JP4647334B2 - Photocatalytic liquid composition - Google Patents

Photocatalytic liquid composition Download PDF

Info

Publication number
JP4647334B2
JP4647334B2 JP2005045613A JP2005045613A JP4647334B2 JP 4647334 B2 JP4647334 B2 JP 4647334B2 JP 2005045613 A JP2005045613 A JP 2005045613A JP 2005045613 A JP2005045613 A JP 2005045613A JP 4647334 B2 JP4647334 B2 JP 4647334B2
Authority
JP
Japan
Prior art keywords
resins
fabric
core
liquid composition
titanium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005045613A
Other languages
Japanese (ja)
Other versions
JP2006233343A (en
Inventor
一徳 齋藤
一希 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP2005045613A priority Critical patent/JP4647334B2/en
Publication of JP2006233343A publication Critical patent/JP2006233343A/en
Application granted granted Critical
Publication of JP4647334B2 publication Critical patent/JP4647334B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Catalysts (AREA)
  • Paints Or Removers (AREA)

Description

本発明は、光触媒活性を付与するため布帛基材に塗布される液体組成物に関する。   The present invention relates to a liquid composition applied to a fabric substrate to impart photocatalytic activity.

近年、布帛に消臭性、抗菌性、防汚性を付与するため、布帛基材への光触媒の塗布が検討されている(例えば、特許文献1及び2を参照)。光触媒活性を有する布帛は、それ自体優れた特性を示すだけでなく、屋内で使用される場合、屋内環境の浄化にも役立つという利点がある。   In recent years, in order to impart deodorant properties, antibacterial properties, and antifouling properties to fabrics, application of photocatalysts to fabric substrates has been studied (see, for example, Patent Documents 1 and 2). A fabric having photocatalytic activity not only exhibits excellent properties per se, but also has an advantage of being useful for purification of an indoor environment when used indoors.

布帛基材に塗布する光触媒としては、酸化チタンが知られている。酸化チタンは優れた光触媒材料であるが、布帛に塗布する場合には以下の様な問題が生じる。まず、光照射下において酸化チタンが繊維加工剤、防炎剤、バインダー、布帛基材等を酸化分解し、布帛が黄変することがある。さらに、この分解過程において悪臭成分が生じ、消臭という光触媒の目的の達成を阻害する場合がある。それに加え、この望ましくない副反応により、触媒活性が低下することもある。   Titanium oxide is known as a photocatalyst to be applied to a fabric substrate. Titanium oxide is an excellent photocatalytic material, but the following problems occur when it is applied to a fabric. First, under light irradiation, titanium oxide may oxidize and decompose fiber processing agents, flameproofing agents, binders, fabric base materials, etc., and the fabric may turn yellow. Furthermore, malodorous components are produced during this decomposition process, which may hinder the achievement of the photocatalytic purpose of deodorization. In addition, this undesirable side reaction can reduce the catalytic activity.

光触媒の副反応を防止するため、メラミン樹脂の保護層で被覆された布帛基材を使用することも報告されている(特許文献2を参照)。しかし、広い範囲の布帛基材に光触媒活性を付与できる方法が依然として求められている。   In order to prevent the side reaction of the photocatalyst, it has also been reported to use a fabric base material coated with a protective layer of melamine resin (see Patent Document 2). However, there is still a need for a method that can impart photocatalytic activity to a wide range of fabric substrates.

光触媒粒子の形状に関し、通常の用途では粒径が小さいほど触媒活性が高いとされているため、布帛用途にも粒径の小さい粒子が検討されてきた。例えば特許文献1では、粒径が50nm以下の酸化チタンが用いられている。しかし、これら従来の布帛の光触媒活性は必ずしも充分なものとはいえず、さらなる改良が望まれている。   Regarding the shape of the photocatalyst particles, the smaller the particle size is, the higher the catalytic activity in normal applications. Therefore, particles having a small particle size have been studied for fabric use. For example, in Patent Document 1, titanium oxide having a particle size of 50 nm or less is used. However, the photocatalytic activity of these conventional fabrics is not always sufficient, and further improvements are desired.

以上の様に、光照射下での布帛の変色を抑制し、布帛としての光触媒活性を更に改善することが求められている。
特開平11−323726号公報 特開2000−328438号公報
As described above, it is required to further improve the photocatalytic activity of a fabric by suppressing discoloration of the fabric under light irradiation.
JP-A-11-323726 JP 2000-328438 A

本発明は上記の事情に鑑みなされたものであり、光触媒活性を付与するために布帛基材に塗布される液体組成物を提供する。   This invention is made | formed in view of said situation, and provides the liquid composition apply | coated to a fabric base material in order to provide photocatalytic activity.

本発明者らはこれらの課題を解決すべく鋭意検討を進めた結果、光触媒材料を含むコアと該コアの少なくとも一部を被覆する層とを有し、平均粒径が0.5−10μmの光触媒粒子を用いることにより、布帛の変色を抑制すると共に優れた光触媒活性を付与できることを見出し、本発明を完成させた。本発明で用いられる光触媒粒子は、布帛に適した特定範囲の平均粒径を有するため優れた触媒活性を実現し、被覆層によって望ましくない副反応が抑制されるという特徴を有する。   As a result of intensive studies to solve these problems, the present inventors have a core containing a photocatalytic material and a layer covering at least a part of the core, and an average particle size of 0.5 to 10 μm. It was found that by using photocatalyst particles, discoloration of the fabric can be suppressed and excellent photocatalytic activity can be imparted, and the present invention has been completed. The photocatalyst particles used in the present invention have an average particle diameter in a specific range suitable for a fabric, so that excellent catalytic activity is realized, and undesirable side reactions are suppressed by the coating layer.

即ち、本発明は、以下のものを提供する。
(1) 光触媒材料を含むコアと該コアの少なくとも一部を被覆する層とを有する光触媒粒子を含有し、光触媒活性を付与するため布帛基材に塗布される液体組成物であって、該光触媒粒子の平均粒径が0.5−10μmの範囲にあり、該コアの光触媒材料と比較して該被覆層の材料の光触媒活性が低い、上記の液体組成物。
(2) コアが酸化チタンを含む(1)に記載の液体組成物。
(3) 被覆層がシリカ、リン酸カルシウム、ポリシロキサン、又はそれらの組み合わせを含む、(1)又は(2)に記載の液体組成物。
(4) バインダーをさらに含む(1)−(3)の何れかに記載の液体組成物。
That is, the present invention provides the following.
(1) A liquid composition comprising a photocatalyst particle having a core containing a photocatalyst material and a layer covering at least a part of the core, and applied to a fabric substrate to impart photocatalytic activity, the photocatalyst The liquid composition as described above, wherein the average particle size of the particles is in the range of 0.5 to 10 μm, and the photocatalytic activity of the material of the coating layer is lower than that of the photocatalytic material of the core.
(2) The liquid composition according to (1), wherein the core contains titanium oxide.
(3) The liquid composition according to (1) or (2), wherein the coating layer contains silica, calcium phosphate, polysiloxane, or a combination thereof.
(4) The liquid composition according to any one of (1) to (3), further including a binder.

本発明の液体組成物は、光触媒粒子を含有する。該光触媒粒子は、光触媒材料を含むコアと該コアの少なくとも一部を被覆する層とを有する光触媒粒子を含有し、該コアの光触媒材料と比較して該被覆層の材料の光触媒活性は低い。この被覆層が存在することにより、コアによる繊維加工剤、防炎剤、バインダー、布帛基材等を酸化分解することを防止できる。   The liquid composition of the present invention contains photocatalyst particles. This photocatalyst particle contains the photocatalyst particle which has the core containing a photocatalyst material, and the layer which coat | covers at least one part of this core, and the photocatalytic activity of the material of this coating layer is low compared with the photocatalyst material of this core. The presence of this coating layer can prevent oxidative decomposition of the fiber processing agent, flameproofing agent, binder, fabric base material and the like by the core.

コアの光触媒材料に制限はなく、酸化チタン、チタン酸ストロンチウム、チタン酸バリウム、酸化亜鉛、酸化タングステン、酸化鉄、酸化インジウム、及び硫化亜鉛が挙げられる。これらを単独で用いてもよく、組み合わせて用いてもよい。その中でも酸化チタンが好ましい。酸化チタンの結晶構造に制限はなく、アナターゼ型、ルチル型、ブルッカイト型、非晶質の何れであってもよいが、活性の強いアナターゼ型が好ましい。これらは、より強く電子による還元性の性質を付与するために白金、金、パラジウム、銀、銅、亜鉛、ロジウムなどの金属微粒子の被覆処理や、或いはより強く正孔による酸化性の性質を付与するために酸化ルテニウム等の金属酸化物被覆処理などを行ってあってもよく、可視光応答型光触材料でもよい。ここで光触媒材料とは、紫外光・可視光等の光照射により有機物分解活性または超親水性を示す材料をいう。光照射下での光触媒分解活性は、実施例に記載のアセトアルデヒド分解試験及びメチレンブルー分解試験によって評価できる。ただし、光触媒反応の対象はこれらの化合物に限定されるものではない。   The photocatalytic material of the core is not limited and includes titanium oxide, strontium titanate, barium titanate, zinc oxide, tungsten oxide, iron oxide, indium oxide, and zinc sulfide. These may be used alone or in combination. Of these, titanium oxide is preferable. The crystal structure of titanium oxide is not limited and may be any of anatase type, rutile type, brookite type, or amorphous type, but an anatase type having strong activity is preferred. In order to give stronger and more electron-reducing properties, these metals are coated with fine metal particles such as platinum, gold, palladium, silver, copper, zinc, and rhodium, or more strongly oxidizable by holes. Therefore, a metal oxide coating treatment such as ruthenium oxide may be performed, or a visible light responsive photocatalytic material may be used. Here, the photocatalytic material refers to a material that exhibits organic substance decomposition activity or superhydrophilicity when irradiated with light such as ultraviolet light and visible light. The photocatalytic degradation activity under light irradiation can be evaluated by the acetaldehyde degradation test and the methylene blue degradation test described in Examples. However, the target of the photocatalytic reaction is not limited to these compounds.

被覆層の材料は、コアによる副反応を抑制し、かつ目的物の分解を阻害しない材料であれば特に制限はなく、該材料単独で光触媒活性を測定した場合にコアの光触媒材料よりも活性が低ければよく、光触媒活性がないものが好ましい。被覆層の材料の例としては、シリカ、リン酸カルシウム、ポリシロキサン、アパタイト、アルミナ、ジルコニアが挙げられる。これらを単独で用いてもよく、組み合わせて用いてもよい。その中でも、シリカが好ましい。被覆の形態に特に制限はなく、コアの全体を被覆してもよく、一部を被覆してもよい。コアの一次粒子を被覆してもよく、二次粒子を被覆してもよい。   The material of the coating layer is not particularly limited as long as it is a material that suppresses side reactions caused by the core and does not inhibit the decomposition of the target product. When the photocatalytic activity of the material alone is measured, the activity is higher than that of the core photocatalytic material. What is necessary is just low and what does not have photocatalytic activity is preferable. Examples of the material for the coating layer include silica, calcium phosphate, polysiloxane, apatite, alumina, and zirconia. These may be used alone or in combination. Among these, silica is preferable. There is no restriction | limiting in particular in the form of coating | cover, You may coat | cover the whole core and may coat a part. The primary particles of the core may be coated, or the secondary particles may be coated.

このような被覆層を有する光触媒粒子としては、例えば特開2002-159865号公報に記載されているシリカ被覆酸化チタンがある。
液体組成物における好ましい被覆光触媒粒子の平均粒径は、布帛を構成する繊維の太さ及び繊維同士の間隔に依存するが、通常該光触媒粒子の平均粒径は0.5μm以上、好ましくは0.8μm以上、さらに好ましくは1.0μm以上であり、10μm以下、好ましくは5μm、さらに好ましくは1.5μm以下である。平均粒径が当該範囲未満である場合には、粒子が繊維間の間隙に遍在して布帛表面に均一に分布しないため、布帛としての触媒活性が低下することがある。平均粒径が当該範囲を超えると、比表面積が低下するため、単位触媒重量あたりの触媒活性が低下しやすく、また白く着色してくるので製品の意匠性を低下させる。
この被覆光触媒粒子の平均粒径は、液体組成物における平均粒径であり、一次粒子で存在していれば一次粒子の平均粒子径のであり、製造方法によっては一次粒子が凝集してニ次粒子を形成しているときもありその場合はそのニ次粒子の平均粒子径のことである。
Examples of the photocatalyst particles having such a coating layer include silica-coated titanium oxide described in JP-A-2002-159865.
The preferred average particle diameter of the coated photocatalyst particles in the liquid composition depends on the thickness of the fibers constituting the fabric and the spacing between the fibers, but usually the average particle diameter of the photocatalyst particles is 0.5 μm or more, preferably 0.8. It is 8 μm or more, more preferably 1.0 μm or more, 10 μm or less, preferably 5 μm, and more preferably 1.5 μm or less. When the average particle diameter is less than the above range, the particles are ubiquitous in the gaps between the fibers and are not uniformly distributed on the surface of the fabric, so that the catalyst activity as the fabric may be reduced. When the average particle diameter exceeds the above range, the specific surface area decreases, so that the catalytic activity per unit catalyst weight is likely to decrease, and the product is poor in design because it is colored white.
The average particle diameter of the coated photocatalyst particles is the average particle diameter in the liquid composition, and is the average particle diameter of the primary particles if present in the primary particles. Depending on the production method, the primary particles may aggregate to form secondary particles. In this case, it is the average particle size of the secondary particles.

本明細書において、平均粒径として、動的光散乱法によって得られる値を用いる。動的光散乱法の測定条件は、実施例に記載の通りである。
本発明の液体組成物は、バインダーをさらに含んでもよい。バインダーとしては、シリカのような無機バインダー物、繊維加工剤のような有機バインダーがあるが、有機バインダーが好ましく、特に繊維加工剤が好ましい。繊維加工剤とは、繊維布帛の柔軟性、硬度、光沢、吸水性等の特性に影響を及ぼす剤を指し、硬仕上剤が含まれる。硬仕上剤として、アクリル系樹脂、酢酸ビニル系樹脂、ポリウレタン系樹脂、メラミン系樹脂、尿素系樹脂、塩化ビニル系樹脂、塩化ビニリデン系樹脂、ポリエステル系樹脂、デンプンのような水溶性樹脂が挙げられる。ポリエステル系樹脂の硬仕上剤の例として、ペスレジン2000及びTKセット413として高松油脂株式会社から購入できる硬仕上剤が挙げられる。
In this specification, the value obtained by the dynamic light scattering method is used as the average particle diameter. The measurement conditions of the dynamic light scattering method are as described in the examples.
The liquid composition of the present invention may further contain a binder. Examples of the binder include an inorganic binder such as silica and an organic binder such as a fiber processing agent. An organic binder is preferable, and a fiber processing agent is particularly preferable. The fiber processing agent refers to an agent that affects properties such as flexibility, hardness, gloss, and water absorption of the fiber fabric, and includes a hard finish. Examples of the hard finish include water-soluble resins such as acrylic resins, vinyl acetate resins, polyurethane resins, melamine resins, urea resins, vinyl chloride resins, vinylidene chloride resins, polyester resins, and starches. . Examples of hard finishes for polyester resins include hard finishes that can be purchased from Takamatsu Yushi Co., Ltd. as pesresin 2000 and TK set 413.

本発明の液体組成物は、分散剤をさらに含んでもよい。液体組成物における光触媒粒子の分散性を改善するためには、分散剤を含むことが好ましい。分散剤としては、ポリカルボン酸系分散剤(例えば、ポリアクリル酸、ポリメタクリル酸、スチレン−無水マレイン酸共重合体);スルホン酸系分散剤(例えば、リグニンスルホン酸、及びナフタレンスルホン酸);アルコール系分散剤(例えば、ポリビニルアルコール);アミノ酸系分散剤;ノニオン系分散剤;等が挙げられる。   The liquid composition of the present invention may further contain a dispersant. In order to improve the dispersibility of the photocatalyst particles in the liquid composition, it is preferable to include a dispersant. Examples of the dispersant include polycarboxylic acid-based dispersants (for example, polyacrylic acid, polymethacrylic acid, styrene-maleic anhydride copolymer); sulfonic acid-based dispersants (for example, lignin sulfonic acid and naphthalene sulfonic acid); Examples thereof include alcohol-based dispersants (for example, polyvinyl alcohol); amino acid-based dispersants; nonionic dispersants;

本発明の液体組成物は、必要に応じて安定化剤、pH調整剤、増粘剤、脱泡剤等の各種公知の成分をさらに含んでもよい。
該液体組成物は、前述の各成分を溶媒に混合することによって得られる。ここで溶媒は水、有機溶媒、及びこれらの混合物の何れでもよく、水が好ましい。混合には、任意の公知の混合手段を用いることができる。例えば、ボールミル、ダイノーミルが挙げられる。液体組成物における光触媒粒子の割合は、塗布方法に応じて選択される。一般には、液体組成物の総重量に対する光触媒粒子の重量は0.1wt%以上、好ましくは0.5wt%以上であり、20wt%以下、好ましくは10wt%以下である。液体組成物は、光触媒粒子が沈降しない懸濁液又は分散液の形態にあることが好ましい。
The liquid composition of the present invention may further contain various known components such as a stabilizer, a pH adjuster, a thickener, and a defoaming agent as necessary.
The liquid composition can be obtained by mixing each of the aforementioned components in a solvent. Here, the solvent may be any of water, an organic solvent, and a mixture thereof, and water is preferable. Any known mixing means can be used for mixing. Examples thereof include a ball mill and a dyno mill. The ratio of the photocatalyst particles in the liquid composition is selected according to the coating method. In general, the weight of the photocatalyst particles with respect to the total weight of the liquid composition is 0.1 wt% or more, preferably 0.5 wt% or more, 20 wt% or less, preferably 10 wt% or less. The liquid composition is preferably in the form of a suspension or dispersion in which the photocatalyst particles do not settle.

本発明の液体組成物が塗布される布帛基材に特に制限はなく、ポリエステル、ナイロン、アクリル、レーヨン等の合成繊維;綿、麻等の天然繊維;不織布;布帛様壁紙;が挙げられる。カーテン、壁紙、ロールスクリーン等の防炎性が要求される用途では、塗布の前に予め防炎加工を行うことが好ましい。あるいは、難燃性繊維の布帛基材を用いてもよい。防炎加工には、ハロゲン系防炎剤を含む任意の防炎剤を用いることができる。   There is no restriction | limiting in particular in the fabric base material with which the liquid composition of this invention is applied, Natural fibers, such as polyester, nylon, an acryl, rayon, etc .; Cotton, linen, etc .; Nonwoven fabric; Fabric-like wallpaper; In applications requiring flameproofing properties such as curtains, wallpaper, and roll screens, it is preferable to perform flameproofing in advance before coating. Or you may use the fabric base material of a flame-retardant fiber. For the flameproofing process, any flameproofing agent including a halogen flameproofing agent can be used.

布帛基材への塗布には、各種公知の塗布方法を用いることができる。例えば、噴霧塗布法、浸漬法、グラビアコーティング、ロールコーティング、パッド法が挙げられる。塗布した後、さらに乾燥することにより、光触媒活性を有する布帛が得られる。   Various known coating methods can be used for coating on the fabric substrate. For example, spray coating method, dipping method, gravure coating, roll coating, and pad method can be mentioned. After coating, the fabric having photocatalytic activity is obtained by further drying.

本発明は、前述の光触媒粒子が付着した布帛にも関する。付着方法に制限はなく、本発明の液体組成物を布帛基材に塗布し乾燥することによって得ることも出来る。ここで付着とは、光触媒粒子が直接布帛と接触する場合;バインダー等のその他の成分を介して接触する場合;バインダー及び光触媒粒子を含む層が布帛を覆う場合;を含む。前述の繊維加工剤がバインダーとして作用してもよい。   The present invention also relates to a fabric to which the aforementioned photocatalyst particles are attached. There is no restriction | limiting in the attachment method, It can also obtain by apply | coating the liquid composition of this invention to a fabric base material, and drying. Here, adhesion includes a case where the photocatalyst particles are in direct contact with the fabric; a case where the photocatalyst particles are in contact via other components such as a binder; and a case where the layer containing the binder and the photocatalyst particles covers the fabric. The above-mentioned fiber processing agent may act as a binder.

光触媒粒子が付着した布帛は、インテリアファブリック、家具の部材、寝具の部材、寝具や家具のカバー、敷物を含む様々な用途に用いることができる。例えば、本発明の布帛として、ロールスクリーン、壁布(壁布様壁紙が含まれる)、カーテン、テーブルクロスなどのインテリア;椅子の座面及び背もたれの布地、ソファー生地、クッション生地などの家具部材;布団カバー、枕カバー、ベッドカバー、家電カバー、ソファーカバー、クッションカバー、ピアノカバーなどのカバー;カーペット、ラグ、マット等の敷物;が挙げられる。   The fabric to which the photocatalyst particles are attached can be used in various applications including interior fabrics, furniture members, bedding members, bedding and furniture covers, and rugs. For example, as fabrics of the present invention, interiors such as roll screens, wall cloths (including wall cloth-like wallpaper), curtains and table cloths; furniture members such as chair seats and backrest cloths, sofa cloths, and cushion cloths; Covers such as futon covers, pillow covers, bed covers, home appliance covers, sofa covers, cushion covers, piano covers; carpets, rugs, mats and other rugs.

以下、実施例により本発明を説明するが、本発明はこれらの実施例に限定されるものではない。
[実施例1]
酸化チタン粉末(テイカ社製のTKP−101、アナターゼ型、シリカ被覆品)をボールミルを用いて水に分散させ、酸化チタン濃度が20.0wt%である水分散液を得た。この分散液を用いて動的光散乱法により酸化チタン粒子の平均粒径を測定したところ、平均粒径は1μmであった。粒径の測定は、Malvern社製の機種Malvern HPPS,型名HPP5001を用いて行った。測定温度は25℃であった。
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.
[Example 1]
Titanium oxide powder (TKP-101, anatase type, silica-coated product manufactured by Teica) was dispersed in water using a ball mill to obtain an aqueous dispersion having a titanium oxide concentration of 20.0 wt%. When the average particle diameter of the titanium oxide particles was measured by a dynamic light scattering method using this dispersion, the average particle diameter was 1 μm. The particle size was measured using a model Malvern HPPS, model name HPP5001 manufactured by Malvern. The measurement temperature was 25 ° C.

この酸化チタン水分散液と繊維加工剤(PET系硬仕上剤)とを混合し、液体組成物を得た。液体組成物における酸化チタン濃度は2.0wt%であった。この液体組成物を、塗布液として用いた。この塗布液を、ハロゲン系防炎剤(ヘキサブロモシクロデカン(HBCD))により予め防炎加工を施したポリエステル白色布に塗布し、さらに乾燥して、酸化チタンを含むポリエステル布帛を得た。塗布量は40g/m2とした。
[実施例2]
塗布液の酸化チタン濃度を4.0wt%とした点を除き、実施例1と同様にして、酸化チタンを含むポリエステル布帛を得た。
[比較例1]
シリカ被覆酸化チタンの水分散液に代えて中性チタニアゾル(石原産業社製、酸化チタンとして平均粒径100nmの未被覆酸化チタンを含有、酸化チタン濃度20.1wt%、pH=7.9)を用いた点を除き、実施例1と同様にして酸化チタンを含むポリエステル布帛を得た。平均粒径の測定は、実施例1と同様にして行った。
[比較例2]
塗布液の酸化チタン濃度を4.0wt%とした点を除き、比較例1と同様にして酸化チタンを含むポリエステル布帛を得た。
[比較例3]
シリカ被覆酸化チタンの水分散液に代えて酸化チタン粉末(石原産業(株))を水にボールミルを用いて水に分散させたもの(酸化チタン濃度20.0wt%、平均粒径1μm)を用いた点を除き、実施例1と同様にして酸化チタンを含むポリエステル布帛を得た。平均粒径の測定は、実施例1と同様にして行った。
[評価例1 (黄変試験)]
実施例1、2、比較例1−3の布帛サンプルについて、黄変試験を行った。黄変試験は、各サンプルに紫外線としてブラックライトを照射し、黄色度の経時変化を測定することによって行った。黄色度(YI)は、X,Y,Z測色値により算出した。測定条件は以下の通りである。
This titanium oxide aqueous dispersion and a fiber processing agent (PET hard finish) were mixed to obtain a liquid composition. The titanium oxide concentration in the liquid composition was 2.0 wt%. This liquid composition was used as a coating solution. This coating solution was applied to a polyester white cloth that had been subjected to a flameproofing treatment in advance with a halogen-based flameproofing agent (hexabromocyclodecane (HBCD)), and further dried to obtain a polyester cloth containing titanium oxide. The coating amount was 40 g / m 2 .
[Example 2]
A polyester fabric containing titanium oxide was obtained in the same manner as in Example 1 except that the titanium oxide concentration of the coating solution was 4.0 wt%.
[Comparative Example 1]
A neutral titania sol (manufactured by Ishihara Sangyo Co., Ltd., containing uncoated titanium oxide with an average particle size of 100 nm, titanium oxide concentration 20.1 wt%, pH = 7.9) instead of silica-coated titanium oxide aqueous dispersion A polyester fabric containing titanium oxide was obtained in the same manner as in Example 1 except for the points used. The average particle size was measured in the same manner as in Example 1.
[Comparative Example 2]
A polyester fabric containing titanium oxide was obtained in the same manner as in Comparative Example 1, except that the titanium oxide concentration of the coating solution was 4.0 wt%.
[Comparative Example 3]
Instead of silica-coated titanium oxide aqueous dispersion, titanium oxide powder (Ishihara Sangyo Co., Ltd.) dispersed in water using a ball mill (titanium oxide concentration 20.0 wt%, average particle size 1 μm) is used. Except for the above, a polyester fabric containing titanium oxide was obtained in the same manner as in Example 1. The average particle size was measured in the same manner as in Example 1.
[Evaluation Example 1 (yellowing test)]
A yellowing test was performed on the fabric samples of Examples 1 and 2 and Comparative Example 1-3. The yellowing test was performed by irradiating each sample with black light as ultraviolet rays and measuring the time course of yellowness. Yellowness (YI) was calculated from X, Y, and Z colorimetric values. The measurement conditions are as follows.

光源: FL15BLB-A(東芝ライテック(株))
照射強度: 1.0mW/cm2
紫外線強度計: UVR-2((株)TOPCON)、受光部UD-36
測色計: Z-1001 DP(日本電色工業(株))
比較のため、塗布を行わなかったポリエステル布帛基材(加工前布)についても試験を行った。結果を図1及び2に示す。
Light source: FL15BLB-A (Toshiba Lighting & Technology Corp.)
Irradiation intensity: 1.0mW / cm 2
UV intensity meter: UVR-2 (TOPCON Co., Ltd.), light receiving unit UD-36
Colorimeter: Z-1001 DP (Nippon Denshoku Industries Co., Ltd.)
For comparison, a test was also conducted on a polyester fabric substrate (prefabricated fabric) that was not applied. The results are shown in FIGS.

図1からわかるように、平均粒径1μmのシリカ被覆酸化チタンを付着させた実施例1及び2の布帛に紫外線を照射すると、初期に黄色度が一時的に増加するものの、その後は安定し、100時間以上照射を続けてもYIが10以下に保持された。それに対し、比較例3の未被覆酸化チタン(平均粒径は実施例1及び2と同様に1μmである)の場合、照射時間が長くなるにつれて黄変が進行し、50時間以上の照射ではYIが20を超えた(図2)。これらの結果は、酸化チタンを被覆することによって黄変を抑制されたことを示す。平均粒径が100nmの場合にも(比較例1及び2)、比較例3と同様に黄変が観測された。
[評価例2(アセトアルデヒド分解試験)]
実施例及び比較例の布帛について、アセトアルデヒド分解試験を行った。試験方法は以下の通りである。
As can be seen from FIG. 1, when the fabrics of Examples 1 and 2 to which silica-coated titanium oxide having an average particle diameter of 1 μm is attached are irradiated with ultraviolet rays, the yellowness is temporarily increased initially, but thereafter, the fabric is stable. YI was maintained at 10 or less even after irradiation for 100 hours or more. On the other hand, in the case of the uncoated titanium oxide of Comparative Example 3 (average particle diameter is 1 μm as in Examples 1 and 2), yellowing progresses as the irradiation time becomes longer, and YI for irradiation of 50 hours or more. Exceeded 20 (FIG. 2). These results indicate that yellowing was suppressed by coating with titanium oxide. When the average particle size was 100 nm (Comparative Examples 1 and 2), yellowing was observed as in Comparative Example 3.
[Evaluation Example 2 (Acetaldehyde Decomposition Test)]
The acetaldehyde decomposition test was done about the fabric of the Example and the comparative example. The test method is as follows.

ガラス容器の底にスペーサを設置し、その上にサンプルを静置した。スペーサは、サンプルと底の間に隙間を生じさせ、サンプルをアセトアルデヒドと充分に接触させるために用いた。次に、ガラス容器の底面から紫外線を照射できるよう、ガラス容器をブラックライトの上方に設置した。ガラス容器をアスピレータで減圧し、所定量のアセトアルデヒドガスをシリンジにより注入した後、大気圧に戻した。   A spacer was placed on the bottom of the glass container, and the sample was allowed to stand on it. The spacer created a gap between the sample and the bottom and was used to bring the sample into good contact with acetaldehyde. Next, the glass container was installed above the black light so that ultraviolet rays could be irradiated from the bottom surface of the glass container. The glass container was decompressed with an aspirator, a predetermined amount of acetaldehyde gas was injected with a syringe, and then returned to atmospheric pressure.

一般に、注入したアセトアルデヒドの一部がサンプルや容器壁面に吸着するため、注入直後ではアセトアルデヒドの気相濃度が大きく減少する。そこで、アセトアルデヒド濃度の減少が収束するまで放置した。この間、定期的に容器内のガスを採取し、ガスクロマトグラフィーによりアセトアルデヒド濃度をモニターした。   In general, since a part of the injected acetaldehyde is adsorbed on the sample or the wall of the container, the gas phase concentration of acetaldehyde is greatly reduced immediately after the injection. Therefore, it was left until the decrease in the acetaldehyde concentration converged. During this time, the gas in the container was periodically collected and the acetaldehyde concentration was monitored by gas chromatography.

アセトアルデヒド濃度の変動が収まった後、紫外線照射を開始し、アセトアルデヒド濃度の経時変化をガスクロマトグラフィーにより測定した。詳細な測定条件は以下の通りである。   After the fluctuation of the acetaldehyde concentration was subsided, ultraviolet irradiation was started, and the time-dependent change of the acetaldehyde concentration was measured by gas chromatography. Detailed measurement conditions are as follows.

試験容器: 4Lガラス容器バッチ式
光源: FL15BLB-A(東芝ライテック(株))
照射強度: 1.0mW/cm2
紫外線強度計: UVR-2((株)TOPCON)、受光部UD-36
サンプル面積: 50cm2(5cm×10cm)
ガスクロマトグラフ: GC-14B((株)島津製作所)
結果を図3及び4に示す。実施例1及び2の布帛ではアセトアルデヒドが急速に分解し、照射開始から24時間の間の濃度減少が140ppmを超え、残存濃度が0−10ppmまで低下した。それに対し、比較例1及び2の布帛では、アセトアルデヒド濃度の減少はブランクと同程度であり、有意な光触媒活性が見られなかった。比較例3の布帛の光触媒活性は比較例1及び2より高いものの、実施例1及び2には及ばなかった。
[評価例3 (湿式メチレンブルー分解試験)]
実施例及び比較例1−3のサンプルについて、湿式メチレンブルー分解試験を行った。試験は、光触媒製品フォーラムの「光触媒製品における湿式分解性能試験方法」に準拠し、40mmφのサンプルを試験セルの底に沈めて行った。測定条件は以下の通りである。
Test container: 4L glass container batch type Light source: FL15BLB-A (Toshiba Lighting & Technology Corp.)
Irradiation intensity: 1.0mW / cm 2
UV intensity meter: UVR-2 (TOPCON Co., Ltd.), light receiving unit UD-36
Sample area: 50cm 2 (5cm × 10cm)
Gas chromatograph: GC-14B (Shimadzu Corporation)
The results are shown in FIGS. In the fabrics of Examples 1 and 2, acetaldehyde rapidly decomposed, and the concentration decrease over 24 hours from the start of irradiation exceeded 140 ppm, and the residual concentration decreased to 0-10 ppm. On the other hand, in the fabrics of Comparative Examples 1 and 2, the decrease in the acetaldehyde concentration was comparable to that of the blank, and no significant photocatalytic activity was observed. The photocatalytic activity of the fabric of Comparative Example 3 was higher than that of Comparative Examples 1 and 2, but did not reach that of Examples 1 and 2.
[Evaluation Example 3 (Wet Methylene Blue Decomposition Test)]
A wet methylene blue decomposition test was performed on the samples of Examples and Comparative Examples 1-3. The test was conducted in accordance with the “Method for testing wet decomposition performance in photocatalyst products” of the photocatalyst product forum, with a 40 mmφ sample submerged in the bottom of the test cell. The measurement conditions are as follows.

試験セルサイズ: 40mmφ×30mm
仕込メチレンブルー水溶液量: 35ml
吸着用メチレンブルー水溶液量濃度: 0.025mmol/l
吸着時間: 24hr
試験用メチレンブルー水溶液量濃度: 0.010mmol/l
光源: FL15BLB-A(東芝ライテック(株))
照射強度: 1.0mW/cm2
紫外線強度計: UVR-2((株)TOPCON)、受光部UD-36
吸光度測定: 自記分光光度計、U-4000((株)日立製作所)
測定セル: 標準セル
結果を以下の表に示す。
Test cell size: 40mmφ × 30mm
Amount of charged methylene blue solution: 35ml
Methylene blue aqueous solution concentration for adsorption: 0.025mmol / l
Adsorption time: 24hr
Methylene blue aqueous solution concentration for testing: 0.010mmol / l
Light source: FL15BLB-A (Toshiba Lighting & Technology Corp.)
Irradiation intensity: 1.0mW / cm 2
UV intensity meter: UVR-2 (TOPCON Co., Ltd.), light receiving unit UD-36
Absorbance measurement: Self-recording spectrophotometer, U-4000 (Hitachi, Ltd.)
Measurement cell: Standard cell The results are shown in the table below.

実施例1及び2の布帛のメチレンブルー活性示数は比較例1−3の示数より高く、本発明の布帛が高い酸化分解能力を有していることがわかる。
[SEM観察及びEPMA測定]
実施例及び比較例のサンプルについて、SEM観察及びEPMA測定を行い、酸化チタン粒子の分布を調べた(図5−9)。SEM像に示した白いバーが20μmに該当する。図5−9のEPMAマップ(右)は、SEM像(左)と同一の領域に対応し、Ti原子が検出された位置を白く表示した。SEM像とEPMAマップの結果を比較すると、SEM像で観察される粒子が、布帛に付着した酸化チタンに対応することがわかる。
The methylene blue activity index of the fabrics of Examples 1 and 2 is higher than that of Comparative Example 1-3, indicating that the fabric of the present invention has a high oxidative degradation ability.
[SEM observation and EPMA measurement]
About the sample of an Example and a comparative example, SEM observation and EPMA measurement were performed, and distribution of the titanium oxide particle was investigated (FIGS. 5-9). The white bar shown in the SEM image corresponds to 20 μm. The EPMA map (right) in FIG. 5-9 corresponds to the same region as the SEM image (left), and the position where the Ti atom is detected is displayed in white. Comparing the results of the SEM image and the EPMA map, it can be seen that the particles observed in the SEM image correspond to titanium oxide attached to the fabric.

平均粒径1μmの酸化チタン粒子を用いた実施例1(図5)、実施例2(図6)、及び比較例3(図9)の布帛では、粒子が繊維の隙間だけでなく布帛表面に広く分布している。それに対し、平均粒径100nmの酸化チタン粒子を用いた比較例1(図7)及び比較例2(図8)では、粒子が繊維の隙間に集中し、布帛表面には疎らに分布している。比較例1及び比較例2では繊維加工剤層の内部に埋もれた光触媒による繊維加工剤等の分解により黄変するが、繊維加工剤層の内部に光触媒は埋もれているので繊維加工剤層の外部からくる有機物の分解活性は弱くなっていると考えられる。酸化チタン粒子の分布形態は光触媒活性(評価例2及び3)と相関があることから、酸化チタン粒子の平均粒径を制御して粒子の遍在を防止し、分解対象ガスと接触する頻度を高めることによって、高い触媒活性が実現されたと考えられる。   In the fabrics of Example 1 (FIG. 5), Example 2 (FIG. 6), and Comparative Example 3 (FIG. 9) using titanium oxide particles having an average particle diameter of 1 μm, the particles are not only on the fiber gaps but also on the fabric surface. Widely distributed. On the other hand, in Comparative Example 1 (FIG. 7) and Comparative Example 2 (FIG. 8) using titanium oxide particles having an average particle diameter of 100 nm, the particles are concentrated in the gaps of the fibers and are sparsely distributed on the fabric surface. . In Comparative Example 1 and Comparative Example 2, yellowing occurs due to decomposition of the fiber processing agent or the like by the photocatalyst buried inside the fiber processing agent layer, but the photocatalyst is buried inside the fiber processing agent layer, so the outside of the fiber processing agent layer It is thought that the decomposition activity of organic substances coming from is weakened. Since the distribution form of titanium oxide particles correlates with the photocatalytic activity (Evaluation Examples 2 and 3), the average particle size of the titanium oxide particles is controlled to prevent the particles from being ubiquitous and the frequency of contact with the gas to be decomposed It is considered that a high catalytic activity was realized by increasing.

平均粒径が0.5−10μmの被覆光触媒粒子を布帛基材に付着させることにより、布帛に優れた光触媒活性を付与するとともに、黄変を抑制することができる。この布帛は、高い光触媒活性及び変色の抑制が求められる各種の用途に使用できる。   By attaching the coated photocatalyst particles having an average particle size of 0.5 to 10 μm to the fabric substrate, it is possible to impart excellent photocatalytic activity to the fabric and to suppress yellowing. This fabric can be used for various applications that require high photocatalytic activity and suppression of discoloration.

図1は、実施例1及び2の布帛について行った黄変試験の結果を示す。FIG. 1 shows the results of a yellowing test performed on the fabrics of Examples 1 and 2. 図2は、比較例1−3の布帛について行った黄変試験の結果を示す。FIG. 2 shows the results of a yellowing test performed on the fabric of Comparative Example 1-3. 図3は、実施例1及び2の布帛について行ったアセトアルデヒド分解試験の結果を示す。FIG. 3 shows the results of an acetaldehyde decomposition test performed on the fabrics of Examples 1 and 2. 図4は、比較例1−3の布帛について行ったアセトアルデヒド分解試験の結果を示す。FIG. 4 shows the results of an acetaldehyde decomposition test performed on the fabric of Comparative Example 1-3. 図5は、実施例1の布帛のSEM像(左)及び同一領域のEPMA測定の結果(右)を示す。SEM像中の白いバーが20μmに対応する。FIG. 5 shows an SEM image (left) of the fabric of Example 1 and an EPMA measurement result (right) of the same region. The white bar in the SEM image corresponds to 20 μm. 図6は、実施例2の布帛のSEM像(左)及び同一領域のEPMA測定の結果(右)を示す。SEM像中の白いバーが20μmに対応する。FIG. 6 shows the SEM image (left) of the fabric of Example 2 and the result of EPMA measurement (right) in the same region. The white bar in the SEM image corresponds to 20 μm. 図7は、比較例1の布帛のSEM像(左)及び同一領域のEPMA測定の結果(右)を示す。SEM像中の白いバーが20μmに対応する。FIG. 7 shows the SEM image (left) of the fabric of Comparative Example 1 and the result of EPMA measurement (right) in the same region. The white bar in the SEM image corresponds to 20 μm. 図8は、比較例2の布帛のSEM像(左)及び同一領域のEPMA測定の結果(右)を示す。SEM像中の白いバーが20μmに対応する。FIG. 8 shows the SEM image (left) of the fabric of Comparative Example 2 and the result of EPMA measurement (right) in the same region. The white bar in the SEM image corresponds to 20 μm. 図9は、比較例3の布帛のSEM像(左)及び同一領域のEPMA測定の結果(右)を示す。SEM像中の白いバーが20μmに対応する。FIG. 9 shows the SEM image (left) of the fabric of Comparative Example 3 and the result of EPMA measurement (right) in the same region. The white bar in the SEM image corresponds to 20 μm.

Claims (6)

光触媒活性を付与するために液体組成物を塗布した布帛基材であって、
該液体組成物は、光触媒材料を含むコアと該コアの少なくとも一部を被覆する層とを有する光触媒粒子、およびバインダーを含有し、
該光触媒粒子の平均粒径が1.0〜1.5μmの範囲にあり、
該コアの光触媒材料と比較して該被覆層の材料の光触媒活性が低く、
バインダーが、アクリル系樹脂、酢酸ビニル系樹脂、ポリウレタン系樹脂、メラミン系樹脂、尿素系樹脂、塩化ビニル系樹脂、塩化ビニリデン系樹脂、およびポリエステル系樹脂から選択される硬仕上剤である、
前記布帛基材
A fabric substrate coated with a liquid composition to impart photocatalytic activity,
The liquid composition contains photocatalyst particles having a core containing a photocatalytic material and a layer covering at least a part of the core, and a binder,
The average particle diameter of the photocatalyst particles is in the range of 1.0 to 1.5 μm,
Compared with the photocatalytic material of the core, the photocatalytic activity of the material of the coating layer is low,
The binder is a hardener selected from acrylic resins, vinyl acetate resins, polyurethane resins, melamine resins, urea resins, vinyl chloride resins, vinylidene chloride resins, and polyester resins.
The fabric substrate .
コアが酸化チタンを含む請求項1に記載の布帛基材The fabric substrate according to claim 1, wherein the core comprises titanium oxide. 被覆層がシリカ、リン酸カルシウム、ポリシロキサン、又はそれらの組み合わせを含む
、請求項1又は2に記載の布帛基材
The fabric substrate according to claim 1 or 2, wherein the coating layer comprises silica, calcium phosphate, polysiloxane, or a combination thereof.
液体組成物を布帛基材に塗布する工程を含む、光触媒活性を有する布帛の製造方法であって、
該液体組成物は、光触媒材料を含むコアと該コアの少なくとも一部を被覆する層とを有する光触媒粒子、およびバインダーを含有し、
該光触媒粒子の平均粒径が1.0〜1.5μmの範囲にあり、
該コアの光触媒材料と比較して該被覆層の材料の光触媒活性が低く、
バインダーが、アクリル系樹脂、酢酸ビニル系樹脂、ポリウレタン系樹脂、メラミン系樹脂、尿素系樹脂、塩化ビニル系樹脂、塩化ビニリデン系樹脂、およびポリエステル系樹脂から選択される硬仕上剤である、
前記製造方法
A method for producing a fabric having photocatalytic activity, comprising a step of applying a liquid composition to a fabric substrate,
The liquid composition contains photocatalyst particles having a core containing a photocatalytic material and a layer covering at least a part of the core, and a binder,
The average particle diameter of the photocatalyst particles is in the range of 1.0 to 1.5 μm,
Compared with the photocatalytic material of the core, the photocatalytic activity of the material of the coating layer is low,
The binder is a hardener selected from acrylic resins, vinyl acetate resins, polyurethane resins, melamine resins, urea resins, vinyl chloride resins, vinylidene chloride resins, and polyester resins.
The manufacturing method .
コアが酸化チタンを含む請求項4に記載の製造方法 The manufacturing method of Claim 4 in which a core contains a titanium oxide . 被覆層がシリカ、リン酸カルシウム、ポリシロキサン、又はそれらの組み合わせを含む
、請求項4又は5に記載の製造方法
The coating layer includes silica, calcium phosphate, polysiloxane, or combinations thereof
The manufacturing method according to claim 4 or 5 .
JP2005045613A 2005-02-22 2005-02-22 Photocatalytic liquid composition Active JP4647334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005045613A JP4647334B2 (en) 2005-02-22 2005-02-22 Photocatalytic liquid composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005045613A JP4647334B2 (en) 2005-02-22 2005-02-22 Photocatalytic liquid composition

Publications (2)

Publication Number Publication Date
JP2006233343A JP2006233343A (en) 2006-09-07
JP4647334B2 true JP4647334B2 (en) 2011-03-09

Family

ID=37041320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005045613A Active JP4647334B2 (en) 2005-02-22 2005-02-22 Photocatalytic liquid composition

Country Status (1)

Country Link
JP (1) JP4647334B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106536639A (en) * 2014-06-17 2017-03-22 石原产业株式会社 Titanium dioxide pigment and method for manufacturing same, and composition in which same is blended

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4880981B2 (en) * 2005-11-18 2012-02-22 東海染工株式会社 Visible light type photocatalytic functional fiber fabric and method for producing the same
ATE492610T1 (en) * 2007-08-28 2011-01-15 Basf Se PHOTOACTIVE TIO2 IN COATING MATERIALS
JP2011132626A (en) * 2009-12-24 2011-07-07 Sumitomo Chemical Co Ltd Textile product supporting photocatalyst
WO2014097309A1 (en) 2012-12-17 2014-06-26 Asian Paints Ltd. Stimuli responsive self cleaning coating
CN103184685B (en) * 2013-03-19 2014-11-19 浙江理工大学 Preparation method of photocatalytic functional fabric based on titanium dioxide/magnesium oxide core-shell nanorod

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10156190A (en) * 1996-12-04 1998-06-16 Sekisui Chem Co Ltd Production of functional material having photocatalytic performance
JP2003176440A (en) * 2001-12-12 2003-06-24 Asahi Glass Co Ltd Powder coating material composition composed of fluorine-containing resin and article having coating film
JP2004137611A (en) * 2002-10-15 2004-05-13 Komatsu Seiren Co Ltd Functional fiber fabric

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10156190A (en) * 1996-12-04 1998-06-16 Sekisui Chem Co Ltd Production of functional material having photocatalytic performance
JP2003176440A (en) * 2001-12-12 2003-06-24 Asahi Glass Co Ltd Powder coating material composition composed of fluorine-containing resin and article having coating film
JP2004137611A (en) * 2002-10-15 2004-05-13 Komatsu Seiren Co Ltd Functional fiber fabric

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106536639A (en) * 2014-06-17 2017-03-22 石原产业株式会社 Titanium dioxide pigment and method for manufacturing same, and composition in which same is blended

Also Published As

Publication number Publication date
JP2006233343A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
JP6721742B2 (en) Interior material manufacturing method
US10335771B2 (en) Aqueous dispersion and coating material using the same, and photocatalytic film and product
JP4647334B2 (en) Photocatalytic liquid composition
US10556230B2 (en) Photocatalyst coating
US7060643B2 (en) Photo-functional powder and applications thereof
JPWO2006046443A1 (en) Fiber cloth with VOC removal function
Rilda et al. Self-cleaning TiO2-SiO2 clusters on cotton textile prepared by dip-spin coating process
US20130273798A1 (en) Anti-allergen agent
EP1354628A1 (en) Powder exhibiting optical function and use thereof
JP5052067B2 (en) Photocatalytic liquid composition
Suryani et al. High efficiency self-cleaning of nanocomposites ZnO with additional chitosan for helping electron and hole transport
JP3990951B2 (en) Photocatalyst-containing substrate
JP2010075898A (en) Photocatalyst, method of manufacturing the same, and composition having photocatalytic function
JPWO2005044447A1 (en) Composite oxidation type titania photocatalyst and use thereof
JP2010265561A (en) Fiber fabric having deodorization and voc removing function
JPWO2004062799A1 (en) Composite particles and their production methods and applications
Maharani et al. The Study of Self-Cleaning Properties of TiO2 Coated on Cotton Fabrics
KR20130041220A (en) Allergen inactivator, allergen inactivator composition, coated material, air purification filter, and allergen inactivation method
JP2003213564A (en) Deodorant fibrous structure deodorant fibrous structure
JP2005313055A (en) Functional dispersion
JP2002066334A (en) Durable sheet provided with photocatalytic function and method for producing the same sheet
KR20050023403A (en) Photocatalyst-containing base material
JP2008253930A (en) Manufacturing method of organic base material protection type photocatalyst
JP2003049359A (en) Fiber finishing agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4647334

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350