JP4652449B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP4652449B2
JP4652449B2 JP2008523099A JP2008523099A JP4652449B2 JP 4652449 B2 JP4652449 B2 JP 4652449B2 JP 2008523099 A JP2008523099 A JP 2008523099A JP 2008523099 A JP2008523099 A JP 2008523099A JP 4652449 B2 JP4652449 B2 JP 4652449B2
Authority
JP
Japan
Prior art keywords
expander
refrigerant
phase change
refrigeration apparatus
condensable gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008523099A
Other languages
Japanese (ja)
Other versions
JP2009503420A (en
Inventor
マ・イタイ
リ・ミンシャ
ス・ウェイチェン
寛 長谷川
大 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Publication of JP2009503420A publication Critical patent/JP2009503420A/en
Application granted granted Critical
Publication of JP4652449B2 publication Critical patent/JP4652449B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Description

本発明は冷凍装置に関し、特に冷媒の膨張エネルギーを回収する膨張機を備えた冷凍装置に関する。   The present invention relates to a refrigeration apparatus, and more particularly to a refrigeration apparatus including an expander that recovers expansion energy of a refrigerant.

近年、冷凍サイクルの効率をさらに向上させるために、動力回収型冷凍サイクルが提案されている。特許文献1によれば、膨張機を使用して、冷媒の膨張仕事を回収することにより圧縮機の入力を低減している。動力回収型冷凍サイクルに使用される膨張機は、例えば特許文献2に開示されている。   In recent years, a power recovery type refrigeration cycle has been proposed in order to further improve the efficiency of the refrigeration cycle. According to Patent Document 1, the input of the compressor is reduced by using the expander to recover the expansion work of the refrigerant. An expander used for a power recovery type refrigeration cycle is disclosed in Patent Document 2, for example.

図4は、特許文献1に記載された従来の冷凍装置を示しており、圧縮機1とガス冷却器(あるいは放熱器)2と膨張機(あるいは膨張装置)3と蒸発器5とを備え、これらが直列に接続されて冷凍サイクルを形成している。膨張機3は発電機4に連結されている。圧縮機1は回転式電動機や走行用エンジン等の駆動手段(図示せず)により駆動される。冷媒は、圧縮機1において常温低圧から高温高圧へと圧縮された後、ガス冷却器2において常温高圧へと冷却される。その後、冷媒は膨張機3において低温低圧へと膨張した後、蒸発器4で常温まで加熱され、再び圧縮機1に戻る。膨張機3では、冷媒の膨張仕事を回収して発電機4を駆動し、電力を発生させる。   FIG. 4 shows a conventional refrigeration apparatus described in Patent Document 1, which includes a compressor 1, a gas cooler (or radiator) 2, an expander (or expansion device) 3, and an evaporator 5. These are connected in series to form a refrigeration cycle. The expander 3 is connected to the generator 4. The compressor 1 is driven by driving means (not shown) such as a rotary electric motor or a traveling engine. The refrigerant is compressed from room temperature low pressure to high temperature high pressure in the compressor 1 and then cooled to room temperature high pressure in the gas cooler 2. Thereafter, the refrigerant expands to a low temperature and a low pressure in the expander 3, is then heated to normal temperature by the evaporator 4, and returns to the compressor 1 again. In the expander 3, the expansion work of the refrigerant is collected and the generator 4 is driven to generate electric power.

図5は、従来の冷凍装置のモリェル線図を示している。膨張機3において、冷媒は10msから20msの短時間で膨張するため断熱膨張するとみなすことができ、冷媒は等エントロピ線(c→d)に沿ってエンタルピを低下させていく。従って、膨張弁を用いて膨張仕事をさせることなく単純に等エンタルピ変化させる場合と比較して、膨張仕事△iexp分だけ蒸発器5における比エンタルピ差が増加し、冷凍能力を増大させることが可能となる。また、膨張機3は、発電機4に冷媒の膨張仕事△iexpから電力を発生させ、その電力を圧縮機1へ供給することにより圧縮機1の駆動に必要な電力を低減することができる。以上のように、蒸発器5の冷凍能力の増加と、圧縮機1の駆動電力の低減により、冷凍装置のCOP(成績係数)を向上させることができる。   FIG. 5 shows a Mollier diagram of a conventional refrigeration apparatus. In the expander 3, since the refrigerant expands in a short time of 10 ms to 20 ms, it can be regarded as adiabatic expansion, and the refrigerant decreases the enthalpy along the isentropic line (c → d). Therefore, the specific enthalpy difference in the evaporator 5 is increased by an amount corresponding to the expansion work Δiexp, and the refrigerating capacity can be increased, as compared with the case where the expansion valve is used to simply change the isenthalpy without causing expansion work. It becomes. Further, the expander 3 can reduce the electric power necessary for driving the compressor 1 by causing the generator 4 to generate electric power from the expansion work Δiexp of the refrigerant and supplying the electric power to the compressor 1. As described above, the COP (coefficient of performance) of the refrigeration apparatus can be improved by increasing the refrigerating capacity of the evaporator 5 and reducing the driving power of the compressor 1.

図5から明らかなように、冷凍装置に用いる膨張機3においては、入口cは単相、出口dは二相(気体−液体)の冷媒となるので、膨張過程において相変化が起こる。   As is clear from FIG. 5, in the expander 3 used in the refrigeration apparatus, the inlet c is a single-phase refrigerant and the outlet d is a two-phase (gas-liquid) refrigerant, so that a phase change occurs during the expansion process.

図6は、特許文献2の図9(b)に記載された従来の冷凍装置に用いる膨張機の作動室容積と圧力の関係を示すグラフである。膨張過程の前半は、非圧縮性流体に近い超臨界相あるいは液相冷媒(単相冷媒)が膨張するので、容積変化に対する圧力降下が大きいが、膨張過程の後半は、冷媒は圧力と温度を降下させながら液相から気相へと相変化を起こすことで大き<膨張するので、容積変化に対する圧力降下は小さい。   FIG. 6 is a graph showing the relationship between the working chamber volume and pressure of the expander used in the conventional refrigeration apparatus described in FIG. In the first half of the expansion process, the supercritical phase or liquid refrigerant (single-phase refrigerant) close to the incompressible fluid expands, so the pressure drop with respect to the volume change is large, but in the second half of the expansion process, the refrigerant Larger expansion is caused by causing a phase change from the liquid phase to the gas phase while lowering, so the pressure drop with respect to the volume change is small.

特開2000−329416号公報JP 2000-329416 A 特開2004−257303号公報JP 2004-257303 A

冷媒の相変化に関しては、図4の冷凍装置の蒸発器5に設けられた冷媒管の内部での核沸騰において、伝熱面から相変化が起こることや、伝熱面の表面形状や熱流束が相変化に影響することが一般的に知られている。しかしながら、膨張機3における冷媒の相変化は、図5の等エントロピ線に沿った断熱膨張の過程で起こるので、壁面からの熱流束が無く、かつ、作動室の壁面は流体損失や摺動損失低減のために滑らかに形成されているので、相変化は壁面からと同様に冷媒の内部からも起こる。流体の内部に気泡核を生むためには、飽和温度以上の温度となることによってエネルギーを蓄えた過熱液体が必要であり、過熱液体を生じる過程で相変化の遅れが生じていた。相変化の遅れが生じると、相変化に伴う冷媒の膨張率が小さくなるので、膨張機3で回収する冷媒の膨張仕事が減少するという課題が生じていた。   Regarding the phase change of the refrigerant, the phase change occurs from the heat transfer surface in the nucleate boiling inside the refrigerant tube provided in the evaporator 5 of the refrigeration apparatus in FIG. 4, the surface shape of the heat transfer surface and the heat flux. It is generally known that affects phase change. However, since the phase change of the refrigerant in the expander 3 occurs in the process of adiabatic expansion along the isentropic line in FIG. 5, there is no heat flux from the wall surface, and the wall surface of the working chamber has fluid loss and sliding loss. Since it is formed smoothly for reduction, the phase change occurs from the inside of the refrigerant as well as from the wall surface. In order to generate bubble nuclei inside the fluid, a superheated liquid that stores energy by becoming a temperature higher than the saturation temperature is required, and a phase change delay occurs in the process of generating the superheated liquid. When the phase change is delayed, the expansion coefficient of the refrigerant accompanying the phase change is reduced, and thus the problem that the expansion work of the refrigerant recovered by the expander 3 is reduced occurs.

本発明は上記課題を解決するためになされたものであり、相変化の遅れを防止することができる高効率の冷凍装置を提供することを目的としている。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a highly efficient refrigeration apparatus capable of preventing a phase change delay.

上記目的を達成するために、本発明に係る冷凍装置は、圧縮機と、ガス冷却器と、冷媒の膨張エネルギーを回収する膨張機と、蒸発器とを順次直列に接続して冷凍サイクルを形成する冷凍装置であって、前記膨張機の入口には網目状や棒状の流体撹拌部材が設けられており、冷媒を二酸化炭素とし、冷媒に非凝縮性気体として窒素を1重量%以下混入させたことを特徴とする。

In order to achieve the above object, a refrigeration apparatus according to the present invention forms a refrigeration cycle by sequentially connecting a compressor, a gas cooler, an expander that recovers refrigerant expansion energy, and an evaporator in series. The refrigerating apparatus is provided with a mesh-like or rod-like fluid stirring member at the inlet of the expander, and the refrigerant is carbon dioxide and the refrigerant is mixed with nitrogen as 1% by weight or less as a non-condensable gas. It is characterized by that.

この構成により、冷媒に混ぜられた非凝縮性気体が、膨張機の冷媒内部から相変化を起こすための気泡核となり、相変化遅れを防止することができるので、高効率の冷凍装置を提供することができる。   With this configuration, the non-condensable gas mixed in the refrigerant becomes a bubble nucleus for causing a phase change from the inside of the refrigerant of the expander, and a phase change delay can be prevented, thereby providing a highly efficient refrigeration apparatus. be able to.

非凝縮性気体の沸点は−40℃以下であるのが好ましい。本発明に係る冷凍装置を寒冷地における給湯、暖房用途に用いる場合でも、十分な余裕を以って非凝縮性気体を用いることができるので、相変化遅れを防止する効果を増大することができる。   The boiling point of the non-condensable gas is preferably −40 ° C. or lower. Even when the refrigeration apparatus according to the present invention is used for hot water supply and heating applications in cold regions, the non-condensable gas can be used with a sufficient margin, so that the effect of preventing phase change delay can be increased. .

非凝縮性気体を窒素とするのがよい。窒素は比較的に安価で容易に入手できる。   The non-condensable gas should be nitrogen. Nitrogen is relatively inexpensive and readily available.

また、非凝縮性気体の濃度を1重量%以下とするのがよい。   The concentration of the non-condensable gas is preferably 1% by weight or less.

冷凍装置には、膨張機の入口に流体撹拌部材を設けることもできる。流体撹拌部材は、冷媒に混じった非凝縮性気体の気泡を小さな気泡に分解し、相変化のための気泡核の数を増すように作用して、相変化遅れを防止する効果を増大する。   The refrigeration apparatus can be provided with a fluid stirring member at the inlet of the expander. The fluid stirring member acts to increase the number of bubble nuclei for phase change by decomposing non-condensable gas bubbles mixed in the refrigerant into small bubbles, thereby increasing the effect of preventing phase change delay.

冷媒を二酸化炭素とするのが好ましい。二酸化炭素を使用すると、冷凍装置の高低圧の差圧を大きくすることができるとともに、非凝縮性気体を使用することで、冷媒として二酸化炭素のみを使用した従来の冷凍装置で生じていた相変化遅れを防止することができる。   The refrigerant is preferably carbon dioxide. When carbon dioxide is used, the differential pressure between the high and low pressures of the refrigeration system can be increased, and by using a non-condensable gas, phase changes that have occurred in conventional refrigeration systems that use only carbon dioxide as a refrigerant. Delay can be prevented.

