JP4646310B2 - Calcium silicate molded body and method for producing the same - Google Patents

Calcium silicate molded body and method for producing the same Download PDF

Info

Publication number
JP4646310B2
JP4646310B2 JP2005329447A JP2005329447A JP4646310B2 JP 4646310 B2 JP4646310 B2 JP 4646310B2 JP 2005329447 A JP2005329447 A JP 2005329447A JP 2005329447 A JP2005329447 A JP 2005329447A JP 4646310 B2 JP4646310 B2 JP 4646310B2
Authority
JP
Japan
Prior art keywords
raw material
calcium silicate
sludge ash
molded body
silicate molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005329447A
Other languages
Japanese (ja)
Other versions
JP2007137685A (en
Inventor
直哉 澤口
昌平 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP2005329447A priority Critical patent/JP4646310B2/en
Publication of JP2007137685A publication Critical patent/JP2007137685A/en
Application granted granted Critical
Publication of JP4646310B2 publication Critical patent/JP4646310B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、原料に廃材を含む珪酸カルシウム成形体及びその製造方法の改良に関する。   TECHNICAL FIELD The present invention relates to a calcium silicate molded body containing a waste material as a raw material and an improvement of the manufacturing method thereof.

建築材料の中でも耐火性、防火性、不燃性等、火災に対する抵抗性が必要な場所に使われるものの一つに珪酸カルシウム成形体がある。珪酸カルシウム成形体は、壁材、屋根材、天井材、床材等の形で使われるほか、鉄骨建築における鉄骨の耐火性を確保するための、耐火被覆材としても有用である。   Among building materials, one of the materials used in places where fire resistance is required, such as fire resistance, fire resistance, and nonflammability, is a calcium silicate molded body. In addition to being used in the form of wall materials, roofing materials, ceiling materials, flooring materials, etc., the calcium silicate molded body is useful as a fireproof covering material for securing the fire resistance of steel frames in steel construction.

近年、このような珪酸カルシウム成形体の原料に、製紙スラッジ等の産業廃棄物を使用し、コストダウンを図ることが提案されている。例えば、下記特許文献1には、製紙スラッジを使用した構造用面材が開示されている。
特開2003−3592号公報
In recent years, it has been proposed to reduce costs by using industrial waste such as papermaking sludge as a raw material for such a calcium silicate molded body. For example, Patent Document 1 below discloses a structural face material using papermaking sludge.
Japanese Patent Laid-Open No. 2003-3592

しかし、上記従来の技術においては、原料中の産業廃棄物の割合を多くした場合、特に未焼成の製紙スラッジ(以下、生PSという)を使用した場合には、製造後の珪酸カルシウム成形体の曲げ強度が低下するという問題があった。これは、上記生PSが水分、有機物を含んだ不揃いな塊状であり、他の原料とともに水と混合し、混合スラリーとして脱水成形する場合に、混合スラリー中に生PSが均一に混合され難いので、十分な曲げ強度が得られないためである。   However, in the above conventional technique, when the proportion of industrial waste in the raw material is increased, particularly when unfired paper sludge (hereinafter referred to as raw PS) is used, There was a problem that the bending strength was lowered. This is because the raw PS is an irregular lump containing moisture and organic matter, and when mixed with other raw materials with water and dehydrated as a mixed slurry, the raw PS is difficult to be uniformly mixed in the mixed slurry. This is because sufficient bending strength cannot be obtained.

本発明は、上記従来の課題に鑑みなされたものであり、その目的は、原料中の産業廃棄物の割合を多くした場合であっても、高い曲げ強度を維持できる珪酸カルシウム成形体及びその製造方法を提供することである。   The present invention has been made in view of the above-described conventional problems, and the purpose thereof is a calcium silicate molded body capable of maintaining high bending strength even when the proportion of industrial waste in the raw material is increased, and the production thereof. Is to provide a method.

この発明は、以下に記載するような解決手段により前記課題を解決する。   The present invention solves the above-mentioned problems by the solving means described below.

請求項1の発明は、珪酸質原料、石灰質原料、製紙スラッジ灰及び補強繊維を原料とし、前記原料中のアルミニウム(Al)成分と珪素(Si)成分とのモル比が、Al/(Al+Si)=7〜15%となるように配合し製造されたものであることを特徴とする珪酸カルシウム成形体である。   The invention of claim 1 is based on siliceous raw material, calcareous raw material, papermaking sludge ash and reinforcing fiber, and the molar ratio of aluminum (Al) component to silicon (Si) component in the raw material is Al / (Al + Si). = Calcium silicate molded body characterized by being blended and manufactured so as to be 7 to 15%.

請求項2の発明は、前記原料中に製紙スラッジ灰が5〜13重量%含まれることを特徴とする珪酸カルシウム成形体である。   The invention according to claim 2 is the calcium silicate molded body characterized in that 5 to 13% by weight of papermaking sludge ash is contained in the raw material.

請求項3の発明は、前記原料中に排脱石膏を含むとともに、前記排脱石膏と製紙スラッジ灰の合計量が50%以上であることを特徴とする珪酸カルシウム成形体である。   The invention according to claim 3 is the calcium silicate molded product, wherein the raw material contains waste decalcification gypsum, and the total amount of the waste decalcification gypsum and papermaking sludge ash is 50% or more.

請求項4の発明は、前記製紙スラッジ灰が20〜100メッシュのふるいにより分級されたものであることを特徴とする珪酸カルシウム成形体である。   The invention according to claim 4 is the calcium silicate molded body characterized in that the papermaking sludge ash is classified by a 20 to 100 mesh sieve.

請求項5の発明は、珪酸質原料、石灰質原料、製紙スラッジ灰及び補強繊維を含む珪酸カルシウム成形体の原料と水とを混合して脱水成形し、得られた成形物を水熱反応させることにより得られる珪酸カルシウム成形体の製造方法であって、前記原料中のAl成分とSi成分とのモル比がAl/(Al+Si)=7〜15%となるように配合し製造することを特徴とする珪酸カルシウム成形体の製造方法である。   The invention of claim 5 comprises dehydration molding by mixing a raw material of a calcium silicate molded body containing siliceous raw material, calcareous raw material, paper sludge ash and reinforcing fibers and water, and subjecting the obtained molded product to a hydrothermal reaction. Is a method for producing a calcium silicate molded body obtained by mixing and producing such that the molar ratio of the Al component and the Si component in the raw material is Al / (Al + Si) = 7 to 15%. It is a manufacturing method of the calcium-silicate molded object to do.

本発明によれば、前記原料中に産業廃棄物となる製紙スラッジ灰及び排脱石膏を50%以上含んだ場合であっても、高い曲げ強度を維持した珪酸カルシウム成形体を提供することができる。   According to the present invention, it is possible to provide a calcium silicate molded body that maintains a high bending strength even when the raw material contains 50% or more of papermaking sludge ash and waste gypsum as industrial waste. .

以下、本発明を実施するための最良の形態(以下、実施形態という)について説明する。なお、この発明は、ここで説明する実施形態に限定されるものではない。   Hereinafter, the best mode for carrying out the present invention (hereinafter referred to as an embodiment) will be described. Note that the present invention is not limited to the embodiments described herein.

本発明者らは、鋭意研究を進めた結果、珪酸質原料、石灰質原料、製紙スラッジ灰及び補強繊維を含む原料と水とを混合した混合スラリーを脱水成形し、得られた成形物を水熱反応により珪酸カルシウム成形体とする際に、上記原料中の産業廃棄物の割合を多くした場合、例えば排脱石膏と製紙スラッジ灰を50%以上含む場合であっても、上記原料中のアルミニウム(Al)成分と珪素(Si)成分とのモル比を、Al/(Al+Si)=7〜15%の関係に調合することにより、製造コストが低く、高い曲げ強度を有する珪酸カルシウム成形体が実現されることを見出した。   As a result of diligent research, the present inventors have performed dehydration molding of a mixed slurry obtained by mixing a siliceous raw material, a calcareous raw material, a paper sludge ash, and a raw material containing reinforcing fibers and water, and the resulting molded product is hydrothermally produced. When forming a calcium silicate molded body by reaction, if the proportion of industrial waste in the raw material is increased, for example, even if it contains 50% or more of waste gypsum and papermaking sludge ash, aluminum ( By formulating the molar ratio of the Al component to the silicon (Si) component in a relationship of Al / (Al + Si) = 7 to 15%, a calcium silicate molded body having a low bending cost and high bending strength is realized. I found out.

上記原料に含まれる製紙スラッジ灰は、産業廃棄物である製紙スラッジを700〜950℃で加熱処理することにより得られる。なお、本実施形態では、表1に示される組成の製紙スラッジ灰が使用される。また、製紙スラッジ灰は、20〜100メッシュのふるいによって分級されたものを使用することにより、製紙スラッジ灰全体の70%以上を利用することが可能となる。   Papermaking sludge ash contained in the raw material is obtained by heat-treating papermaking sludge, which is an industrial waste, at 700 to 950 ° C. In this embodiment, papermaking sludge ash having the composition shown in Table 1 is used. Further, by using the paper sludge ash classified by a 20 to 100 mesh screen, it becomes possible to use 70% or more of the total paper sludge ash.

20メッシュより大きな目のサイズのふるいを使用した場合には、珪酸カルシウム成形体の表面品質の低下をまねき、100メッシュより細かな目のふるいにより選別した場合には、回収される製紙スラッジ灰の割合(スラッジ灰利用率)が70%以下に低下してしまうため、共に好ましくない。   When a sieve having an eye size larger than 20 mesh is used, the surface quality of the calcium silicate molded product is deteriorated. When the screen is screened with a finer mesh screen than 100 mesh, the recovered paper sludge ash is collected. Since the ratio (sludge ash utilization ratio) decreases to 70% or less, both are not preferable.

さらに、製紙スラッジ灰を使用することにより、生PS中に含まれる水分と有機分が取除かれ、製造される珪酸カルシウム成形体の曲げ強度を向上させるとともに、黒色粒子等による品質低下を抑えることができる。   Furthermore, by using papermaking sludge ash, moisture and organic components contained in raw PS are removed, improving the bending strength of the manufactured calcium silicate molded body and suppressing deterioration in quality due to black particles, etc. Can do.

Figure 0004646310
Figure 0004646310

また、上記排脱石膏は、脱硫装置の副産物として発生する産業廃棄物である。   Moreover, the said waste dehydration gypsum is industrial waste generated as a by-product of a desulfurization apparatus.

本発明により製造される珪酸カルシウム成形体には、産業廃棄物である製紙スラッジ灰と排脱石膏が合計で50%以上含まれていてよいため、製造コストを低くすることができるとともに、製造された珪酸カルシウム成形体は、資源有効利用促進法に基づくエコマーク認定基準を満たすことが可能となる。   The calcium silicate molded body produced according to the present invention may contain a total of 50% or more of papermaking sludge ash and waste gypsum, which are industrial wastes. The calcium silicate molded product can meet the Eco Mark certification standard based on the Law for Promotion of Effective Utilization of Resources.

以下、本発明の具体例を実施例として説明する。なお、本発明は、本実施例に限定されるものではない。   Hereinafter, specific examples of the present invention will be described as examples. In addition, this invention is not limited to a present Example.

実施例及び比較例として、表2記載の原料配合で、本発明の方法により珪酸カルシウム成形体を製造した。この場合、実施例2〜4に示す配合により製造された珪酸カルシウム成形体は、排脱石膏の配合量と製紙スラッジ灰の配合量の合計量を50重量%に固定し、それぞれの配合量を変えて原料中のAl/(Al+Si)の値を変化させて製造したものである。このときの製紙スラッジ灰の配合量は、6〜14重量%とした。また、実施例1は、Al/(Al+Si)の値を10%とし、産業廃棄物として製紙スラッジ灰のみを混合して製造したものである。それぞれ製造された珪酸カルシウム成形体については、密度、曲げ強度及び吸水寸法変化率を測定した。   As examples and comparative examples, calcium silicate molded bodies were produced by the method of the present invention using the raw material formulations shown in Table 2. In this case, the calcium silicate molded body produced by the blending shown in Examples 2 to 4 is fixed to 50% by weight of the total blending amount of waste dehydrating gypsum and the blending amount of papermaking sludge ash. It is manufactured by changing the value of Al / (Al + Si) in the raw material. The blending amount of the papermaking sludge ash at this time was 6 to 14% by weight. In Example 1, the value of Al / (Al + Si) was set to 10%, and only papermaking sludge ash was mixed as industrial waste. About each manufactured calcium-silicate molded object, the density, the bending strength, and the water absorption dimensional change rate were measured.

また、表2に示す比較例1は、実施例3の配合において、原料中の製紙スラッジ灰の替わりに生PS(未焼成製紙スラッジ)を用いた珪酸カルシウム成形体を示したものであり、このときのAl/(Al+Si)比は10%であった。また、生PSに含まれる有機分は45重量%であった。比較例2は、原料中に産業廃棄物として製紙スラッジ灰は配合せず、排脱石膏の使用割合も低い従来の珪酸カルシウム成形体を示したものである。比較例3は、Al/(Al+Si)の値を4%としたものである。   Comparative Example 1 shown in Table 2 shows a calcium silicate molded body using raw PS (unfired papermaking sludge) instead of papermaking sludge ash in the raw material in the formulation of Example 3, The Al / (Al + Si) ratio at that time was 10%. The organic content in the raw PS was 45% by weight. The comparative example 2 shows the conventional calcium silicate molded object which does not mix | blend papermaking sludge ash as an industrial waste in a raw material, and the usage-amount of a waste_exfoliation gypsum is also low. In Comparative Example 3, the value of Al / (Al + Si) is 4%.

Figure 0004646310
Figure 0004646310

なお、上記表2に示される原料のうち、珪石及び珪藻土が本発明の珪酸質原料の例であり、消石灰及びセメントが本発明の石灰質原料の例であり、パルプが本発明の補強繊維の例である。   Of the raw materials shown in Table 2, silica and diatomaceous earth are examples of the siliceous raw material of the present invention, slaked lime and cement are examples of the calcareous raw material of the present invention, and pulp is an example of the reinforcing fiber of the present invention. It is.

表3は、表2に示した実施例3及び比較例2と並んで、新たに実施例5を示している。ここで、実施例3は製紙スラッジ灰を60メッシュサイズのふるいにかけたものであり、実施例5は30メッシュのふるいにかけたものである。尚、比較例2は、表2で述べた通り、原料中に産業廃棄物として製紙スラッジ灰は配合されず、排脱石膏の使用割合も低い従来の珪酸カルシウム成形体である。また、表2と同様に、各原料配合により製造した珪酸カルシウム成形体について密度、曲げ強度及び吸水寸法変化率を測定した結果が示されている。   Table 3 newly shows Example 5 along with Example 3 and Comparative Example 2 shown in Table 2. Here, Example 3 is obtained by applying papermaking sludge ash to a 60-mesh sieve, and Example 5 is applied to a 30-mesh sieve. In addition, as described in Table 2, Comparative Example 2 is a conventional calcium silicate molded body in which papermaking sludge ash is not blended as an industrial waste in the raw material, and the ratio of use of waste gypsum is low. Moreover, the result of having measured the density, the bending strength, and the water absorption dimensional change rate about the calcium-silicate molded object manufactured by each raw material mixing | blending similarly to Table 2 is shown.

Figure 0004646310
Figure 0004646310

表4は、それぞれ30メッシュと60メッシュサイズのふるいにより分級された製紙スラッジ灰の粒度分布と、それぞれのふるいにより分級された製紙スラッジ灰の割合(スラッジ灰利用率)を示している。   Table 4 shows the particle size distribution of papermaking sludge ash classified by 30 mesh and 60 mesh size sieves, and the ratio of papermaking sludge ash classified by each sieve (sludge ash utilization rate).

表5は、30メッシュ及び60メッシュサイズのふるいのサイズを示している。   Table 5 shows the screen sizes of 30 mesh and 60 mesh sizes.

Figure 0004646310
Figure 0004646310

Figure 0004646310
Figure 0004646310

表2及び表3に示される実施例及び比較例の珪酸カルシウム成形体は、それぞれの原料に水を加えて混合スラリーとするときに、スラリー濃度が5〜7%となるように調合され、その後この混合スラリーを脱水成形して、厚さ10mmのグリーンシートとし、さらに、上記グリーンシートをオートクレーブに入れ、温度180℃で11.5時間水熱反応させ、その後105℃の熱風で乾燥して製造されたものである。   The calcium silicate molded bodies of Examples and Comparative Examples shown in Tables 2 and 3 are prepared so that the slurry concentration becomes 5 to 7% when water is added to each raw material to form a mixed slurry, and then This mixed slurry is dehydrated and formed into a green sheet having a thickness of 10 mm. Further, the green sheet is placed in an autoclave, hydrothermally reacted at a temperature of 180 ° C. for 11.5 hours, and then dried by hot air at 105 ° C. It has been done.

このとき製造された珪酸カルシウム成形体は、後述する密度、曲げ強度及び吸水寸法変化率の測定を行うために、実施例及び比較例とも、サンプルを4個ずつ製造した。   In order to measure the density, bending strength, and water absorption dimensional change rate described later, the calcium silicate molded body produced at this time produced four samples for each of the examples and comparative examples.

上述のようにして得られた各サンプルについて、密度は、JISA5430(珪酸カルシウム板タイプ2)6.3に準拠し、曲げ強度は、同6.4に準拠し、吸水寸法変化率は、同6.7に準拠し測定された。   About each sample obtained as mentioned above, a density is based on JISA5430 (calcium silicate board type 2) 6.3, a bending strength is based on 6.4, and a water absorption dimensional change rate is the same as 6th. Measured in accordance with .7.

上記各測定結果が、表2、表3及び図1(a)、(b)、(c)に示される。なお、図1(a)は密度を示すデータであり、図1(b)は曲げ強度を示すデータであり、図1(c)は吸水寸法変化率を示すデータである。   Each said measurement result is shown by Table 2, Table 3, and Fig.1 (a), (b), (c). 1A is data showing density, FIG. 1B is data showing bending strength, and FIG. 1C is data showing the rate of change in water absorption dimension.

表2の実施例2〜4及び図1(b)に示されるように、本実施例による珪酸カルシウム成形体は、原料中のAl成分とSi成分とのモル比が、Al/(Al+Si)=7〜15%の範囲のときに曲げ強度が高い数値を示している。これに対して、Al/(Al+Si)=4%である比較例3では、曲げ強度を十分高くすることができなかった。   As shown in Examples 2 to 4 in Table 2 and FIG. 1B, the calcium silicate molded body according to this example has a molar ratio of Al component to Si component in the raw material of Al / (Al + Si) = When the content is in the range of 7 to 15%, the bending strength is high. In contrast, in Comparative Example 3 where Al / (Al + Si) = 4%, the bending strength could not be sufficiently increased.

また、表2の実施例2〜4を生PSを用いた比較例1と比較した場合、曲げ強度が大幅に改善されていることが確認された。さらに、実施例2〜4は、製紙スラッジ灰を配合せず、排脱石膏の使用割合も低い従来品である比較例2と比較しても、曲げ強度がほぼ同等の値となり、実用上問題ないことが分かる。特に、図1(b)からわかるように、Al/(Al+Si)の値が8〜12%の範囲では比較例2の曲げ強度を上回っており、さらに好適である。   Moreover, when Example 2-4 of Table 2 was compared with the comparative example 1 using raw PS, it was confirmed that bending strength is improved significantly. Furthermore, in Examples 2 to 4, the paper strength sludge ash is not blended, and the bending strength is almost the same value as compared with Comparative Example 2 which is a conventional product with a low usage rate of waste dehydration gypsum, which is a practical problem. I understand that there is no. In particular, as can be seen from FIG. 1 (b), when the value of Al / (Al + Si) is in the range of 8 to 12%, the bending strength of Comparative Example 2 is exceeded, which is more preferable.

また、表2の実施例2〜4及び図1(c)に示されるように、本実施形態による珪酸カルシウム成形体は、吸水寸法変化率が産業廃棄物の使用量が少ない従来品の比較例2とほぼ同様の値であって、実用上問題ないことが分かる。   In addition, as shown in Examples 2 to 4 of Table 2 and FIG. 1 (c), the calcium silicate molded body according to this embodiment is a comparative example of a conventional product whose water absorption dimension change rate is small in the amount of industrial waste used. It can be seen that the value is almost the same as 2 and there is no practical problem.

以上に述べたように、本実施例にかかる珪酸カルシウム成形体は、産業廃棄物である製紙スラッジ灰と排脱石膏とを使用することにより、製造コストを低減できるとともに、原料中のAl/(Al+Si)を調整し配合することにより、高い曲げ強度を維持することができる。   As described above, the calcium silicate molded body according to the present example can reduce the manufacturing cost by using paper sludge ash and waste gypsum as industrial waste, and can also reduce Al / ( By adjusting and blending (Al + Si), high bending strength can be maintained.

また、表2の実施例1に示されるように、産業廃棄物として製紙スラッジ灰のみを混合した場合にも、原料中のAl/(Al+Si)を調整し配合することにより、従来品である比較例2と比較して高い曲げ強度を得ることができた。   In addition, as shown in Example 1 of Table 2, even when only paper sludge ash is mixed as industrial waste, by adjusting and blending Al / (Al + Si) in the raw material, comparison is made with a conventional product. Compared with Example 2, high bending strength could be obtained.

なお、表2から判るように、比較例1となる生PS使用品は実施例と較べて密度が低くなっている。これは、生PSが有機成分及び水分を含み不揃いな塊状であり、スラリー中で均一に分散しないことと、生PSに含まれる過剰な有機成分の影響により珪酸カルシウム成形体の密度が低下するからである。   In addition, as can be seen from Table 2, the density of the raw PS-use product in Comparative Example 1 is lower than that in Examples. This is because the raw PS is an irregular lump containing organic components and moisture, and is not uniformly dispersed in the slurry, and the density of the calcium silicate molded product is reduced due to the influence of excess organic components contained in the raw PS. It is.

また、表2に示される比較例1の珪酸カルシウム成形体の曲げ強度は、各実施例と較べて大幅に低くなっている。これは、上記の理由と同様に、生PSが有機成分と水分を含み不揃いな塊状であるためスラリー中で均一に分散することができないことにより、珪酸カルシウム反応が十分に行われないためであり、この結果、珪酸カルシウム成形体の曲げ強度が低下している。   Moreover, the bending strength of the calcium silicate molded body of Comparative Example 1 shown in Table 2 is significantly lower than each Example. This is because, for the same reason as described above, the raw PS is an irregular mass containing an organic component and moisture, and therefore cannot be uniformly dispersed in the slurry, so that the calcium silicate reaction is not sufficiently performed. As a result, the bending strength of the calcium silicate compact is reduced.

また、原料中に配合されるAl成分は、珪酸カルシウム反応におけるトバモライトの結晶化を促進させる働きがあり、原料中のCa成分とSi成分とを適正な範囲に調合し、さらに、Al成分とSi成分とのモル比をAl/(Al+Si)=7〜15%にすることにより、珪酸カルシウム反応によるトバモライトの結晶化が促進され、珪酸カルシウム成形体の曲げ強度が向上される。   In addition, the Al component blended in the raw material has a function of promoting crystallization of tobermorite in the calcium silicate reaction, and the Ca component and Si component in the raw material are prepared in an appropriate range. By setting the molar ratio with the component to Al / (Al + Si) = 7 to 15%, crystallization of tobermorite by the calcium silicate reaction is promoted, and the bending strength of the calcium silicate molded body is improved.

また、表3に示された結果より、製紙スラッジ灰をそれぞれ30メッシュと60メッシュサイズのふるいにかけたものを原料中に配合した場合も、産業廃棄物の使用量が低い従来品に比べて同等以上の曲げ強度を実現している。これは、本実施例が、原料としてふるいにより分級された製紙スラッジ灰を使用することにより、スラリー中において原料が均一に分散し、水熱反応時において珪酸カルシウム反応が均一に行われて、珪酸カルシウム成形体の曲げ強度を向上させているからである。   In addition, from the results shown in Table 3, even when paper sludge ash is passed through a 30-mesh and 60-mesh sieve, the raw material is equivalent to the conventional product with a low amount of industrial waste. The above bending strength is realized. This is because this example uses paper sludge ash classified by sieving as a raw material, so that the raw material is uniformly dispersed in the slurry, and the calcium silicate reaction is uniformly performed during the hydrothermal reaction. This is because the bending strength of the calcium molded body is improved.

原料にふるいにより分級された製紙スラッジ灰を使用する他の効果として、珪酸カルシウム成形体表面における黒色粒子等による品質低下を抑えることができる。   As another effect of using the papermaking sludge ash classified by sieving as a raw material, it is possible to suppress deterioration in quality due to black particles or the like on the surface of the calcium silicate molded body.

上記ふるいの目のサイズは、小さくしすぎるとスラッジ灰利用率が低下して、製造コストの低減効果が低くなる。従って、表4に示されるように、スラッジ灰利用率が70%以上となるふるいの目のサイズを選択するのが好適である。   If the size of the sieve mesh is too small, the sludge ash utilization rate is lowered and the effect of reducing the manufacturing cost is lowered. Therefore, as shown in Table 4, it is preferable to select the size of the sieve eye with a sludge ash utilization rate of 70% or more.

本発明の実施例にかかる珪酸カルシウム成形体の密度、曲げ強度及び吸水寸法変化率の測定結果を示す図である。It is a figure which shows the measurement result of the density of a calcium-silicate molded object concerning the Example of this invention, bending strength, and a water absorption dimensional change rate.

Claims (3)

珪酸質原料、石灰質原料、製紙スラッジ灰及び補強繊維を原料とした珪酸カルシウム成形体であって、
前記原料中のアルミニウム(Al)成分と珪素(Si)成分とのモル比が
Al/(Al+Si)=7〜15%であり、
前記原料中に前記製紙スラッジ灰を6〜14重量%含み、
前記原料中に排脱石膏をさらに含むとともに、前記排脱石膏と前記製紙スラッジ灰の合計量が50重量%以上である、
ことを特徴とする珪酸カルシウム成形体。
A calcium silicate molded body made from siliceous raw material, calcareous raw material, papermaking sludge ash and reinforcing fiber,
Ri molar ratio of Al / (Al + Si) = 7~15% der of aluminum (Al) component and silicon (Si) component in the raw material,
Containing 6 to 14% by weight of the papermaking sludge ash in the raw material,
The raw material further includes waste gypsum, and the total amount of the waste gypsum and paper sludge ash is 50% by weight or more.
A calcium silicate molded body characterized by that.
請求項1記載の珪酸カルシウム成形体において、前記製紙スラッジ灰が20〜100メッシュのふるいにより分級されたものであることを特徴とする珪酸カルシウム成形体。 The calcium silicate molded body according to claim 1, wherein the papermaking sludge ash is classified by a 20 to 100 mesh sieve. 珪酸質原料、石灰質原料、製紙スラッジ灰及び補強繊維を含む珪酸カルシウム成形体の原料と水とを混合した混合スラリーを脱水成形し、得られた成形物を水熱反応させることにより得られる珪酸カルシウム成形体の製造方法であって、
前記原料中のアルミニウム(Al)成分と珪素(Si)成分とのモル比が
Al/(Al+Si)=7〜15%であり、
前記原料中に前記製紙スラッジ灰を6〜14重量%含み、
前記原料中に排脱石膏をさらに含むとともに、前記排脱石膏と前記製紙スラッジ灰の合計量が50重量%以上である、
ことを特徴とする珪酸カルシウム成形体の製造方法。
Calcium silicate obtained by dehydrating a mixed slurry of calcium silicate molded material containing siliceous raw material, calcareous raw material, papermaking sludge ash and reinforcing fibers and water, and hydrothermally reacting the resulting molded product A method for producing a molded body, comprising:
Ri molar ratio of Al / (Al + Si) = 7~15% der of aluminum (Al) component and silicon (Si) component in the raw material,
Containing 6 to 14% by weight of the papermaking sludge ash in the raw material,
The raw material further includes waste gypsum, and the total amount of the waste gypsum and paper sludge ash is 50% by weight or more.
The manufacturing method of the calcium-silicate molded object characterized by the above-mentioned.
JP2005329447A 2005-11-14 2005-11-14 Calcium silicate molded body and method for producing the same Active JP4646310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005329447A JP4646310B2 (en) 2005-11-14 2005-11-14 Calcium silicate molded body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005329447A JP4646310B2 (en) 2005-11-14 2005-11-14 Calcium silicate molded body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007137685A JP2007137685A (en) 2007-06-07
JP4646310B2 true JP4646310B2 (en) 2011-03-09

Family

ID=38201011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005329447A Active JP4646310B2 (en) 2005-11-14 2005-11-14 Calcium silicate molded body and method for producing the same

Country Status (1)

Country Link
JP (1) JP4646310B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105016663B (en) * 2015-08-06 2017-03-08 济南大学 A kind of calcium silicate board containing paper mill sludge ash and preparation method thereof
CN105601184B (en) * 2015-12-24 2017-09-19 济南大学 A kind of preparation method of calcium silicate board

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51130422A (en) * 1975-05-08 1976-11-12 Asahi Chemical Ind Manufacturing of light foamed concrete
JPS5363426A (en) * 1976-11-18 1978-06-06 Nippon Iton Kougiyou Kk Gas concrete and its manufacture
JPS6172670A (en) * 1984-09-14 1986-04-14 株式会社ノダ Extrusion molded product and manufacture
JPH01119554A (en) * 1987-11-02 1989-05-11 Takeda Chem Ind Ltd Aqueous slurry for calcium silicate hydrate and calcium silicate molded article made from slurry
JPH0597498A (en) * 1991-10-04 1993-04-20 Nichias Corp Calcium silicate-based refractory coated plate and its production
JPH08325074A (en) * 1995-05-30 1996-12-10 Ask:Kk Calcium silicate plate and its production
JP2000154050A (en) * 1998-11-18 2000-06-06 Asano Slate Co Ltd Production of lightweight calcium silicate sheet
JP2001122674A (en) * 1999-08-19 2001-05-08 Asahi Kasei Corp High strength calcium silicate-hardened body
JP2002104862A (en) * 2000-09-28 2002-04-10 Kubota Corp Method of producing ceramic construction material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51130422A (en) * 1975-05-08 1976-11-12 Asahi Chemical Ind Manufacturing of light foamed concrete
JPS5363426A (en) * 1976-11-18 1978-06-06 Nippon Iton Kougiyou Kk Gas concrete and its manufacture
JPS6172670A (en) * 1984-09-14 1986-04-14 株式会社ノダ Extrusion molded product and manufacture
JPH01119554A (en) * 1987-11-02 1989-05-11 Takeda Chem Ind Ltd Aqueous slurry for calcium silicate hydrate and calcium silicate molded article made from slurry
JPH0597498A (en) * 1991-10-04 1993-04-20 Nichias Corp Calcium silicate-based refractory coated plate and its production
JPH08325074A (en) * 1995-05-30 1996-12-10 Ask:Kk Calcium silicate plate and its production
JP2000154050A (en) * 1998-11-18 2000-06-06 Asano Slate Co Ltd Production of lightweight calcium silicate sheet
JP2001122674A (en) * 1999-08-19 2001-05-08 Asahi Kasei Corp High strength calcium silicate-hardened body
JP2002104862A (en) * 2000-09-28 2002-04-10 Kubota Corp Method of producing ceramic construction material

Also Published As

Publication number Publication date
JP2007137685A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
Vichan et al. Strength and microstructure development in Bangkok clay stabilized with calcium carbide residue and biomass ash
WO1998052882A1 (en) Cementitious gypsum-containing binders and compositions and materials made therefrom
JPS62226875A (en) Lightweight heat insulating board and manufacture
RU2753546C2 (en) Methods for producing air-cured fiber cement products
US20060107872A1 (en) Method and apparatus for producing calcium silicate hydrate
Khater et al. Geopolymerization of industrial by-products and study of their stability upon firing treatment
JP4646310B2 (en) Calcium silicate molded body and method for producing the same
GB2544656A (en) Construction unit
Ogundiran et al. The potential of binary blended geopolymer binder containing Ijero-Ekiti calcined kaolin clay and ground waste window glass
WO2018065522A1 (en) Methods for comminuting cured fiber cement material
JP4332605B2 (en) Humidity conditioning material and method for producing the same
AU2017339076B2 (en) Methods for producing fiber cement products with fiber cement waste
JP2009161384A (en) Tobermorite-containing solidified material and method for producing the same
Hisham et al. Utilization of cockle shells as partial binder replacement in concrete
JP4336793B2 (en) Method for producing hydraulic material and hydraulic building material
JP5214849B2 (en) Wooden plasterboard
KR102146455B1 (en) Blast furnace slag-based compositon and hardened product thereof
JP2011213510A (en) Fiber-reinforced calcium silicate board
Melichar et al. Effect of use of non-traditional raw materials on properties and microstructure of cement-bonded particleboards
EP3305741A1 (en) Methods for producing air-cured fiber cement sheets
Shah et al. A study of future trend for sustainable development by incorporation of supplementary cementitious materials
JPH0741354A (en) Production of calcium silicate plate
JP2005187324A (en) Carbonated hardened body
KR20170028236A (en) A Environmental-friendly Plastering additives Containing Natural Mineral Powder and Environmental-friendly Plastering Cement and Mortar Containing the Same
JP3903190B2 (en) Hygroscopic gypsum hardened body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4646310

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250