JP2010265561A - Fiber fabric having deodorization and voc removing function - Google Patents

Fiber fabric having deodorization and voc removing function Download PDF

Info

Publication number
JP2010265561A
JP2010265561A JP2009117755A JP2009117755A JP2010265561A JP 2010265561 A JP2010265561 A JP 2010265561A JP 2009117755 A JP2009117755 A JP 2009117755A JP 2009117755 A JP2009117755 A JP 2009117755A JP 2010265561 A JP2010265561 A JP 2010265561A
Authority
JP
Japan
Prior art keywords
fiber fabric
photocatalyst
weight
adsorbent
binder resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009117755A
Other languages
Japanese (ja)
Inventor
Yasutaro Seto
保太郎 瀬戸
Mayumi Osawa
まゆみ 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suminoe Textile Co Ltd
Original Assignee
Suminoe Textile Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suminoe Textile Co Ltd filed Critical Suminoe Textile Co Ltd
Priority to JP2009117755A priority Critical patent/JP2010265561A/en
Publication of JP2010265561A publication Critical patent/JP2010265561A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fiber product that is obtained by sticking a photocatalyst and an adsorbent fast to a fiber fabric with a binder resin, completely prevents discoloration, deterioration and secondary contamination of fiber fabric by oxidation action of a photocatalyst while maintaining a soft touch of fiber fabric and exhibits excellent performance of deodorization and VOC (volatile organic compound) removing function. <P>SOLUTION: The fiber product having excellent deodorization and VOC removing function even indoors and a soft touch is obtained by sticking a photocatalyst and an adsorbent fast to a fiber fabric by using a binder resin having a light transmittance at a wavelength of 300-500 nm of ≥50%. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、カーテン、カーペット、壁紙、椅子張り地等のインテリア用繊維布帛や、自動車、車両、船舶、航空機などの内装用繊維布帛として広く応用でき、消臭およびVOC除去機能を有するようにした繊維布帛に関する技術である。   INDUSTRIAL APPLICABILITY The present invention can be widely applied as interior textile fabrics such as curtains, carpets, wallpaper, chair upholstery, etc., and interior textile fabrics such as automobiles, vehicles, ships, and aircraft, and has a deodorizing and VOC removal function. This is a technique related to fiber fabrics.

近年、シックハウス症候群に代表されるように、住宅建材から生じる有害物質による生活環境汚染問題が急速に深刻化しており、ホルムアルデヒドだけでなくトルエンやキシレンなどの芳香族環を有する難分解性のVOC(揮発性有機化合物)も、室内空気環境ガイドラインによって規制されてきている。   In recent years, as represented by sick house syndrome, the problem of living environment pollution due to harmful substances generated from residential building materials has rapidly become serious, and not only formaldehyde but also persistent VOCs having aromatic rings such as toluene and xylene ( Volatile organic compounds) have also been regulated by indoor air environmental guidelines.

VOC除去、消臭、抗菌等の機能に関する技術は多く開示されており、光触媒は、水中のハロゲン含有有機物を炭酸ガスと水に分解したり、たばこ臭や、人体の汗の臭いであるイソ吉草酸等の悪臭を消臭したり、その強力な酸化力によって、大腸菌などを殺す機能もあることは確認されている。また、光触媒には、VOC(揮発性有機化合物)を炭酸ガスと水に分解する能力もあることも知られており、例えば、カーテン、カーペット、壁紙、椅子張り地等の繊維布帛に光触媒を担持させ、紫外線や可視光を利用して悪臭や有害物質を分解する試みが広く行われている。   Many technologies related to functions such as VOC removal, deodorization, and antibacterial have been disclosed. Photocatalysts decompose halogen-containing organic substances in water into carbon dioxide gas and water, and produce cigarette odors and human sweat odors. It has been confirmed that it has the function of deodorizing malodors such as herbic acid and killing Escherichia coli by its strong oxidizing power. It is also known that photocatalysts have the ability to decompose VOC (volatile organic compounds) into carbon dioxide gas and water. For example, photocatalysts are supported on fiber fabrics such as curtains, carpets, wallpaper, and upholstery. Attempts to decompose bad odors and harmful substances using ultraviolet rays or visible light have been widely conducted.

しかしながら、光触媒はそのような有益な機能を有する反面、光触媒を直接繊維布帛にバインダー樹脂によって担持させると、光触媒の強い酸化分解力によって、バインダー樹脂や繊維布帛が有機質の炭化水素を含む樹脂であるために分解されたり、着色したり、異臭が発生するなどの諸問題が生じていた。そのため、光触媒は使用が限定され、酸化に強いタイルやガラス等の無機の担持素材へ応用され、屋外で使用されることが多かった。   However, the photocatalyst has such a useful function, but when the photocatalyst is directly supported on the fiber cloth by the binder resin, the binder resin or the fiber cloth is a resin containing organic hydrocarbons due to the strong oxidative degradation power of the photocatalyst. For this reason, various problems such as decomposition, coloring, and generation of a strange odor have occurred. Therefore, the use of the photocatalyst is limited, and it has been applied to inorganic supporting materials such as tiles and glass that are resistant to oxidation, and is often used outdoors.

また、光触媒を屋内で使用した場合、室内に存在する紫外線量は非常に少なく、トルエンやキシレンなどの難分解性の物質を完全に炭酸ガスと水に分解することは難しく、様々な中間体を生成することになり、二次的に有害物質を作り出し、二次汚染する可能性もある。また、可視光で応答する光触媒を使用した場合でも、可視光ではエネルギーが弱く、VOC(揮発性有機化合物)を一挙に炭酸ガスと水に分解することは難しく、中間体を生成し二次汚染することになる。   In addition, when the photocatalyst is used indoors, the amount of ultraviolet rays present in the room is very small, and it is difficult to completely decompose a hardly decomposable substance such as toluene and xylene into carbon dioxide gas and water. Will be produced, and it may create secondary harmful substances and cause secondary contamination. Even when a photocatalyst that responds to visible light is used, the energy is weak in visible light, and it is difficult to decompose VOC (volatile organic compounds) into carbon dioxide and water at once, generating intermediates and secondary contamination. Will do.

これらを改善するため特許文献1においては、繊維布帛に酸化チタン光触媒をシリコーン架橋型樹脂で固定することにより、使用に際して繊維布帛に変色や劣化がなく、持続性のある優れた消臭、抗菌および防汚機能を有する繊維布帛の技術を開示している。   In order to improve these, in Patent Document 1, a titanium oxide photocatalyst is fixed to a fiber cloth with a silicone cross-linking resin, so that the fiber cloth is not discolored or deteriorated during use, and has excellent deodorant, antibacterial and antibacterial properties. A technique of a fiber fabric having an antifouling function is disclosed.

特許文献2においては、繊維布帛の表面にアルキルシリケート系樹脂、シリコーン系樹脂、フッ素系樹脂から選ばれるバインダーと光触媒を有する室内内装材料が提案され、耐久性ある着臭防止性、消臭性、抗菌性、防汚性に優れた室内内装材料の技術を開示している。   In Patent Document 2, an indoor interior material having a binder and a photocatalyst selected from alkyl silicate resin, silicone resin, and fluorine resin on the surface of the fiber fabric is proposed, and has a durable odor prevention property, deodorization property, The technology of interior and interior materials with excellent antibacterial and antifouling properties is disclosed.

しかしながら、これらのバインダー樹脂を使用した方法では、光触媒表面をバインダー樹脂が覆ってしまうことから、触媒能力が低下し、十分な効果を発揮できない方法となっていた。   However, in the method using these binder resins, the surface of the photocatalyst is covered with the binder resin, so that the catalytic ability is lowered and a sufficient effect cannot be exhibited.

特開平10−1879JP-A-10-1879 特開2001−254281JP 2001-254281 A

本発明の課題は、上述の事情に鑑み、繊維布帛の柔らかな風合いを維持し、光触媒の酸化作用による変色や劣化、二次汚染を完全に防ぎ、バインダーによって光触媒の能力低下を招かない、消臭およびVOC除去機能に優れた繊維布帛を提供することにある。   In view of the above-mentioned circumstances, the problem of the present invention is to maintain the soft texture of the fiber fabric, completely prevent discoloration, deterioration and secondary contamination due to the oxidation action of the photocatalyst, and prevent the photocatalyst from being degraded by the binder. An object of the present invention is to provide a fiber fabric excellent in odor and VOC removal function.

本発明は、繊維布帛の柔らかな風合いを維持し、変色や劣化、二次汚染を完全に防いだ消臭、抗菌およびVOC除去機能を有する繊維布帛を提供すべく検討を行なった結果、光透過率が波長300〜500nmにおいて50%以上あるバインダー樹脂で、可視光応答型光触媒と吸着剤を繊維布帛に担持させることによって、屋内においてでも、消臭およびVOC除去機能に優れた柔らかな風合いの繊維布帛が得られることを見出し、本発明に至ったものである。上記課題を達成するために、本発明は以下の手段を提供する。   The present invention has been studied to provide a fiber fabric having a deodorizing, antibacterial, and VOC removal function that maintains the soft texture of the fiber fabric and completely prevents discoloration, deterioration, and secondary contamination. A fiber with a soft texture excellent in deodorization and VOC removal function even indoors by supporting a visible light responsive photocatalyst and an adsorbent on a fiber fabric with a binder resin having a rate of 50% or more at a wavelength of 300 to 500 nm The present inventors have found that a fabric can be obtained and have reached the present invention. In order to achieve the above object, the present invention provides the following means.

[1]光触媒と吸着剤が、バインダー樹脂により固着されている繊維布帛であって、前記バインダー樹脂の光透過率が波長300〜500nmにおいて50%以上あることを特徴とする、消臭およびVOC除去機能を有する繊維布帛。 [1] Deodorization and VOC removal, wherein the photocatalyst and the adsorbent are fiber fabrics fixed with a binder resin, and the light transmittance of the binder resin is 50% or more at a wavelength of 300 to 500 nm. A fiber fabric having a function.

[2]前記光触媒の液体中の見かけ平均粒径が80nm〜3μmであって、前記吸着剤の平均粒径が20nm〜30μmであることを特徴とする前項1に記載の消臭およびVOC除去機能を有する繊維布帛。 [2] Deodorization and VOC removal function according to item 1 above, wherein an apparent average particle size in the liquid of the photocatalyst is 80 nm to 3 μm, and an average particle size of the adsorbent is 20 nm to 30 μm. A fiber fabric having

[3]前記バインダー樹脂がウレタン樹脂またはポリビニルアルコール樹脂であることを特徴とする前項1または2に記載の消臭およびVOC除去機能を有する繊維布帛。 [3] The fiber fabric having a deodorizing and VOC removing function according to the above item 1 or 2, wherein the binder resin is a urethane resin or a polyvinyl alcohol resin.

[4]前記光触媒がアパタイト被覆の可視光応答型光触媒であって、前記吸着剤が疎水性ゼオライトであることを特徴とする前項1〜3のいずれかに記載の消臭およびVOC除去機能を有する繊維布帛。 [4] The photocatalyst is a visible light responsive photocatalyst coated with apatite, and the adsorbent is a hydrophobic zeolite. Fiber fabric.

[5]前記光触媒の繊維布帛への付着量が、繊維布帛100重量部に対し、0.5〜25重量%、前記吸着剤の繊維布帛への付着量が、繊維布帛100重量部に対し、0.1〜15重量%、であることを特徴とする前項1〜4のいずれかに記載の消臭およびVOC除去機能を有する繊維布帛。 [5] The amount of the photocatalyst attached to the fiber fabric is 0.5 to 25% by weight with respect to 100 parts by weight of the fiber fabric, and the amount of the adsorbent attached to the fiber fabric is 100 parts by weight of the fiber fabric. The fiber fabric having a deodorizing and VOC removing function according to any one of the preceding items 1 to 4, which is 0.1 to 15% by weight.

[1]光透過率が波長300〜500nmにおいて50%以上あるバインダー樹脂によって、繊維布帛に光触媒と吸着剤が固着されているので、バインダー樹脂による光触媒の触媒反応への影響が少なくなり、触媒反応が十分行われ、光触媒反応の過程で生成される中間体も効率的に吸着剤に吸着されるので、中間体による二次汚染が抑制された、消臭およびVOC除去機能を発揮する繊維布帛とすることができる。 [1] Since the photocatalyst and the adsorbent are fixed to the fiber fabric by the binder resin having a light transmittance of 50% or more at a wavelength of 300 to 500 nm, the influence of the binder resin on the catalytic reaction of the photocatalyst is reduced, and the catalytic reaction Is sufficiently performed, and the intermediate produced in the process of the photocatalytic reaction is also efficiently adsorbed by the adsorbent, so that the secondary contamination by the intermediate is suppressed, and the fiber fabric exhibiting the deodorizing and VOC removing functions can do.

[2]前記光触媒の液体中の見かけ平均粒径が80nm〜3μmであって、前記吸着剤の平均粒径が20nm〜30μmであるので、ザラツキ感のない柔らかな繊維布帛にすることができる。 [2] Since the apparent average particle diameter in the liquid of the photocatalyst is 80 nm to 3 μm and the average particle diameter of the adsorbent is 20 nm to 30 μm, it is possible to make a soft fiber fabric without a feeling of roughness.

[3]さらに、前記光触媒と吸着剤が、ウレタン樹脂またはポリビニルアルコール樹脂により固着されているので、柔らかな風合の繊維布帛とすることができる。 [3] Furthermore, since the photocatalyst and the adsorbent are fixed by a urethane resin or a polyvinyl alcohol resin, a fiber fabric having a soft texture can be obtained.

[4]前記光触媒がアパタイト被覆タイプの可視光応答型光触媒であるので、バインダー樹脂が光触媒反応の影響を受け劣化するのが防がれ、前記吸着剤が疎水性ゼオライトであるので、水分の吸着が少なく、湿度の高い雰囲気下においても悪臭や光触媒反応の過程で生成される中間体等を素早く効果的に吸着することができる。 [4] Since the photocatalyst is an apatite-coated type visible light responsive photocatalyst, the binder resin is prevented from being deteriorated by the influence of the photocatalytic reaction, and the adsorbent is a hydrophobic zeolite, so that moisture adsorption is achieved. Therefore, even in an atmosphere with high humidity, it is possible to quickly and effectively adsorb bad odors and intermediates produced during the photocatalytic reaction.

[5]前記光触媒の繊維布帛への付着量が、繊維布帛100重量部に対し、0.5〜25重量%、前記吸着剤の繊維布帛への付着量が、繊維布帛100重量部に対し、0.1〜15重量%であるので、中間体による二次汚染が抑制され、十分な消臭およびVOC除去機能を有する繊維布帛を得ることができる。 [5] The amount of the photocatalyst attached to the fiber fabric is 0.5 to 25% by weight with respect to 100 parts by weight of the fiber fabric, and the amount of the adsorbent attached to the fiber fabric is 100 parts by weight of the fiber fabric. Since it is 0.1-15 weight%, the secondary contamination by an intermediate body is suppressed and the fiber fabric which has sufficient deodorizing and a VOC removal function can be obtained.

本発明は、カーテン、カーペット、壁紙、椅子張り地等のインテリア用布帛や、自動車、車両、船舶、航空機などの内装用繊維布帛として広く有用に使用することができる。繊維布帛の形態としては、織物、編物、不織布、タフテッドカーペットやモケットのような立毛布帛等特に限定されない。繊維布帛の繊維としても、特に限定されずポリエステル、ポリアミド、アクリルなどの合成繊維、アセテート、レーヨンなどの半合成繊維、羊毛、絹、木綿、麻などの天然繊維などから選ばれる、1種または複数の繊維を使用することができる。   INDUSTRIAL APPLICABILITY The present invention can be widely and effectively used as interior fabrics such as curtains, carpets, wallpaper, and chair upholstery fabrics, and interior fabric fabrics such as automobiles, vehicles, ships, and aircraft. The form of the fiber fabric is not particularly limited, such as a woven fabric, a knitted fabric, a nonwoven fabric, a napped fabric such as a tufted carpet or a moquette. The fibers of the fiber fabric are not particularly limited, but are selected from one or more selected from synthetic fibers such as polyester, polyamide and acrylic, semi-synthetic fibers such as acetate and rayon, natural fibers such as wool, silk, cotton and hemp. Of fiber can be used.

光触媒は、紫外線の照射によって消臭およびVOC除去機能を発揮するが、バインダー樹脂で覆われて繊維布帛に固着されるので、紫外線の光触媒への照射量が減少し、光触媒能力が十分に発揮されないことがあった。本発明においては、光透過率が波長300〜500nmにおいて50%以上あるバインダー樹脂によって、光触媒と吸着剤が、繊維布帛に固着されるので、光触媒への照射量が確保され、光触媒能力が十分に発揮されるものである。光透過率が波長300〜500nmにおいて50%以上であれば、光触媒の励起エネルギーが確保され、十分な消臭およびVOC除去機能を有する繊維布帛を得ることができる。   The photocatalyst exhibits a deodorizing and VOC removal function when irradiated with ultraviolet rays, but is covered with a binder resin and fixed to the fiber fabric, so that the amount of irradiation of the ultraviolet photocatalyst is reduced and the photocatalytic ability is not fully exhibited. There was a thing. In the present invention, since the photocatalyst and the adsorbent are fixed to the fiber fabric by the binder resin having a light transmittance of 50% or more at a wavelength of 300 to 500 nm, the irradiation amount to the photocatalyst is ensured and the photocatalytic ability is sufficiently high. It is demonstrated. When the light transmittance is 50% or more at a wavelength of 300 to 500 nm, the excitation energy of the photocatalyst is ensured, and a fiber fabric having a sufficient deodorizing and VOC removal function can be obtained.

光透過率が波長300〜500nmにおいて50%以上あるバインダー樹脂としては、ウレタン樹脂またはポリビニルアルコール樹脂が好適で、シリコーン系バインダー樹脂等と比較しても優れた光透過率を示している。(図1参照)なお、光透過率は分光光度計(UV−1700島津製作所製)で測定した。   As the binder resin having a light transmittance of 50% or more at a wavelength of 300 to 500 nm, a urethane resin or a polyvinyl alcohol resin is suitable, and shows an excellent light transmittance even when compared with a silicone-based binder resin or the like. The light transmittance was measured with a spectrophotometer (UV-1700, manufactured by Shimadzu Corporation).

光触媒としては、酸化チタン、酸化錫、酸化亜鉛、酸化第二鉄等を挙げることができる。光触媒は、紫外線により励起されて水や酸素が・OHや・O となり、強い酸化作用で有機物を、水と二酸化炭素に分解し、消臭するものである。また、光触媒の触媒活性を高めるため、白金、パラジウム、ロジウムなどの白金族金属を担持させたものや、銀、銅、亜鉛などの殺菌性のある金属を担持させたものを使用することもできる。 Examples of the photocatalyst include titanium oxide, tin oxide, zinc oxide, and ferric oxide. Photocatalyst is excited by ultraviolet rays, water and oxygen OH or - O 2 -, and the organic matter with a strong oxidizing action, decomposes into water and carbon dioxide, is intended to deodorization. In addition, in order to increase the catalytic activity of the photocatalyst, one carrying a platinum group metal such as platinum, palladium or rhodium or one carrying a sterilizing metal such as silver, copper or zinc can be used. .

本発明に使用される光触媒としては、可視光応答型光触媒が好適である。中でも可視光応答型酸化チタン光触媒は、その酸化力により、黄色ブドウ球菌などに殺菌力があることは知られており、菌が人体代謝物などを分解する時に発生する悪臭を抑制し、抗菌効果も得ることができる。また、可視光応答型酸化チタン光触媒は、紫外線の照射量の少ない屋内においても強い酸化作用が得られ、従来消臭が困難であったタバコ臭、汗臭などを簡単に消臭することができ、また付着したタバコのヤニなどの着色物質を分解するような防汚効果も得ることができ、VOC除去機能も得ることができるものである。   As the photocatalyst used in the present invention, a visible light responsive photocatalyst is suitable. Above all, the visible light responsive titanium oxide photocatalyst is known to have bactericidal activity against Staphylococcus aureus due to its oxidizing power, and it suppresses the bad odor that occurs when the bacteria decompose human metabolites etc., and has an antibacterial effect Can also be obtained. In addition, the visible light responsive titanium oxide photocatalyst provides a strong oxidizing action even indoors where the amount of UV irradiation is small, and can easily deodorize tobacco odors, sweat odors, etc. In addition, it is possible to obtain an antifouling effect such as decomposing colored substances such as cigarette dust, and to obtain a VOC removal function.

可視光応答型酸化チタン光触媒は、可視光域で励起するようにしたもので、例えば、アナターゼ型酸化チタン光触媒、ルチル型酸化チタン光触媒、ブルカイト型酸化チタン光触媒等を挙げることができ、中でも、アナターゼ型の可視光応答型酸化チタン光触媒が特に好適である。   The visible light responsive titanium oxide photocatalyst is excited in the visible light region, and examples include anatase type titanium oxide photocatalyst, rutile type titanium oxide photocatalyst, brookite type titanium oxide photocatalyst, etc. A type of visible light responsive titanium oxide photocatalyst is particularly suitable.

また、本発明においては、可視光応答型酸化チタン光触媒としてアパタイト被覆可視光応答型酸化チタン光触媒を用いることもできる。アパタイト被覆可視光応答型酸化チタン光触媒は、酸化チタン光触媒の表面がリン酸カルシウムアパタイト等により被覆された複合材料である。アパタイト被覆可視光応答型酸化チタン光触媒は、可視光応答型酸化チタン光触媒が直接繊維布帛やバインダー樹脂と接合するのを防ぎ、強い酸化作用によって繊維布帛やバインダー樹脂が侵されることから守るものである。   In the present invention, an apatite-coated visible light responsive titanium oxide photocatalyst can also be used as the visible light responsive titanium oxide photocatalyst. The apatite-coated visible light responsive titanium oxide photocatalyst is a composite material in which the surface of the titanium oxide photocatalyst is coated with calcium phosphate apatite or the like. The apatite-coated visible light responsive titanium oxide photocatalyst prevents the visible light responsive titanium oxide photocatalyst from being directly bonded to the fiber cloth or binder resin, and protects the fiber cloth or binder resin from being attacked by a strong oxidizing action. .

本発明のメカニズムは十分解明されていないが、可視光応答型光触媒はバインダー樹脂により繊維布帛に固定され、消臭性能を発揮し、VOCを分解するが、炭酸ガスと水に分解できずにできた中間体は、可視光応答型光触媒と同様にバインダー樹脂によって繊維布帛に担持された吸着剤が捕捉することから、中間体を大気中に逃がすことなくVOC除去機能を発揮することができる。また、吸着剤によって一旦捕捉された中間体は、可視光応答型光触媒によって最終的に炭酸ガスと水に分解される。   Although the mechanism of the present invention has not been fully elucidated, the visible light responsive photocatalyst is fixed to the fiber fabric by a binder resin, exhibits deodorization performance, and decomposes VOC, but cannot be decomposed into carbon dioxide and water. Since the intermediate is captured by the adsorbent supported on the fiber fabric by the binder resin in the same manner as the visible light responsive photocatalyst, the VOC removal function can be exhibited without allowing the intermediate to escape into the atmosphere. The intermediate once trapped by the adsorbent is finally decomposed into carbon dioxide and water by the visible light responsive photocatalyst.

光触媒の液体中の見かけ平均粒径は80nm〜3μmであることが好ましい。光触媒の粒径は酸化作用の効果から小さいほど好ましく、また繊維径の10分の1以下の粒径のものが、脱落のし易さの面から好ましく、2μm以下が推奨される。また、酸化チタン光触媒の粒径が3μmを越えると悪臭の分解速度が遅くなり好ましくない。また、80nmを下回る粒径とすることは、コスト的にも採算が合わず好ましくない。より好ましくは100nm〜2μmがよく、さらに好ましくは100nm〜1μmがよい。   The apparent average particle diameter in the liquid of the photocatalyst is preferably 80 nm to 3 μm. The particle size of the photocatalyst is preferably as small as possible due to the effect of oxidation, and a particle size of 1/10 or less of the fiber diameter is preferable from the viewpoint of easy removal, and 2 μm or less is recommended. On the other hand, if the particle size of the titanium oxide photocatalyst exceeds 3 μm, the decomposition rate of malodor is slow, which is not preferable. Moreover, it is not preferable to make the particle diameter smaller than 80 nm because the cost is not suitable. More preferably, it is 100 nm-2 micrometers, More preferably, 100 nm-1 micrometer are good.

光触媒の繊維布帛への付着量は、繊維布帛100重量部に対し、0.5〜25重量%が好ましい。光触媒の繊維布帛への付着量が25重量%を越えると風合いが硬くなり、また繊維布帛が白化して好ましくない。また、0.5重量%を下回ると悪臭やVOCの分解速度が遅くなり好ましくない。より好ましくは0.7〜10重量%である。   The adhesion amount of the photocatalyst to the fiber fabric is preferably 0.5 to 25% by weight with respect to 100 parts by weight of the fiber fabric. If the amount of the photocatalyst attached to the fiber cloth exceeds 25% by weight, the texture becomes hard and the fiber cloth is whitened. On the other hand, if it is less than 0.5% by weight, the bad odor and the decomposition rate of VOC are slow, which is not preferable. More preferably, it is 0.7 to 10% by weight.

次に、吸着剤としては、ゼオライト、活性炭、シリカゲル、酸化珪素等を挙げることができる。中でも疎水性ゼオライトは白色であるので、色彩やデザインを重要視するインテリア用繊維布帛には好ましい。一般的にゼオライトは親水性であるが、本発明では疎水性ゼオライトが好ましい。疎水性ゼオライトは、水分の吸着が少ないため、湿度の高い雰囲気においても悪臭や光触媒反応の過程で生成される中間体等も素早く効果的に吸着する。   Next, examples of the adsorbent include zeolite, activated carbon, silica gel, silicon oxide and the like. Among these, hydrophobic zeolite is white, and therefore, it is preferable for interior textile fabrics that place importance on color and design. In general, zeolite is hydrophilic, but hydrophobic zeolite is preferred in the present invention. Hydrophobic zeolite has little moisture adsorption, so it can quickly and effectively adsorb odors and intermediates produced in the process of photocatalytic reaction even in a humid atmosphere.

また、疎水性ゼオライトの平均粒径は20nm〜30μmであることが好ましい。疎水性ゼオライトの粒径が30μmを越えると繊維布帛が固くなり好ましくない。また、20nmを下回る粒径とすることは技術的に製造することは困難で、コスト的にも採算が合わず好ましくない。より好ましくは100nm〜10μmがよい。   The average particle size of the hydrophobic zeolite is preferably 20 nm to 30 μm. When the particle size of the hydrophobic zeolite exceeds 30 μm, the fiber fabric becomes hard, which is not preferable. In addition, it is difficult to technically produce a particle size of less than 20 nm, which is not preferable because it is not cost effective. More preferably, it is 100 nm to 10 μm.

次ぎに、吸着剤の繊維布帛への付着量は、繊維布帛100重量部に対し、0.1〜15重量%が好ましい。吸着剤の繊維布帛への付着量が15重量%を越えると風合いが硬くなり、また繊維布帛が白化して好ましくない。また、0.1重量%を下回ると、中間体や悪臭の吸着能力が不足し好ましくない。より好ましくは0.5〜10重量%である。   Next, the adhesion amount of the adsorbent to the fiber fabric is preferably 0.1 to 15% by weight with respect to 100 parts by weight of the fiber fabric. If the adhering amount of the adsorbent to the fiber fabric exceeds 15% by weight, the texture becomes hard and the fiber fabric is whitened. On the other hand, if it is less than 0.1% by weight, the ability to adsorb intermediates and offensive odors is insufficient. More preferably, it is 0.5 to 10% by weight.

バインダー樹脂によって光触媒と吸着剤を繊維布帛に担持させる方法は、浸漬法とコーティング法を例示できる。ウレタン系バインダー樹脂やポリビニルアルコール樹脂は水溶性であるので、容易に光触媒と吸着剤の混合液を得ることができる。   Examples of the method for supporting the photocatalyst and the adsorbent on the fiber fabric with the binder resin include an immersion method and a coating method. Since the urethane-based binder resin and the polyvinyl alcohol resin are water-soluble, a mixed liquid of a photocatalyst and an adsorbent can be easily obtained.

浸漬法は、繊維布帛をバインダー樹脂と光触媒と吸着剤の混合液に浸漬した後マングルで絞り、これを乾燥させることによって繊維布帛に光触媒と吸着剤を担持させるもので均一に担持することができる。   In the dipping method, the fiber fabric is immersed in a mixed solution of a binder resin, a photocatalyst, and an adsorbent, then squeezed with a mangle, and dried to support the photocatalyst and the adsorbent on the fiber fabric and can be uniformly supported. .

コーティング法は、繊維布帛にバインダー樹脂と光触媒と吸着剤の混合液をコーティングした後乾燥させることによって繊維布帛に光触媒と吸着剤を担持させるもので、生産性を顕著に向上でき、担持量も精度高く制御できる。前記コーティング方法は、特に限定されるものではないが、例えばグラビアロール加工、スプレー加工、ロールコーター加工、ジェットプリント加工、転写プリント加工、スクリーンプリント加工等を例示することができる。   In the coating method, the fiber fabric is coated with a mixed solution of a binder resin, a photocatalyst, and an adsorbent, and then dried to support the photocatalyst and the adsorbent on the fiber fabric. Highly controllable. The coating method is not particularly limited, and examples thereof include gravure roll processing, spray processing, roll coater processing, jet print processing, transfer print processing, and screen print processing.

また、コーティング法は、バインダー樹脂を繊維布帛上に皮膜状に層となって全面接着するよりも、網目状に接着させることが可能な加工方法として有用な加工である。これは、バインダー樹脂が層となって全面接着するのではなく、網目状に接着させることにより、繊維布帛を構成する糸が相対的に動きうることから、繊維布帛の柔軟性が確保されることと、繊維布帛に消臭、抗菌、防汚以外の機能性を付与する部分としての場所を残すことができ、難燃、撥水、撥油等の機能をさらに付与することができる。   Further, the coating method is useful as a processing method capable of adhering the binder resin in a mesh form rather than forming a film-like layer on the fiber fabric and adhering the entire surface. This is because the flexibility of the fiber fabric is ensured because the yarns constituting the fiber fabric can move relatively by adhering the binder resin as a layer instead of adhering to the whole surface in a mesh form. And the place as a part which provides functionalities other than deodorant, antibacterial, and antifouling can be left to a textile fabric, and functions, such as a flame retardance, water repellency, and oil repellency, can further be provided.

光触媒と吸着剤とバインダー樹脂の配合割合は特に限定しないが、光触媒の配合量が増えると、光触媒の繊維布帛に結合する確率が増え、繊維布帛を劣化させる傾向にあり、また、バインダー樹脂配合量が増えると、光触媒とバインダー樹脂と結合する割合が増加し、光触媒の表面を覆う確率が増え、消臭、抗菌、防汚の機能性が低下する傾向にあることから、光触媒と吸着剤とバインダー樹脂の3者の配合バランスを決めるのがよい。   The mixing ratio of the photocatalyst, the adsorbent and the binder resin is not particularly limited. However, if the amount of the photocatalyst increases, the probability of binding to the photocatalyst fiber fabric tends to deteriorate, and the fiber fabric tends to deteriorate. As the ratio increases, the rate of binding between the photocatalyst and the binder resin increases, the probability of covering the surface of the photocatalyst increases, and the deodorizing, antibacterial, and antifouling functionality tends to decrease, so the photocatalyst, adsorbent, and binder It is better to determine the balance of the three resin components.

次ぎに実施例により、本発明を具体的に説明する。なお実施例における各種消臭性能の測定は次のように行った。
(アンモニア消臭性能)
光触媒と吸着剤を担持した繊維布帛(10×10cm角)を内容量2リットルのテトラバッグ袋内に入れた後、袋内において濃度が100ppmとなるようにアンモニアガスを注入し、この袋を蛍光灯ランプ(東芝製10W FL10N)の直下30cmに設置し、2時間経過後にアンモニアガスの残存濃度を測定し、この測定値よりアンモニアガスを除去した総量を算出し、これよりアンモニアガスの除去率(%)を算出した。
Next, the present invention will be described specifically by way of examples. In addition, the measurement of various deodorizing performance in an Example was performed as follows.
(Ammonia deodorization performance)
A fiber fabric (10 × 10 cm square) carrying a photocatalyst and an adsorbent is placed in a tetra-bag bag having a content of 2 liters, and then ammonia gas is injected so that the concentration in the bag is 100 ppm. Installed 30 cm directly under the lamp (Toshiba 10W FL10N), measured the residual concentration of ammonia gas after 2 hours, calculated the total amount of ammonia gas removed from this measured value, from this the removal rate of ammonia gas ( %) Was calculated.

(硫化水素消臭性能)
アンモニアガスに代えて硫化水素ガスを用いて袋内において濃度が10ppmとなるように注入した以外は、上記アンモニア消臭性能測定と同様にして硫化水素ガスの除去率(%)を算出した。
(Hydrogen sulfide deodorization performance)
The removal rate (%) of hydrogen sulfide gas was calculated in the same manner as in the ammonia deodorization performance measurement except that hydrogen sulfide gas was used instead of ammonia gas and the concentration was 10 ppm in the bag.

(メチルメルカプタン消臭性能)
アンモニアガスに代えてメチルメルカプタンガスを用いて袋内において濃度が10ppmとなるように注入した以外は、上記アンモニア消臭性能測定と同様にしてメチルメルカプタンガスの除去率(%)を算出した。
(Methyl mercaptan deodorization performance)
The methyl mercaptan gas removal rate (%) was calculated in the same manner as in the ammonia deodorization performance measurement, except that methyl mercaptan gas was used instead of ammonia gas and the concentration was 10 ppm in the bag.

(酢酸消臭性能)
アンモニアガスに代えて酢酸ガスを用いて袋内において濃度が10ppmとなるように注入した以外は、上記アンモニア消臭性能測定と同様にして酢酸ガスの除去率(%)を算出した。
(Acetic acid deodorization performance)
The acetic acid gas removal rate (%) was calculated in the same manner as in the ammonia deodorizing performance measurement except that acetic acid gas was used instead of ammonia gas and the concentration was 10 ppm in the bag.

(アセトアルデヒド消臭性能)
アンモニアガスに代えてアセトアルデヒドガスを用いて袋内において濃度が20ppmとなるように注入した以外は、上記アンモニア消臭性能測定と同様にしてアセトアルデヒドの除去率(%)を算出した。
(Acetaldehyde deodorization performance)
The removal rate (%) of acetaldehyde was calculated in the same manner as in the ammonia deodorization performance measurement except that acetaldehyde gas was used instead of ammonia gas and the concentration was 20 ppm in the bag.

(ホルムアルデヒド消臭性能)
アンモニアガスに代えてホルムアルデヒドガスを用いて袋内において濃度が10ppmとなるように注入した以外は、上記アンモニア消臭性能測定と同様にしてホルムアルデヒドの除去率(%)を算出した。
(Formaldehyde deodorization performance)
The removal rate (%) of formaldehyde was calculated in the same manner as in the ammonia deodorization performance measurement, except that formaldehyde gas was used instead of ammonia gas and the concentration was 10 ppm in the bag.

(トルエン消臭性能)
アンモニアガスに代えてトルエンガスを用いて袋内において濃度が15ppmとなるように注入した以外は、上記アンモニア消臭性能測定と同様にしてトルエンの除去率(%)を算出した。
(Toluene deodorization performance)
The toluene removal rate (%) was calculated in the same manner as the ammonia deodorization performance measurement, except that toluene gas was used instead of ammonia gas and the concentration was 15 ppm in the bag.

そして、除去率が95%以上であるものを「◎」、除去率が90%以上95%未満であるものを「○」、除去率が85%以上90%未満であるものを「△」、除去率が85%未満であるものを「×」と評価し85%以上を合格とした。   The removal rate is 95% or more, “」 ”, the removal rate is 90% or more and less than 95%,“ ◯ ”, the removal rate is 85% or more and less than 90%,“ △ ”, Those having a removal rate of less than 85% were evaluated as “x”, and 85% or more was regarded as acceptable.

(風合測定)
官能評価とし、未加工品と比較して、硬さやザラツキ感に変化がほとんど無いものを「◎」、やや変化しているが実用上差し支えないものを「○」、未加工品よりも硬くザラツキ感も増しており実用上問題のあるものを「×」と評価した。
(Texture measurement)
The sensory evaluation is “◎” when there is almost no change in hardness and roughness compared to the unprocessed product, “○” when there is a slight change but practically acceptable, and it is harder and more rough than the unprocessed product. Those with a sense of practicality and problems in practical use were evaluated as “x”.

<実施例1>
粒径150nmの可視光応答型酸化チタン光触媒1重量部と、平均粒径5μmの疎水性ゼオライトを1重量部を78重量部の水に加えた後、攪拌機により攪拌を行ない、分散液を得た。この分散液にさらに20重量部のウレタン系バインダー樹脂(光透過率が波長300〜500nmにおいて50〜80%、固形分50%)を加え、良く攪拌して均一な分散液(処理液)を得た。この処理液に、ポリエステル製のスパンボンド不織布(目付40g/m)を浸漬した後、取り出してマングルで絞って乾燥させて、消臭繊維布帛を得た。可視光応答型酸化チタン光触媒のスパンボンド不織布への付着量は、消臭繊維布帛の1.5重量%、疎水性ゼオライトの付着量は1.5重量%であった。こうして得られた消臭繊維布帛を、上記の各種ガスの消臭試験をおこない除去率と風合の評価を表1に記載した。また、分散液の組成を表2に記載した。
<Example 1>
After adding 1 part by weight of a visible light responsive titanium oxide photocatalyst having a particle diameter of 150 nm and 1 part by weight of hydrophobic zeolite having an average particle diameter of 5 μm to 78 parts by weight of water, stirring was performed with a stirrer to obtain a dispersion. . Further, 20 parts by weight of a urethane binder resin (light transmittance is 50 to 80% at a wavelength of 300 to 500 nm, solid content 50%) is added to this dispersion and stirred well to obtain a uniform dispersion (treatment liquid). It was. A polyester spunbonded nonwoven fabric (weight per unit area: 40 g / m 2 ) was immersed in this treatment liquid, and then taken out, squeezed with a mangle and dried to obtain a deodorized fiber fabric. The attached amount of the visible light responsive titanium oxide photocatalyst to the spunbonded nonwoven fabric was 1.5% by weight of the deodorized fiber fabric, and the attached amount of the hydrophobic zeolite was 1.5% by weight. The deodorant fiber fabric thus obtained was subjected to the above-mentioned deodorization tests for various gases, and the removal rate and feel evaluation are shown in Table 1. The composition of the dispersion is shown in Table 2.

<実施例2>
次に、実施例1において、可視光応答型酸化チタン光触媒2重量部と、平均粒径5μmの疎水性ゼオライトを1重量部を77重量部の水に加えた以外は実施例1と同様にして、消臭繊維布帛を得た。可視光応答型酸化チタン光触媒のスパンボンド不織布への付着量は3.0重量%、疎水性ゼオライトの付着量は1.5重量%であった。
<Example 2>
Next, the same procedure as in Example 1 was performed except that 2 parts by weight of the visible light responsive titanium oxide photocatalyst and 1 part by weight of hydrophobic zeolite having an average particle diameter of 5 μm were added to 77 parts by weight of water. A deodorant fiber fabric was obtained. The adhesion amount of the visible light responsive titanium oxide photocatalyst to the spunbonded nonwoven fabric was 3.0% by weight, and the adhesion amount of the hydrophobic zeolite was 1.5% by weight.

<実施例3>
次に、実施例1において、粒径150nmの可視光応答型酸化チタン光触媒を粒径2μmのアパタイト被覆の可視光応答型酸化チタン光触媒とした以外は実施例1と同様にして、消臭繊維布帛を得た。可視光応答型酸化チタン光触媒のスパンボンド不織布への付着量は1.5重量%、疎水性ゼオライトの付着量は1.5重量%であった。
<Example 3>
Next, in Example 1, the deodorant fiber cloth was the same as Example 1 except that the visible light responsive titanium oxide photocatalyst having a particle size of 150 nm was changed to an apatite-coated visible light responsive titanium oxide photocatalyst having a particle size of 2 μm. Got. The adhesion amount of the visible light responsive titanium oxide photocatalyst to the spunbonded nonwoven fabric was 1.5% by weight, and the adhesion amount of the hydrophobic zeolite was 1.5% by weight.

<実施例4>
次に、実施例1において、吸着剤として粒径20μmの椰子柄活性炭を1重量部とした以外は実施例1と同様にして、消臭繊維布帛を得た。可視光応答型酸化チタン光触媒のスパンボンド不織布への付着量は1.5重量%、椰子柄活性炭の付着量は1.5重量%であった。
<Example 4>
Next, in Example 1, a deodorized fiber fabric was obtained in the same manner as in Example 1 except that 1 part by weight of cocoon pattern activated carbon having a particle diameter of 20 μm was used as the adsorbent. The adhesion amount of the visible light responsive titanium oxide photocatalyst to the spunbonded nonwoven fabric was 1.5% by weight, and the adhesion amount of the insulator pattern activated carbon was 1.5% by weight.

<実施例5>
次に、実施例1において、可視光応答型光触媒として、粒径100nmの可視光応答型酸化亜鉛光触媒を10重量部と、平均粒径5μmの疎水性ゼオライトを5重量部を65重量部の水に加えた以外は実施例1と同様にして、消臭繊維布帛を得た。可視光応答型酸化亜鉛光触媒のスパンボンド不織布への付着量は15重量%、疎水性ゼオライトの付着量は6.5重量%であった。
<Example 5>
Next, in Example 1, as a visible light responsive photocatalyst, 10 parts by weight of a visible light responsive zinc oxide photocatalyst having a particle diameter of 100 nm and 5 parts by weight of hydrophobic zeolite having an average particle diameter of 5 μm are added to 65 parts by weight of water. A deodorant fiber fabric was obtained in the same manner as in Example 1 except that the above was added. The adhesion amount of the visible light responsive zinc oxide photocatalyst to the spunbonded nonwoven fabric was 15% by weight, and the adhesion amount of the hydrophobic zeolite was 6.5% by weight.

<実施例6>
実施例1において、ウレタン系バインダー樹脂(固形分50%)をポリビニルアルコール樹脂(光透過率が波長300〜500nmにおいて80〜85%、固形分50%) とした以外は実施例1と同様にして、消臭繊維布帛を得た。可視光応答型酸化チタン光触媒のスパンボンド不織布への付着量は1.5重量%、疎水性ゼオライトの付着量は1.5重量%であった。
<Example 6>
In Example 1, except that the urethane-based binder resin (solid content 50%) is a polyvinyl alcohol resin (light transmittance is 80 to 85% at a wavelength of 300 to 500 nm, solid content 50%), the same as in Example 1. A deodorant fiber fabric was obtained. The adhesion amount of the visible light responsive titanium oxide photocatalyst to the spunbonded nonwoven fabric was 1.5% by weight, and the adhesion amount of the hydrophobic zeolite was 1.5% by weight.

<比較例1>
実施例1において、ウレタン系バインダー樹脂(光透過率が波長300〜500nmにおいて50〜80%、固形分50%)をアクリルシリコン系バインダー樹脂(光透過率が波長300〜500nmにおいて0〜20%、固形分50%)とした以外は実施例1と同様にして、消臭繊維布帛を得た。可視光応答型酸化チタン光触媒のスパンボンド不織布への付着量は1.5重量%、疎水性ゼオライトの付着量は1.5重量%であった。
<Comparative Example 1>
In Example 1, urethane-based binder resin (light transmittance is 50 to 80% at a wavelength of 300 to 500 nm, solid content 50%) and acrylic silicon-based binder resin (light transmittance is 0 to 20% at a wavelength of 300 to 500 nm, A deodorized fiber fabric was obtained in the same manner as in Example 1 except that the solid content was 50%. The adhesion amount of the visible light responsive titanium oxide photocatalyst to the spunbonded nonwoven fabric was 1.5% by weight, and the adhesion amount of the hydrophobic zeolite was 1.5% by weight.

<比較例2>
実施例1において、ウレタン系バインダー樹脂(光透過率が波長300〜500nmにおいて50〜80%、固形分50%)をエチレン酢酸ビニル系バインダー樹脂(光透過率が波長300〜500nmにおいて10〜58%、固形分50%)とした以外は実施例1と同様にして、消臭繊維布帛を得た。可視光応答型酸化チタン光触媒の付着量は1.5重量%、疎水性ゼオライトの付着量は1.5重量%であった。
<Comparative example 2>
In Example 1, urethane-based binder resin (light transmittance of 50 to 80% at a wavelength of 300 to 500 nm, solid content of 50%) was changed to ethylene vinyl acetate binder resin (light transmittance of 10 to 58% at a wavelength of 300 to 500 nm). , Deodorized fiber fabric was obtained in the same manner as in Example 1 except that the solid content was changed to 50%. The adhesion amount of the visible light responsive titanium oxide photocatalyst was 1.5% by weight, and the adhesion amount of the hydrophobic zeolite was 1.5% by weight.

<比較例3>
実施例1において、平均粒径5μmの疎水性ゼオライトを1重量部をゼロとし、水79重量部とした以外は実施例1と同様にして、消臭繊維布帛を得た。可視光応答型酸化チタン光触媒の付着量は1.5重量%、疎水性ゼオライトの付着量は0であった。
<Comparative Example 3>
A deodorized fiber fabric was obtained in the same manner as in Example 1 except that 1 part by weight of hydrophobic zeolite having an average particle size of 5 μm was changed to zero and 79 parts by weight of water. The adhesion amount of the visible light responsive titanium oxide photocatalyst was 1.5% by weight, and the adhesion amount of the hydrophobic zeolite was 0.

<比較例4>
実施例1において、150nmの可視光応答型酸化チタン光触媒をゼロとし、水79重量部とした以外は実施例1と同様にして、消臭繊維布帛を得た。可視光応答型酸化チタン光触媒の付着量は0、疎水性ゼオライトの付着量は1.5重量%であった。
<Comparative example 4>
In Example 1, a deodorized fiber fabric was obtained in the same manner as in Example 1 except that the visible light responsive titanium oxide photocatalyst of 150 nm was zero and water was 79 parts by weight. The adhesion amount of the visible light responsive titanium oxide photocatalyst was 0, and the adhesion amount of the hydrophobic zeolite was 1.5% by weight.

<比較例5>
実施例1において、平均粒径150nmの可視光応答型酸化チタン光触媒を粒径5μmとした以外は実施例1と同様にして、消臭繊維布帛を得た。可視光応答型酸化チタン光触媒と疎水性ゼオライトのスパンボンド不織布への付着量はそれぞれ1.5重量%であった。
<Comparative Example 5>
A deodorized fiber fabric was obtained in the same manner as in Example 1, except that the visible light responsive titanium oxide photocatalyst having an average particle size of 150 nm was changed to a particle size of 5 μm. The adhesion amount of the visible light responsive titanium oxide photocatalyst and the hydrophobic zeolite to the spunbonded nonwoven fabric was 1.5% by weight, respectively.

<比較例6>
実施例1において、平均粒径5μmの疎水性ゼオライトを平均粒径50μmとした以外は実施例1と同様にして、消臭繊維布帛を得た。疎水性ゼオライトの付着量は1.5重量%、可視光応答型酸化チタン光触媒の付着量は1.5重量%であった。
<Comparative Example 6>
In Example 1, a deodorized fiber fabric was obtained in the same manner as in Example 1 except that the hydrophobic zeolite having an average particle size of 5 μm was changed to an average particle size of 50 μm. The adhesion amount of the hydrophobic zeolite was 1.5% by weight, and the adhesion amount of the visible light responsive titanium oxide photocatalyst was 1.5% by weight.

Figure 2010265561
Figure 2010265561

Figure 2010265561
Figure 2010265561

表1からわかるように、本発明の消臭性能や布帛の風合等は満足のいくものであったが、光透過率が波長300〜500nmにおいて50%以上のバインダー樹脂を使用していない比較例1、2では、光触媒の能力を十分に発揮できなかった。光触媒や吸着剤を担持しない比較例3、4では消臭性能は満足されなかった。また、光触媒や吸着剤の粒径の大きい比較例5、6も風合が硬く、満足のいくものではなかった。   As can be seen from Table 1, the deodorant performance of the present invention and the texture of the fabric were satisfactory, but the comparison was not using a binder resin having a light transmittance of 50% or more at a wavelength of 300 to 500 nm. In Examples 1 and 2, the ability of the photocatalyst could not be fully exhibited. In Comparative Examples 3 and 4 that do not carry a photocatalyst or an adsorbent, the deodorizing performance was not satisfied. Further, Comparative Examples 5 and 6 having large particle diameters of the photocatalyst and the adsorbent were not satisfactory because the texture was hard.

本発明の技術は、酸化力の強い光触媒を繊維と結合させ、吸着剤で二次汚染を防ぎながら、最終的に悪臭やVOCを炭酸ガスと水に分解するもので、利用される分野は広く、衣料や、カーテン、カーペット、壁紙等のインテリア用品、車両等のシート地、天井材等に広く利用される。   The technique of the present invention combines a photocatalyst with strong oxidizing power with fibers and finally decomposes malodor and VOC into carbon dioxide gas and water while preventing secondary contamination with an adsorbent. It is widely used for clothing, interior goods such as curtains, carpets, and wallpaper, seats for vehicles, and ceiling materials.

バインダー樹脂の各波長における光透過率を示す図である。It is a figure which shows the light transmittance in each wavelength of binder resin.

Claims (5)

光触媒と吸着剤が、バインダー樹脂により固着されている繊維布帛であって、前記バインダー樹脂の光透過率が波長300〜500nmにおいて50%以上あることを特徴とする、消臭およびVOC除去機能を有する繊維布帛。   A fiber fabric in which a photocatalyst and an adsorbent are fixed by a binder resin, wherein the binder resin has a light transmittance of 50% or more at a wavelength of 300 to 500 nm, and has a deodorizing and VOC removing function Fiber fabric. 前記光触媒の液体中の見かけ平均粒径が80nm〜3μmであって、前記吸着剤の平均粒径が20nm〜30μmであることを特徴とする請求項1に記載の消臭およびVOC除去機能を有する繊維布帛。   2. The deodorizing and VOC removing function according to claim 1, wherein an apparent average particle size in the liquid of the photocatalyst is 80 nm to 3 μm, and an average particle size of the adsorbent is 20 nm to 30 μm. Fiber fabric. 前記バインダー樹脂がウレタン樹脂またはポリビニルアルコール樹脂であることを特徴とする請求項1または2に記載の消臭およびVOC除去機能を有する繊維布帛。   The fiber fabric having a deodorizing and VOC removing function according to claim 1 or 2, wherein the binder resin is a urethane resin or a polyvinyl alcohol resin. 前記光触媒がアパタイト被覆の可視光応答型光触媒であって、前記吸着剤が疎水性ゼオライトであることを特徴とする請求項1〜3のいずれかに記載の消臭およびVOC除去機能を有する繊維布帛。   The fiber fabric having a deodorizing and VOC removing function according to any one of claims 1 to 3, wherein the photocatalyst is a visible light responsive photocatalyst coated with apatite, and the adsorbent is a hydrophobic zeolite. . 前記光触媒の繊維布帛への付着量が、繊維布帛100重量部に対し、0.5〜25重量%、前記吸着剤の繊維布帛への付着量が、繊維布帛100重量部に対し、0.1〜15重量%、であることを特徴とする請求項1〜4のいずれかに記載の消臭およびVOC除去機能を有する繊維布帛。   The amount of the photocatalyst attached to the fiber fabric is 0.5 to 25% by weight with respect to 100 parts by weight of the fiber fabric, and the amount of the adsorbent attached to the fiber fabric is 0.1 with respect to 100 parts by weight of the fiber fabric. The fiber fabric having a deodorizing and VOC removing function according to any one of claims 1 to 4, wherein the fiber fabric has a deodorizing function and a VOC removing function.
JP2009117755A 2009-05-14 2009-05-14 Fiber fabric having deodorization and voc removing function Pending JP2010265561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009117755A JP2010265561A (en) 2009-05-14 2009-05-14 Fiber fabric having deodorization and voc removing function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009117755A JP2010265561A (en) 2009-05-14 2009-05-14 Fiber fabric having deodorization and voc removing function

Publications (1)

Publication Number Publication Date
JP2010265561A true JP2010265561A (en) 2010-11-25

Family

ID=43362768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009117755A Pending JP2010265561A (en) 2009-05-14 2009-05-14 Fiber fabric having deodorization and voc removing function

Country Status (1)

Country Link
JP (1) JP2010265561A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013144856A (en) * 2012-01-13 2013-07-25 Seiren Co Ltd Fabric for interior material of vehicle
JP2015508342A (en) * 2011-12-22 2015-03-19 テーザ・ソシエタス・ヨーロピア Liner to protect the adhesive
CN104652123A (en) * 2013-11-21 2015-05-27 现代自动车株式会社 Method for removing odor of artificial leather and artificial leather manufactured using the same
WO2023222461A1 (en) * 2022-05-16 2023-11-23 Benecke-Kaliko Ag Artificial leather and manufacturing method therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006046443A1 (en) * 2004-10-27 2006-05-04 Suminoe Textile Co., Ltd. Fiber fabric having voc removing function

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006046443A1 (en) * 2004-10-27 2006-05-04 Suminoe Textile Co., Ltd. Fiber fabric having voc removing function

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015508342A (en) * 2011-12-22 2015-03-19 テーザ・ソシエタス・ヨーロピア Liner to protect the adhesive
JP2013144856A (en) * 2012-01-13 2013-07-25 Seiren Co Ltd Fabric for interior material of vehicle
CN104652123A (en) * 2013-11-21 2015-05-27 现代自动车株式会社 Method for removing odor of artificial leather and artificial leather manufactured using the same
CN104652123B (en) * 2013-11-21 2018-08-31 现代自动车株式会社 The artificial leather for removing the method for artificial leather smell and being manufactured using this method
WO2023222461A1 (en) * 2022-05-16 2023-11-23 Benecke-Kaliko Ag Artificial leather and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JPWO2006046443A1 (en) Fiber cloth with VOC removal function
JP6346947B2 (en) Filter element for decomposing pollutants, system for decomposing pollutants and method of using the system
JP5102034B2 (en) Tungsten oxide photocatalyst, method for producing the same, and fiber fabric having deodorizing and antifouling functions
JP2008002007A (en) Nanoparticle support material and method for producing the same
WO2001055498A1 (en) Fiber structure having deodorizing or antibacterial property
JP2007262621A (en) Fiber having photocatalytic ability, cloth using the fiber, and cloth product using the cloth
EP3302796A1 (en) Photocatalyst coating
JP2006082071A (en) Photocatalytic composition, building material for interior finish, coating material, synthetic resin molded body, method for utilizing photocatalyst and method for decomposing harmful substance
JP2013212238A (en) Odor-reducing mesh sheet
JP2010265561A (en) Fiber fabric having deodorization and voc removing function
JP5693933B2 (en) Antifouling deodorant wallpaper
JP4810678B2 (en) Method for producing photocatalyst, method for using photocatalyst, and method for decomposing harmful substances
JP4428510B2 (en) A fiber fabric carrying a photocatalyst and having a deodorizing function.
JP2011069114A (en) Interior building material
WO2004009235A1 (en) Photocatalyst-containing base material
JP2005060904A (en) Fibrous structural material adsorbing and decomposing harmful chemical substance
KR100426213B1 (en) A solution for coating of leather and coated leather with multifunctional property
JP5083295B2 (en) Photocatalyst carrier and method for producing photocatalyst carrier
JP2000328439A (en) Polyester fiber cloth
KR20140092538A (en) The wall paper with the air cleaning fuction comprising porous clay minerals coated by photocatalyst
JP2006116449A (en) Photocatalyst fiber and porous photocatalyst fiber derived from it
JP3141913U (en) Pollutant detoxification fabric
JP2005097773A (en) Fiber fabric supporting photocatalyst and having deodorizing, antimicrobial and antifouling function
JP2007321263A (en) Fibrous cloth carrying photocatalyst and having deodorizing function, and method for producing the same
JP2005198684A (en) Deodorant carpet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130611