まず、図4の冷凍装置は従来のものとして記載しているが、これは本発明にも適用できるものである。すなわち、本発明に係る冷凍装置は、圧縮機1と、ガス冷却器あるいは放熱器2と、膨張機あるいは膨張装置3と、蒸発器5とを順次直列に接続して冷凍サイクルを形成している。本発明に係る冷凍装置はまた、膨張機3に連結された発電機4を備えている。本発明に係る冷凍装置は、非凝縮性気体を混ぜた冷媒を使用している点で従来の冷凍装置と相違している。   First, although the refrigeration apparatus of FIG. 4 is described as a conventional one, this can also be applied to the present invention. That is, in the refrigeration apparatus according to the present invention, the compressor 1, the gas cooler or the radiator 2, the expander or the expansion apparatus 3, and the evaporator 5 are sequentially connected in series to form a refrigeration cycle. . The refrigeration apparatus according to the present invention also includes a generator 4 connected to the expander 3. The refrigeration apparatus according to the present invention is different from the conventional refrigeration apparatus in that a refrigerant mixed with a non-condensable gas is used.

非凝縮性気体は、冷媒の状態(圧力及び温度)に関係なく常に気体の状態を維持する。ここで、非凝縮性気体とは、その凝縮温度が、冷凍装置運転中の冷媒が取りうる最低温度以下である物質と定義する。非凝縮性気体は、冷媒が液体の状態でも常に気体であるため、膨張機3において、非凝縮性気体は冷媒内部から相変化を起こすための気泡核となり、前述の相変化遅れ発生を防止することができる。なお、非凝縮性気体に求められる他の用件として、冷媒との反応性、冷媒への溶解度が共に非常に小さ<、冷媒への影響が無いことが望ましい。また、冷媒に混入する非凝縮性気体の量については、その量が多すぎると、冷媒の特性が劣化して冷凍サイクル性能の低下を引き起し、その量が少なすぎると、冷媒中に存在する気泡核が少なくなり相変化遅れの防止効果が小さくなる。したがって、非凝縮性気体は適切な量にする必要がある。   The non-condensable gas always maintains a gas state regardless of the refrigerant state (pressure and temperature). Here, the non-condensable gas is defined as a substance whose condensation temperature is equal to or lower than the lowest temperature that can be taken by the refrigerant during operation of the refrigeration apparatus. Since the non-condensable gas is always a gas even when the refrigerant is in a liquid state, in the expander 3, the non-condensable gas becomes a bubble nucleus for causing a phase change from the inside of the refrigerant, and prevents the above-described phase change delay from occurring. be able to. As other requirements for non-condensable gases, it is desirable that both the reactivity with the refrigerant and the solubility in the refrigerant are very small and there is no influence on the refrigerant. In addition, the amount of non-condensable gas mixed in the refrigerant is excessive when the amount of the non-condensable gas is deteriorated. The number of bubble nuclei is reduced, and the effect of preventing phase change delay is reduced. Therefore, the amount of noncondensable gas needs to be an appropriate amount.

<実施例>
冷凍サイクルを循環する冷媒を二酸化炭素とし、非凝縮性気体として窒素を1.0重量%混入した場合の実験を実施した。
<Example>
An experiment was conducted in the case where carbon dioxide was used as the refrigerant circulating in the refrigeration cycle and 1.0% by weight of nitrogen was mixed as a non-condensable gas.

窒素の大気圧における沸点は−195.8℃、3.4MPaでの臨界点は−147.0℃であり、一般的な冷凍サイクル中の二酸化炭素が取りうる−40℃以上の温度において、窒素は常に気体である。また、窒素の二酸化炭素に対する反応性、溶解度も非常に小さい。   The boiling point of nitrogen at atmospheric pressure is −195.8 ° C., the critical point at 3.4 MPa is −147.0 ° C., and the temperature of −40 ° C. or higher that carbon dioxide in a general refrigeration cycle can take is nitrogen. Is always a gas. In addition, the reactivity and solubility of nitrogen to carbon dioxide are very small.

実験は、図4の冷凍サイクルを用い、まず真空引きしたサイクルに、窒素を100g封入し、次に冷媒としての二酸化炭素を10kg封入した状態で行った。なお、膨張機3には、吸込み容積が11.8ccであるスウィング型膨張機を用いた。   The experiment was performed using the refrigeration cycle of FIG. 4 in a state where 100 g of nitrogen was first sealed in a vacuum-evacuated cycle and then 10 kg of carbon dioxide as a refrigerant was sealed. As the expander 3, a swing type expander having a suction volume of 11.8 cc was used.

図1乃至図3は実験結果を示すグラフである。図中、「NC−1有り」とは、1.0重量%の窒素を二酸化炭素に混入した場合を意味しており、「NC−1無し」とは、冷媒として純粋二酸化炭素を使用した場合を意味している。図1において、横軸は膨張機3に接続した負荷量(W)を示しており、縦軸は膨張機3の回転速度(rpm)を示している。例えば、膨張機3の回転速度を1800rpm付近に設定すると、「NC−1有り」は、負荷を200Wから300Wに向上させることができる。また、膨張機3の回転速度を900rpm付近に設定した場合も、「NC−1有り」は、負荷を900Wから1000Wに向上させることができる。すなわち、図1のグラフは、1.0重量%の窒素の添加により膨張機3に連結された発電機4の発電電力が向上したことを示している。   1 to 3 are graphs showing experimental results. In the figure, “with NC-1” means that 1.0% by weight of nitrogen is mixed in carbon dioxide, and “without NC-1” means that pure carbon dioxide is used as a refrigerant. Means. In FIG. 1, the horizontal axis indicates the load amount (W) connected to the expander 3, and the vertical axis indicates the rotational speed (rpm) of the expander 3. For example, when the rotation speed of the expander 3 is set to around 1800 rpm, “with NC-1” can increase the load from 200 W to 300 W. Further, even when the rotation speed of the expander 3 is set to around 900 rpm, “with NC-1” can improve the load from 900 W to 1000 W. That is, the graph of FIG. 1 shows that the generated power of the generator 4 connected to the expander 3 is improved by the addition of 1.0 wt% nitrogen.

図2は、膨張機3の入口の二酸化炭素の温度と膨張機3の効率との関係を示すグラフである。このグラフは、1.0重量%の窒素の添加により、実験した温度域のすべてにおいて、膨張機3の効率が向上していることを示している。   FIG. 2 is a graph showing the relationship between the temperature of carbon dioxide at the inlet of the expander 3 and the efficiency of the expander 3. This graph shows that the addition of 1.0 wt% nitrogen improves the efficiency of the expander 3 in the entire temperature range tested.

図3は、膨張機3の入口の二酸化炭素の温度と冷凍サイクルのCOPとの関係を示すグラフである。COPは、蒸発器5で得る熱量と、膨張機3での電力回収を差引いて圧縮機1に投入した電力の比で定義される成績係数であり、この値が大きいほうが冷凍サイクルの効率が高い。図3は、1.0重量%の窒素の添加により、実験した温度域のすべてにおいて、COPが向上し、冷凍サイクルの効率が向上していることを示している。別の実験によれば、冷媒への1.0重量%あるいはそれ以下の窒素の添加が好ましい。   FIG. 3 is a graph showing the relationship between the temperature of carbon dioxide at the inlet of the expander 3 and the COP of the refrigeration cycle. COP is a coefficient of performance defined by the ratio of the amount of heat obtained by the evaporator 5 and the power supplied to the compressor 1 after subtracting the power recovery in the expander 3, and the larger this value, the higher the efficiency of the refrigeration cycle. . FIG. 3 shows that the addition of 1.0 wt% nitrogen improves COP and improves the efficiency of the refrigeration cycle in the entire temperature range tested. According to another experiment, the addition of 1.0 wt% or less nitrogen to the refrigerant is preferred.

以上から明らかなように、冷媒に非凝縮性気体を混入することにより、膨張機効率を向上させ、かつ冷凍サイクルのCOPを向上させることが可能となる。   As is apparent from the above, it is possible to improve the expander efficiency and improve the COP of the refrigeration cycle by mixing the non-condensable gas into the refrigerant.

なお、上述した実施の形態では、膨張機3は発電機4に連結される構成としたが、膨張機3のシャフト(図示せず)と圧縮機1のシャフト(図示せず)とが軸方向に一致するように連結されている構成であってもよい。   In the above-described embodiment, the expander 3 is connected to the generator 4. However, the shaft (not shown) of the expander 3 and the shaft (not shown) of the compressor 1 are axial. The structure connected so that it may correspond to may be sufficient.

また、膨張機3の入口に、網目状や棒状の流体撹拌部材を挿入しておいてもよい。流体撹拌部材により、冷媒に混入した非凝縮性気体の気泡を小さな気泡に分解し、相変化のための気泡核の数を増すことで、相変化遅れを防止する効果を増し、高効率の冷凍装置を提供することができる。   Further, a mesh-like or rod-like fluid stirring member may be inserted at the inlet of the expander 3. The fluid agitation member breaks the non-condensable gas bubbles mixed in the refrigerant into small bubbles, increasing the number of bubble nuclei for phase change, increasing the effect of preventing phase change delay, and highly efficient refrigeration An apparatus can be provided.

なお、上述した実施の形態では、膨張機3にスウィング型膨張機を用いたが、スクロール型、ローリングピストン型、スライディングベーン型等、他の容積型膨張機を備える構成としてもよい。   In the above-described embodiment, a swing type expander is used as the expander 3, but other positive displacement expanders such as a scroll type, a rolling piston type, and a sliding vane type may be provided.

また、非凝縮性気体は窒素に限定されるものではなく、アルゴン、ネオンといった希ガス等を用いてもよい。   The non-condensable gas is not limited to nitrogen, and a rare gas such as argon or neon may be used.

本発明を添付した図面を参照して具体例を元に十分記載したが、当業者には様々な変形例も理解できるところである。したがって、そのような変形例が本発明の精神と範囲から逸脱することがなければ、それらは本発明に含まれるものである。   Although the present invention has been sufficiently described based on specific examples with reference to the accompanying drawings, various modifications can be understood by those skilled in the art. Accordingly, unless such modifications depart from the spirit and scope of the present invention, they are intended to be included in the present invention.

本発明に係る冷凍装置は冷凍装置や冷蔵装置に限定されるものではなく、一般空調機や給湯器用ヒートポンプ装置に適用することが可能である。   The refrigeration apparatus according to the present invention is not limited to a refrigeration apparatus or a refrigeration apparatus, and can be applied to a general air conditioner or a heat pump for a water heater.

膨張機に加わる負荷と膨張機の回転速度との関係を示すグラフA graph showing the relationship between the load applied to the expander and the rotation speed of the expander 膨張機入口の二酸化炭素の温度と膨張機効率との関係を示すグラフGraph showing the relationship between the carbon dioxide temperature at the inlet of the expander and the expander efficiency 膨張機入口の二酸化炭素の温度と冷凍サイクルのCOPとの関係を示すグラフGraph showing the relationship between the temperature of carbon dioxide at the expander inlet and the COP of the refrigeration cycle 本発明に係る冷凍装置と従来の冷凍装置の概略図Schematic of refrigeration apparatus according to the present invention and a conventional refrigeration apparatus 従来の冷凍装置のモリエル線図Mollier diagram of conventional refrigeration equipment 従来の冷凍装置に用いる膨張機の作動室容積と圧力の関係を示すグラフGraph showing the relationship between the working chamber volume and pressure of an expander used in a conventional refrigeration system

符号の説明Explanation of symbols

1 圧縮機
2 ガス冷却器
3 膨張機
4 発電機
5 蒸発器
DESCRIPTION OF SYMBOLS 1 Compressor 2 Gas cooler 3 Expander 4 Generator 5 Evaporator

Claims (1)

圧縮機と、ガス冷却器と、冷媒の膨張エネルギーを回収する膨張機と、蒸発器とを順次直列に接続して冷凍サイクルを形成する冷凍装置であって、
前記膨張機の入口には網目状や棒状の流体撹拌部材が設けられており、
冷媒を二酸化炭素とし、冷媒に非凝縮性気体として窒素を1重量%以下混入させたことを特徴とする冷凍装置。
A compressor, a gas cooler, an expander that recovers expansion energy of a refrigerant, and an evaporator are sequentially connected in series to form a refrigeration cycle,
The inlet of the expander is provided with a mesh-like or rod-like fluid stirring member,
A refrigerating apparatus characterized in that the refrigerant is carbon dioxide and nitrogen is mixed in the refrigerant as a non-condensable gas in an amount of 1% by weight or less.
JP2008523099A 2005-07-28 2005-07-28 Refrigeration equipment Expired - Fee Related JP4652449B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2005/001142 WO2007012225A1 (en) 2005-07-28 2005-07-28 Refrigerating apparatus

Publications (2)

Publication Number Publication Date
JP2009503420A JP2009503420A (en) 2009-01-29
JP4652449B2 true JP4652449B2 (en) 2011-03-16

Family

ID=37682981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008523099A Expired - Fee Related JP4652449B2 (en) 2005-07-28 2005-07-28 Refrigeration equipment

Country Status (3)

Country Link
JP (1) JP4652449B2 (en)
CN (1) CN101228400B (en)
WO (1) WO2007012225A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130263606A1 (en) * 2010-10-14 2013-10-10 Chubu University Educational Foundation Current lead device
CN103184906B (en) * 2011-12-31 2016-06-29 新奥科技发展有限公司 The method of energy supply and device
CN104101122B (en) * 2013-05-27 2018-05-15 摩尔动力(北京)技术股份有限公司 Big temperature difference air conditioner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003156265A (en) * 2001-09-06 2003-05-30 Sekisui Chem Co Ltd Heat pump system
JP2004212006A (en) * 2003-01-08 2004-07-29 Daikin Ind Ltd Freezing device
JP2005098604A (en) * 2003-09-25 2005-04-14 Mitsubishi Electric Corp Refrigerating air conditioner

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4175400A (en) * 1977-02-18 1979-11-27 The Rovac Corporation Air conditioning system employing non-condensing gas with accumulator for pressurization and storage of gas
DE4302474C2 (en) * 1993-01-29 1998-04-02 Hochhaus Karl Heinz Dr Ing Food storage device
CN1113205C (en) * 1996-01-26 2003-07-02 康维克塔股份公司 Compressor refrigerating plant
NO20014258D0 (en) * 2001-09-03 2001-09-03 Sinvent As Cooling and heating system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003156265A (en) * 2001-09-06 2003-05-30 Sekisui Chem Co Ltd Heat pump system
JP2004212006A (en) * 2003-01-08 2004-07-29 Daikin Ind Ltd Freezing device
JP2005098604A (en) * 2003-09-25 2005-04-14 Mitsubishi Electric Corp Refrigerating air conditioner

Also Published As

Publication number Publication date
CN101228400A (en) 2008-07-23
WO2007012225A1 (en) 2007-02-01
CN101228400B (en) 2010-05-12
JP2009503420A (en) 2009-01-29

Similar Documents

Publication Publication Date Title
US6698234B2 (en) Method for increasing efficiency of a vapor compression system by evaporator heating
JP6150140B2 (en) Heat exchange device and heat pump device
JP6494659B2 (en) How to operate the cooler
JP2007212112A (en) Hermetic turbo-compression refrigerating machine
JP2007178072A (en) Air conditioner for vehicle
JP2009270745A (en) Refrigerating system
JP2006292229A (en) Co2 refrigeration cycle device and supercritical refrigeration operation method therefor
JP4680644B2 (en) A cycle system incorporating a multistage ejector into a heat pump for cold regions using a refrigerant mixture of dimethyl ether and carbon dioxide
JP4442237B2 (en) Air conditioner
US6647742B1 (en) Expander driven motor for auxiliary machinery
JP2009300001A (en) Refrigerating cycle device
JP4652449B2 (en) Refrigeration equipment
JP4622193B2 (en) Refrigeration equipment
JP2008039237A (en) Refrigeration cycle device
JP2004077119A (en) Supercritical refrigeration system
JP4273898B2 (en) Refrigeration air conditioner
JP2009257705A (en) Refrigerating apparatus
JP2007147211A (en) Control method for refrigerating cycle device and refrigerating cycle device using the same
JP2007183078A (en) Refrigerating machine and refrigerating device
JP2007147211A5 (en)
JP2006125790A (en) Air conditioner
Baek et al. Effect of pressure ratios across compressors on the performance of the transcritical carbon dioxide cycle with two-state compression and intercooling
JP6091077B2 (en) Refrigeration equipment
JP2009236430A (en) Compression type refrigerating machine and its capacity control method
JP2006071257A (en) Refrigeration cycle device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101020

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees