal length in the main scanning corresponding direction of the entire system: fm satisfies the condition: (1) 0.07 ≦ D 2 /fm≦0.30 A scanning imaging lens system, characterized in that:
【請求項2】請求項1記載の走査結像レンズ系におい
て、 第1レンズの射出側面から第2レンズの入射側面に至る
光軸上の距離:D2、偏向反射面から被走査面までの距
離:Lが、条件: (2) 0.05≦D2/L≦0.20 を満足することを特徴とする走査結像レンズ系。
2. The scanning imaging lens system according to claim 1, wherein a distance on the optical axis from the exit side surface of the first lens to the entrance side surface of the second lens is D 2 , and a distance from the deflecting reflection surface to the surface to be scanned is D2. A scanning imaging lens system, wherein the distance: L satisfies the following condition: (2) 0.05 ≦ D 2 /L≦0.20.
【請求項3】請求項1または2記載の走査結像レンズ系
において、 第2レンズの射出側面から被走査面に至る光軸上の距
離:D4、全系の主走査対応方向に関する焦点距離:fm
が、条件: (3) 0.6≦D4/fm≦0.9 を満足することを特徴とする走査結像レンズ系。
3. The scanning imaging lens system according to claim 1, wherein a distance on the optical axis from the exit side surface of the second lens to the surface to be scanned is D 4 , and a focal length of the entire system in the main scanning corresponding direction. : Fm
The following conditions are satisfied: (3) 0.6 ≦ D 4 /fm≦0.9.
【請求項4】請求項2または3記載の走査結像レンズ系
において、 第2レンズの射出側面から被走査面に至る光軸上の距
離:D4、偏向反射面から被走査面までの距離:Lが、
条件: (4) 0.4≦D4/L≦0.7 を満足することを特徴とする走査結像レンズ系。
4. The scanning imaging lens system according to claim 2, wherein a distance on the optical axis from the exit side surface of the second lens to the surface to be scanned is D 4 , and a distance from the deflecting reflection surface to the surface to be scanned. : L is
Condition: (4) A scanning imaging lens system characterized by satisfying 0.4 ≦ D 4 /L≦0.7.
【請求項5】請求項1または2または3または4記載の
走査結像レンズ系において、 第2レンズの偏向直交面内の形状が、 入射側面が、光偏向器側に凹、 射出側面が、被走査面側に凸であることを特徴とする走
査結像レンズ系。
5. The scanning imaging lens system according to claim 1, wherein the shape of the second lens in the plane orthogonal to the deflection is such that the incident side is concave on the optical deflector side, and the exit side is A scanning imaging lens system, which is convex toward the surface to be scanned.
【請求項6】請求項5記載の走査結像レンズ系におい
て、 第2レンズの、偏向面内で非円弧形状を有する面は、偏
向直交面内の曲率半径が、主走査対応方向に連続的に、
且つ、偏向面内の形状と相関して変化していることを特
徴とする走査結像レンズ系。
6. The scanning imaging lens system according to claim 5, wherein the surface of the second lens having a non-circular shape in the deflecting surface has a radius of curvature in the deflecting orthogonal surface that is continuous in the main scanning corresponding direction. To
And a scanning imaging lens system, which changes in correlation with the shape in the deflection surface.
【請求項7】請求項6記載の走査結像レンズ系におい
て、 被走査面上における光線高さ:Hにおける主走査対応方
向に直交する方向の横倍率:βs(H)が、有効画像領域
内において、条件: (5) 0.95≦|βs(H)/βs(0)|≦1.05 を満足することを特徴とする走査結像レンズ系。
7. The scanning image forming lens system according to claim 6, wherein the beam magnification on the surface to be scanned: H in the direction orthogonal to the main scanning direction: βs (H) is within the effective image area. Wherein: (5) a scanning imaging lens system, wherein 0.95 ≦ | βs (H) / βs (0) | ≦ 1.05 is satisfied.
【請求項8】請求項6または7記載の走査結像レンズ系
において、 第1および第2レンズとも、プラスチックで形成されて
いることを特徴とする走査結像レンズ系。
8. The scanning imaging lens system according to claim 6, wherein both the first and second lenses are formed of plastic.
【請求項9】請求項6または7記載の走査結像レンズ系
において、 第1レンズがガラスで形成され、第2レンズがプラスチ
ックで形成されていることを特徴とする走査結像レンズ
系。
9. The scanning imaging lens system according to claim 6, wherein the first lens is formed of glass and the second lens is formed of plastic.
JP12818597A 1997-05-19 1997-05-19 Scanning and image forming lens system Pending JPH10319317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12818597A JPH10319317A (en) 1997-05-19 1997-05-19 Scanning and image forming lens system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12818597A JPH10319317A (en) 1997-05-19 1997-05-19 Scanning and image forming lens system

Publications (1)

Publication Number Publication Date
JPH10319317A true JPH10319317A (en) 1998-12-04

Family

ID=14978549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12818597A Pending JPH10319317A (en) 1997-05-19 1997-05-19 Scanning and image forming lens system

Country Status (1)

Country Link
JP (1) JPH10319317A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001142017A (en) * 1999-11-16 2001-05-25 Canon Inc Scanning optical device
US6437897B1 (en) 1999-06-24 2002-08-20 Minolta Co., Ltd. Laser scanning apparatus
US8059316B2 (en) 2004-10-29 2011-11-15 Brother Kogyo Kabushiki Kaisha Optical device, adjustment method for the same and image forming apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6437897B1 (en) 1999-06-24 2002-08-20 Minolta Co., Ltd. Laser scanning apparatus
JP2001142017A (en) * 1999-11-16 2001-05-25 Canon Inc Scanning optical device
JP4652506B2 (en) * 1999-11-16 2011-03-16 キヤノン株式会社 Scanning optical device
US8059316B2 (en) 2004-10-29 2011-11-15 Brother Kogyo Kabushiki Kaisha Optical device, adjustment method for the same and image forming apparatus

Similar Documents

Publication Publication Date Title
US5233454A (en) Image forming reflecting mirror for constant speed optical scan and optical scanner
US6445482B1 (en) Optical scanning apparatus
JPH08240767A (en) Scanning and imaging lens and optical scanner
JP2000187172A (en) Optical scanner
US5563729A (en) Image forming light scanning apparatus
JPH09265041A (en) Scanning image formation lens and optical scanner
JPH1138348A (en) Scanning image forming optical system, and optical scanning device
JPH10319317A (en) Scanning and image forming lens system
JP3484308B2 (en) Scanning imaging lens system
JPH08240768A (en) Scanning optical system
US6075637A (en) Laser beam scanning optical system
JP3121452B2 (en) Optical scanning device
JPH0675162A (en) Beam scanner
JP3051671B2 (en) Optical scanning lens and optical scanning device
US5673137A (en) Condenser optical system for light scanning system
JP3075056B2 (en) Scanning optical system
JP3404204B2 (en) Optical scanning lens, scanning imaging lens, and optical scanning device
JP2003227998A (en) Scanning optical system
JPH10288745A (en) Optical scanning lens and optical scanner
EP0898192A2 (en) Imaging optical system for light beam scanning system
JP3558847B2 (en) Multi-beam scanner
JP3458973B2 (en) Optical scanning device
JP2925339B2 (en) High resolution scanning optical system
JP3367247B2 (en) fθ lens system
JPH116954A (en) Line image forming lens and optical scanner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051004