JP4647961B2 - Rotor connection method - Google Patents

Rotor connection method Download PDF

Info

Publication number
JP4647961B2
JP4647961B2 JP2004274785A JP2004274785A JP4647961B2 JP 4647961 B2 JP4647961 B2 JP 4647961B2 JP 2004274785 A JP2004274785 A JP 2004274785A JP 2004274785 A JP2004274785 A JP 2004274785A JP 4647961 B2 JP4647961 B2 JP 4647961B2
Authority
JP
Japan
Prior art keywords
commutator
coil
harmonic
yag
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004274785A
Other languages
Japanese (ja)
Other versions
JP2006094600A (en
Inventor
▲高▼弘 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amada Miyachi Co Ltd
Original Assignee
Amada Miyachi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amada Miyachi Co Ltd filed Critical Amada Miyachi Co Ltd
Priority to JP2004274785A priority Critical patent/JP4647961B2/en
Publication of JP2006094600A publication Critical patent/JP2006094600A/en
Application granted granted Critical
Publication of JP4647961B2 publication Critical patent/JP4647961B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Manufacture Of Motors, Generators (AREA)

Description

本発明は、回転子結線方法に係わり、特に整流子と電機子巻線とを接続する方法に関する。   The present invention relates to a rotor connection method, and more particularly to a method of connecting a commutator and an armature winding.

発電機や電動機等の回転機は、機械的には回転子、固定子および軸受を主要部分とし、電気的には界磁、電機子、整流子およびブラシを主要部分としている。一般的には、回転子に円筒形の電機子および整流子が設けられ、回転子と対向する固定子に界磁およびブラシが設けられる。電機子は、電機子鉄心の表面に電機子巻線を構成する多数のコイルを装着してなる。整流子は、絶縁板を介して円周方向に並べた多数の整流子片を有し、固定子側のブラシと摺接して回転部分と静止部分との間の電流通路を形成する。   A rotating machine such as a generator or an electric motor mechanically includes a rotor, a stator, and a bearing as main parts, and electrically includes a field, an armature, a commutator, and a brush as main parts. In general, a rotor is provided with a cylindrical armature and a commutator, and a stator and a stator facing the rotor are provided with a field and a brush. The armature is formed by mounting a large number of coils constituting the armature winding on the surface of the armature core. The commutator has a large number of commutator pieces arranged in a circumferential direction with an insulating plate interposed therebetween, and forms a current path between the rotating part and the stationary part by sliding contact with the brush on the stator side.

回転子を組み立てるには、整流子の各整流子片に電機子巻線のコイルを接続または結線する工程を必要とする。従来より、この結線工程には、ヒュージング加工が用いられている。この種のヒュージング加工は、各整流子片の端子部に各コイルの端末をジュール熱と加圧力を利用して熱かしめで接続し、機械的な接合を得るものである。   In order to assemble the rotor, a step of connecting or connecting a coil of an armature winding to each commutator piece of the commutator is required. Conventionally, fusing processing has been used for this connection process. In this type of fusing process, the end of each coil is connected to the terminal portion of each commutator piece by thermal caulking using Joule heat and applied pressure to obtain mechanical joining.

しかしながら、ヒュージング加工は、抵抗溶接機と同様に通電用の電極や加圧機構を有する大掛かりなヒュージング加工機を必要とするだけでなく、かしめ接続による機械的な接合であるために接合強度や電気的特性の信頼性が低いという問題があった。   However, the fusing process requires not only a large fusing machine with a current-carrying electrode and a pressurizing mechanism like a resistance welder, but also a mechanical strength by caulking, so that the joining strength In addition, there is a problem that reliability of electrical characteristics is low.

本発明は、かかる従来技術の問題点に鑑みてなされたもので、整流子に電機子巻線のコイルを溶融接合により安定確実に接続する回転子結線方法を提供することを目的とする。   The present invention has been made in view of the problems of the prior art, and an object of the present invention is to provide a rotor connection method for stably and surely connecting a coil of an armature winding to a commutator by fusion bonding.

本発明の別の目的は、整流子に電機子巻線のコイルを溶融接合で接続するための簡便かつ効率的な回転子結線方法を提供することにある。   Another object of the present invention is to provide a simple and efficient rotor connection method for connecting a coil of an armature winding to a commutator by fusion bonding.

上記の目的を達成するために、本発明の回転子結線方法は、整流子と電機子巻線とを接続する回転子結線方法であって、整流子を構成する銅または銅合金からなる各整流子片の端子部の溝に電機子巻線を構成する銅または銅合金からなる各コイルの端末をその端面が前記整流子片の端子部の一側面と面一になるように嵌め込み、前記整流子片の端子部と前記コイルの端末とが接触する部分に対して前記コイル端末の端面と向き合う位置から可変のパルス幅を有するYAG高調波のパルスレーザ光を照射して、前記YAG高調波パルスレーザ光のエネルギーにより前記接触部分にて前記整流子片の端子部と前記コイルの端末とを溶接する。
In order to achieve the above object, the rotor connection method of the present invention is a rotor connection method for connecting a commutator and an armature winding, and each commutation made of copper or a copper alloy constituting the commutator. The terminal of each coil made of copper or copper alloy constituting the armature winding is fitted into the groove of the terminal portion of the child piece so that the end surface thereof is flush with one side surface of the terminal portion of the commutator piece, and the rectification by irradiating a YAG harmonic pulse laser light from a position facing the end surface of the coil terminal with the terminal and the terminal are in contact with portions of said coil child piece having a variable pulse width, the YAG harmonic pulse welding the terminals of the coil and terminal portions of the commutator segments and more in the contact portion to the energy of the laser beam.

本発明の回転子結線方法は、整流子を構成する銅または銅合金からなる各整流子片の端子部に銅または銅合金からなる電機子巻線を構成する各コイルの端末をレーザで溶接する。本発明によれば、整流子片の端子部の溝にコイルの端末がその端面が整流子片の端子部の一側面と面一になるように嵌めこまれた状態で、整流子片の端子部とコイルとが接触する部分に対してコイル端末の端面と向き合う位置から可変のパルス幅を有するYAG高調波のパルスレーザ光が照射される。そうすると、YAG高調波のパルスレーザ光を照射された整流子片の端子部およびコイル端末の接触部分はYAG高調波のエネルギーを高い吸収率で吸収して急速に溶融し、コイル端末の端面から内奥に向かってスポット溶接(継手溶接)の接合部が形成される。この継手溶接部を複数箇所に形成するのも容易であり、継手溶接部を連続させるシーム溶接も可能である。このような継手溶接部によって、機械的強度の大部分が得られるとともに、電気的接続の信頼性も保証される。このように、機械的にも電気的にも信頼性の高い溶融接合を効率よく実現することができる。
According to the rotor connection method of the present invention, the terminal of each coil constituting the armature winding made of copper or copper alloy is welded by laser to the terminal portion of each commutator piece made of copper or copper alloy constituting the commutator. . According to the present invention, the terminal of the commutator piece is fitted in the groove of the terminal part of the commutator piece so that the end face of the coil is fitted with one side surface of the terminal part of the commutator piece. YAG harmonic pulse laser light having a variable pulse width is irradiated from the position facing the end face of the coil terminal to the part where the part and the coil come into contact. Then, the contact portion of the commutator piece irradiated with the YAG harmonic pulse laser beam and the contact portion of the coil end absorbs the energy of the YAG harmonic with a high absorption rate and melts rapidly, and the inner end from the end surface of the coil end A joint portion of spot welding (joint welding) is formed toward the back. It is easy to form the joint welds at a plurality of locations, and seam welding in which the joint welds are continuous is also possible. Such a joint weld provides the majority of the mechanical strength and also ensures the reliability of the electrical connection. As described above, it is possible to efficiently realize highly reliable fusion bonding both mechanically and electrically.

本発明において、YAG高調波は、実用的には、波長が532nmのYAG第2高調波で充分である。好ましい一態様によれば、Nd:YAGレーザにより可変のパルス幅を有する波長1064nmのYAG基本波のパルスレーザ光を生成し、このYAG基本波のパルスレーザ光をKTP結晶に入射させて、KTP結晶とYAG基本波のパルスレーザ光との非線形相互作用によりYAG第2高調波のパルスレーザ光を生成する。   In the present invention, as the YAG harmonic, a YAG second harmonic having a wavelength of 532 nm is sufficient for practical use. According to a preferred aspect, a pulse laser beam having a YAG fundamental wave having a variable pulse width of 1064 nm and having a variable pulse width is generated by an Nd: YAG laser, and the pulse laser beam having the YAG fundamental wave is incident on the KTP crystal. A YAG second harmonic pulse laser beam is generated by nonlinear interaction between the YAG fundamental wave pulse laser beam and the YAG fundamental wave.

本発明の回転子結線方法によれば、上記のような構成と作用により、整流子に電機子巻線のコイルを溶融接合により安定確実に接続することができ、さらには簡便かつ効率的な溶融接合を実現することもできる。   According to the rotor connection method of the present invention, the armature winding coil can be stably and surely connected to the commutator by fusion bonding by the above-described configuration and operation, and further, simple and efficient melting. Bonding can also be realized.

以下、添付図を参照して本発明の好適な実施の形態を説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

図1〜図5に、本発明における回転子結線方法の一実施形態を示す。図1は全体の斜視図、図2および図3は要部の斜視図、図4は要部の横断面図、図5は要部の縦断面図である。   1 to 5 show an embodiment of a rotor connection method according to the present invention. 1 is an overall perspective view, FIGS. 2 and 3 are perspective views of essential parts, FIG. 4 is a transverse sectional view of essential parts, and FIG. 5 is a longitudinal sectional view of essential parts.

図1に示すように、回転子を組み立てるために、軸10に円筒形の電機子鉄心12と整流子14とを軸方向に並べて(隣り合わせで)固定する。電機子鉄心12の外周面に形成された軸方向に延びるスロットには、電機子巻線を構成する多数の型巻コイル16が鼓状巻で装着されている。コイル16は、銅または銅合金からなり、断面が矩形または円形で、裸線または絶縁被覆線のいずれであってもよい。整流子14は、絶縁板(たとえばマイカ板)17を介して円周方向に密に並べられた多数の整流子片18で構成されている。各整流子片18は、銅または銅合金からなり、図2に示すように、軸方向に延在するブラシ接触部20と、このブラシ接触部20の一端部から半径方向外側に延びる端子部(耳部)22とを有している。端子部22の先端面には半径方向内側に切り欠かれた溝または凹部22aが形成されている。   As shown in FIG. 1, in order to assemble a rotor, a cylindrical armature core 12 and a commutator 14 are fixed to a shaft 10 side by side (adjacently). In a slot extending in the axial direction formed on the outer peripheral surface of the armature core 12, a large number of die-wound coils 16 constituting an armature winding are mounted in a drum shape. The coil 16 is made of copper or a copper alloy, has a rectangular or circular cross section, and may be either a bare wire or an insulation-coated wire. The commutator 14 is composed of a large number of commutator pieces 18 arranged closely in the circumferential direction with an insulating plate (for example, mica plate) 17 interposed therebetween. Each commutator piece 18 is made of copper or a copper alloy, and as shown in FIG. 2, a brush contact portion 20 extending in the axial direction and a terminal portion extending radially outward from one end portion of the brush contact portion 20 ( Ear portion) 22. A groove or recess 22a is formed on the distal end surface of the terminal portion 22 by cutting it inward in the radial direction.

上記のような回転子の組立を完成させるため、整流子14に電機子巻線のコイル16を接続または結線する。この結線のために、第1の工程として、電機子鉄心12の各スロットより整流子14側にはみ出た各コイル16の開放端のコイル端末16iを、当該コイルと対応する整流子片18の端子部22の溝22aに所定の他のコイル16のコイル端末16jと上下に重ねて嵌め込む(図2、図3)。   In order to complete the assembly of the rotor as described above, the coil 16 of the armature winding is connected to or connected to the commutator 14. For this connection, as a first step, the coil terminals 16i at the open ends of the coils 16 protruding from the slots of the armature core 12 to the commutator 14 side are connected to the terminals of the commutator piece 18 corresponding to the coils. The coil terminal 16j of the predetermined other coil 16 is fitted into the groove 22a of the portion 22 so as to overlap vertically (FIGS. 2 and 3).

次に、第2の工程として、回転子から見て整流子の前方に配置したレーザ出射ユニット30より結線部に向けて、より詳細には整流子片18の端子部22とコイル端末16i,16jとが接触する部分CNに向けて、レーザ光LBを照射する(図1、図3、図4)。この実施形態におけるレーザ出射ユニット30は、レーザ光LBとして、532nmの波長を有するYAG第2高調波のパルスレーザ光(グリーン光)を出射する。このYAG第2高調波のパルスレーザ光LBが照射された接触部分CNでは、整流子片18の端子部22およびコイル端末16i,16jのいずれもYAG第2高調波のレーザエネルギーを高い吸収率で吸収して急速に溶融し、スポット溶接(継手溶接)の接合部Wが形成される(図4、図5)。なお、コイル16が被覆線であっても、端子部22およびコイル端末16i,16jが溶融した熱によって絶縁膜も溶ける。   Next, as a second step, from the laser emitting unit 30 disposed in front of the commutator as viewed from the rotor, toward the connection portion, more specifically, the terminal portion 22 of the commutator piece 18 and the coil terminals 16i, 16j. The laser beam LB is irradiated toward the portion CN in contact with (FIG. 1, FIG. 3, FIG. 4). The laser emitting unit 30 in this embodiment emits YAG second harmonic pulse laser light (green light) having a wavelength of 532 nm as the laser light LB. In the contact portion CN irradiated with the YAG second harmonic pulse laser beam LB, both the terminal portion 22 of the commutator piece 18 and the coil terminals 16i and 16j absorb the laser energy of the YAG second harmonic with a high absorption rate. It absorbs and melts rapidly to form a joint W for spot welding (joint welding) (FIGS. 4 and 5). Even if the coil 16 is a covered wire, the insulating film is also melted by the heat of melting the terminal portion 22 and the coil terminals 16i and 16j.

より詳細には、図4に示すように、継手溶接部Wは、整流子片18の端子部22とコイル端末16i,16jとが接触する部分CNのうち、コイル端末16i,16jの端面から内奥に向かって形成される。図5に示すように接触部分CNの内の適当な間隔を置いた複数の箇所(図示の例は5箇所)に継手溶接部Wを形成してよく、さらには継手溶接部を連続させるシーム溶接も可能である。また、コイル端末16i,16j同士の接触部分にも上記と同様にレーザ光LBを照射して継手溶接部Wを形成してもよい。   More specifically, as shown in FIG. 4, the joint weld W is formed from the end surface of the coil terminals 16 i and 16 j in the portion CN where the terminal part 22 of the commutator piece 18 and the coil terminals 16 i and 16 j are in contact. It is formed toward the back. As shown in FIG. 5, joint welds W may be formed at a plurality of locations (five locations in the illustrated example) at an appropriate interval in the contact portion CN, and further, a seam weld that makes the joint welds continuous. Is also possible. Further, the joint welded portion W may be formed by irradiating the contact portion between the coil terminals 16i and 16j with the laser beam LB in the same manner as described above.

上記接触部分CNの内で継手溶接部Wが形成されない箇所または領域は、圧接状態になっているので、ある程度の機械的な結合力が得られるとともに、コイル16が裸線の場合は電気的な接続も得られる。もっとも、機械的接合強度の大部分が継手溶接部Wで得られ、電気的接続の信頼性も継手溶接部Wで保証されることになる。   A portion or a region where the joint weld W is not formed in the contact portion CN is in a pressure contact state, so that a certain degree of mechanical coupling force is obtained, and when the coil 16 is a bare wire, an electrical connection is obtained. A connection is also obtained. However, most of the mechanical joint strength is obtained at the joint weld W, and the reliability of the electrical connection is also guaranteed at the joint weld W.

なお、レーザ出射ユニット30とワーク(回転子)との間で加工点または溶接ポイントを移動させるための機構(たとえばX−Yテーブル機構、θ回転機構等)が用いられてよい。   Note that a mechanism (for example, an XY table mechanism, a θ rotation mechanism, or the like) for moving a machining point or a welding point between the laser emission unit 30 and the workpiece (rotor) may be used.

上記のように、この実施形態では、どちらも銅または銅合金からなる整流子片18の端子部22と電機子コイル16の端末16i,16jとが接触する部分CNに、波長532nmのYAG第2高調波のパルスレーザ光(グリーン光)LBを照射する点が重要である。後述するように銅系の金属はYAG第2高調波のレーザエネルギーを高い吸収率で吸収するため、適度なレーザ出力とパルス幅を有するYAG第2高調波のパルスレーザ光LBを照射することで、銅系の結線部分または接触部分CNにおいて機械的にも電気的にも信頼性の高い溶融接合を効率よく実現することができる。また、ヒュージング加工のように結線部に電極を当てたり加圧力を加える必要がなく、簡便かつ短時間に回転子結線作業を行うことができる。   As described above, in this embodiment, the YAG second having a wavelength of 532 nm is applied to the portion CN where the terminal portion 22 of the commutator piece 18 made of copper or a copper alloy and the terminals 16i and 16j of the armature coil 16 are in contact with each other. It is important to irradiate harmonic pulse laser light (green light) LB. As described later, since the copper-based metal absorbs the laser energy of the YAG second harmonic with a high absorptance, the YAG second harmonic pulse laser beam LB having an appropriate laser output and pulse width is irradiated. In addition, it is possible to efficiently realize highly reliable fusion bonding both mechanically and electrically in the copper connection portion or the contact portion CN. In addition, unlike the fusing process, it is not necessary to apply an electrode or apply pressure to the connection portion, and the rotor connection operation can be performed easily and in a short time.

ここで、図6〜図10につき、上記実施形態における回転子結線方法のベースとなる本発明のレーザ技術について説明する。   Here, with reference to FIGS. 6 to 10, the laser technology of the present invention, which is the base of the rotor connection method in the above embodiment, will be described.

図6に、Cu、Au、Fe(鉄)の波長吸収特性を示す。代表的なYAGレーザであるNd:YAGレーザの基本波(ω)は1064nmである。このYAG基本波(ω)を、Feは比較的良好に吸収するが、CuやAuは僅かしか吸収しない。したがって、上記のような回転子結線における整流子片18の端子部22と電機子コイル16の端末16i,16jとの接続にYAG基本波(ω)のレーザ光を用いたならば、接合部(結線部)への入熱が非常に難しく、無理にレーザパワーを上げると結線部が吹き飛んでしまうこともあり、安定確実な溶接は殆ど不可能である。ところが、CuやAuは、YAG基本波(ω)の高調波つまり第2高調波(2ω:532nm)、第3高調波(3ω:355nm)あるいは第4高調波(4ω:266nm)等をよく吸収する。たとえば、第2高調波(2ω:532nm)に対するCuやAuの吸収率は50%以上である。YAG基本波(ω)をよく吸収するといわれるFeの吸収率が40%以下であることに鑑みれば、如何に高い吸収率であるかが分かる。実用的に、CuやAuのレーザ溶接には第2高調波(2ω:532nm)で十分である。   FIG. 6 shows the wavelength absorption characteristics of Cu, Au, and Fe (iron). The fundamental wave (ω) of an Nd: YAG laser, which is a typical YAG laser, is 1064 nm. This YAG fundamental wave (ω) absorbs Fe relatively well, but Cu and Au absorb only a little. Therefore, if the YAG fundamental wave (ω) laser beam is used for connection between the terminal portion 22 of the commutator piece 18 and the terminals 16i and 16j of the armature coil 16 in the rotor connection as described above, the joint portion ( It is very difficult to input heat into the connection part), and if the laser power is forcibly increased, the connection part may be blown off, and stable and reliable welding is almost impossible. However, Cu and Au well absorb the harmonics of the YAG fundamental wave (ω), that is, the second harmonic (2ω: 532 nm), the third harmonic (3ω: 355 nm), the fourth harmonic (4ω: 266 nm), and the like. To do. For example, the absorption rate of Cu and Au with respect to the second harmonic (2ω: 532 nm) is 50% or more. In view of the fact that the absorption rate of Fe, which is said to absorb the YAG fundamental wave (ω) well, is 40% or less, it can be seen how high the absorption rate is. Practically, the second harmonic (2ω: 532 nm) is sufficient for laser welding of Cu or Au.

図7に、この実施形態の回転子結線方法で用いるYAGレーザ装置の構成を示す。このYAGレーザ装置は、支持台(図示せず)上に直線配列型で一対の終端ミラー36,38、固体レーザ活性媒質40、波長変換結晶42、偏光素子44および高調波分離出力ミラー46を配置している。   FIG. 7 shows the configuration of a YAG laser device used in the rotor connection method of this embodiment. In this YAG laser device, a pair of termination mirrors 36 and 38, a solid-state laser active medium 40, a wavelength conversion crystal 42, a polarization element 44, and a harmonic separation output mirror 46 are arranged in a linear arrangement on a support base (not shown). is doing.

両終端ミラー36,38は互いに向かい合って光共振器を構成している。一方の終端ミラー36の反射面36aには、基本波長(1064nm)に対して反射性の膜がコーティングされている。他方の終端ミラー38の反射面38aには、基本波長(1064nm)に対して反射性の膜がコーティングされるとともに、第2高調波(532nm)に対して反射性の膜がコーティングされている。   Both end mirrors 36 and 38 face each other to form an optical resonator. The reflecting surface 36a of one terminal mirror 36 is coated with a film that is reflective to the fundamental wavelength (1064 nm). The reflective surface 38a of the other terminal mirror 38 is coated with a film reflective to the fundamental wavelength (1064 nm) and coated with a film reflective to the second harmonic (532 nm).

活性媒質40は、たとえばNd:YAGロッドからなり、一方の終端ミラー36寄りに配置され、電気光学励起部48によって光学的にポンピングされる。電気光学励起部48は、活性媒質40に向けて励起光を発生するための励起光源(たとえば励起ランプあるいはレーザダイオード)を有し、この励起光源をレーザ電源部50からの励起電流(パルス電流)でパルス点灯駆動することにより、活性媒質40を持続的または断続的にポンピングする。なお、レーザ電源部50は制御部52の下で電気光学励起部48を駆動する。こうして活性媒質40で生成される基本波長(1064nm)の光ビームLAは、終端ミラー36,38の間に閉じ込められて増幅される。このように、両終端ミラー(光共振器)36,38、活性媒質40および電気光学励起部48によって基本波長(1064nm)の光ビームまたはレーザ光LAを生成するレーザ発振器が構成されている。   The active medium 40 is made of, for example, an Nd: YAG rod, is disposed near one terminal mirror 36, and is optically pumped by an electro-optic excitation unit 48. The electro-optic excitation unit 48 has an excitation light source (for example, an excitation lamp or a laser diode) for generating excitation light toward the active medium 40, and this excitation light source is an excitation current (pulse current) from the laser power supply unit 50. In this way, the active medium 40 is pumped continuously or intermittently. The laser power supply unit 50 drives the electro-optical excitation unit 48 under the control unit 52. The light beam LA having the fundamental wavelength (1064 nm) thus generated in the active medium 40 is confined between the terminal mirrors 36 and 38 and amplified. In this way, a laser oscillator that generates a light beam of the fundamental wavelength (1064 nm) or the laser light LA is configured by the two end mirrors (optical resonators) 36 and 38, the active medium 40, and the electro-optical excitation unit 48.

偏光素子44は、たとえばポラライザまたはブリュースタ板等からなり、活性媒質40からの基本波長の光ビームが非法線方向で入射するように光共振器の光路または光軸に対して所定の斜めの角度で配置されている。活性媒質40からの基本波長の光ビームLAのうち、P偏光は偏光素子44をまっすぐ透過して波長変換結晶42に入射し、S偏光は偏光素子44で所定の方向に向けて反射するようになっている。ここで、P偏光およびS偏光は基本波長の光ビームの進行方向に垂直な面内で振動方向が互いに直交する直線偏光成分(電界成分)である。たとえば、P偏向は鉛直方向で振動する直線偏光成分であり、S偏向は水平方向で振動する直線偏光成分である。好ましくは、基本波長(1064nm)においてP偏光透過率は略100%でS偏光反射率は略100%であるような偏光フィルタ特性が選ばれる。   The polarizing element 44 is made of, for example, a polarizer or a Brewster plate, and has a predetermined oblique angle with respect to the optical path or the optical axis of the optical resonator so that the light beam having the fundamental wavelength from the active medium 40 is incident in a non-normal direction. Is arranged in. Of the light beam LA having the fundamental wavelength from the active medium 40, the P-polarized light passes through the polarizing element 44 and enters the wavelength conversion crystal 42, and the S-polarized light is reflected by the polarizing element 44 in a predetermined direction. It has become. Here, P-polarized light and S-polarized light are linearly polarized light components (electric field components) whose vibration directions are orthogonal to each other in a plane perpendicular to the traveling direction of the light beam having the fundamental wavelength. For example, P deflection is a linearly polarized component that oscillates in the vertical direction, and S deflection is a linearly polarized component that oscillates in the horizontal direction. Preferably, a polarizing filter characteristic is selected such that the P-polarized light transmittance is approximately 100% and the S-polarized light reflectance is approximately 100% at the fundamental wavelength (1064 nm).

波長変換結晶42は、たとえばKTP(KTiOPO4 )結晶あるいはLBO(LiB35)結晶等の非線形光学結晶からなり、他方の終端ミラー38寄りに配置され、この光共振器で励起された基本モードに光学的に結合され、基本波長との非線形光学作用により第2高調波(532nm)の光ビームSHG(LB)を光共振器の光路上に生成する。 The wavelength conversion crystal 42 is made of a nonlinear optical crystal such as a KTP (KTiOPO 4 ) crystal or an LBO (LiB 3 O 5 ) crystal, and is disposed near the other end mirror 38 and is excited by this optical resonator. And a second harmonic (532 nm) light beam SHG (LB) is generated on the optical path of the optical resonator by a nonlinear optical action with the fundamental wavelength.

波長変換結晶42より終端ミラー38側に出た第2高調波の光ビームSHGは、終端ミラー38で戻されて、波長変換結晶42を通り抜ける。波長変換結晶42より終端ミラー38の反対側に出た第2高調波の光ビームSHG(LB)は、光共振器の光路または光軸に対して所定の角度(たとえば45°)で斜めに配置されている高調波分離出力ミラー46に入射し、このミラー46で所定の方向に反射または分離出力されるようになっている。そして、高調波分離出力ミラー46より分離出力された第2高調波の光ビームSHG(LB)は、ベントミラー54で光軸を曲げられて入射ユニット56へ向けられる。   The second harmonic light beam SHG emitted from the wavelength conversion crystal 42 toward the termination mirror 38 is returned by the termination mirror 38 and passes through the wavelength conversion crystal 42. The second harmonic light beam SHG (LB) emitted from the wavelength conversion crystal 42 to the opposite side of the terminal mirror 38 is disposed obliquely at a predetermined angle (for example, 45 °) with respect to the optical path or optical axis of the optical resonator. It is incident on the harmonic separation output mirror 46, and is reflected or separated and output in a predetermined direction by this mirror 46. The second harmonic light beam SHG (LB) separated and output from the harmonic separation output mirror 46 is directed to the incident unit 56 with the optical axis being bent by the vent mirror 54.

入射ユニット56は集光レンズ58を内蔵しており、ベントミラー54からの第2高調波の光ビームSHG(LB)を集束レンズ58により集束して光ファイバ60の一端面(入射端面)に入射させる。光ファイバ60は第2高調波の光ビームSHGをレード出射ユニット34(図1)まで伝送させる。出射ユニット34には、光ファイバ60の他端面より出射された第2高調波の光ビームSHG(LB)を集束させて被接合物(22,16)の溶接ポイントに照射するための光学レンズが設けられている。   The incident unit 56 has a built-in condensing lens 58, and the second harmonic light beam SHG (LB) from the vent mirror 54 is converged by the converging lens 58 and incident on one end surface (incident end surface) of the optical fiber 60. Let The optical fiber 60 transmits the second harmonic light beam SHG to the RAID output unit 34 (FIG. 1). The emission unit 34 has an optical lens for focusing the second harmonic light beam SHG (LB) emitted from the other end surface of the optical fiber 60 and irradiating the welding point of the objects to be joined (22, 16). Is provided.

このYAGレーザ装置では、第2高調波の光ビームSHGすなわちYAG第2高調波パルスレーザ光SHGについてパワーフィードバック制御を行うために、ベントミラー54の背後に漏れたYAG第2高調波パルスレーザ光SHGの漏れ光MSHG を受光する受光素子またはフォトセンサ62が配置されている。測定回路64は、フォトセンサ62の出力信号を基に第2高調波パルスレーザ光SHGのレーザ出力測定値を表す電気信号(レーザ出力測定値信号)を生成する。制御部52は、測定回路64からのレーザ出力測定値信号を基準値または基準波形と比較し、比較誤差に応じてたとえばパルス幅変調(PWM)方式の制御信号を生成する。レーザ電源50は、制御部52からの制御信号に応じてスイッチング素子をスイッチング動作させ、電気光学励起部48に供給する励起電流のパルス幅および電流値を制御する。 In this YAG laser device, in order to perform power feedback control on the second harmonic light beam SHG, that is, the YAG second harmonic pulse laser light SHG, the YAG second harmonic pulse laser light SHG leaked behind the vent mirror 54. A light receiving element or photosensor 62 for receiving the leaked light M SHG is disposed. The measurement circuit 64 generates an electrical signal (laser output measurement value signal) representing the laser output measurement value of the second harmonic pulse laser beam SHG based on the output signal of the photosensor 62. The control unit 52 compares the laser output measurement value signal from the measurement circuit 64 with a reference value or a reference waveform, and generates, for example, a pulse width modulation (PWM) control signal according to the comparison error. The laser power supply 50 controls the pulse width and current value of the excitation current supplied to the electro-optic excitation unit 48 by switching the switching element in accordance with the control signal from the control unit 52.

図8に、この実施形態におけるYAG第2高調波パルスレーザ光SHG(LB)のレーザ出力波形の一例を示す。図示のように、パワーフィードバック方式でレーザパワー、パルス幅、パルス波形等を任意に設定・制御することができる。   FIG. 8 shows an example of the laser output waveform of the YAG second harmonic pulse laser beam SHG (LB) in this embodiment. As shown in the figure, laser power, pulse width, pulse waveform, etc. can be arbitrarily set and controlled by the power feedback method.

図9に、この実施形態で用いる波長変換方法の基本原理を示す。この波長変換方法は、波長変換結晶42にタイプII位相整合角にカットされた非線形光学結晶を使用し、タイプIIの位相整合で基本波から第2高調波への波長変換を行う。より詳細には、固体パルスレーザたとえばYAGパルスレーザ(図示せず)で生成された基本波(たとえば1064nm)のパルスレーザ光を楕円偏光(好ましくは円偏光)またはランダム偏光の形態で非線形光学結晶42に入射させる。そうすると、入射光のうち基本波長の垂直偏光成分と水平偏光成分のみが直線偏光として非線形光学結晶42を通過する。非線形光学結晶42は、基本波YAGパルスレーザと光学的に結合して、非線形光学効果により基本波光の垂直偏光成分と同じ方向に直線偏光したロングパルスの第2高調波パルスレーザ光SHG(532nm)を生成する。   FIG. 9 shows the basic principle of the wavelength conversion method used in this embodiment. In this wavelength conversion method, a nonlinear optical crystal cut to a type II phase matching angle is used as the wavelength conversion crystal 42, and wavelength conversion from a fundamental wave to a second harmonic is performed by type II phase matching. More specifically, the nonlinear optical crystal 42 is obtained by converting a fundamental (for example, 1064 nm) pulse laser beam generated by a solid-state pulse laser, for example, a YAG pulse laser (not shown), into the form of elliptically polarized light (preferably circularly polarized light) or randomly polarized light. To enter. Then, only the vertical polarization component and the horizontal polarization component of the fundamental wavelength in the incident light pass through the nonlinear optical crystal 42 as linearly polarized light. The nonlinear optical crystal 42 is optically coupled with the fundamental wave YAG pulse laser, and is a long-pulse second harmonic pulsed laser beam SHG (532 nm) that is linearly polarized in the same direction as the vertical polarization component of the fundamental wave light by the nonlinear optical effect. Is generated.

しかしながら、上記のような波長変換方法(図9)においては、基本波パルスレーザ光の偏光分布に偏りまたは異方性があったりすると、波長変換効率が低下し、第2高調波パルスレーザ光SHGのレーザ出力が下がったり変動することがある。特に、活性媒質40に対する電気光学励起部48のポンピング(励起光の照射)が不均一であると、基本波パルスレーザ光の偏光分布に偏りまたは異方性が生じる。   However, in the wavelength conversion method as described above (FIG. 9), if the polarization distribution of the fundamental pulse laser beam is biased or anisotropic, the wavelength conversion efficiency decreases, and the second harmonic pulse laser beam SHG. The laser output may decrease or fluctuate. In particular, if the pumping (irradiation of excitation light) of the electro-optic excitation unit 48 with respect to the active medium 40 is not uniform, the polarization distribution of the fundamental pulse laser beam is biased or anisotropic.

図10に、この実施形態における波長変換方法を示す。この波長変換は、基本波のP偏光を透過させると同時にS偏光を反射する偏光素子44をその直線偏光化方向(P偏光の振動方向)が非線形光学結晶42の光学軸に対して相対的に45°傾くように配置する。実施形態の高調波レーザ装置(図7)では、図10に示すように、偏光素子44の直線偏光化方向を鉛直方向に設定し、非線形光学結晶42の方をその光学軸が鉛直方向に対して45°傾くように配置している。   FIG. 10 shows a wavelength conversion method in this embodiment. In this wavelength conversion, the polarizing element 44 that transmits the P-polarized light of the fundamental wave and reflects the S-polarized light has a linear polarization direction (vibration direction of the P-polarized light) relatively to the optical axis of the nonlinear optical crystal 42. Arrange to tilt 45 degrees. In the harmonic laser device (FIG. 7) of the embodiment, as shown in FIG. 10, the linear polarization direction of the polarizing element 44 is set to the vertical direction, and the optical axis of the nonlinear optical crystal 42 is perpendicular to the vertical direction. It is arranged so that it is inclined 45 degrees.

このように偏光素子44の直線偏光化方向と非線形光学結晶42の光学軸とを相対的に45°傾けて配置する構成によれば、偏光素子44からのP偏光が非線形光学結晶42の座標系において見かけ上直交する等強度の2つの基本波光成分として非線形光学効果に作用する。仮に偏光素子44を省くと、P偏光と直交するS偏光も非線形光学結晶42に入射することになり、それによって非線形光学結晶42の座標系において垂直偏光成分と水平偏光成分のバランスが崩れ、タイプIIの波長変換効率は低下する。こうして、偏光素子44の直線偏光化により、高効率のタイプII波長変換が可能であり、安定かつ高出力でロングパルスの第2高調波パルスレーザ光SHGを生成することができる。これにより、CuやAuの被溶接材に対しては、YAG第2高調波の入射時間をパルス幅で任意に制御し、YAG第2高調波パルスレーザ光SHGのエネルギー吸収が十分に行われ、良好な溶融接合を得ることができる。   As described above, according to the configuration in which the linear polarization direction of the polarizing element 44 and the optical axis of the nonlinear optical crystal 42 are inclined relative to each other by 45 °, the P-polarized light from the polarizing element 44 is coordinate system of the nonlinear optical crystal 42. In FIG. 2, the two fundamental wave components of equal intensity that are apparently orthogonal to each other act on the nonlinear optical effect. If the polarizing element 44 is omitted, the S-polarized light orthogonal to the P-polarized light also enters the nonlinear optical crystal 42, thereby causing the balance between the vertical polarization component and the horizontal polarization component in the coordinate system of the nonlinear optical crystal 42 to be lost. The wavelength conversion efficiency of II decreases. Thus, linear polarization of the polarizing element 44 enables highly efficient type II wavelength conversion, and stable and high output long-pulse second harmonic pulsed laser light SHG can be generated. Thereby, for the welding material of Cu or Au, the incident time of the YAG second harmonic is arbitrarily controlled by the pulse width, and the energy absorption of the YAG second harmonic pulse laser beam SHG is sufficiently performed. Good melt bonding can be obtained.

以上、好適な実施形態を説明したが、本発明の技術思想に基づいて種々の変形・変更が可能である。たとえば、上記のような回転子結線において従来一般のヒュージング加工と本発明によるレーザ溶接とを併用する方法も可能である。   The preferred embodiments have been described above, but various modifications and changes can be made based on the technical idea of the present invention. For example, a method of using a conventional general fusing process and the laser welding according to the present invention in the rotor connection as described above is also possible.

図11および図12に、回転子結線におけるヒュージング加工の一例を示す。上記実施形態と同様に、先ず電機子鉄心12の各スロットより整流子14側にはみ出た各コイル16の開放端のコイル端末16iを、当該コイルと対応する整流子片18の端子部22の溝22aに所定の他のコイル16のコイル端末16jと上下に重ねて嵌め込む(図2、図3)。次に、各整流子片18の端子部22の溝22a内のコイル端部16i,16jに対してヒュージング加工を施す。   FIG. 11 and FIG. 12 show an example of fusing processing in rotor connection. As in the above embodiment, first, the coil terminal 16i at the open end of each coil 16 that protrudes from each slot of the armature core 12 to the commutator 14 side is grooved in the terminal portion 22 of the commutator piece 18 corresponding to the coil. The coil terminal 16j of a predetermined other coil 16 is vertically and vertically fitted into 22a (FIGS. 2 and 3). Next, fusing processing is performed on the coil end portions 16i and 16j in the groove 22a of the terminal portion 22 of each commutator piece 18.

詳細には、図11に示すように、各整流子片18において、端子部22の溝22aに納められたコイル端末16i,16jにたとえばタングステンからなる高発熱性の電極62を所定の加圧力Fで押し付けるとともに、ブラシ接触部20にたとえばクロム銅からなる低発熱性の電極64を当て、両電極62,64間に適当な電圧を印加して加工点または結線部K(16i,16j,22)に電流Iを流す。コイル端末16i,16jが被覆線の場合は、絶縁膜の絶縁作用により通電開始直後は導通せず、電流Iは端子部22の溝22aを迂回して流れる。すると、電極62および端子部22がジュール熱で発熱し、その熱でコイル端部16i,16jの絶縁膜が溶け、コイル導体が露出する。以後、電極62からの電流Iはコイル端末16i,16jのコイル導体を通って流れる。コイル端末16i,16jは、電極62より加圧力Fを受けながら自己のジュール熱および電極62や端子部22のジュール熱によって加熱され、図12の(A),(B)に示すように溶け込みながら端子部22に熱かしめで接続される。   Specifically, as shown in FIG. 11, in each commutator piece 18, a high exothermic electrode 62 made of tungsten, for example, is applied to the coil terminals 16 i and 16 j housed in the groove 22 a of the terminal portion 22 with a predetermined pressure F. At the same time, a low exothermic electrode 64 made of, for example, chrome copper is applied to the brush contact portion 20, and an appropriate voltage is applied between the electrodes 62 and 64 to form a machining point or connection portion K (16i, 16j, 22). A current I is passed through. When the coil terminals 16i and 16j are covered wires, they do not conduct immediately after the start of energization due to the insulating action of the insulating film, and the current I flows around the groove 22a of the terminal portion 22. Then, the electrode 62 and the terminal portion 22 generate heat due to Joule heat, and the insulating film of the coil end portions 16i and 16j is melted by the heat, and the coil conductor is exposed. Thereafter, the current I from the electrode 62 flows through the coil conductors of the coil terminals 16i and 16j. The coil terminals 16i and 16j are heated by their own Joule heat and Joule heat of the electrode 62 and the terminal portion 22 while receiving a pressing force F from the electrode 62, and melt as shown in FIGS. 12 (A) and 12 (B). The terminal portion 22 is connected by heat caulking.

上記のようなヒュージング加工は各整流子片18毎に行なわれる。したがって、整流子14における整流子片18の総数をN個とすると、当該電機子を一周して上記のヒュージング加工が所定のマシンタクトでN回繰り返し行なわれる。   The fusing process as described above is performed for each commutator piece 18. Therefore, if the total number of commutator pieces 18 in the commutator 14 is N, the fusing process is repeated N times with a predetermined machine tact around the armature.

次に、図13に示すように、各整流子片18における結線部に対して、つまり各整流子片18の端子部22とこれに熱かしめで接続されているコイル端末16i,16jとの間の接触部CNに向けて、レーザ出射ユニット30よりYAG第2高調波のパルスレーザ光(グリーン光)LBを照射する。そうすると、YAG第2高調波のパルスレーザ光LBが照射された接触部分CNでは、整流子片18の端子部22およびコイル端末16i,16jの双方がYAG第2高調波のレーザエネルギーを高い吸収率で吸収して速やかに溶融し、スポット溶接(継手溶接)の接合部が形成される。上記と同様に、複数個の継手溶接部を適当な間隔で離散的に形成してもよく、あるいは継手溶接部を連続させてシーム溶接としてもよい。   Next, as shown in FIG. 13, with respect to the connection portion of each commutator piece 18, that is, between the terminal portion 22 of each commutator piece 18 and the coil terminals 16i and 16j connected thereto by heat caulking. The laser emitting unit 30 emits YAG second harmonic pulse laser light (green light) LB toward the contact portion CN. Then, in the contact portion CN irradiated with the YAG second harmonic pulse laser beam LB, both the terminal portion 22 of the commutator piece 18 and the coil terminals 16i, 16j have a high absorption rate of the YAG second harmonic laser energy. And is quickly melted to form a spot welded joint joint. Similarly to the above, a plurality of joint welds may be formed discretely at appropriate intervals, or the joint welds may be continuous for seam welding.

上記接触部分CNの中で継手溶接部Wが形成されない箇所または領域も、既に熱かしめで接続されているので、相当の機械的な結合力と電気的な接続が得られている。このように、熱かしめの接続部分と継手溶接の接続部分とを併存させることで、整流子14の結線部における接合強度および電気的特性の信頼性を重畳的ないし相乗的に向上させることができる。   Since the portion or region where the joint weld W is not formed in the contact portion CN is also already connected by heat caulking, considerable mechanical coupling force and electrical connection are obtained. In this way, by coexisting the heat caulking connection portion and the joint welding connection portion, it is possible to improve the joint strength and the reliability of the electrical characteristics in the connection portion of the commutator 14 in a superimposed or synergistic manner. .

上記実施形態における回転子の構成、特に整流子14や電機子コイル16の構成は一例であり、任意の回転子構造における整流子と電機子巻線との接続に本発明のレーザ溶接法を適用することができる。たとえば、上記実施形態における整流子片18の端子部22aはコイル端末16i,16jを嵌め込む切欠または溝部22aを有している。しかし、たとえば図14に示すようなフック型の端子部25等も可能である。この場合は、両コイル端末16i,16jを端子部25に引っ掛け(好ましくはかしめ接続し)、この結線部、特にコイル端末16i,16jと端子部25とが接触する部分に対して図示のようにレーザ出射ユニット30よりYAG第2高調波のパルスレーザ光(グリーン光)LBを照射し、スポット溶接の接合部を形成してよい。また、整流子片18の耳部に整流子ライザを設ける場合も、整流子ライザと電機子コイルとの接続に本発明のレーザ溶接法を適用することができる。この場合、整流子ライザは整流子片18の延長部分とみなすことができる。   The configuration of the rotor in the above embodiment, particularly the configuration of the commutator 14 and the armature coil 16 is an example, and the laser welding method of the present invention is applied to the connection between the commutator and the armature winding in an arbitrary rotor structure. can do. For example, the terminal part 22a of the commutator piece 18 in the above embodiment has a notch or groove part 22a into which the coil terminals 16i and 16j are fitted. However, for example, a hook-type terminal portion 25 as shown in FIG. 14 is also possible. In this case, both coil terminals 16i and 16j are hooked (preferably caulked and connected) to the terminal portion 25, and this connection portion, particularly the portion where the coil terminals 16i and 16j and the terminal portion 25 are in contact with each other as shown in the figure. A YAG second harmonic pulse laser beam (green light) LB may be irradiated from the laser emitting unit 30 to form a spot welding joint. Moreover, also when providing a commutator riser in the ear | edge part of the commutator piece 18, the laser welding method of this invention is applicable to the connection of a commutator riser and an armature coil. In this case, the commutator riser can be regarded as an extension of the commutator piece 18.

本発明における回転子結線方法の一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the rotor connection method in this invention. 上記実施形態における回転子結線加工の一段階を示す斜視図である。It is a perspective view which shows one step of the rotor connection process in the said embodiment. 上記実施形態における回転子結線加工の一段階を示す斜視図である。It is a perspective view which shows one step of the rotor connection process in the said embodiment. 上記実施形態における回転子結線加工の一段階を示す横断面図である。It is a cross-sectional view which shows one stage of the rotor connection process in the said embodiment. 上記実施形態における回転子結線の溶接部を示す正面図である。It is a front view which shows the welding part of the rotor connection in the said embodiment. Cu、Au、Feの波長吸収特性を示す図である。It is a figure which shows the wavelength absorption characteristic of Cu, Au, and Fe. 実施形態の接続方法で用いるYAGレーザ装置の構成を示すブロック図である。It is a block diagram which shows the structure of the YAG laser apparatus used with the connection method of embodiment. 実施形態におけるYAG第2高調波パルスレーザ光のレーザ出力波形の一例を示す図である。It is a figure which shows an example of the laser output waveform of the YAG 2nd harmonic pulsed laser beam in embodiment. 実施形態における波長変換方法の基本原理を示す図である。It is a figure which shows the basic principle of the wavelength conversion method in embodiment. 実施形態の波長変換方法を示す図である。It is a figure which shows the wavelength conversion method of embodiment. 実施形態におけるヒュージング加工法を示す略側面図である。It is a schematic side view which shows the fusing processing method in embodiment. 同ヒュージング加工法を示す部分拡大略正面図である。It is a partial expansion schematic front view which shows the same fusing processing method. 実施形態において整流子結線部にヒュージング加工の後にレーザ溶接を施す段階を示す斜視図である。It is a perspective view which shows the step which performs a laser welding after a fusing process to a commutator connection part in embodiment. 実施形態の一変形例による回転子結線加工の一段階を示す側面図である。It is a side view showing one stage of rotor connection processing by one modification of an embodiment.

符号の説明Explanation of symbols

10 回転子の軸
12 電機子
14 整流子
16 電機子コイル
16i,16j コイル端末
17 絶縁版
18 整流子片
20 ブラシ接触部
22 端子部
22a 溝(凹部)
25 端子部
30 レーザ出射ユニット
36,38 終端ミラー
40 活性媒体
42 波長変換結晶
44 偏光素子
46 高周波分離出力ミラー
48 電気光学励起部
50 レーザ電源部
52 制御部
56 入射ユニット
60 光ファイバ
62 フォトセンサ
64 測定回路
DESCRIPTION OF SYMBOLS 10 Rotor shaft 12 Armature 14 Commutator 16 Armature coil 16i, 16j Coil terminal 17 Insulating plate 18 Commutator piece 20 Brush contact part 22 Terminal part 22a Groove (concave part)
25 Terminal unit 30 Laser emitting unit 36, 38 Termination mirror 40 Active medium 42 Wavelength conversion crystal 44 Polarizing element 46 High frequency separation output mirror 48 Electro-optical excitation unit 50 Laser power supply unit 52 Control unit 56 Incident unit 60 Optical fiber 62 Photo sensor 64 Measurement circuit

Claims (2)

整流子と電機子巻線とを接続する回転子結線方法であって、
整流子を構成する銅または銅合金からなる各整流子片の端子部の溝に電機子巻線を構成する銅または銅合金からなる各コイルの端末をその端面が前記整流子片の端子部の一側面と面一になるように嵌め込み、前記整流子片の端子部と前記コイルの端末とが接触する部分に対して前記コイル端末の端面と向き合う位置から可変のパルス幅を有するYAG高調波のパルスレーザ光を照射して、前記YAG高調波パルスレーザ光のエネルギーにより前記接触部分にて前記整流子片の端子部と前記コイルの端末とを溶接する回転子結線方法。
A rotor connection method for connecting a commutator and an armature winding,
The end face of each coil made of copper or copper alloy constituting the armature winding in the groove of the terminal portion of each commutator piece made of copper or copper alloy constituting the commutator is the end face of the terminal portion of the commutator piece The YAG harmonic having a variable pulse width from a position facing the end surface of the coil terminal with respect to a portion where the terminal portion of the commutator piece and the terminal of the coil are in contact with each other is fitted to be flush with one side surface . by irradiating a pulsed laser beam, rotor connection method of welding a terminal of the coil and terminal portions of the commutator segments by more said contact portion to the energy of the YAG harmonic pulse laser light.
前記YAG高調波の波長が532nmのYAG第2高調波である請求項に記載の回転子結線方法。 The wavelength of the YAG harmonic is YAG second harmonic 532 nm, rotor connection method according to claim 1.
JP2004274785A 2004-09-22 2004-09-22 Rotor connection method Expired - Fee Related JP4647961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004274785A JP4647961B2 (en) 2004-09-22 2004-09-22 Rotor connection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004274785A JP4647961B2 (en) 2004-09-22 2004-09-22 Rotor connection method

Publications (2)

Publication Number Publication Date
JP2006094600A JP2006094600A (en) 2006-04-06
JP4647961B2 true JP4647961B2 (en) 2011-03-09

Family

ID=36235016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004274785A Expired - Fee Related JP4647961B2 (en) 2004-09-22 2004-09-22 Rotor connection method

Country Status (1)

Country Link
JP (1) JP4647961B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4120524A4 (en) * 2020-03-12 2023-08-23 Aisin Corporation Method for manufacturing stator for rotary electric machine

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012161816A (en) * 2011-02-08 2012-08-30 Mitsui Chemicals Inc Laser marking processing method using polypropylene type surface protection film
ITBO20150189A1 (en) * 2015-04-16 2016-10-16 Magneti Marelli Spa METHOD OF CONSTRUCTION OF AN ELECTRIC MACHINE WITH A STATORIC WINDING WITH RIGID BARS
CN109715339A (en) * 2016-04-29 2019-05-03 努布鲁有限公司 The visible laser welding of Electronic Packaging, motor-driven electronic equipment, battery and other components
WO2018144524A1 (en) * 2017-01-31 2018-08-09 Nuburu Inc. Methods and systems for welding copper using blue laser
DE102019103668A1 (en) * 2019-02-13 2020-08-13 Trumpf Laser- Und Systemtechnik Gmbh Method for joining copper hairpins and stator
JP7193442B2 (en) * 2019-12-10 2022-12-20 日立Astemo株式会社 Coil and coil manufacturing method
JP7460403B2 (en) 2020-03-12 2024-04-02 株式会社アイシン Manufacturing method of a stator for a rotating electric machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06179085A (en) * 1992-12-11 1994-06-28 Hitachi Building Syst Eng & Service Co Ltd Laser beam welding method for copper fine wire
JP2002028795A (en) * 2000-07-10 2002-01-29 Miyachi Technos Corp Method and equipment for laser beam welding
JP2002316282A (en) * 2001-04-18 2002-10-29 Matsushita Electric Ind Co Ltd Laser beam machining method and device
JP2003111358A (en) * 2001-09-27 2003-04-11 Moric Co Ltd Commutator of armature

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06179085A (en) * 1992-12-11 1994-06-28 Hitachi Building Syst Eng & Service Co Ltd Laser beam welding method for copper fine wire
JP2002028795A (en) * 2000-07-10 2002-01-29 Miyachi Technos Corp Method and equipment for laser beam welding
JP2002316282A (en) * 2001-04-18 2002-10-29 Matsushita Electric Ind Co Ltd Laser beam machining method and device
JP2003111358A (en) * 2001-09-27 2003-04-11 Moric Co Ltd Commutator of armature

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4120524A4 (en) * 2020-03-12 2023-08-23 Aisin Corporation Method for manufacturing stator for rotary electric machine

Also Published As

Publication number Publication date
JP2006094600A (en) 2006-04-06

Similar Documents

Publication Publication Date Title
JP4822737B2 (en) Laser welding method and laser welding apparatus
JP5958109B2 (en) Conductor joining method for rotating electrical machine
KR101185829B1 (en) Raser welding apparatus
JP4647961B2 (en) Rotor connection method
JP7103978B2 (en) Laser welding method, laser welding equipment and manufacturing method of rotary electric machine
JP2014007794A (en) Method for bonding conductor of rotary electric machine and coil of rotary electric machine
JP2005313195A (en) Double wavelength superposing type laser beam emission unit, and laser beam machining apparatus
WO2019220635A1 (en) Stator, dynamo-electric machine, and method for manufacturing stator
KR20200033864A (en) Rechargeable battery and method and apparatus for producing rechargeable battery
JP2011018823A (en) Wire bonding method, and laser welding apparatus for wire bonding
JP2005347415A (en) Electric part mounting method
JP7483650B2 (en) Manufacturing method of a stator for a rotating electric machine
JP2010124542A (en) Commutator, armature and motor equipped with the commutator, manufacturing method of the armature, and manufacturing method of motor
JP2006116570A (en) Laser beam condensing unit and laser beam machine
WO2022196823A1 (en) Method for manufacturing stator for rotating electrical machine
JP2001210895A (en) Solid-state laser and its manufacturing method
JP2000116046A (en) Rotor of motor and assembling method thereof
JP2000167679A (en) Method of joining covered wire
JP4047856B2 (en) Optical wavelength detector manufacturing method, optical wavelength detector, and wavelength stabilized light source
JP2006066794A (en) Wire bonding method
JP2004515198A (en) Stator for electric machine and manufacturing method thereof
JP7511079B2 (en) Manufacturing method of a stator for a rotating electric machine
JPH06314832A (en) Laser device
JPH11337418A (en) Manufacture of sheath-type thermocouple
Alexy et al. Resistance Welding and Laser Welding for Electrical Contacting and Micro Joining Solutions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees