JP4650050B2 - Method for electrically installing electronic parts and method for manufacturing liquid crystal display elements - Google Patents

Method for electrically installing electronic parts and method for manufacturing liquid crystal display elements Download PDF

Info

Publication number
JP4650050B2
JP4650050B2 JP2005091642A JP2005091642A JP4650050B2 JP 4650050 B2 JP4650050 B2 JP 4650050B2 JP 2005091642 A JP2005091642 A JP 2005091642A JP 2005091642 A JP2005091642 A JP 2005091642A JP 4650050 B2 JP4650050 B2 JP 4650050B2
Authority
JP
Japan
Prior art keywords
electronic component
anisotropic conductive
conductive adhesive
installation
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005091642A
Other languages
Japanese (ja)
Other versions
JP2006278442A (en
Inventor
修一 石堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2005091642A priority Critical patent/JP4650050B2/en
Publication of JP2006278442A publication Critical patent/JP2006278442A/en
Application granted granted Critical
Publication of JP4650050B2 publication Critical patent/JP4650050B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Liquid Crystal (AREA)
  • Wire Bonding (AREA)

Description

本発明は、電子部品の導通設置方法及び液晶表示素子の製造方法に関する。 The present invention relates to a conduction installation method for an electronic component and a method for manufacturing a liquid crystal display element .

従来、例えば液晶表示素子において、各電極から引き出されたリード配線のパターンが形成されたガラス基板端部に、液晶駆動用LSIチップと信号電圧供給用のフレキシブル配線基板を導通設置する場合、異方性導電接着材が用いられている。   Conventionally, for example, in a liquid crystal display element, when a liquid crystal driving LSI chip and a flexible wiring substrate for supplying signal voltage are electrically connected to the end of a glass substrate on which a lead wiring pattern led out from each electrode is formed, Conductive adhesive is used.

この場合、通常、LSIチップとフレキシブル配線基板とは、それぞれの接続端子のピッチが異なるから、それぞれの接続端子ピッチに適した異方性導電接着材が用いられる。そのため、特許文献1に示されるように、LSIチップとフレキシブル配線基板には、個々に異方性導電接着材が配置されている。
特開2002−244151号公報
In this case, since the LSI chip and the flexible wiring board usually have different connecting terminal pitches, an anisotropic conductive adhesive suitable for each connecting terminal pitch is used. Therefore, as shown in Patent Document 1, anisotropic conductive adhesives are individually arranged on the LSI chip and the flexible wiring board.
JP 2002-244151 A

しかし、搭載する電子部品ごとに別個の異方性導電接着材を配置する場合、それぞれの部品搭載工程において逐一位置合わせを行って異方性導電接着材を配置することになるため、製造工数がその分アップする。また、個々の異方性導電接着材毎に配置誤差や熱圧着の際の延び代を見込む必要があるため、複数の異方性導電接着材を配置する合計スペースが大きくなり、適用製品の小型化に不利である。特に、携帯端末機器のディスプレイとして用いられる液晶表示素子の場合、小型薄型化に対する要求が極めて厳しく、異方性導電接着材の配置スペースを縮小することが強く求められていた。   However, when a separate anisotropic conductive adhesive is disposed for each electronic component to be mounted, the anisotropic conductive adhesive is disposed by performing the alignment step by step in each component mounting step, and therefore the number of manufacturing steps is reduced. I will increase that much. In addition, since it is necessary to allow for the placement error and the extension allowance during thermocompression bonding for each anisotropic conductive adhesive, the total space for placing multiple anisotropic conductive adhesives becomes large, and the size of the applied product becomes small. It is disadvantageous for conversion. In particular, in the case of a liquid crystal display element used as a display of a portable terminal device, the demand for miniaturization and thinning is extremely severe, and it has been strongly demanded to reduce the arrangement space of the anisotropic conductive adhesive.

本発明の目的は、異方性導電接着材の配置スペースが縮小されると共に電子部品の導通設置に要する工数が大幅に低減され、適用製品の小型化及びコストダウンが顕著に促進される電子部品の導通設置方法及び液晶表示素子の製造方法を提供することである。 An object of the present invention, an electronic component number of steps required for conducting the installation of the electronic components with the arrangement space of the anisotropic conductive adhesive is reduced is greatly reduced, size and cost of application products is remarkably promoted It is providing the conduction | electrical_connection installation method of this, and the manufacturing method of a liquid crystal display element .

本発明の電子部品の導通設置方法は、第1の電子部品と第2の電子部品とを配線パターンが形成された回路基板上の所定の設置領域に異方性導電接着シートを介して設置する電子部品の導通設置方法であって、前記設置領域よりも広い面積の支持面を有した受け台に、前記回路基板の下面のうち少なくとも前記設置領域に対応する全領域が前記支持面に接触する第1の状態になるように、前記回路基板を載置し、且つ、前記回路基板上の前記設置領域に1枚膜状の前記異方性導電接着シートを載置するとともに前記異方性導電接着シート上の第1の領域に前記第1の電子部品を載置する第1の工程と、前記第1の工程よりも後に、前記第1の状態で前記第1の電子部品を加熱しながら前記回路基板に向けて加圧することによって前記第1の電子部品を導通設置する第2の工程と、前記第2の工程よりも後に、前記異方性導電接着シート上の第2の領域に載置された前記第2の電子部品を加熱しながら前記回路基板に向けて加圧することによって前記第2の電子部品を導通設置する第3の工程と、を有することを特徴とする。 According to the electrical component conduction installation method of the present invention, the first electronic component and the second electronic component are installed in a predetermined installation region on a circuit board on which a wiring pattern is formed via an anisotropic conductive adhesive sheet. An electronic component conducting installation method comprising: a cradle having a support surface having a larger area than the installation area; and at least an entire area corresponding to the installation area of the lower surface of the circuit board contacts the support surface. The circuit board is placed so as to be in the first state, and the anisotropic conductive adhesive sheet in the form of a single film is placed on the installation area on the circuit board and the anisotropic conductive film is placed. A first step of placing the first electronic component in a first region on the adhesive sheet, and heating the first electronic component in the first state after the first step The first electric power is applied by applying pressure to the circuit board. A second step of conducting installation parts, the later than the second step, the anisotropic conductive placed in the second region on the adhesive sheet was the second electronic component while heating said circuit And a third step of conducting and installing the second electronic component by pressurizing the substrate toward the substrate.

本発明の液晶表示素子の製造方法は、液晶駆動用のLSIチップと前記LSIチップに信号電圧を供給するためのフレキシブル配線基板とを配線パターンが形成された第1の基板上の所定の設置領域に異方性導電接着シートを介して設置する液晶表示素子の製造方法であって、前記設置領域よりも広い面積の支持面を有した受け台に、前記第1の基板の下面のうち少なくとも前記設置領域に対応する全領域が前記支持面に接触する第1の状態になるように、前記第1の基板を載置し、且つ、前記第1の基板上の前記設置領域に1枚膜状の前記異方性導電接着シートを載置するとともに前記異方性導電接着シート上の第1の領域に前記LSIチップを載置する第1の工程と、前記第1の工程よりも後に、前記第1の状態で前記LSIチップを加熱しながら前記第1の基板に向けて加圧することによって前記LSIチップを導通設置する第2の工程と、前記第2の工程よりも後に、前記異方性導電接着シート上の第2の領域に載置された前記フレキシブル配線基板を加熱しながら前記回路基板に向けて加圧することによって前記フレキシブル配線基板を導通設置する第3の工程と、を有することを特徴とする。 The method for manufacturing a liquid crystal display element according to the present invention includes a predetermined installation area on a first substrate on which a wiring pattern is formed between an LSI chip for driving liquid crystal and a flexible wiring substrate for supplying a signal voltage to the LSI chip. The liquid crystal display element is installed through an anisotropic conductive adhesive sheet on a cradle having a support surface having a larger area than the installation region, and at least the lower surface of the first substrate The first substrate is placed so that the entire region corresponding to the installation region is in a first state in contact with the support surface, and one film is formed in the installation region on the first substrate. A first step of placing the anisotropic conductive adhesive sheet and placing the LSI chip in a first region on the anisotropic conductive adhesive sheet, and after the first step, Add the LSI chip in the first state A second step of installing conduct the LSI chip by pressing toward the first substrate while, later than the second step, the second area on the anisotropic conductive adhesive sheet And a third step of conducting and installing the flexible wiring board by applying pressure to the circuit board while heating the mounted flexible wiring board.

本発明によれば、異方性導電接着材の配置スペースが縮小されると共に電子部品の導通設置に要する工数が大幅に低減され、適用製品の小型化及びコストダウンを顕著に促進することができる。According to the present invention, the arrangement space for the anisotropic conductive adhesive is reduced and the number of man-hours required for the conductive installation of the electronic component is greatly reduced, and the downsizing and cost reduction of the applied product can be significantly promoted. .

図1は本発明の一実施形態としての液晶表示素子を示す平面図で、図2はその要部をII−II線で切断して示す模式的部分断面図である。   FIG. 1 is a plan view showing a liquid crystal display device according to an embodiment of the present invention, and FIG. 2 is a schematic partial cross-sectional view showing a main part cut along a line II-II.

本実施形態の液晶表示素子は、図1に示されるように、平面外形が長方形をなす一対のガラス基板1、2が、枠状シール材3により所定の間隙を保ち接合されている。これら一対のガラス基板1、2は大きさが異なっており、大きい方のガラス基板1の一方の長辺側端部1aを他方の小ガラス基板2の対応する端面よりもそれぞれ適長突出させて、接合されている。   In the liquid crystal display element of this embodiment, as shown in FIG. 1, a pair of glass substrates 1 and 2 having a rectangular planar outer shape are joined together with a frame-shaped sealing material 3 with a predetermined gap. The pair of glass substrates 1 and 2 are different in size, and one long side end 1a of the larger glass substrate 1 is protruded from the corresponding end surface of the other small glass substrate 2 by an appropriate length. Are joined.

図2に示されるように、接合された一対のガラス基板1、2の各対向面(内面)には、それぞれ、電極4、5が配設され、それら一対のガラス基板1、2間の枠状シール材3で囲まれた空間には、液晶6が封入されている。それら電極4、5が液晶6を介して対向する領域が画素となり、それら複数の画素が所定の配列で配置されて表示領域Dd(図1参照)が形成されている。   As shown in FIG. 2, electrodes 4 and 5 are disposed on the opposing surfaces (inner surfaces) of the pair of glass substrates 1 and 2, respectively, and a frame between the pair of glass substrates 1 and 2. Liquid crystal 6 is sealed in the space surrounded by the sealing material 3. A region where the electrodes 4 and 5 are opposed to each other with the liquid crystal 6 is a pixel, and the plurality of pixels are arranged in a predetermined arrangement to form a display region Dd (see FIG. 1).

大ガラス基板1の突出部1aには、両ガラス基板1、2の各電極4、5から引き出されたリード配線7、8が、所定のパターンで引き回し配設されている。   On the protruding portion 1a of the large glass substrate 1, lead wirings 7 and 8 led out from the electrodes 4 and 5 of the glass substrates 1 and 2 are arranged in a predetermined pattern.

そして、各電極4、5に信号電圧を供給して液晶を駆動する1個のドライバチップ9と、これに信号電圧を入力するためのフレキシブル配線基板10が、それぞれ、突出部1aの所定位置に導通設置されている。   Then, one driver chip 9 that supplies a signal voltage to each of the electrodes 4 and 5 to drive the liquid crystal, and a flexible wiring board 10 for inputting the signal voltage to the driver chip 9 are respectively provided at predetermined positions on the protruding portion 1a. Conductive installation.

ドライバチップ9とフレキシブル配線基板10は、前記大ガラス基板1の突出部1aにおける前記ドライバチップ9の接続領域と、前記フレキシブル配線基板10の接続領域とを覆う大きさの1枚の異方性導電接着材11により、リード配線7、8及び入力配線12と導通接続されている。異方性導電接着材11は絶縁性樹脂基材11a中に導電性粒子11bを分散混合させてフィルム状に形成され、本実施形態では絶縁性樹脂基材11aとして熱硬化性のエポキシ樹脂を用い、これに樹脂粒子の表面にニッケル膜をコーティングしてなる導電性粒子11bが分散混合されている。   The driver chip 9 and the flexible wiring board 10 are one piece of anisotropic conductive material having a size covering the connection area of the driver chip 9 and the connection area of the flexible wiring board 10 in the protruding portion 1 a of the large glass substrate 1. The lead wires 7 and 8 and the input wires 12 are conductively connected by the adhesive 11. The anisotropic conductive adhesive 11 is formed into a film by dispersing and mixing the conductive particles 11b in the insulating resin substrate 11a. In this embodiment, a thermosetting epoxy resin is used as the insulating resin substrate 11a. In addition, conductive particles 11b formed by coating the surfaces of the resin particles with a nickel film are dispersed and mixed.

ドライバチップ9では、チップ本体の底面に複数の端子電極9aが20μmピッチで配設されている。これら端子電極9aは、ドライバチップ9の入力側と出力側とで千鳥配置で突設されている。   In the driver chip 9, a plurality of terminal electrodes 9a are arranged at a pitch of 20 μm on the bottom surface of the chip body. These terminal electrodes 9 a are provided in a staggered manner on the input side and output side of the driver chip 9.

また、フレキシブル配線基板10は、ポリイミド樹脂フィルム等からなるベースシート10aの表面に銅箔からなる複数のストライプ配線10bが200μmのピッチで平行に配設されてなり、従って、ストライプ配線の端部に形成されている接続端子部(不図示)も200μmのピッチで並設されている。   The flexible wiring board 10 has a plurality of striped wirings 10b made of copper foil arranged in parallel at a pitch of 200 μm on the surface of a base sheet 10a made of a polyimide resin film or the like. The formed connection terminal portions (not shown) are also juxtaposed at a pitch of 200 μm.

ここで、本発明においては、上述した異方性導電接着材11として、導電性粒子11bの平均粒径がドライバチップ9における端子電極9aのピッチの1/4以下であって、好ましくは1/5以下、に調製されたものが用いられる。本実施形態においては、端子電極9aのピッチが20μmのドライバチップ9に対して、導電性粒子11bの平均粒径が4μmの異方性導電接着材11が用いられている。   Here, in the present invention, as the anisotropic conductive adhesive 11 described above, the average particle diameter of the conductive particles 11b is 1/4 or less of the pitch of the terminal electrodes 9a in the driver chip 9, and preferably 1 / Those prepared in 5 or less are used. In the present embodiment, the anisotropic conductive adhesive 11 in which the average particle diameter of the conductive particles 11b is 4 μm is used for the driver chip 9 in which the pitch of the terminal electrodes 9a is 20 μm.

上述の異方性導電接着材11を用いることにより、ドライバチップ9及びフレキシブル配線基板10の双方において適正な導通接続構造が得られる。すなわち、ドライバチップ9における端子電極9aのピッチは20μmと小さいが、異方性導電接着材11の導電性粒子11bの平均粒径がその1/5の4μmと充分に小さいから、隣接端子電極9a間の絶縁性が充分に確保されると共に各端子電極9aと対応するリード配線の接続端子とが確実に導電接続される。なお、フレキシブル配線基板10における配線10bのピッチは200μm、各配線幅が100μmであり、共に導電性粒子11bの平均粒径よりも充分に大きいから、隣接配線間の絶縁性及び各配線10aと対応する入力配線12間の導通性は共に充分に確保される。   By using the anisotropic conductive adhesive 11 described above, an appropriate conductive connection structure can be obtained in both the driver chip 9 and the flexible wiring board 10. That is, although the pitch of the terminal electrodes 9a in the driver chip 9 is as small as 20 μm, the average particle diameter of the conductive particles 11b of the anisotropic conductive adhesive 11 is sufficiently small as 4 μm, which is 1/5, so that the adjacent terminal electrodes 9a Insulation between them is sufficiently ensured, and each terminal electrode 9a and the corresponding lead wiring connection terminal are securely conductively connected. In addition, since the pitch of the wiring 10b in the flexible wiring board 10 is 200 μm and the width of each wiring is 100 μm, both of which are sufficiently larger than the average particle diameter of the conductive particles 11b, the insulation between adjacent wirings and the correspondence with each wiring 10a. Both of the electrical continuity between the input wirings 12 are sufficiently secured.

また、ドライバチップ9とフレキシブル配線基板10に対して個々に異方性導電接着材を配置する場合は、ドライバチップ9とフレキシブル配線基板10間の間隔dをそれぞれの異方性導電接着材の配置ずれを見込んだ寸法とする必要があるが、本発明においては個々の異方性導電接着材を1枚の異方性導電接着材11に一体化したから、前記間隔dは、異方性導電接着材の配置ずれを考慮する必要がなく、熱圧着の際に食み出す異方性導電接着材を各電子部品の設置精度に悪影響を及ぼさない程度に吸収できる寸法が確保されておればよい。従って、本実施形態の液晶表示素子のガラス基板1の大きさは、隣接する電子部品つまりドライバチップ9とフレキシブル配線基板10間の間隔dが異方性導電接着材11の配置ずれを考慮する必要がない分だけ短縮される。本実施形態における前記短縮代は、0.4mmであり、その結果、液晶表示素子の小型化が0.4mmだけ促進される。   Further, when the anisotropic conductive adhesive is individually arranged on the driver chip 9 and the flexible wiring board 10, the distance d between the driver chip 9 and the flexible wiring board 10 is set to the arrangement of the anisotropic conductive adhesives. Although it is necessary to make the dimensions to allow for the deviation, in the present invention, since the individual anisotropic conductive adhesives are integrated into one anisotropic conductive adhesive 11, the distance d is equal to the anisotropic conductive adhesive. It is not necessary to consider the misalignment of the adhesive, and it is only necessary to secure dimensions that can absorb the anisotropic conductive adhesive that protrudes during thermocompression bonding without adversely affecting the installation accuracy of each electronic component. . Therefore, the size of the glass substrate 1 of the liquid crystal display element of the present embodiment is such that the distance d between adjacent electronic components, that is, the driver chip 9 and the flexible wiring substrate 10 needs to take into account the displacement of the anisotropic conductive adhesive 11. It will be shortened by the absence of The shortening allowance in the present embodiment is 0.4 mm, and as a result, downsizing of the liquid crystal display element is promoted by 0.4 mm.

つぎに、本実施形態の液晶表示素子の製造方法における熱圧着工程とそれに用いる装置について、図3(a)、(b)に基づき説明する。なお、上記実施形態と同一の構成要素については同一の符号を付して、その説明を省略する。   Next, the thermocompression bonding step and the apparatus used therefor in the method for manufacturing the liquid crystal display element of this embodiment will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected about the component same as the said embodiment, and the description is abbreviate | omitted.

まず、液晶表示素子におけるリード配線7、8(図2参照)及びそれらの接続端子が配設されたガラス基板突出部1aの所定位置に、前記ドライバチップ9の接続領域と、前記フレキシブル配線基板10の接続領域とを覆う形状に形成された異方性導電接着材11を配置する。次いで、異方性導電接着材11上の所定位置にドライバチップ9を位置合わせを行いつつ載置する。   First, the connection area of the driver chip 9 and the flexible wiring board 10 are arranged at predetermined positions on the glass substrate protruding portion 1a where the lead wirings 7 and 8 (see FIG. 2) and their connection terminals in the liquid crystal display element are arranged. An anisotropic conductive adhesive 11 formed in a shape covering the connection region is disposed. Next, the driver chip 9 is placed at a predetermined position on the anisotropic conductive adhesive 11 while being aligned.

次に、異方性導電接着材11とドライバチップ9が配置された液晶表示素子の突出部1aを、図3に示すように、受け台31上に位置合わせしつつ載置する。ここで、受け台31は、その支持面31aがドライバチップ9の搭載エリアAcだけでなくフレキシブル配線基板10の搭載エリアAfをも含む面積を備えている。そして、受け台31は、熱伝導係数の大きい材料である酸化アルミニウムで形成されている。 Next, the protruding portion 1a of the liquid crystal display element on which the anisotropic conductive adhesive 11 and the driver chip 9 are disposed is placed while being aligned on the cradle 31, as shown in FIG. Here, the support 31 has an area in which the support surface 31 a includes not only the mounting area Ac of the driver chip 9 but also the mounting area Af of the flexible wiring board 10. The cradle 31 is made of aluminum oxide, which is a material having a large thermal conductivity coefficient.

受け台31に支持されたガラス基板1の突出部1aに対してその上方から熱圧着ヘッド32が下降する。熱圧着ヘッド32は、先端面32aをドライバチップ9の上面に当接させ、これを加熱しつつ加圧する。この場合、熱圧着ヘッド32の先端面32aを210℃に加熱し、600kgf/Cm2 の圧力で4.5秒間加圧する。これにより、図2に示されるように、複数の導電性粒子11bが端子電極9aの先端面とそれに対応するリード配線7、8の接続端子部表面との間に挟圧されて適度に押し潰された状態となり、この状態はエポキシ樹脂等の熱硬化性樹脂からなる絶縁樹脂基材11aが硬化することにより保持される。その結果、各端子電極9aが互いにショートすることなく対応するリード配線7、8の接続端子部に導電性粒子11bを介して確実に導通接続され、ドライバチップ9が突出部1aの所定位置にCOG方式により適正に導通設置される。 The thermocompression bonding head 32 descends from above the protrusion 1a of the glass substrate 1 supported by the cradle 31. The thermocompression bonding head 32 abuts the front end surface 32a on the upper surface of the driver chip 9, and pressurizes the same while heating it. In this case, the front end surface 32a of the thermocompression bonding head 32 is heated to 210 ° C. and pressurized with a pressure of 600 kgf / Cm 2 for 4.5 seconds. As a result, as shown in FIG. 2, the plurality of conductive particles 11b are pressed between the front end surface of the terminal electrode 9a and the corresponding connecting terminal portion surfaces of the lead wires 7 and 8, and are appropriately crushed. This state is maintained by curing the insulating resin substrate 11a made of a thermosetting resin such as an epoxy resin. As a result, the terminal electrodes 9a are securely connected to the connecting terminal portions of the corresponding lead wires 7 and 8 through the conductive particles 11b without short-circuiting each other, and the driver chip 9 is COG at a predetermined position of the protruding portion 1a. It is installed properly by the system.

ここで、熱圧着ヘッド32の先端面32aからドライバチップ9を経て異方性導電接着材11のチップ搭載エリアAcに伝導された熱は、さらにガラス基板1へも伝導される。ガラス基板1に伝導された熱は、さらにその厚さ方向及び面方向に伝わって行く。面方向に伝わった熱は、異方性導電接着材11のフレキシブル配線基板の配設エリアAfに伝わる。すなわち、ドライバチップ搭載エリアAcとフレキシブル配線基板配設エリアAfとが一体となった本発明に係わる異方性導電接着材11では、フレキシブル配線基板搭載エリアAfにおける絶縁性樹脂基材11aが、異方性導電接着材11自体を伝わる熱とガラス基板1を介して伝わる熱の双方を受けるために、従来のエリア毎に別個の異方性導電接着材を設ける場合に比べ、ドライバチップ9の熱圧着工程における加熱によって熱硬化し易い。   Here, the heat conducted from the tip surface 32 a of the thermocompression bonding head 32 to the chip mounting area Ac of the anisotropic conductive adhesive 11 through the driver chip 9 is further conducted to the glass substrate 1. The heat conducted to the glass substrate 1 is further transmitted in the thickness direction and the surface direction. The heat transmitted in the surface direction is transmitted to the arrangement area Af of the flexible wiring substrate of the anisotropic conductive adhesive 11. That is, in the anisotropic conductive adhesive 11 according to the present invention in which the driver chip mounting area Ac and the flexible wiring board placement area Af are integrated, the insulating resin base material 11a in the flexible wiring board mounting area Af is different. In order to receive both the heat transmitted through the isotropic conductive adhesive 11 itself and the heat transmitted through the glass substrate 1, the heat of the driver chip 9 compared to the case where a separate anisotropic conductive adhesive is provided for each conventional area. It is easy to thermoset by heating in the crimping process.

図4は、異方性導電接着材11中の絶縁樹脂基材11aのドライバチップ9からの距離に対する熱硬化反応率の変化を示しており、実線は本実施形態の受け台31を使用した場合の変化特性を示し、破線は図3(b)に示すように異方性導電接着材11のチップ搭載エリアAcだけを支持する従来の受け台33を使用した場合の変化特性を示している。   FIG. 4 shows the change in the thermosetting reaction rate with respect to the distance from the driver chip 9 of the insulating resin base material 11a in the anisotropic conductive adhesive 11, and the solid line shows the case where the cradle 31 of this embodiment is used. The broken line shows the change characteristic when the conventional cradle 33 that supports only the chip mounting area Ac of the anisotropic conductive adhesive 11 is used as shown in FIG.

図4から明らかなように、図3(b)に示す従来の熱圧着装置による場合、ドライバチップ9からの距離が0.3mm程度までは反応率が直線的に低下するが、0.3mmを超えると反応率が44〜50%程度の範囲で略一定となり低下する傾向は見られない。   As is clear from FIG. 4, in the case of the conventional thermocompression bonding apparatus shown in FIG. 3B, the reaction rate decreases linearly until the distance from the driver chip 9 is about 0.3 mm, but 0.3 mm When it exceeds, the reaction rate becomes substantially constant in the range of about 44 to 50%, and no tendency to decrease is observed.

これに対して、広い支持面31aを備えた受け台31を用いる本実施形態の熱圧着装置による場合、ドライバチップ9からの距離が0.4mmに至るまでは反応率が10〜12%程度の低いレベルまで直線的に低下し、0.4mmを超えると、反応率がその10〜12%程度の低い範囲で略一定となっている。   On the other hand, in the case of the thermocompression bonding apparatus of the present embodiment using the cradle 31 having the wide support surface 31a, the reaction rate is about 10 to 12% until the distance from the driver chip 9 reaches 0.4 mm. When it falls linearly to a low level and exceeds 0.4 mm, the reaction rate becomes substantially constant in a low range of about 10 to 12%.

これは、本発明に係わる本実施形態の熱圧着装置の場合、受け台31とガラス基板1の接触面積が広く且つ受け台31の材質が熱伝導率の高い酸化アルミニウムであるため、ガラス基板1に伝導した熱圧着ヘッド32からの余剰熱が受け台31を介して効率良く放散されるのに対して、従来の熱圧着装置の場合、受け台33とガラス基板1の接触面積が小さいためにガラス基板1に伝わった余剰熱が効率良く放散されないからである。 This is because, in the case of the thermocompression bonding apparatus of this embodiment according to the present invention, the contact area between the cradle 31 and the glass substrate 1 is wide and the material of the cradle 31 is aluminum oxide having a high thermal conductivity. In the case of the conventional thermocompression bonding apparatus, the contact area between the cradle 33 and the glass substrate 1 is small because the excess heat from the thermocompression bonding head 32 conducted to the heat is efficiently dissipated through the cradle 31. This is because excess heat transmitted to the glass substrate 1 is not efficiently dissipated.

熱硬化性絶縁樹脂基材11aの反応率が10〜12%程度であるならば、そのエリアには電子部品を適正に熱圧着搭載できる。従って、フレキシブル配線基板10とドライバチップ9の間隔d(図2参照)を0.4mm以上に設定し、本発明の熱圧着装置によりドライバチップ9を熱圧着搭載することにより、後順のフレキシブル配線基板10の熱圧着搭載を支障なく実施することができる。   If the reaction rate of the thermosetting insulating resin substrate 11a is about 10 to 12%, an electronic component can be appropriately thermocompression-mounted in the area. Accordingly, the distance d (see FIG. 2) between the flexible wiring board 10 and the driver chip 9 is set to 0.4 mm or more, and the driver chip 9 is mounted by thermocompression bonding using the thermocompression bonding apparatus of the present invention, so The substrate 10 can be thermocompression-bonded without any trouble.

ドライバチップ9のCOG搭載が完了した液晶表示素子を、フレキシブル配線基板10の熱圧着搭載ステージに搬送し、上述したドライバチップ9のときと略同じプロセスの熱圧着工程を実施し、フレキシブル配線基板10を異方性導電接着材11の対応する搭載エリアAfに熱圧着接合する。このとき、異方性導電接着材11におけるフレキシブル配線基板搭載前のその対応エリアAfの絶縁樹脂基材11aの熱硬化反応率は、上述したように10〜12%程度と低いから、フレキシブル配線基板10がショートを発生させることなく図2に示されるように確実且つ適正に導通接合される。   The liquid crystal display element on which the COG mounting of the driver chip 9 has been completed is transported to the thermocompression mounting stage of the flexible wiring board 10, and the thermocompression bonding process of substantially the same process as that of the driver chip 9 described above is performed. Is bonded to the corresponding mounting area Af of the anisotropic conductive adhesive 11 by thermocompression bonding. At this time, since the thermosetting reaction rate of the insulating resin base material 11a in the corresponding area Af before mounting the flexible wiring board in the anisotropic conductive adhesive 11 is as low as about 10 to 12% as described above, the flexible wiring board As shown in FIG. 2, 10 is reliably and properly conductively joined without causing a short circuit.

このように、本発明の熱圧着装置によれば、1枚の異方性導電接着材11でドライバチップ9とフレキシブル配線基板10を導通設置する本発明に係わる導通設置構造の場合でも、ドライバチップ9の熱圧着工程とフレキシブル配線基板10の熱圧着工程を別ステージでバッチ式に実施することが可能となる。従って、ライン式連続生産が難しくオフライン式(バッチ式)生産に限定される小規模な生産環境であっても、1枚の異方性導電接着材11でドライバチップ9とフレキシブル配線基板10を搭載する本実施形態の導通設置構造が適用された液晶表示素子の製造が可能となる。   Thus, according to the thermocompression bonding apparatus of the present invention, even in the case of the conductive installation structure according to the present invention in which the driver chip 9 and the flexible wiring board 10 are conductively installed with one anisotropic conductive adhesive material 11, the driver chip. 9 and the thermocompression bonding process of the flexible wiring board 10 can be carried out in a batch manner in different stages. Therefore, even in a small-scale production environment where line-type continuous production is difficult and limited to off-line (batch-type) production, the driver chip 9 and the flexible wiring board 10 are mounted with a single anisotropic conductive adhesive 11. Thus, it is possible to manufacture a liquid crystal display element to which the conductive installation structure of this embodiment is applied.

なお、受け台31の材質は酸化アルミニウムに限らず、ガラスとしてもよい。ガラスの受け台31は、支持する液晶表示素子のガラス基板1と材質が同じであるため、熱圧着ヘッド32の加熱による熱膨張率も略同じとなり、熱膨張率の違いによる歪みが発生し難いという利点がある。ガラスの脆弱性は、表面をアルマイト処理することにより補うことができる。
The material of the cradle 31 is not limited to aluminum oxide , and may be glass. Since the glass cradle 31 is made of the same material as the glass substrate 1 of the liquid crystal display element to be supported, the thermal expansion coefficient due to heating of the thermocompression bonding head 32 is substantially the same, and distortion due to the difference in thermal expansion coefficient is unlikely to occur. There is an advantage. The brittleness of the glass can be compensated by anodizing the surface.

以上のように、本実施形態の液晶表示素子は、液晶駆動用のドライバチップ9とこれに信号電圧を入力するためのフレキシブル配線基板10を1枚の異方性導電接着材11を介して液晶表示素子のリード配線7、8が配設されたガラス基板1の突出部1aに導通設置したから、ドライバチップ9とフレキシブル配線基板10の配置間隔dを必要な距離を残して最大限に短縮でき、その結果、液晶表示素子の小型化が促進されるだけでなく、1枚に一体化することにより異方性導電接着材の材料費及び製造工数が低減されることと相俟ってガラス基板材料の歩留りも向上し、液晶表示素子の原価低減に寄与する。   As described above, the liquid crystal display element of the present embodiment includes a driver chip 9 for driving liquid crystal and a flexible wiring board 10 for inputting a signal voltage to the liquid crystal display element via a single anisotropic conductive adhesive 11. Since the conductive wiring is installed on the protruding portion 1a of the glass substrate 1 on which the lead wires 7 and 8 of the display element are arranged, the arrangement interval d between the driver chip 9 and the flexible wiring substrate 10 can be shortened to the maximum while leaving a necessary distance. As a result, not only the miniaturization of the liquid crystal display element is promoted, but also the glass substrate combined with the reduction of the material cost and manufacturing man-hour of the anisotropic conductive adhesive by being integrated into one sheet The yield of materials is also improved, contributing to cost reduction of liquid crystal display elements.

また、本実施形態の熱圧着装置は、熱伝導性に優れた材料で形成されるとともに、1枚の異方性導電接着材11のドライバチップ搭載エリアAcとフレキシブル配線基板搭載エリアAfの双方を一括支持できる支持面積の大きい、受け台31を用いるから、ドライバチップ9を熱圧着搭載した際の熱により異方性導電接着材11のドライバチップ搭載エリアAcだけでなくフレキシブル配線基板搭載エリアAfも硬化を開始させてしまう不具合の発生を確実に防止でき、その結果、上述の本実施形態の液晶表示素子であっても、ドライバチップ9の熱圧着工程とフレキシブル配線基板10の熱圧着工程をそれぞれ別ステージでバッチ式に実施することが可能となり、ライン式連続生産が困難な小規模な工場において支障なく生産することができる。   In addition, the thermocompression bonding apparatus of the present embodiment is formed of a material having excellent thermal conductivity, and has both the driver chip mounting area Ac and the flexible wiring board mounting area Af of the single anisotropic conductive adhesive 11. Since the support 31 having a large support area that can be collectively supported is used, not only the driver chip mounting area Ac of the anisotropic conductive adhesive 11 but also the flexible wiring board mounting area Af due to heat when the driver chip 9 is mounted by thermocompression bonding. As a result, it is possible to reliably prevent the occurrence of the problem of starting the curing. As a result, even in the above-described liquid crystal display element of the present embodiment, the thermocompression bonding process of the driver chip 9 and the thermocompression bonding process of the flexible wiring board 10 are performed. It is possible to carry out batch processing at another stage, and it is possible to produce without trouble in a small-scale factory where line-type continuous production is difficult. That.

なお、本発明は、上記の実施形態に限定されるものではない。例えば、1個の異方性導電接着材を介して導通設置される電子部品は、2個に限らず、3個以上の場合も本発明は有効に適用される。   In addition, this invention is not limited to said embodiment. For example, the present invention is effectively applied to the case where the number of electronic components that are conductively installed via one anisotropic conductive adhesive is not limited to two, but is three or more.

また、本発明は、液晶表示素子のドライバチップとフレキシブル配線基板を導通設置する場合に限らず、フレキシブル配線基板がLSIチップが搭載されたCOF方式のものである場合や、液晶表示素子ではなくEL(エレクトロルミネッセンス)表示素子やプラズマディスプレイパネル素子或いは表示素子以外の他の電子機器における電子部品の導通設置構造等に、広く適用できることは勿論である。   In addition, the present invention is not limited to the case where the driver chip of the liquid crystal display element and the flexible wiring board are installed conductively, but the case where the flexible wiring board is of the COF type on which an LSI chip is mounted, or the EL instead of the liquid crystal display element. (Electroluminescence) Needless to say, the present invention can be widely applied to a conductive installation structure of electronic components in electronic devices other than display devices, plasma display panel devices, or display devices.

本発明の一実施形態としての液晶表示モジュールを示す平面図である。It is a top view which shows the liquid crystal display module as one Embodiment of this invention. 上記液晶表示モジュールにおける電子部品の導通設置構造を図1のII−II線で切断して示す模式的断面図である。It is typical sectional drawing which cut | disconnects the conduction installation structure of the electronic component in the said liquid crystal display module by the II-II line | wire of FIG. (a)は上記液晶表示モジュールの製造に用いられる本発明の熱圧着装置の一実施形態を示す側面図で、(b)は比較例としての従来の熱圧着装置を示す側面図である。(A) is a side view which shows one Embodiment of the thermocompression bonding apparatus of this invention used for manufacture of the said liquid crystal display module, (b) is a side view which shows the conventional thermocompression bonding apparatus as a comparative example. 異方性導電接着材における位置と硬化反応率の関係を上記の本発明と従来の各熱圧着装置毎に示すグラフ図である。It is a graph which shows the relationship between the position in an anisotropic conductive adhesive, and a curing reaction rate for each of the present invention and each conventional thermocompression bonding apparatus.

符号の説明Explanation of symbols

1、2 ガラス基板
3 シール材
4、5 電極
6 液晶
7、8 リード配線
9 ドライバチップ
10 フレキシブル配線基板
11 異方性導電接着材
11a 絶縁樹脂基材
11b 導電性粒子
12 入力配線
DESCRIPTION OF SYMBOLS 1, 2 Glass substrate 3 Sealing material 4, 5 Electrode 6 Liquid crystal 7, 8 Lead wiring 9 Driver chip 10 Flexible wiring board 11 Anisotropic conductive adhesive 11a Insulating resin base material 11b Conductive particle 12 Input wiring

Claims (6)

第1の電子部品と第2の電子部品とを配線パターンが形成された回路基板上の所定の設置領域に異方性導電接着シートを介して設置する電子部品の導通設置方法であって、
前記設置領域よりも広い面積の支持面を有した受け台に、前記回路基板の下面のうち少なくとも前記設置領域に対応する全領域が前記支持面に接触する第1の状態になるように、前記回路基板を載置し、且つ、前記回路基板上の前記設置領域に1枚膜状の前記異方性導電接着シートを載置するとともに前記異方性導電接着シート上の第1の領域に前記第1の電子部品を載置する第1の工程と、
前記第1の工程よりも後に、前記第1の状態で前記第1の電子部品を加熱しながら前記回路基板に向けて加圧することによって前記第1の電子部品を導通設置する第2の工程と、
前記第2の工程よりも後に、前記異方性導電接着シート上の第2の領域に載置された前記第2の電子部品を加熱しながら前記回路基板に向けて加圧することによって前記第2の電子部品を導通設置する第3の工程と、
を有することを特徴とする電子部品の導通設置方法。
An electronic component conduction installation method for installing a first electronic component and a second electronic component in a predetermined installation region on a circuit board on which a wiring pattern is formed via an anisotropic conductive adhesive sheet,
The cradle having a support surface having a larger area than the installation area, so that at least the entire area corresponding to the installation area of the lower surface of the circuit board is in a first state in contact with the support surface. A circuit board is placed, and the one-layer anisotropic conductive adhesive sheet is placed on the installation area on the circuit board, and the first area on the anisotropic conductive adhesive sheet is placed on the first area. A first step of placing the first electronic component;
After the first step , a second step of conducting and installing the first electronic component by pressing the first electronic component toward the circuit board while heating the first electronic component in the first state; ,
After the second step, the second electronic component placed in the second region on the anisotropic conductive adhesive sheet is pressurized toward the circuit board while being heated. A third step of conducting and installing the electronic components;
There is provided a conductive installation method for an electronic component.
前記回路基板はガラスからなり、
前記受け台は前記支持面がアルマイト処理されたガラスからなることを特徴とする請求項1に記載の電子部品の導通設置方法。
The circuit board is made of glass,
2. The electronic component conducting installation method according to claim 1, wherein the cradle is made of glass whose support surface is anodized.
前記異方性導電接着シートは、導電性粒子の平均粒径が前記第1の電子部品と前記第2の電子部品とのうちの接続端子ピッチの小さい方の接続端子ピッチの1/4以下であることを特徴とする請求項1または2に記載の電子部品の導通設置方法。   In the anisotropic conductive adhesive sheet, the average particle diameter of the conductive particles is ¼ or less of the connection terminal pitch of the smaller one of the first electronic component and the second electronic component. The method for conducting electrical installation of an electronic component according to claim 1, wherein the electronic component is electrically connected. 前記回路基板は、液晶表示素子において電極から引き出されたリード配線が所定のパターンに配設されたガラス基板であり、
前記第1の電子部品は、液晶駆動用のLSIチップであり、
前記第2の電子部品は、前記LSIチップに信号電圧を供給するためのフレキシブル配線基板であることを特徴とする請求項1から3の何れかに記載の電子部品の導通設置方法。
The circuit board is a glass substrate in which lead wirings drawn from electrodes in a liquid crystal display element are arranged in a predetermined pattern,
The first electronic component is a liquid crystal driving LSI chip,
4. The method for electrically installing electronic components according to claim 1, wherein the second electronic component is a flexible wiring board for supplying a signal voltage to the LSI chip.
前記受け台は、酸化アルミニウムで形成されていることを特徴とする請求項1に記載の電子部品の導通設置方法。   2. The electronic component conducting installation method according to claim 1, wherein the cradle is formed of aluminum oxide. 液晶駆動用のLSIチップと前記LSIチップに信号電圧を供給するためのフレキシブル配線基板とを配線パターンが形成された第1の基板上の所定の設置領域に異方性導電接着シートを介して設置する液晶表示素子の製造方法であって、
前記設置領域よりも広い面積の支持面を有した受け台に、前記第1の基板の下面のうち少なくとも前記設置領域に対応する全領域が前記支持面に接触する第1の状態になるように、前記第1の基板を載置し、且つ、前記第1の基板上の前記設置領域に1枚膜状の前記異方性導電接着シートを載置するとともに前記異方性導電接着シート上の第1の領域に前記LSIチップを載置する第1の工程と、
前記第1の工程よりも後に、前記第1の状態で前記LSIチップを加熱しながら前記第1の基板に向けて加圧することによって前記LSIチップを導通設置する第2の工程と、
前記第2の工程よりも後に、前記異方性導電接着シート上の第2の領域に載置された前記フレキシブル配線基板を加熱しながら前記回路基板に向けて加圧することによって前記フレキシブル配線基板を導通設置する第3の工程と、
を有することを特徴とする液晶表示素子の製造方法。
An LSI chip for driving a liquid crystal and a flexible wiring board for supplying a signal voltage to the LSI chip are installed in a predetermined installation area on the first substrate on which a wiring pattern is formed via an anisotropic conductive adhesive sheet. A method for manufacturing a liquid crystal display element,
A cradle having a support surface having an area larger than that of the installation area is set in a first state in which at least the entire area corresponding to the installation area of the lower surface of the first substrate is in contact with the support surface. The first substrate is placed, and the anisotropic conductive adhesive sheet in the form of a single film is placed on the installation area on the first substrate, and the anisotropic conductive adhesive sheet is placed on the anisotropic conductive adhesive sheet. A first step of placing the LSI chip in a first region;
After the first step , a second step of conductively installing the LSI chip by applying pressure to the first substrate while heating the LSI chip in the first state;
After the second step, the flexible wiring board is pressed by pressing the flexible wiring board placed in the second region on the anisotropic conductive adhesive sheet toward the circuit board while heating. A third step of conducting installation;
A method for producing a liquid crystal display element, comprising:
JP2005091642A 2005-03-28 2005-03-28 Method for electrically installing electronic parts and method for manufacturing liquid crystal display elements Expired - Fee Related JP4650050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005091642A JP4650050B2 (en) 2005-03-28 2005-03-28 Method for electrically installing electronic parts and method for manufacturing liquid crystal display elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005091642A JP4650050B2 (en) 2005-03-28 2005-03-28 Method for electrically installing electronic parts and method for manufacturing liquid crystal display elements

Publications (2)

Publication Number Publication Date
JP2006278442A JP2006278442A (en) 2006-10-12
JP4650050B2 true JP4650050B2 (en) 2011-03-16

Family

ID=37212927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005091642A Expired - Fee Related JP4650050B2 (en) 2005-03-28 2005-03-28 Method for electrically installing electronic parts and method for manufacturing liquid crystal display elements

Country Status (1)

Country Link
JP (1) JP4650050B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019036516A (en) * 2016-12-01 2019-03-07 デクセリアルズ株式会社 Anisotropic conductive film

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09191026A (en) * 1996-01-09 1997-07-22 Citizen Watch Co Ltd Liquid crystal display
JP2002229055A (en) * 2001-02-02 2002-08-14 Matsushita Electric Ind Co Ltd Liquid crystal display and method for manufacturing the same
JP2002305220A (en) * 2001-04-04 2002-10-18 Seiko Epson Corp Display device, production method therefor and electronic equipment
JP2002313852A (en) * 2001-04-10 2002-10-25 Shibaura Mechatronics Corp Method for mounting electronic component to substrate
JP2003060051A (en) * 2001-08-10 2003-02-28 Rohm Co Ltd Semiconductor integrated circuit device and electronic device comprising it
JP2003114625A (en) * 2001-10-05 2003-04-18 Hitachi Ltd Display device
JP2003156759A (en) * 2001-11-19 2003-05-30 Seiko Instruments Inc Liquid crystal display device
JP2003249525A (en) * 2002-02-26 2003-09-05 Matsushita Electric Ind Co Ltd Manufacturing method for display panel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09191026A (en) * 1996-01-09 1997-07-22 Citizen Watch Co Ltd Liquid crystal display
JP2002229055A (en) * 2001-02-02 2002-08-14 Matsushita Electric Ind Co Ltd Liquid crystal display and method for manufacturing the same
JP2002305220A (en) * 2001-04-04 2002-10-18 Seiko Epson Corp Display device, production method therefor and electronic equipment
JP2002313852A (en) * 2001-04-10 2002-10-25 Shibaura Mechatronics Corp Method for mounting electronic component to substrate
JP2003060051A (en) * 2001-08-10 2003-02-28 Rohm Co Ltd Semiconductor integrated circuit device and electronic device comprising it
JP2003114625A (en) * 2001-10-05 2003-04-18 Hitachi Ltd Display device
JP2003156759A (en) * 2001-11-19 2003-05-30 Seiko Instruments Inc Liquid crystal display device
JP2003249525A (en) * 2002-02-26 2003-09-05 Matsushita Electric Ind Co Ltd Manufacturing method for display panel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019036516A (en) * 2016-12-01 2019-03-07 デクセリアルズ株式会社 Anisotropic conductive film
KR20190064644A (en) 2016-12-01 2019-06-10 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film
US10957462B2 (en) 2016-12-01 2021-03-23 Dexerials Corporation Anisotropic conductive film
JP7274815B2 (en) 2016-12-01 2023-05-17 デクセリアルズ株式会社 anisotropic conductive film

Also Published As

Publication number Publication date
JP2006278442A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
US6433414B2 (en) Method of manufacturing flexible wiring board
KR100440416B1 (en) Semiconductor device
JP2000002882A (en) Liquid crystal display device and its manufacture
WO2012121113A1 (en) Electronic circuit substrate, display device, and wiring substrate
JPWO2009150995A1 (en) Power semiconductor circuit device and manufacturing method thereof
US20120193803A1 (en) Semiconductor device, method for producing semiconductor device, and display
EP2587471B1 (en) Display device
US6864119B2 (en) COF semiconductor device and a manufacturing method for the same
JP2015142018A (en) power semiconductor device
KR100551388B1 (en) Method for planarizing circuit board and method for manufacturing semiconductor device
US20080179080A1 (en) Junction structure of flexible substrate
JP4675178B2 (en) Crimping method
EP3584834A1 (en) Semiconductor device
CN112993607A (en) Display device, method for manufacturing display device, and printed wiring board
JP4650050B2 (en) Method for electrically installing electronic parts and method for manufacturing liquid crystal display elements
TWI246131B (en) Mounting method and mounting structure of semiconductor device, optoelectronic device, manufacturing method of optoelectronic device and electronic machine
JP4874612B2 (en) LCD module
JP4067502B2 (en) Semiconductor device, mounting structure of semiconductor device, electronic apparatus including the same, and display device
JP2013229358A (en) Semiconductor device and method of manufacturing the same
JP2002341786A (en) Printed circuit board and method for manufacturing flat display device using the same
US7119423B2 (en) Semiconductor device and method of manufacturing the same, electronic module, and electronic instrument
JP3032111B2 (en) Display device mounting structure
JP2010224115A (en) Liquid crystal display and method of manufacturing the same
JP2001125127A (en) Liquid crystal device and connecting method therefor
JP2008085234A (en) Method of manufacturing electronic circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees