JP4648546B2 - Novel naphthalene compounds having reactive groups and methods for producing them - Google Patents

Novel naphthalene compounds having reactive groups and methods for producing them Download PDF

Info

Publication number
JP4648546B2
JP4648546B2 JP2001002442A JP2001002442A JP4648546B2 JP 4648546 B2 JP4648546 B2 JP 4648546B2 JP 2001002442 A JP2001002442 A JP 2001002442A JP 2001002442 A JP2001002442 A JP 2001002442A JP 4648546 B2 JP4648546 B2 JP 4648546B2
Authority
JP
Japan
Prior art keywords
naphthalene
trifluoromethyl
bis
formula
following formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001002442A
Other languages
Japanese (ja)
Other versions
JP2002205963A5 (en
JP2002205963A (en
Inventor
直人 武知
光春 下田
原 高
靖 深井
忠雄 仲矢
達郎 石飛
幸紀 野口
晶夫 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Denka Kyogyo Co.,Ltd.
Original Assignee
Kanto Denka Kyogyo Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Denka Kyogyo Co.,Ltd. filed Critical Kanto Denka Kyogyo Co.,Ltd.
Priority to JP2001002442A priority Critical patent/JP4648546B2/en
Publication of JP2002205963A publication Critical patent/JP2002205963A/en
Publication of JP2002205963A5 publication Critical patent/JP2002205963A5/ja
Application granted granted Critical
Publication of JP4648546B2 publication Critical patent/JP4648546B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、新規なナフタレン化合物類、特定的にはフッ素含有ナフタレン化合物類、及びそれらの製造方法に関する。本発明の新規化合物は、有機蛍光物質、液晶材料、染料の前駆体として有用であり、その他の各種中間体として広範な用途が期待されるものである。
【0002】
【従来の技術】
本発明に係るナフタレン化合物類は新規であり、従ってそれらの化合物を製造するための方法も新規である。
【0003】
【発明が解決しようとする課題】
本発明の目的は、下記一般式(I)で示される新規なナフタレン化合物類及びそれらの製造方法を提供することである。
【0004】
【化6】

Figure 0004648546
【0005】
即ち、本発明は、下記の式(V)で示される新規な1−シアノメチル−3,7−ビス(トリフルオロメチル)ナフタレン、その前駆体の式(III)で示される1−ハロゲノ−3,7−ビス(トリフルオロメチル)ナフタレン〔1位のハロゲン原子は、F,Cl,Br,またはI〕、及び式(IV)で示される1−ヒドロキシメチル−3,7−ビス(トリフルオロメチル)ナフタレンに関するものである。本発明によって提供される式(V)で示される新規な1−シアノメチル−3,7−ビス(トリフルオロメチル)ナフタレンは、活性メチレンを有することから各種化合物との反応性に富み、トリフルオロメチル基を有する有機蛍光物質、染料、液晶材料等を製造するための利用が期待される有用な中間体化合物である。また、式(III)で示される1−ハロゲノ−3,7−ビス(トリフルオロメチル)ナフタレン及び式(IV)で示される1−ヒドロキシメチル−3,7−ビス(トリフルオロメチル)ナフタレンは、式(V)の化合物の前駆体として有用であるばかりでなく、それぞれが反応活性なハロゲン原子、ヒドロキシメチル基を有することから、トリフルオロメチル基を有する医農薬、機能性材料等等の製造のための中間体として、広い分野での応用が期待される有用な化合物である。
【0006】
【化7】
Figure 0004648546
【0007】
【課題を解決するための手段】
本発明者等は、式(V)で示される新規な1−シアノメチル−3,7−ビス(トリフルオロメチル)ナフタレンを式(II)で示される2,6−ビス(トリフルオロメチル)ナフタレンを原料として、これから式(III)で示される1−ハロゲノ−3,7−ビス(トリフルオロメチル)ナフタレンと式(IV)で示される1−ヒドロキシメチル−3,7−ビス(トリフルオロメチル)ナフタレンとを経由して製造する方法を見出した。
【0008】
本発明の新規化合物類の具体的な製造方法を以下に詳しく示す。
式(II)で示される2,6−ビス(トリフルオロメチル)ナフタレンは、容易に入手可能な2,6−ナフタレンジカルボン酸をSF4等のフッ素化剤でフッ素化することにより製造できる。
【0009】
式(II)で示される2,6−ビス(トリフルオロメチル)ナフタレンの直接ハロゲン化を行うことにより、式(III)で示される新規なナフタレン化合物である1−ハロゲノ−3,7−ビス(トリフルオロメチル)ナフタレンを製造することができる。この直接ハロゲン化反応の収率及び次工程〔式(IV)の化合物の製造〕の収率を考慮すると、式(III)で示される新規な1−ハロゲノ−3,7−ビス(トリフルオロメチル)ナフタレンの1位のハロゲンが臭素原子であることが、取扱上好ましく、推奨される。
【0010】
そこで、式(III)におけるハロゲンが臭素原子である1−ブロモ−3,7−ビス(トリフルオロメチル)ナフタレン〔式(VI)で示される化合物〕の製造方法を以下に説明する。
<1−ブロモ−3,7−ビス(トリフルオロメチル)ナフタレンの製造方法>
下記式(II)の原料化合物から式(VI)の目的化合物を製造する方法としては、鉄系触媒の存在下に、式(II)の化合物を直接に臭素化することにより式(VI)の化合物を製造することができる。
【0011】
【化8】
Figure 0004648546
【0012】
式(II)で示される2,6−ビス(トリフルオロメチル)ナフタレンを無溶媒で、または溶媒を用いて所定温度、所定時間で鉄系触媒の存在下、臭素を滴下して、反応させることにより式(VI)で示される新規なナフタレン化合物である1−ブロモ−3,7−ビス(トリフルオロメチル)ナフタレンを製造することができる。
【0013】
式(II)で示される原料は、無溶媒で、あるいはジクロロメタン、クロロホルム等の塩素系溶媒で希釈して、使用するのが好ましい。その溶媒の使用量は、原料の重量1gに対して0〜20ミリリットルである。この原料はナフタレン環上にトリフルオロメチル基を有するため臭素に対する反応性が乏しく触媒を用いる方が好ましい。触媒としては、鉄系の触媒が好ましく、鉄粉、臭化鉄(III)等が使用できる。その使用量は、好ましくは原料に対して0〜0.2倍モル量である。臭素については、希釈しないでそのまま使用することができる。その使用量は、原料に対して0.9〜1.5倍モル量である。臭素は。0.5〜5時間で滴下するのが好ましく、必要であれば滴下終了後さらに1〜10時間攪拌を続ける。臭素滴下時及び滴下後の反応温度は、0〜150℃の範囲で行うのが好ましい。この臭素化反応は常圧下で行えるが、加圧下で行ってもよい。反応終了後は、通常の後処理、精製を行うことにより、式(VI)で示される新規なナフタレン化合物である1−ブロモ−3,7−ビス(トリフルオロメチル)ナフタレンを製造することができる。
<1−ヒドロキシメチル−3,7−ビス(トリフルオロメチル)ナフタレンの製造>
前述の式(II)で示される2,6−ビス(トリフルオロメチル)ナフタレンを原料として、これから式(III)で示される1−ハロゲノ−3,7−ビス(トリフルオロメチル)ナフタレンを経由して式(IV)で示される1−ヒドロキシメチル−3,7−ビス(トリフルオロメチル)ナフタレンを製造する方法としては、不活性ガス雰囲気下で、式(III)の化合物から有機金属化合物を調製して、これにホルムアルデヒドを反応させることにより製造できる。
【0014】
ここで、式(III)の化合物においてXがBrであるものが、式(VI)で示される1−ブロモ−3,7−ビス(トリフルオロメチル)ナフタレンであるが、この式(VI)の化合物から式(IV)の化合物を製造する方法としては、不活性ガス雰囲気下で、式(VI)の化合物から有機金属化合物を調製して、これにホルムアルデヒドを反応させることにより製造することができる。
【0015】
【化9】
Figure 0004648546
【0016】
式(VI)で示される1−ブロモ−3,7−ビス(トリフルオロメチル)ナフタレンを溶媒中、攪拌下、所定温度、所定時間で有機リチウム試薬あるいは金属マグネシウムを反応させることにより、有機金属化合物を含む溶液を調製し、その溶液とホルムアルデヒドとを攪拌下、所定温度、所定時間で反応させることによって、式(IV)で示される新規なナフタレン化合物である1−ヒドロキシメチル−3,7−ビス(トリフルオロメチル)ナフタレンを製造することができる。本反応は、水分を嫌う反応であるため反応容器内は、窒素等の乾燥不活性ガス雰囲気下で行うことが好ましい。
【0017】
この反応のための溶媒としては、ジエチルエーテル、テトラヒドロフラン等のエーテル系溶媒が使用できる。その使用量は、好ましくは原料1gに対して1〜100ミリリットルである。
【0018】
有機リチウム試薬を作用させる場合には、通常低温で行う必要がある。その温度は、−80℃〜0℃が好ましい。金属マグネシウムを作用させる場合には−30℃〜50℃程度が好ましい。有機リチウム試薬及び金属マグネシウムの使用量は、好ましくは、原料1gに対して1〜2倍モル量である。調製された有機金属化合物を含む溶液は、ホルムアルデヒドと反応させるが、そのホルムアルデヒドとしては、パラホルムアルデヒド(固体)を直接に添加してもよいし、あるいは別容器にてパラホルムアルデヒドを熱分解して発生するホルムアルデヒド(気体)を用いてもよい。その使用量は、原料に対して1〜3倍モル量である。ホルムアルデヒドとの反応は−50℃〜30℃の温度で行うのが好ましい。反応時間は0.5〜5時間が好ましい。反応終了後、室温以下の温度で、希硫酸、希塩酸等を滴下し、通常の後処理、精製を行うことにより式(IV)で示される新規なナフタレン化合物である1−ヒドロキシメチル−3,7−ビス(トリフルオロメチル)ナフタレンを製造することができる。
<1−シアノメチル−3,7−ビス(トリフルオロメチル)ナフタレンの製造方法>
式(II)で示される2,6−ビス(トリフルオロメチル)ナフタレンを原料として、これから式(III)で示される1−ハロゲノ−3,7−ビス(トリフルオロメチル)ナフタレンと式(IV)で示される1−ヒドロキシメチル−3,7−ビス(トリフルオロメチル)ナフタレンとを経由して、式(V)で示される新規な1−シアノメチル−3,7−ビス(トリフルオロメチル)ナフタレンを製造する方法としては、前述の方法ルートで式(II)の化合物から式(IV)の化合物を製造し、さらに不活性雰囲気中で式(IV)の化合物の水酸基を脱離基に変換した後、シアン化物イオンと反応させることにより製造できる。
【0019】
下記式(IV)化合物から式(V)化合物を製造する方法としては、不活性ガス雰囲気下、式(IV)の化合物の水酸基を脱離基に変換した後、シアン化物イオンと反応させることにより式(V)の新規ナフタレン化合物を製造できる。
【0020】
【化10】
Figure 0004648546
【0021】
式(IV)で示される1−ヒドロキシメチル−3,7−ビス(トリフルオロメチル)ナフタレンのヒドロキシ基(水酸基)を溶媒中、攪拌下、所定温度、所定時間で適当な試剤と反応させることにより脱離基に変換し、その溶液とシアン化物イオンとを攪拌下、所定温度、所定時間で反応させることにより式(V)で示される新規な1−シアノメチル−3,7−ビス(トリフルオロメチル)ナフタレンを製造することができる。この反応は、水分を嫌う反応であるため、反応器内は、窒素等の乾燥不活性ガス雰囲気下で行うことが好ましい。
【0022】
脱離基としては、p−トルエンスルホニル基、メタンスルホニル基、トリフルオロメタンスルホニル基、ハロゲン原子等が好ましい。スルホニル化剤としては、それぞれに対応する酸クロリドや酸無水物が使用できる。ハロゲン化剤としては、ハロゲン化水素酸や無機酸のハロゲン化物等が使用できる。これらの試剤の使用量は、好ましくは原料に対して1〜3倍モル量である。スルホニル化反応においては、スルホニル化剤と同量あるいはやや過剰の塩基、例えばトリエチルアミン、ピリジンといった三級アミンの共存下で行うのが好ましい。スルホニル化、ハロゲン化の反応温度、反応時間は試剤により異なるが、通常は−20℃〜100℃といった温度で行うのが好ましい。
【0023】
得られた脱離基を有する化合物は極性溶媒に溶解させてシアノ化剤と、反応させる。極性溶媒としては、ジメチルスルホキシド、ジメチルホルムアミド、N−メチルピロリドン、アセトン等が使用できる。その使用量は、好ましくは、脱離基を有する化合物1gに対して1〜100ミリリットルである。シアノ化剤としては、シアン化ナトリウム、シアン化カリウム等が使用できる。その使用量は、好ましくは、脱離基を有する化合物に対して1〜2倍モル量である。シアノ化の反応温度は、0〜150℃が好ましい。反応時間は0.5〜5時間が好ましい。反応終了後、通常の後処理、精製を行うことにより、式(V)で表される新規なナフタレン化合物である1−シアノメチル−3,7−ビス(トリフルオロメチル)ナフタレンを製造することができる。
【0024】
以下に本発明の実施例を示す。本発明における新規化合物類の製造方法は実施例に記載されたもののみに限定されるものではない。
【0025】
【実施例】
1−ブロモ−3,7−ビス(トリフルオロメチル)ナフタレンの製造
実施例1
油浴、還流冷却管、温度計及び圧力平衡管付き滴下ロートを備えた300mlガラス製フラスコに窒素雰囲気下、2,6−ビス(トリフルオロメチル)ナフタレン50g(0.189モル)と還元鉄粉1g(0.019モル)とクロロホルム100mlを仕込んだ。加熱還流下、攪拌しながら、臭素34.7g(0.217モル)を2時間かけて滴下した。副生する臭化水素ガスは、アルカリスクラバーにより無害化処理した。滴下終了後、さらに5時間加熱還流下、攪拌を続けた。攪拌を止め、そのままの状態で反応液を室温まで冷却後、吸引濾過して濾液を5%亜硫酸ナトリウム水溶液100ml及び飽和食塩水100mlで洗浄した。有機相は、無水硫酸ナトリウムで乾燥し、硫酸ナトリウムを濾別後、クロロホルムを減圧留去した。得られた粗生成物をシリカゲルクロマトグラフィーにより精製して、1−ブロモ−3,7−ビス(トリフルオロメチル)ナフタレンの淡黄色固体を得た。LC純度98%、収量62.1g(収率95.7%)。
【0026】
生成物の構造は、核磁気共鳴分析等で確認した。核磁気共鳴分析[VARIAN社製、Gemini200]の結果は以下の通りであった。
Figure 0004648546
1−ヒドロキシメチル−3,7−ビス(トリフルオロメチル)ナフタレンの製造
実施例2
冷却浴、温度計及び圧力平衡管付き滴下ロートを備えた500mlガラス製フラスコに窒素雰囲気下、1−ブロモ−3,7−ビス(トリフルオロメチル)ナフタレン30g(0.087モル)と乾燥エーテル150mlとを仕込んだ。−50℃に冷却、攪拌下、n−ブチルリチウムヘキサン溶液(1.54M)61.2ml(0.094モル)を30分間かけて滴下した。次に、別のガラス製フラスコにて窒素雰囲気、攪拌下、パラホルムアルデヒド7.9g(0.26モル)を100〜180℃に昇温加熱して発生させたホルムアルデヒドを乾燥窒素と共に主反応フラスコ内の気液界面付近へ、液温を−50℃〜−30℃の範囲内に制御しながら、30分間かけて導入した。ホルムアルデヒドの発生が終了後、液温が10℃以下となるように攪拌下、水150ml及び濃塩酸10mlをゆっくり滴下した。滴下終了後、エーテルを100ml加えて抽出し、有機相を飽和食塩水100mlで洗浄した。有機相は無水硫酸ナトリウムで乾燥し、硫酸ナトリウムを濾別後、クロロホルムを減圧留去した。得られた粗生成物をシリカゲルクロマトグラフィーにより精製して、1−ヒドロキシメチル−3,7−ビス(トリフルオロメチル)ナフタレンの白色固体を得た。LC純度99%、収量18.3g(収率71.1%)。
【0027】
生成物の構造は、核磁気共鳴分析等で確認した。核磁気共鳴分析[VARIAN社製、Gemini200]の結果は以下の通りであった。
1H−NMR(溶媒:CDCl3、標準物質:テトラメチルシラン)
δ 8.44ppm(s,1H,Ar
8.16ppm(s,1H,Ar
8.09ppm(d,J=5.84Hz,1H,Ar
7.84ppm(s,1H,Ar
7.79ppm(dd,J=1.60,8.60Hz,1H,Ar
5.25ppm(s,2H,C 2
2.05ppm(bs,1H,O
19F−NMR(溶媒:CDCl3、標準物質:CFCl3
δ −62.26ppm(s,3F,C 3
−62.60ppm(s,3F,C 3
1−シアノメチル−3,7−ビス(トリフルオロメチル)ナフタレンの製造
実施例3
冷却浴、温度計及び圧力平衡管付き滴下ロートを備えた100mlガラス製フラスコに窒素雰囲気下、1−ヒドロキシメチル−3,7−ビス(トリフルオロメチル)ナフタレン5g(0.017モル)とトリエチルアミン3.45g(0.034モル)とジクロロメタン20mlとを仕込んだ。約0℃に冷却、攪拌下、メタンスルホニルクロリド2.95g(0.026モル)を30分間かけて滴下した。滴下終了後、さらに室温下30分間攪拌をつづけた。再度0℃に冷却、攪拌下、飽和炭酸水素ナトリウム溶液20mlをゆっくり滴下し、ジクロロメタン20ml加えて抽出した。滴下終了後、有機相を分取し、飽和食塩水20mlで洗浄した。有機相は無水硫酸ナトリウムで乾燥し、硫酸ナトリウムを濾別後、クロロホルムを減圧留去した。メタンスルホン酸エステル体を淡黄色固体として6.0g得た。
【0028】
次に、油浴、温度計及び圧力平衡管付き滴下ロートを備えた100mlがラス製フラスコに窒素雰囲気下、シアン化ナトリウム1.25g(0.026モル)とジメチルスルホキシド30mlとを仕込み、70℃に加熱して均一溶液とした。ここに先に調製したメタンスルホン酸エステル体をジメチルスルホキシド10mlに溶解した溶液を全量速やかに添加した。添加後、70℃でさらに30分間攪拌した。放冷後、反応液にベンゼン100mlを加え、飽和食塩水50mlで洗浄した。有機相を分取して、無水硫酸ナトリウムで乾燥し、硫酸ナトリウムを濾別後、ベンゼンを減圧留去した。得られた粗生成物をシリカゲルクロマトグラフィーにより精製して、1−シアノメチル−3,7−ビス(トリフルオロメチル)ナフタレンの淡黄色固体を得た。LC純度99%、収量2.9g(収率56.3%)。
【0029】
生成物の構造は、核磁気共鳴分析等で確認した。核磁気共鳴分析[VARIAN社製、Gemini200]の結果は以下の通りであった。
1H−NMR(溶媒:CDCl3、標準物質:テトラメチルシラン)
δ 8.26ppm(s,1H,Ar
8.23ppm(s,1H,Ar
8.17ppm(d,J=8.60Hz,1H,Ar
7.90ppm(s,1H,Ar
7.87ppm(d,J=8.60Hz,1H,Ar
4.27ppm(s,1H,C 2
19F−NMR(溶媒:CDCl3、標準物質:CFCl3
δ −62.37ppm(s,3F,C 3
−62.62ppm(s,3F,C 3)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to novel naphthalene compounds, specifically fluorine-containing naphthalene compounds, and methods for producing them. The novel compounds of the present invention are useful as precursors for organic fluorescent materials, liquid crystal materials, and dyes, and are expected to be used in a wide variety of other intermediates.
[0002]
[Prior art]
The naphthalene compounds according to the present invention are novel and therefore the process for producing these compounds is also novel.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide novel naphthalene compounds represented by the following general formula (I) and a method for producing them.
[0004]
[Chemical 6]
Figure 0004648546
[0005]
That is, the present invention relates to a novel 1-cyanomethyl-3,7-bis (trifluoromethyl) naphthalene represented by the following formula (V), a precursor 1-halogeno-3 represented by the formula (III), 7-bis (trifluoromethyl) naphthalene [the halogen atom at the 1-position is F, Cl, Br, or I] and 1-hydroxymethyl-3,7-bis (trifluoromethyl) represented by the formula (IV) It relates to naphthalene. Since the novel 1-cyanomethyl-3,7-bis (trifluoromethyl) naphthalene represented by the formula (V) provided by the present invention has active methylene, it is rich in reactivity with various compounds. It is a useful intermediate compound expected to be used for producing an organic fluorescent substance having a group, a dye, a liquid crystal material and the like. Further, 1-halogeno-3,7-bis (trifluoromethyl) naphthalene represented by the formula (III) and 1-hydroxymethyl-3,7-bis (trifluoromethyl) naphthalene represented by the formula (IV) are: Not only is it useful as a precursor of the compound of formula (V), but each has a reactive halogen atom and a hydroxymethyl group, so that it can be used for the production of medical pesticides, functional materials, etc. having a trifluoromethyl group. Therefore, it is a useful compound that is expected to be applied in a wide range of fields.
[0006]
[Chemical 7]
Figure 0004648546
[0007]
[Means for Solving the Problems]
The present inventors converted a novel 1-cyanomethyl-3,7-bis (trifluoromethyl) naphthalene represented by the formula (V) into 2,6-bis (trifluoromethyl) naphthalene represented by the formula (II). As raw materials, 1-halogeno-3,7-bis (trifluoromethyl) naphthalene represented by the formula (III) and 1-hydroxymethyl-3,7-bis (trifluoromethyl) naphthalene represented by the formula (IV) And found a method of manufacturing via.
[0008]
Specific production methods of the novel compounds of the present invention are shown in detail below.
2,6-bis (trifluoromethyl) naphthalene represented by the formula (II) can be produced by fluorinating a readily available 2,6-naphthalenedicarboxylic acid with a fluorinating agent such as SF 4 .
[0009]
By directly halogenating 2,6-bis (trifluoromethyl) naphthalene represented by the formula (II), a novel naphthalene compound represented by the formula (III), 1-halogeno-3,7-bis ( Trifluoromethyl) naphthalene can be produced. Considering the yield of this direct halogenation reaction and the yield of the next step [production of compound of formula (IV)], a novel 1-halogeno-3,7-bis (trifluoromethyl) represented by formula (III) ) It is preferable and recommended that the halogen at the 1-position of naphthalene is a bromine atom.
[0010]
Therefore, a method for producing 1-bromo-3,7-bis (trifluoromethyl) naphthalene [compound represented by formula (VI)] in which the halogen in formula (III) is a bromine atom will be described below.
<Method for Producing 1-Bromo-3,7-bis (trifluoromethyl) naphthalene>
As a method for producing the target compound of the formula (VI) from the raw material compound of the following formula (II), the compound of the formula (VI) is obtained by directly brominating the compound of the formula (II) in the presence of an iron-based catalyst. Compounds can be produced.
[0011]
[Chemical 8]
Figure 0004648546
[0012]
Reacting 2,6-bis (trifluoromethyl) naphthalene represented by the formula (II) by adding bromine dropwise in the presence of an iron-based catalyst without solvent or at a predetermined temperature and for a predetermined time using a solvent. Thus, 1-bromo-3,7-bis (trifluoromethyl) naphthalene, which is a novel naphthalene compound represented by the formula (VI), can be produced.
[0013]
The raw material represented by the formula (II) is preferably used without a solvent or diluted with a chlorinated solvent such as dichloromethane or chloroform. The amount of the solvent used is 0 to 20 ml per 1 g of the raw material. Since this raw material has a trifluoromethyl group on the naphthalene ring, the reactivity with bromine is poor, and it is preferable to use a catalyst. As the catalyst, iron-based catalysts are preferable, and iron powder, iron (III) bromide, and the like can be used. The amount used is preferably 0 to 0.2 times the molar amount of the raw material. Bromine can be used as it is without dilution. The amount used is 0.9 to 1.5 times the molar amount of the raw material. Bromine. It is preferable to drop in 0.5 to 5 hours, and if necessary, stirring is continued for 1 to 10 hours after the dropping is completed. The reaction temperature at the time of dropping bromine and after dropping is preferably in the range of 0 to 150 ° C. This bromination reaction can be performed under normal pressure, but may be performed under pressure. After completion of the reaction, 1-bromo-3,7-bis (trifluoromethyl) naphthalene, which is a novel naphthalene compound represented by the formula (VI), can be produced by performing ordinary post-treatment and purification. .
<Production of 1-hydroxymethyl-3,7-bis (trifluoromethyl) naphthalene>
Using 2,6-bis (trifluoromethyl) naphthalene represented by the above-mentioned formula (II) as a raw material, from now on via 1-halogeno-3,7-bis (trifluoromethyl) naphthalene represented by the formula (III) As a method for producing 1-hydroxymethyl-3,7-bis (trifluoromethyl) naphthalene represented by the formula (IV), an organometallic compound is prepared from the compound of the formula (III) under an inert gas atmosphere. And it can manufacture by making formaldehyde react with this.
[0014]
Here, in the compound of the formula (III), X is Br, which is 1-bromo-3,7-bis (trifluoromethyl) naphthalene represented by the formula (VI). As a method for producing a compound of the formula (IV) from a compound, it can be produced by preparing an organometallic compound from a compound of the formula (VI) under an inert gas atmosphere and reacting it with formaldehyde. .
[0015]
[Chemical 9]
Figure 0004648546
[0016]
An organometallic compound is prepared by reacting 1-bromo-3,7-bis (trifluoromethyl) naphthalene represented by the formula (VI) with a organolithium reagent or magnesium at a predetermined temperature and a predetermined time in a solvent while stirring. Is prepared, and the solution and formaldehyde are reacted with stirring at a predetermined temperature for a predetermined time, whereby 1-hydroxymethyl-3,7-bis, which is a novel naphthalene compound represented by formula (IV), is reacted. (Trifluoromethyl) naphthalene can be produced. Since this reaction is a reaction which dislikes moisture, the reaction vessel is preferably carried out in an atmosphere of dry inert gas such as nitrogen.
[0017]
As a solvent for this reaction, ether solvents such as diethyl ether and tetrahydrofuran can be used. The amount used is preferably 1 to 100 ml per 1 g of raw material.
[0018]
When an organolithium reagent is allowed to act, it is usually necessary to carry out at a low temperature. The temperature is preferably -80 ° C to 0 ° C. When metal magnesium is allowed to act, it is preferably about -30 ° C to 50 ° C. The amount of the organic lithium reagent and metal magnesium used is preferably 1 to 2 times the molar amount of 1 g of the raw material. The prepared solution containing the organometallic compound is reacted with formaldehyde. As the formaldehyde, paraformaldehyde (solid) may be added directly, or it is generated by thermal decomposition of paraformaldehyde in a separate container. Formaldehyde (gas) may be used. The amount used is 1 to 3 times the molar amount of the raw material. The reaction with formaldehyde is preferably carried out at a temperature of -50 ° C to 30 ° C. The reaction time is preferably 0.5 to 5 hours. After completion of the reaction, 1-hydroxymethyl-3,7 which is a novel naphthalene compound represented by the formula (IV) is obtained by adding dilute sulfuric acid, dilute hydrochloric acid or the like dropwise at room temperature or lower, and performing normal post-treatment and purification. -Bis (trifluoromethyl) naphthalene can be produced.
<Method for Producing 1-Cyanomethyl-3,7-bis (trifluoromethyl) naphthalene>
Starting from 2,6-bis (trifluoromethyl) naphthalene represented by formula (II), 1-halogeno-3,7-bis (trifluoromethyl) naphthalene represented by formula (III) and formula (IV) A novel 1-cyanomethyl-3,7-bis (trifluoromethyl) naphthalene represented by the formula (V) via 1-hydroxymethyl-3,7-bis (trifluoromethyl) naphthalene represented by As a production method, the compound of formula (IV) is produced from the compound of formula (II) by the above-mentioned method route, and further, the hydroxyl group of the compound of formula (IV) is converted into a leaving group in an inert atmosphere. Can be produced by reacting with cyanide ions.
[0019]
As a method for producing the compound of the formula (V) from the compound of the following formula (IV), after converting the hydroxyl group of the compound of the formula (IV) into a leaving group in an inert gas atmosphere, the compound is reacted with cyanide ions. A novel naphthalene compound of formula (V) can be produced.
[0020]
Embedded image
Figure 0004648546
[0021]
By reacting the hydroxy group (hydroxyl group) of 1-hydroxymethyl-3,7-bis (trifluoromethyl) naphthalene represented by the formula (IV) with a suitable reagent in a solvent at a predetermined temperature for a predetermined time. A novel 1-cyanomethyl-3,7-bis (trifluoromethyl) represented by the formula (V) is obtained by converting into a leaving group and reacting the solution and cyanide ion with stirring at a predetermined temperature for a predetermined time. ) Naphthalene can be produced. Since this reaction is a reaction that dislikes moisture, the reaction is preferably performed in a dry inert gas atmosphere such as nitrogen.
[0022]
As the leaving group, a p-toluenesulfonyl group, a methanesulfonyl group, a trifluoromethanesulfonyl group, a halogen atom and the like are preferable. As the sulfonylating agent, corresponding acid chlorides and acid anhydrides can be used. As the halogenating agent, a hydrohalic acid, a halide of an inorganic acid, or the like can be used. The amount of these reagents used is preferably 1 to 3 times the molar amount of the raw material. The sulfonylation reaction is preferably carried out in the presence of the same amount or a slight excess of a base such as a tertiary amine such as triethylamine or pyridine. The reaction temperature and reaction time for sulfonylation and halogenation vary depending on the reagent, but it is usually preferable to carry out at a temperature of -20 ° C to 100 ° C.
[0023]
The obtained compound having a leaving group is dissolved in a polar solvent and reacted with a cyanating agent. As the polar solvent, dimethyl sulfoxide, dimethylformamide, N-methylpyrrolidone, acetone or the like can be used. The amount used is preferably 1 to 100 ml with respect to 1 g of the compound having a leaving group. As the cyanating agent, sodium cyanide, potassium cyanide and the like can be used. The amount used is preferably 1 to 2 times the molar amount of the compound having a leaving group. The reaction temperature for cyanation is preferably 0 to 150 ° C. The reaction time is preferably 0.5 to 5 hours. After completion of the reaction, 1-cyanomethyl-3,7-bis (trifluoromethyl) naphthalene, which is a novel naphthalene compound represented by the formula (V), can be produced by performing normal post-treatment and purification. .
[0024]
Examples of the present invention are shown below. The production method of the novel compounds in the present invention is not limited to those described in the Examples.
[0025]
【Example】
Preparation of 1-bromo-3,7-bis (trifluoromethyl) naphthalene Example 1
In a 300 ml glass flask equipped with an oil bath, a reflux condenser, a thermometer and a dropping funnel with a pressure balance tube, 50 g (0.189 mol) of 2,6-bis (trifluoromethyl) naphthalene and reduced iron powder in a nitrogen atmosphere 1 g (0.019 mol) and 100 ml of chloroform were charged. While heating under reflux, 34.7 g (0.217 mol) of bromine was added dropwise over 2 hours with stirring. The by-produced hydrogen bromide gas was detoxified with an alkali scrubber. After completion of the dropwise addition, stirring was continued under heating and reflux for another 5 hours. Stirring was stopped, the reaction solution was cooled to room temperature as it was, and then suction filtered, and the filtrate was washed with 100 ml of 5% aqueous sodium sulfite solution and 100 ml of saturated brine. The organic phase was dried over anhydrous sodium sulfate, sodium sulfate was filtered off, and chloroform was distilled off under reduced pressure. The obtained crude product was purified by silica gel chromatography to obtain a light yellow solid of 1-bromo-3,7-bis (trifluoromethyl) naphthalene. LC purity 98%, yield 62.1 g (yield 95.7%).
[0026]
The structure of the product was confirmed by nuclear magnetic resonance analysis and the like. The results of nuclear magnetic resonance analysis [manufactured by Varian, Gemini 200] were as follows.
Figure 0004648546
Production of 1-hydroxymethyl-3,7-bis (trifluoromethyl) naphthalene Example 2
In a 500 ml glass flask equipped with a cooling bath, a thermometer and a dropping funnel equipped with a pressure balance tube, under a nitrogen atmosphere, 30 g (0.087 mol) of 1-bromo-3,7-bis (trifluoromethyl) naphthalene and 150 ml of dry ether And charged. While cooling to −50 ° C. and stirring, 61.2 ml (0.094 mol) of n-butyllithium hexane solution (1.54M) was added dropwise over 30 minutes. Next, in a separate glass flask, 7.9 g (0.26 mol) of paraformaldehyde was heated to 100 to 180 ° C. with stirring under a nitrogen atmosphere, and the formaldehyde generated with dry nitrogen was added to the main reaction flask. The liquid temperature was introduced into the vicinity of the gas-liquid interface over 30 minutes while controlling the liquid temperature within the range of −50 ° C. to −30 ° C. After the generation of formaldehyde was completed, 150 ml of water and 10 ml of concentrated hydrochloric acid were slowly added dropwise with stirring so that the liquid temperature became 10 ° C. or lower. After completion of the dropwise addition, 100 ml of ether was added for extraction, and the organic phase was washed with 100 ml of saturated brine. The organic phase was dried over anhydrous sodium sulfate, sodium sulfate was filtered off, and chloroform was distilled off under reduced pressure. The obtained crude product was purified by silica gel chromatography to obtain a white solid of 1-hydroxymethyl-3,7-bis (trifluoromethyl) naphthalene. LC purity 99%, yield 18.3 g (yield 71.1%).
[0027]
The structure of the product was confirmed by nuclear magnetic resonance analysis and the like. The results of nuclear magnetic resonance analysis [manufactured by Varian, Gemini 200] were as follows.
1 H-NMR (solvent: CDCl 3 , standard substance: tetramethylsilane)
δ 8.44ppm (s, 1H, Ar H)
8.16 ppm (s, 1H, Ar H )
8.09 ppm (d, J = 5.84 Hz, 1H, Ar H )
7.84 ppm (s, 1 H, Ar H )
7.79 ppm (dd, J = 1.60, 8.60 Hz, 1H, Ar H )
5.25 ppm (s, 2H, C H 2 )
2.05ppm (bs, 1H, O H )
19 F-NMR (solvent: CDCl 3 , standard substance: CFCl 3 )
δ −62.26 ppm (s, 3F, C F 3 )
−62.60 ppm (s, 3F, C F 3 )
Production Example 1 of 1-cyanomethyl-3,7-bis (trifluoromethyl) naphthalene
1-hydroxymethyl-3,7-bis (trifluoromethyl) naphthalene 5 g (0.017 mol) and triethylamine 3 in a 100 ml glass flask equipped with a cooling bath, a thermometer and a dropping funnel equipped with a pressure balance tube in a nitrogen atmosphere .45 g (0.034 mol) and 20 ml of dichloromethane were charged. While cooling to about 0 ° C. and stirring, 2.95 g (0.026 mol) of methanesulfonyl chloride was added dropwise over 30 minutes. After completion of the dropwise addition, stirring was continued for 30 minutes at room temperature. The solution was cooled again to 0 ° C., and 20 ml of saturated sodium bicarbonate solution was slowly added dropwise with stirring, followed by extraction with 20 ml of dichloromethane. After completion of the dropwise addition, the organic phase was separated and washed with 20 ml of saturated brine. The organic phase was dried over anhydrous sodium sulfate, sodium sulfate was filtered off, and chloroform was distilled off under reduced pressure. 6.0 g of a methanesulfonic acid ester was obtained as a pale yellow solid.
[0028]
Next, 100 ml equipped with an oil bath, a thermometer and a dropping funnel equipped with a pressure balance tube was charged with 1.25 g (0.026 mol) of sodium cyanide and 30 ml of dimethyl sulfoxide in a glass flask under a nitrogen atmosphere. To a homogeneous solution. A total amount of a solution prepared by dissolving the previously prepared methanesulfonic acid ester in 10 ml of dimethyl sulfoxide was quickly added thereto. After the addition, the mixture was further stirred at 70 ° C. for 30 minutes. After allowing to cool, 100 ml of benzene was added to the reaction solution and washed with 50 ml of saturated brine. The organic phase was separated, dried over anhydrous sodium sulfate, sodium sulfate was filtered off, and benzene was distilled off under reduced pressure. The obtained crude product was purified by silica gel chromatography to obtain a light yellow solid of 1-cyanomethyl-3,7-bis (trifluoromethyl) naphthalene. LC purity 99%, yield 2.9 g (56.3% yield).
[0029]
The structure of the product was confirmed by nuclear magnetic resonance analysis and the like. The results of nuclear magnetic resonance analysis [manufactured by Varian, Gemini 200] were as follows.
1 H-NMR (solvent: CDCl 3, standard: tetramethylsilane)
δ 8.26 ppm (s, 1 H, Ar H )
8.23 ppm (s, 1 H, Ar H )
8.17 ppm (d, J = 8.60 Hz, 1H, Ar H )
7.90 ppm (s, 1 H, Ar H )
7.87 ppm (d, J = 8.60 Hz, 1H, Ar H )
4.27 ppm (s, 1 H, C H 2 )
19 F-NMR (solvent: CDCl 3 , standard substance: CFCl 3 )
δ −62.37 ppm (s, 3F, C F 3 )
−62.62 ppm (s, 3F, C F 3 )

Claims (5)

下記一般式(I)で示されるナフタレン化合物。
Figure 0004648546
A naphthalene compound represented by the following general formula (I).
Figure 0004648546
下記式(II)の2,6−ビス(トリフルオロメチル)ナフタレンを直接ハロゲン化することにより新規なナフタレン化合物である下記式(III)の1−ハロゲノ−3,7−ビス(トリフルオロメチル)ナフタレンを製造する方法。
Figure 0004648546
1-halogeno-3,7-bis (trifluoromethyl) of the following formula (III) which is a novel naphthalene compound by directly halogenating 2,6-bis (trifluoromethyl) naphthalene of the following formula (II) A method for producing naphthalene.
Figure 0004648546
下記式(II)の2,6−ビス(トリフルオロメチル)ナフタレンから得られた下記式(III)の1−ハロゲノ−3,7−ビス(トリフルオロメチル)ナフタレンから、不活性ガス雰囲気下、有機金属化合物を調製し、これをホルムアルデヒドと反応させることにより新規なナフタレン化合物である下記式(IV)の1−ヒドロキシメチル−3,7−ビス(トリフルオロメチル)ナフタレンを製造する方法。
Figure 0004648546
From 1-halogeno-3,7-bis (trifluoromethyl) naphthalene of the following formula (III) obtained from 2,6-bis (trifluoromethyl) naphthalene of the following formula (II), under an inert gas atmosphere: A method for producing 1-hydroxymethyl-3,7-bis (trifluoromethyl) naphthalene of the following formula (IV), which is a novel naphthalene compound, by preparing an organometallic compound and reacting it with formaldehyde.
Figure 0004648546
下記式(II)の2,6−ビス(トリフルオロメチル)ナフタレンから得られた下記式(III)の1−ハロゲノ−3,7−ビス(トリフルオロメチル)ナフタレンを経て、下記式(IV)の1−ヒドロキシメチル−3,7−ビス(トリフルオロメチル)ナフタレンを得、その水酸基を脱離基に変換した後に、シアン化物イオンと反応させることにより新規なナフタレン化合物である下記式(V)の1−シアノメチル−3,7−ビス(トリフルオロメチル)ナフタレンを製造する方法。
Figure 0004648546
Via 1-halogeno-3,7-bis (trifluoromethyl) naphthalene of the following formula (III) obtained from 2,6-bis (trifluoromethyl) naphthalene of the following formula (II), the following formula (IV) 1-hydroxymethyl-3,7-bis (trifluoromethyl) naphthalene is converted into a leaving group and then reacted with cyanide ion to form a novel naphthalene compound represented by the following formula (V) Of 1-cyanomethyl-3,7-bis (trifluoromethyl) naphthalene.
Figure 0004648546
下記式(II)の2,6−ビス(トリフルオロメチル)ナフタレンを鉄系触媒の存在下に直接臭素化して、下記式(VI)の1−ブロモ−3,7−ビス(トリフルオロメチル)ナフタレンを製造する方法。
Figure 0004648546
2,6-bis (trifluoromethyl) naphthalene of the following formula (II) is directly brominated in the presence of an iron-based catalyst to give 1-bromo-3,7-bis (trifluoromethyl) of the following formula (VI) A method for producing naphthalene.
Figure 0004648546
JP2001002442A 2001-01-10 2001-01-10 Novel naphthalene compounds having reactive groups and methods for producing them Expired - Fee Related JP4648546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001002442A JP4648546B2 (en) 2001-01-10 2001-01-10 Novel naphthalene compounds having reactive groups and methods for producing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001002442A JP4648546B2 (en) 2001-01-10 2001-01-10 Novel naphthalene compounds having reactive groups and methods for producing them

Publications (3)

Publication Number Publication Date
JP2002205963A JP2002205963A (en) 2002-07-23
JP2002205963A5 JP2002205963A5 (en) 2008-02-21
JP4648546B2 true JP4648546B2 (en) 2011-03-09

Family

ID=18870949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001002442A Expired - Fee Related JP4648546B2 (en) 2001-01-10 2001-01-10 Novel naphthalene compounds having reactive groups and methods for producing them

Country Status (1)

Country Link
JP (1) JP4648546B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101195377B1 (en) 2011-06-29 2012-10-29 충남대학교산학협력단 Method for selectively detecting cyanide ion via complexation between water-soluble hyperbranched fluorescent conjugated polymer and benzyl viologen

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3939198A (en) * 1966-02-23 1976-02-17 Marathon Oil Company Chlorinated naphthalene esters
US4022827A (en) * 1970-05-06 1977-05-10 Marathon Oil Company Heptachloro-alpha-naphthoyl chloride
JPH02502728A (en) * 1987-12-23 1990-08-30 アメリカン・ホーム・プロダクツ・コーポレイション N-naphthoylglycine as an aldose reductase inhibitor
JPH02502727A (en) * 1987-12-23 1990-08-30 アメリカン・ホーム・プロダクツ・コーポレイション N-acyl-N-naphthoylglycine as an aldose reductase inhibitor
JP2000186146A (en) * 1998-12-22 2000-07-04 Sumitomo Bakelite Co Ltd Polybenzoxazole precursor and polybenzoxazole resin
WO2002012208A1 (en) * 2000-08-04 2002-02-14 Taiho Industries, Co., Ltd Nile-red luminescent compound, process for producing the same, and luminescent element utilizing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3939198A (en) * 1966-02-23 1976-02-17 Marathon Oil Company Chlorinated naphthalene esters
US4022827A (en) * 1970-05-06 1977-05-10 Marathon Oil Company Heptachloro-alpha-naphthoyl chloride
JPH02502728A (en) * 1987-12-23 1990-08-30 アメリカン・ホーム・プロダクツ・コーポレイション N-naphthoylglycine as an aldose reductase inhibitor
JPH02502727A (en) * 1987-12-23 1990-08-30 アメリカン・ホーム・プロダクツ・コーポレイション N-acyl-N-naphthoylglycine as an aldose reductase inhibitor
JP2000186146A (en) * 1998-12-22 2000-07-04 Sumitomo Bakelite Co Ltd Polybenzoxazole precursor and polybenzoxazole resin
WO2002012208A1 (en) * 2000-08-04 2002-02-14 Taiho Industries, Co., Ltd Nile-red luminescent compound, process for producing the same, and luminescent element utilizing the same

Also Published As

Publication number Publication date
JP2002205963A (en) 2002-07-23

Similar Documents

Publication Publication Date Title
TWI454471B (en) Processes to make apoptosis promoters
JP2018021040A (en) Method for producing N-(4-cyclohexyl-3-trifluoromethyl-benzyloxy)-acetimidic acid ethyl ester
JP5721720B2 (en) Method for producing methylene disulfonate compound
TWI695824B (en) Process for preparing 3-chloro-2-vinylphenylsulfonates
JP2005536558A (en) Process for the production of nitrooxy derivatives of naproxen
JP4648546B2 (en) Novel naphthalene compounds having reactive groups and methods for producing them
KR20110025182A (en) Method for producing 3-methyl-2-thiophenecarboxylic acid
JP4801270B2 (en) Novel fluorine-containing anthracene compounds and methods for producing them
JP4801271B2 (en) Novel fluorine-containing naphthalene compounds and methods for producing them
JP4750286B2 (en) Method for producing novel biphenyl compound having reactive group
JP5296109B2 (en) Novel biphenyl compounds having reactive groups
JP4899385B2 (en) Method for producing 3-aminomethyloxetane compound
JP4794078B2 (en) Novel 1,1,3,3-tetrafluoro-1,3-dihydroisobenzofuran compounds and process for producing them
JP2001322950A (en) Method for producing 2-alkyleneadamantane
JP3787821B2 (en) Method for producing benzamidoxime compound
JPWO2004035520A1 (en) Method for producing acetylene compound
JP3531039B2 (en) 1,4-difluorobenzene derivative
JPH0352839A (en) Production of p-or m-tert-butoxybenzaldehyde
JPH10168051A (en) Production of 2,3-dihalogeno-6-trifluoromethylbenzonitrile
JP4234967B2 (en) Novel difluorobenzene derivatives and methods for producing them
JP2001294545A (en) Raw material compound for organic functional material
KR100390026B1 (en) Preparation method of n-methyl-3-£(4-trifluoromethyl)phenoxy| -3-phenylpropylamine
JPH04283524A (en) Production of trifluoromethyl-substituted aromatic compound
JP2003206285A (en) NEW 1,1,3,3-TETRAFLUORO-1H,3H-NAPHTHO[1,8-c,d]PYRAN COMPOUND AND METHOD FOR PRODUCING THE SAME
JPH1112217A (en) Butane derivative

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040319

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4648546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees