JP3903190B2 - Hygroscopic gypsum hardened body - Google Patents

Hygroscopic gypsum hardened body Download PDF

Info

Publication number
JP3903190B2
JP3903190B2 JP05165897A JP5165897A JP3903190B2 JP 3903190 B2 JP3903190 B2 JP 3903190B2 JP 05165897 A JP05165897 A JP 05165897A JP 5165897 A JP5165897 A JP 5165897A JP 3903190 B2 JP3903190 B2 JP 3903190B2
Authority
JP
Japan
Prior art keywords
gypsum
calcium silicate
weight
moisture
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05165897A
Other languages
Japanese (ja)
Other versions
JPH10245250A (en
Inventor
信彦 阿部
好明 坂本
進吉 田辺
憲史 永田
嘉圃 西野
準一 羽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Chiyoda Ute Co Ltd
Original Assignee
Taiheiyo Cement Corp
Chiyoda Ute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp, Chiyoda Ute Co Ltd filed Critical Taiheiyo Cement Corp
Priority to JP05165897A priority Critical patent/JP3903190B2/en
Publication of JPH10245250A publication Critical patent/JPH10245250A/en
Application granted granted Critical
Publication of JP3903190B2 publication Critical patent/JP3903190B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B12/00Cements not provided for in groups C04B7/00 - C04B11/00
    • C04B12/04Alkali metal or ammonium silicate cements ; Alkyl silicate cements; Silica sol cements; Soluble silicate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols

Description

【0001】
【発明の属する技術分野】
本発明は、吸放湿性に優れた石膏硬化体に関する。さらに詳しくは、各種の珪酸カルシウム材料またはこれを主成分とする建築廃材を硫酸化反応させて得た石膏とシリカゲルを含む反応生成物を用いることができる吸放湿性に富む石膏硬化体に関する。
【0002】
【従来の技術とその課題】
近年の住宅は、省エネルギーの観点から断熱性が要求され、その住宅空間の気密性は極めて高くなっている。また、生活空間の快適性を実現する目的として、暖房器具やクーラーなどの様々な温調機器が導入されている。
ところが、部屋の各部分の温度分布はむしろバラツキが大きくなっており、具体的には、換気状況の悪い部分、例えば、押し入れ、タンスの裏、窓枠部分あるいは天井などでは結露水の発生が頻繁に見られる。このため、かび等の微生物が繁殖し易い環境になっており、これらの状況は喘息やアレルギー疾患など健康を害する要因として問題視され始めている。
【0003】
ところで、木材やこれを加工した木質系建材は古くから建築材料として広く使用されてきたが、木質系建材は一般に吸湿容量が大きいので、これを内装材として用いた場合、優れた調湿機能を発揮する。例えば、一時的に湿気が空間にこもっても、その基材中に湿分を蓄えることができ、また、換気操作などにより雰囲気の湿度が低下した場合には、この湿分が速やかに放出され、室内の湿度を適度に保つことができる。
【0004】
このように木質系建材は、その吸放湿性能により、居住空間中への結露水の発生を未然に防止することができるなど優れた機能を有する。しかしながら、近年の木材資源の減少により、良質な木質系建材の入手が困難になってきており、価格は上昇の一途である。一方、木質系建材は可燃性であると共に害虫の発生や腐食などの欠点を有し、居住空間の安全性を確保する点からは無機質系材料が優れる。
【0005】
こうした点から、特に内装用建材としては、いわゆる流し込み成形法を採用した石膏ボードが多用されている。この石膏ボードは、安価でかつ不燃性であり、さらに寸法安定性に優れるなどの多くの特徴を有するが、吸放湿性能の点で木質系建築材料に劣るため、近年の居住空間における結露を助長する一因とも見られている。
【0006】
このような欠点を補うために、珪酸カルシウムを主体とした材料が開発されてきた(特開昭57-147424号、特公平2-46号、特開平2-90919号など)。これらの珪酸カルシウム系材料は、主にゾノトライト、トバモライトなどの無機珪酸鉱物を主成分とした材料であり、不燃性であって、ある程度の吸放湿性を有している。しかし、従来の珪酸カルシウム系材料の吸放湿量は木材の性能には遠く及ばず、また、製造工程中に複雑な水熱合成設備を必要とするために製造コストが高く、汎用建材である石膏ボードよりかなり高価なものとなっている。
【0007】
一方、建築廃材の廃棄処分方法は近年大きな社会問題となってきている。特に珪酸カルシウム系建材の廃棄物は発生量が膨大な上に嵩比重が小さいため、埋め立てを行う場合においても、その処分場所の確保が困難を極める。従って、圧縮処理などを施して埋め立て処分等を行うのが現状である。
【0008】
このように、吸放湿性能に優れた低コストの無機質建材の開発と珪酸カルシウム系廃材の有効利用が強く望まれていた。
本発明は従来の上記課題を解決したものであり、石膏を主体とする吸放湿性に優れた無機質硬化体であって、珪酸カルシウム系廃材を原料として製造できることから低コストであると共に該廃材の有効利用を図ることができる吸放湿性石膏硬化体を提供するものである。
【0009】
【課題を解決するための手段】
本発明の石膏硬化体は、木質系建材に匹敵する優れた吸放湿性能と無機材料である石膏ボードおよび珪酸カルシウム系材料の不燃性および安定性を両立し、かつ珪酸カルシウム系廃材の有効利用を図ったものであり、珪酸カルシウム系材料あるいはこれらの廃材を硫酸化処理して得た石膏とシリカゲルを含む反応生成物を利用することにより、資源の有効利用を達成しつつ木質系建材に匹敵する吸放湿性能を有する無機質材料を得たものである。
【0010】
すなわち、本発明は第一に、珪酸カルシウム系材料を硫酸化材料によって硫酸化反応させて得た石膏とシリカゲルを含む反応生成物を主体としたことを特徴とする吸放湿性石膏硬化体を提供するものである。
また、本発明は第二に、硫酸化材料が硫酸または硫酸アルミニウムの1種または2種以上である吸放湿性石膏硬化体を提供するものである。
さらに、本発明は第三に、珪酸カルシウム系材料が、CSHゲル、トバモライト、またはゾノトライトの1種または2種以上を含有する建築廃材である吸放湿性石膏硬化体を提供するものである。
さらに、本発明は第四に、珪酸カルシウム系材料が、有機繊維、無機繊維、パルプ繊維またはガラス繊維の1種または2種以上を含む吸放湿性石膏硬化体を提供するものである。
【0011】
【発明の実施形態】
以下、本発明を詳細に説明する。
本発明の硬化体は、珪酸カルシウム系材料を硫酸化材料によって硫酸化反応させて得た石膏とシリカゲルを含む反応生成物を主体とした吸放湿性に富む石膏硬化体である。
【0012】
硫酸化材料としては、硫酸または硫酸アルミニウムの1種または2種以上を用いることができる。これらは市販の硫酸溶液、硫酸アルミニウム水溶液の他に、金属精錬や酸製造工業から産出する廃硫酸や硫酸アルミニウム含有量の多いスラッジなど、あるいはこれらの混合物を使用することができる。また、硫酸化材料としては、これらの他に、硫酸鉄を始めとする酸性の水溶性硫酸塩を用いることができる。
硫酸化材料は珪酸カルシウム系材料と反応してこれを硫酸化し、硫酸カルシウム(石膏)とシリカゲルを含む均質な混合物を生成させるための材料である。すなわち、本発明は、硫酸化反応と云う均一反応を利用することによって、シリカゲルと石膏を単純に混合したものよりも均質で吸放湿性に優れた石膏硬化体を得たものである。
【0013】
従って、珪酸カルシウム系材料と硫酸化材料の量比は、石膏とシリカゲルが生成する条件であれば特に限定されないが、好ましくは、硫酸化反応において、石膏が最も多く生成し、また適度な量のシリカゲルが生成するように、珪酸カルシウム系材料と硫酸化材料の量比を調整すれば良い。
一例として、珪酸カルシウムに対する硫酸のモル比(SO4 2-/Ca2+)は0.1以上が適当である。0.1モル未満では吸湿性が低下する。
【0014】
以上のように、本発明の石膏硬化体は、石膏と共に硫酸化反応によって生じたシリカゲルを含む。シリカゲルの含有量は所望の吸放湿性能に応じて調整することが好ましい。シリカゲルの最大含有率は、珪酸カルシウム系材料によって異なり、例えばトバモライトを使用すると、シリカゲルを最大約40重量%含有する石膏硬化体を得ることができる。また、ゾノトライトを用いた場合には、シリカゲルを最大約36重量%含有する石膏硬化体が得られる。このシリカゲルは石膏マトリックの空隙に存在する。
なお、硫酸化材料として硫酸アルミニウムを用いた場合、珪酸カルシウム系材料と硫酸アルミニウムとの反応によって石膏、シリカゲルと共にアルミナゾルおよび/またはアルミナゲルが生成し、これらがシリカゲルと共に石膏マトリックスの空隙に存在した石膏硬化体が得られる。
【0015】
本発明に係る石膏硬化体のもう一つの原料である珪酸カルシウム系材料とは珪酸カルシウムを主体とする無機化合物材料を云う。この珪酸カルシウム系材料にはCSHゲル、トバモライト、ゾノトライトなど、あるいはこれらの混合物からなるものが知られている。
珪酸カルシウム系材料としてはこれを主成分とする建築廃材などを用いることができる。珪酸カルシウム系材料を主成分とする建築用材料は、軽量気泡コンクリート(ALC)を始めとして、保温材、人造木材、耐火被覆板などが一般に市販されており、本発明では、これら素材そのものの他に、生産段階で発生する端材や不良品、建築施工現場や解体現場などから発生する廃棄物を原料として用いることができる。
近年、珪酸カルシウム系材料を主成分にする建材は大量に生産・消費されており、これに伴い、発生する廃材は膨大な量となっている。本発明はこの廃材を有効利用することにより、吸放湿性に優れた石膏硬化体を低コストで実現した。
【0016】
使用する珪酸カルシウム系材料の形態は、硫酸化反応により均質な吸放湿性石膏硬化体が得られるものであれば良く、特には制限されない。
なお、この石膏硬化体の吸放湿特性は、使用する珪酸カルシウム系材料の純度に応じて異なり、その純度が高いものほど吸放湿性能に優れる傾向があるため、得られる吸放湿性石膏硬化体に望まれる特性に応じ、原料の珪酸カルシウム系材料の純度を適宜選択して用いるのが良い。また、これら珪酸カルシウム系材料は硫酸化処理に適するように、粉末度や形状を調整するのが好ましい。例えば、粒径5cm程度の塊状のものから粒径3mm以下の粉状のものまで適宜用いることができる。
【0017】
また、建材として使用される珪酸カルシウム系材料には様々な添加物が使用されているが、本発明に係る石膏硬化体の原料としては繊維材料を含有するものが特に好ましい。繊維材料を含有する珪酸カルシウム系材料を用いることにより、この繊維材料が硫酸化反応によって生じた硬化体に均質に分散した形態で導入され、硬化体の強度特性を高めることができる。
ここで、繊維材料としては珪酸カルシウム系建材に一般的に配合されているものが使用でき、例えば、ウォラストナイト、ロックウール、アスベスト、ガラス繊維などの無機繊維や、パルプ繊維、ポリプロピレン繊維、ナイロン繊維、アクリル繊維、麻繊維などの有機繊維が使用出来る。
【0018】
繊維材料の配合割合は、使用する珪酸カルシウム系材料の形態、鉱物組成あるいは繊維の種類によっても異なり、これらを考慮して適宜定められる。具体的には、例えば有機繊維を含有する珪酸カルシウム系材料を使用した場合、日本工業規格(JIS規格)に準拠した難燃性能を達成するには、得られる石膏硬化体中に有機繊維が7重量%以下となるように珪酸カルシウム系材料と硫酸化材料の量比を調整する。
【0019】
このように、本発明の吸放湿性石膏硬化体は珪酸カルシウム系建築材料に配合されている補強繊維を石膏硬化体の補強材として積極的に再利用することができので、繊維体を含有する建材廃棄物などを原料として利用する場合、これらの補強繊維を除去する必要がなく、容易に再利用することができる。
【0020】
【実施例】
以下、本発明の実施例を示す。
なお、実施例および比較例で使用した原料を表1に示した。また、組成物の成分はX線回析装置(リガク社製:RINT1000)を用い、粉末回析法によって行い、比表面積は窒素吸着(使用装置:島津社製Micrometorics Flow Sorb II 2300)によって測定した。得られた硬化体の評価は次の方法で行った。また、比較例の評価も硬化体の評価と同様に行った。
(1)比重:硬化体の試料(2×2×8cm)について、その重量と寸法測定値から比重を算出した。
(2)曲げ強度:インストロン万能試験機を用い、スパンを6cmとして測定を行った。
(3)相対湿度53%〜75%に対する吸湿率の変化
硬化体の試料を20℃、硝酸カルシウム飽和水溶液雰囲気(相対湿度53%)中で恒量にして重量を測定し、吸湿率を求めた。次に、相対湿度53%で恒量となった硬化体試料を20℃、塩化ナトリウム飽和水溶液雰囲気(相対湿度75%)中で恒量にして重量を測定し、吸湿率を求めた。相対湿度75%における吸湿率と53%における吸湿率の差を吸湿率の変化として求めた。
(4)相対湿度53%〜75%に対する吸湿量
上記(3)で求めた吸湿率の変化に比重を乗じたものを吸湿量として求めた。
【0021】
実施例1
CaOとSiO2のモル比が0.8となるように水酸化カルシウムと珪石とを乾式混合し、この混合物100重量部に対して1000重量部の水を加えて原料スラリー得た。その後、この原料スラリーを10kgf/cm2、180℃の水熱条件下で6時間撹拌しながら反応させ、珪酸カルシウム系スラリーを得た。この珪酸カルシウム系スラリーから固形分を濾別し、その乾燥物をX線回折により定性分析したところ、主成分がトバモライトからなる珪酸カルシウム系材料であった。
次に、この珪酸カルシウム系スラリー中の固形分100重量部に対して3.7規定の硫酸水溶液330重量部を徐々に加え、15分間ゆっくり撹拌することで硫酸化スラリーを得た。その後、このスラリーを150℃の乾燥機中に24時間挿入し水分を蒸発させることで硫酸化固形物を得た。この硫酸化固形物の窒素吸着法による比表面積は、145m2/gであった。
次いで、この硫酸化固形物100重量部と水100重量部を混合し、得られたスラリーを3個の砲金製型枠(2×2×8cm)に流し込み成型し、硬化後の脱型物を45℃で乾燥させることにより本発明の放湿性石膏硬化体を得た。
この硬化体は、X線回折および化学分析により、トバモライト、二水石膏およびシリカゲルを主成分とする組成物であることが確認された。この石膏硬化体について上記試験を行い、その測定結果を表2に示した。
【0022】
実施例2
代表的な珪酸カルシウム系材料として市販ALCを使用して本発明の石膏硬化体を製造した。まず、市販ALC100重量部に対して500重量部の水を加えて珪酸カルシウム系スラリーを得た。この珪酸カルシウム系スラリー中の固形分であるALC100重量部に対して7規定の硫酸水溶液70重量部を徐々に添加し撹拌して硫酸化スラリーを得た。その後、実施例1と同様の方法で、硫酸化固形物を得た。この硫酸化固形物の比表面積は56m2/gであった。この硫酸化固形物100重量部に対して100重量部の水を加えて得たスラリーを実施例1と同様に型枠に流し込み成型して本発明の吸放湿性石膏硬化体を得た。
この硬化体は、X線回折および化学分析により、トバモライト、石英、二水石膏およびシリカゲルを主成分とする組成物であることが確認された。この石膏硬化体について上記試験を行い、その測定結果を表2に示した。
【0023】
実施例3
珪酸カルシウム系スラリー中のALC固形分100重量部に対して7規定の硫酸水溶液を90重量部使用した他は、実施例2と同様にして本発明による吸放湿性石膏硬化体を得た。硫酸化固形物の比表面積は70m2/gであった。また、この硬化体は、X線回折および化学分析により、トバモライト、石英、二水石膏およびシリカゲルを主成分とする組成物であることが確認された。この石膏硬化体について上記試験を行い、その測定結果を表2に示した。
【0024】
実施例4
製造工場内で発生したALC廃材100重量部に対して2000重量部の水を加えて珪酸カルシウム系スラリーを得た。この珪酸カルシウム系スラリー中のALC固形分100重量部に対し、3.7規定の硫酸水溶液140重量部を徐々に添加し撹拌して硫酸化スラリーを得た。その後、実施例1と同様にして本発明の吸放湿性石膏硬化体を得た。硫酸化固形物の比表面積は116m2/gであった。また、この硬化体は、X線回折および化学分析により、石英、二水石膏およびシリカゲルを主成分とする組成物であることが確認された。この石膏硬化体について上記試験を行い、その測定結果を表2に示した。
【0025】
実施例5
トバモライト系保温材(朝日珪酸工業(株)製造)100重量部に対して670重量部の水を加えて珪酸カルシウムスラリーを得た。この珪酸カルシウムスラリー中の保温材固形分100重量部に対し、3.7規定の硫酸水溶液300重量部を徐々に添加し撹拌して硫酸化スラリーを得た。その後、実施例1と同様にして硫酸化固形物を得た。この硫酸化固形物の比表面積は140m2/gであった。この硫酸化固形物100重量部に対して300重量部の水を加えて得たスラリーを実施例1と同様に型枠に流し込み成型して本発明の吸放湿性石膏硬化体を得た。この硬化体は、X線回折および化学分析により、二水石膏およびシリカゲルを主成分とする組成物であることが確認された。この石膏硬化体について上記試験を行い、その測定結果を表2に示した。
【0026】
実施例6
ゾノトライト系保温材(朝日珪酸工業(株)製造)を使用した他は実施例5と同様にして珪酸カルシウムスラリーを得た。この珪酸カルシウムスラリー中の保温材固形分100重量部に対し、3.7規定の硫酸水溶液320重量部を徐々に添加し撹拌して硫酸化スラリーを得た。その後、実施例1と同様にして硫酸化固形物を得た。この硫酸化固形物の比表面積は102m2/gであった。この硫酸化固形物100重量部に対して350重量部の水を加えて得たスラリーを実施例1と同様に型枠に流し込み成型して本発明の吸放湿性石膏硬化体を得た。この硬化体はX線回折および化学分析により、二水石膏およびシリカゲルを主成分とする組成物であることが確認された。この石膏硬化体について上記試験を行い、その測定結果を表2に示した。
【0027】
実施例7
実施例4で得た硫酸化固形物100重量部に市販の“焼き石膏”を100重量部を混合し、この混合物に対し100重量部の水を加えて得たスラリーを実施例1と同様に型枠に流し込み成型しえ本発明の吸放湿性石膏を得た。この石膏硬化体について上記試験を行い、その測定結果を表2に示した。
【0028】
比較例1
市販の二水石膏を150℃の乾燥機中に24時間挿入することで半水石膏を得た。この半水石膏100重量部に対し100重量部の水から得られるスラリーを実施例1と同様に型枠に流し込み成型して石膏硬化体を得た。この石膏硬化体について上記試験を行い、その測定結果を表2に示した。
【0029】
比較例2
市販の珪酸カルシウム系調湿材として、秩父小野田(株)製、商品名:オーエスライト(比較例 2)について上記試験の測定結果を表2に示した。
【0030】
比較例3
天然木材(商品名:スプルス)について上記試験の測定結果を表2に示した。
【0031】

Figure 0003903190
【0032】
Figure 0003903190
【0033】
表2に示すように、本発明に係る石膏硬化体は、天然木材を超える吸湿量を有し、吸湿率の変化も大部分が天然木材に匹敵する変化量を示し、優れた吸放湿性を有する。また、硬化体の強度は石膏単味のものよりは低いが、大部分は市販の珪酸カルシウム系調湿材(比較例 2)より高く、実用強度を備えている。
【0034】
【発明の効果】
本発明によれば、天然木材に匹敵し、場合によっては天然木材を上回る吸放湿性に優れた石膏硬化体が得られる。しかも本発明の石膏硬化体は珪酸カルシウム系の建築廃材を原料として製造することができるので製造コストが低く、さらに大量に発生する建築廃材の再利用を図ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hardened gypsum body having excellent moisture absorption / release properties. More specifically, the present invention relates to a gypsum hardened body rich in moisture absorption and desorption that can use a reaction product containing gypsum and silica gel obtained by sulfating various calcium silicate materials or building waste containing the same as a main component.
[0002]
[Prior art and its problems]
In recent years, thermal insulation is required from the viewpoint of energy saving, and the airtightness of the residential space is extremely high. In addition, various temperature control devices such as heaters and coolers have been introduced for the purpose of realizing comfort in living spaces.
However, the temperature distribution in each part of the room is rather uneven. Specifically, condensation water is frequently generated in parts with poor ventilation conditions, for example, in close-in spaces, undersides of chests, window frames, or ceilings. Seen in. For this reason, it has become an environment in which microorganisms such as fungi are easy to propagate, and these situations are beginning to be regarded as problems as health-causing factors such as asthma and allergic diseases.
[0003]
By the way, wood and wood-based building materials processed from wood have long been widely used as building materials.However, wood-based building materials generally have a large moisture absorption capacity, so when they are used as interior materials, they have an excellent humidity control function. Demonstrate. For example, even if moisture is temporarily trapped in the space, moisture can be stored in the base material, and when the humidity of the atmosphere decreases due to ventilation operation etc., this moisture is released promptly. , Indoor humidity can be kept moderate.
[0004]
As described above, the woody building material has excellent functions such as the ability to prevent the generation of condensed water in the living space due to its moisture absorption / release performance. However, due to the recent decrease in timber resources, it has become difficult to obtain high-quality wood-based building materials, and the price is still rising. On the other hand, wood-based building materials are flammable and have drawbacks such as generation of insect pests and corrosion, and inorganic materials are superior in terms of ensuring the safety of living spaces.
[0005]
In view of this, gypsum boards employing a so-called casting method are frequently used as building materials for interiors. This gypsum board is inexpensive and non-flammable, and has many features such as excellent dimensional stability. However, it is inferior to wood-based building materials in terms of moisture absorption and desorption, so it has caused condensation in living spaces in recent years. It is also seen as a contributing factor.
[0006]
In order to compensate for these disadvantages, materials mainly composed of calcium silicate have been developed (Japanese Patent Laid-Open No. 57-147424, Japanese Patent Publication No. 2-46, Japanese Patent Laid-Open No. 2-90919, etc.). These calcium silicate-based materials are materials mainly composed of inorganic silicate minerals such as zonotolite and tobermorite, are nonflammable, and have a certain amount of moisture absorption and desorption. However, the moisture absorption and desorption amount of conventional calcium silicate materials is far from the performance of wood, and the manufacturing cost is high because complicated hydrothermal synthesis equipment is required during the manufacturing process. It is much more expensive than gypsum board.
[0007]
On the other hand, the disposal method of building waste has become a major social problem in recent years. In particular, the waste of calcium silicate-based building materials generates a large amount and has a small bulk specific gravity. Therefore, even when landfilling is performed, it is extremely difficult to secure a disposal site. Therefore, at present, the landfill disposal is performed by performing the compression process.
[0008]
Thus, development of a low-cost inorganic building material excellent in moisture absorption / release performance and effective utilization of calcium silicate waste materials have been strongly desired.
The present invention solves the above-mentioned conventional problems, and is an inorganic hardened body mainly composed of gypsum and excellent in moisture absorption and desorption, and can be manufactured using calcium silicate waste material as a raw material, and is low in cost. It is an object of the present invention to provide a moisture-absorbing / releasing gypsum hardened body that can be effectively used.
[0009]
[Means for Solving the Problems]
The hardened gypsum of the present invention achieves both excellent moisture absorption and release performance comparable to wood-based building materials and the nonflammability and stability of gypsum board and calcium silicate materials, which are inorganic materials, and effective utilization of calcium silicate waste materials. By using a reaction product containing gypsum and silica gel obtained by sulfating calcium silicate materials or these waste materials, it is comparable to wooden building materials while achieving effective use of resources. An inorganic material having moisture absorption / release performance is obtained.
[0010]
That is, the present invention provides, firstly, a moisture-absorbing / releasing gypsum hardened body characterized by mainly comprising a reaction product containing gypsum obtained by sulfating a calcium silicate material with a sulfating material and silica gel. To do.
Secondly, the present invention provides a moisture-absorbing and releasing gypsum hardened body in which the sulfated material is one or more of sulfuric acid or aluminum sulfate.
Furthermore, the present invention thirdly provides a moisture-absorbing and releasing gypsum hardened body, which is a building waste material in which the calcium silicate material contains one or more of CSH gel, tobermorite, and zonotrite.
Furthermore, the present invention fourthly provides a moisture-absorbing / releasing gypsum hardened body in which the calcium silicate material contains one or more of organic fibers, inorganic fibers, pulp fibers, or glass fibers.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The hardened body of the present invention is a hardened gypsum body that is rich in moisture absorption and desorption, mainly composed of a reaction product containing gypsum obtained by subjecting a calcium silicate-based material to a sulfation reaction with a sulfated material and silica gel.
[0012]
As the sulfated material, one or more of sulfuric acid or aluminum sulfate can be used. In addition to the commercially available sulfuric acid solution and aluminum sulfate aqueous solution, waste sulfuric acid produced from metal refining and acid production industries, sludge having a high aluminum sulfate content, or a mixture thereof can be used. In addition to these, acidic water-soluble sulfates such as iron sulfate can be used as the sulfated material.
The sulfated material is a material for reacting with a calcium silicate-based material to sulphate the material to form a homogeneous mixture containing calcium sulfate (gypsum) and silica gel. That is, according to the present invention, by using a homogeneous reaction called a sulfation reaction, a hardened gypsum body that is more homogeneous and excellent in moisture absorption and desorption than a simple mixture of silica gel and gypsum is obtained.
[0013]
Therefore, the amount ratio between the calcium silicate-based material and the sulfated material is not particularly limited as long as it is a condition that gypsum and silica gel are generated. Preferably, the most amount of gypsum is generated in the sulfation reaction, and an appropriate amount is obtained. What is necessary is just to adjust the quantity ratio of a calcium-silicate type material and a sulfated material so that a silica gel may produce | generate.
As an example, the molar ratio of sulfuric acid to calcium silicate (SO 4 2− / Ca 2+ ) is suitably 0.1 or more. If it is less than 0.1 mol, the hygroscopicity is lowered.
[0014]
As mentioned above, the gypsum hardened body of the present invention contains silica gel produced by a sulfation reaction together with gypsum. The silica gel content is preferably adjusted according to the desired moisture absorption / release performance. The maximum content of silica gel varies depending on the calcium silicate-based material. For example, when tobermorite is used, a hardened gypsum containing up to about 40% by weight of silica gel can be obtained. In addition, when zonotlite is used, a hardened gypsum containing up to about 36% by weight of silica gel is obtained. This silica gel is present in the voids of the gypsum matrix.
In addition, when aluminum sulfate is used as the sulfated material, gypsum, alumina sol and / or alumina gel is produced together with gypsum and silica gel by the reaction of calcium silicate material and aluminum sulfate, and these are present in the gypsum matrix voids together with silica gel. A cured product is obtained.
[0015]
The calcium silicate-based material that is another raw material of the hardened gypsum according to the present invention refers to an inorganic compound material mainly composed of calcium silicate. Known calcium silicate materials include CSH gel, tobermorite, zonotrite, or a mixture thereof.
As the calcium silicate-based material, building waste materials containing this as a main component can be used. Architectural materials mainly composed of calcium silicate materials include lightweight cellular concrete (ALC), heat insulating materials, artificial timber, fireproof coverings, etc., which are generally commercially available. In addition, scraps and defective products generated in the production stage, and waste generated from construction work sites and dismantling sites can be used as raw materials.
In recent years, building materials mainly composed of calcium silicate-based materials have been produced and consumed in large quantities, and along with this, the amount of waste materials generated is enormous. The present invention has realized a gypsum hardened body excellent in moisture absorption and desorption at low cost by effectively using this waste material.
[0016]
The form of the calcium silicate-based material to be used is not particularly limited as long as a homogeneous moisture-absorbing and releasing gypsum hardened body can be obtained by a sulfation reaction.
The moisture absorption / release characteristics of this hardened gypsum body vary depending on the purity of the calcium silicate material used, and the higher the purity, the better the moisture absorption / release performance. Depending on the properties desired for the body, the purity of the raw material calcium silicate-based material may be appropriately selected and used. Moreover, it is preferable to adjust the fineness and shape of these calcium silicate materials so as to be suitable for the sulfation treatment. For example, it can be suitably used from a lump having a particle size of about 5 cm to a powder having a particle size of 3 mm or less.
[0017]
Moreover, various additives are used for the calcium silicate type material used as a building material, but a material containing a fiber material is particularly preferable as a raw material of the hardened gypsum according to the present invention. By using the calcium silicate-based material containing the fiber material, the fiber material is introduced in a form uniformly dispersed in the cured body generated by the sulfation reaction, and the strength characteristics of the cured body can be enhanced.
Here, as fiber materials, those generally blended with calcium silicate building materials can be used, for example, inorganic fibers such as wollastonite, rock wool, asbestos, glass fibers, pulp fibers, polypropylene fibers, nylon Organic fibers such as fibers, acrylic fibers and hemp fibers can be used.
[0018]
The blending ratio of the fiber material varies depending on the form of the calcium silicate-based material to be used, the mineral composition, or the type of the fiber, and is appropriately determined in consideration of these. Specifically, for example, when a calcium silicate material containing organic fibers is used, in order to achieve flame retardant performance in accordance with Japanese Industrial Standards (JIS standards), 7 g of organic fibers are contained in the obtained gypsum cured body. The amount ratio of the calcium silicate-based material and the sulfated material is adjusted so as to be not more than wt%.
[0019]
Thus, the moisture-absorbing / releasing gypsum hardened body of the present invention can be actively reused as the reinforcing material of the gypsum hardened body because the reinforcing fiber blended in the calcium silicate building material contains the fiber body. When building material waste or the like is used as a raw material, it is not necessary to remove these reinforcing fibers and can be easily reused.
[0020]
【Example】
Examples of the present invention will be described below.
The raw materials used in the examples and comparative examples are shown in Table 1. Moreover, the component of the composition was measured by a powder diffraction method using an X-ray diffraction apparatus (Rigaku Corporation: RINT1000), and the specific surface area was measured by nitrogen adsorption (use apparatus: Micrometorics Flow Sorb II 2300 manufactured by Shimadzu Corporation). . The obtained cured body was evaluated by the following method. Moreover, evaluation of the comparative example was performed similarly to the evaluation of the cured body.
(1) Specific gravity: The specific gravity was calculated from the weight and dimensional measurement value of a sample (2 × 2 × 8 cm) of a cured product.
(2) Bending strength: Measurement was performed using an Instron universal testing machine with a span of 6 cm.
(3) Change in moisture absorption rate relative to relative humidity of 53% to 75% A sample of the cured product was measured at a constant weight in an atmosphere of saturated aqueous calcium nitrate (relative humidity 53%) at 20 ° C. to determine the moisture absorption rate. Next, the weight of the cured body sample having a constant weight at 53% relative humidity was measured at 20 ° C. in a saturated aqueous solution of sodium chloride (relative humidity 75%) to determine the moisture absorption rate. The difference between the moisture absorption rate at 75% relative humidity and the moisture absorption rate at 53% was determined as a change in moisture absorption rate.
(4) Moisture absorption amount relative to relative humidity of 53% to 75% The moisture absorption amount was obtained by multiplying the change in the moisture absorption rate obtained in (3) above with the specific gravity.
[0021]
Example 1
Calcium hydroxide and silica were dry-mixed so that the molar ratio of CaO to SiO 2 was 0.8, and 1000 parts by weight of water was added to 100 parts by weight of this mixture to obtain a raw material slurry. Thereafter, this raw material slurry was reacted with stirring for 6 hours under hydrothermal conditions of 10 kgf / cm 2 and 180 ° C. to obtain a calcium silicate slurry. The solid content was separated from the calcium silicate slurry, and the dried product was qualitatively analyzed by X-ray diffraction. As a result, it was a calcium silicate material whose main component was tobermorite.
Next, 3.7 parts by weight of a 3.7N sulfuric acid aqueous solution was gradually added to 100 parts by weight of the solid content in the calcium silicate slurry, and the mixture was slowly stirred for 15 minutes to obtain a sulfated slurry. Thereafter, this slurry was inserted into a dryer at 150 ° C. for 24 hours to evaporate water, thereby obtaining a sulfated solid. The specific surface area of this sulfated solid by the nitrogen adsorption method was 145 m 2 / g.
Next, 100 parts by weight of this sulfated solid and 100 parts by weight of water are mixed, and the resulting slurry is poured into three gunmetal molds (2 × 2 × 8 cm) and molded, and the cured demolded product is removed. By drying at 45 ° C., a moisture-removable gypsum cured product of the present invention was obtained.
This cured product was confirmed by X-ray diffraction and chemical analysis to be a composition mainly composed of tobermorite, dihydrate gypsum and silica gel. The above test was conducted on this hardened gypsum body, and the measurement results are shown in Table 2.
[0022]
Example 2
The gypsum hardened body of the present invention was manufactured using commercial ALC as a typical calcium silicate material. First, 500 parts by weight of water was added to 100 parts by weight of commercially available ALC to obtain a calcium silicate slurry. 70 parts by weight of a 7N aqueous sulfuric acid solution was gradually added to 100 parts by weight of ALC, which is a solid content in the calcium silicate slurry, and stirred to obtain a sulfated slurry. Thereafter, a sulfated solid was obtained in the same manner as in Example 1. The specific surface area of this sulfated solid was 56 m 2 / g. A slurry obtained by adding 100 parts by weight of water to 100 parts by weight of this sulfated solid was poured into a mold in the same manner as in Example 1 to obtain a moisture-absorbing / releasing gypsum cured product of the present invention.
This cured product was confirmed by X-ray diffraction and chemical analysis to be a composition comprising tobermorite, quartz, dihydrate gypsum and silica gel as main components. The above test was conducted on this hardened gypsum body, and the measurement results are shown in Table 2.
[0023]
Example 3
A moisture-absorbing and releasing gypsum hardened body according to the present invention was obtained in the same manner as in Example 2 except that 90 parts by weight of a 7N aqueous sulfuric acid solution was used with respect to 100 parts by weight of ALC solid content in the calcium silicate slurry. The specific surface area of the sulfated solid was 70 m 2 / g. Further, it was confirmed by X-ray diffraction and chemical analysis that this cured product was a composition mainly composed of tobermorite, quartz, dihydrate gypsum and silica gel. The above test was conducted on this hardened gypsum body, and the measurement results are shown in Table 2.
[0024]
Example 4
2000 parts by weight of water was added to 100 parts by weight of ALC waste material generated in the manufacturing plant to obtain a calcium silicate slurry. To 100 parts by weight of ALC solid content in this calcium silicate-based slurry, 140 parts by weight of 3.7N sulfuric acid aqueous solution was gradually added and stirred to obtain a sulfated slurry. Thereafter, the moisture-absorbing and releasing gypsum cured product of the present invention was obtained in the same manner as in Example 1. The specific surface area of the sulfated solid was 116 m 2 / g. Further, it was confirmed by X-ray diffraction and chemical analysis that this cured product was a composition mainly composed of quartz, dihydrate gypsum and silica gel. The above test was conducted on this hardened gypsum body, and the measurement results are shown in Table 2.
[0025]
Example 5
670 parts by weight of water was added to 100 parts by weight of a tobermorite-based heat insulating material (manufactured by Asahi Silicate Industry Co., Ltd.) to obtain a calcium silicate slurry. 300 parts by weight of 3.7N sulfuric acid aqueous solution was gradually added to 100 parts by weight of the heat insulating material solid content in the calcium silicate slurry and stirred to obtain a sulfated slurry. Thereafter, a sulfated solid was obtained in the same manner as in Example 1. The specific surface area of this sulfated solid was 140 m 2 / g. A slurry obtained by adding 300 parts by weight of water to 100 parts by weight of this sulfated solid was poured into a mold in the same manner as in Example 1 to obtain a moisture-absorbing / releasing gypsum cured product of the present invention. This cured product was confirmed to be a composition mainly composed of dihydrate gypsum and silica gel by X-ray diffraction and chemical analysis. The above test was conducted on this hardened gypsum body, and the measurement results are shown in Table 2.
[0026]
Example 6
A calcium silicate slurry was obtained in the same manner as in Example 5 except that a zonotlite-based heat insulating material (manufactured by Asahi Silicic Industrial Co., Ltd.) was used. To 100 parts by weight of the heat insulating material solid content in the calcium silicate slurry, 320 parts by weight of 3.7N sulfuric acid aqueous solution was gradually added and stirred to obtain a sulfated slurry. Thereafter, a sulfated solid was obtained in the same manner as in Example 1. The specific surface area of this sulfated solid was 102 m 2 / g. A slurry obtained by adding 350 parts by weight of water to 100 parts by weight of this sulfated solid was poured into a mold in the same manner as in Example 1 to obtain a moisture-absorbing / releasing gypsum hardened body of the present invention. This cured product was confirmed by X-ray diffraction and chemical analysis to be a composition mainly composed of dihydrate gypsum and silica gel. The above test was conducted on this hardened gypsum body, and the measurement results are shown in Table 2.
[0027]
Example 7
A slurry obtained by mixing 100 parts by weight of commercially available “baked gypsum” with 100 parts by weight of the sulfated solid obtained in Example 4 and adding 100 parts by weight of water to this mixture was the same as in Example 1. The moisture-absorbing / releasing gypsum of the present invention was obtained by casting into a mold. The above test was conducted on this hardened gypsum body, and the measurement results are shown in Table 2.
[0028]
Comparative Example 1
A commercially available dihydrate gypsum was inserted into a dryer at 150 ° C. for 24 hours to obtain hemihydrate gypsum. A slurry obtained from 100 parts by weight of water with respect to 100 parts by weight of the hemihydrate gypsum was poured into a mold in the same manner as in Example 1 to obtain a hardened gypsum body. The above test was conducted on this hardened gypsum body, and the measurement results are shown in Table 2.
[0029]
Comparative Example 2
Table 2 shows the measurement results of the above test for a commercial calcium silicate humidity control material manufactured by Chichibu Onoda Co., Ltd. and trade name: OSLITE (Comparative Example 2).
[0030]
Comparative Example 3
Table 2 shows the measurement results of the above test for natural wood (trade name: Spruce).
[0031]
Figure 0003903190
[0032]
Figure 0003903190
[0033]
As shown in Table 2, the gypsum hardened body according to the present invention has a moisture absorption amount exceeding that of natural wood, and the change in the moisture absorption rate is almost equivalent to that of natural wood. Have. In addition, the strength of the cured product is lower than that of gypsum alone, but most of it is higher than the commercially available calcium silicate humidity conditioning material (Comparative Example 2) and has practical strength.
[0034]
【The invention's effect】
According to the present invention, it is possible to obtain a hardened gypsum body that is comparable to natural wood and, in some cases, is superior in moisture absorption / release properties over natural wood. Moreover, since the hardened gypsum body of the present invention can be manufactured using calcium silicate-based building waste as a raw material, the manufacturing cost is low, and the waste building waste generated in large quantities can be reused.

Claims (4)

珪酸カルシウム系材料を硫酸化材料によって硫酸化反応させて得た石膏とシリカゲルを含む反応生成物を主体としたことを特徴とする吸放湿性石膏硬化体。A moisture-absorbing / releasing gypsum hardened body comprising a reaction product containing gypsum obtained by subjecting a calcium silicate material to a sulfation reaction with a sulfation material and silica gel. 硫酸化材料が硫酸または硫酸アルミニウムの1種または2種以上である請求項1に記載の吸放湿性石膏硬化体。The hygroscopic hygroscopic gypsum hardened body according to claim 1, wherein the sulfated material is one or more of sulfuric acid or aluminum sulfate. 珪酸カルシウム系材料が、CSHゲル、トバモライト、またはゾノトライトの1種または2種以上を含有する建築廃材である請求項1または2に記載の吸放湿性石膏硬化体。The moisture-absorbing / releasing gypsum hardened body according to claim 1 or 2, wherein the calcium silicate-based material is a building waste material containing one or more of CSH gel, tobermorite, or zonotrite. 珪酸カルシウム系材料が、有機繊維、無機繊維、パルプ繊維またはガラス繊維の1種または2種以上を含む請求項1〜3のいずれかに記載の吸放湿性石膏硬化体。The moisture-absorbing / releasing gypsum hardened body according to any one of claims 1 to 3, wherein the calcium silicate-based material contains one or more of organic fibers, inorganic fibers, pulp fibers, and glass fibers.
JP05165897A 1997-03-06 1997-03-06 Hygroscopic gypsum hardened body Expired - Fee Related JP3903190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05165897A JP3903190B2 (en) 1997-03-06 1997-03-06 Hygroscopic gypsum hardened body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05165897A JP3903190B2 (en) 1997-03-06 1997-03-06 Hygroscopic gypsum hardened body

Publications (2)

Publication Number Publication Date
JPH10245250A JPH10245250A (en) 1998-09-14
JP3903190B2 true JP3903190B2 (en) 2007-04-11

Family

ID=12892987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05165897A Expired - Fee Related JP3903190B2 (en) 1997-03-06 1997-03-06 Hygroscopic gypsum hardened body

Country Status (1)

Country Link
JP (1) JP3903190B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187760A (en) * 2000-12-19 2002-07-05 Asahi Kasei Corp Moisture-absorbing and -desorbing gypsum plaster board

Also Published As

Publication number Publication date
JPH10245250A (en) 1998-09-14

Similar Documents

Publication Publication Date Title
JP5490104B2 (en) Durable magnesium oxychloride cement and method therefor
CN106396596B (en) Inorganic fire-proof plate and its manufacturing method
US20060090674A1 (en) Construction material composition, construction material and production method thereof
CN101439955A (en) Preparation of 06 grade gypsum based autoclave-free aerated concrete building blocks
JPS62226875A (en) Lightweight heat insulating board and manufacture
US6001169A (en) Wood-cement board product
US5863477A (en) Method of manufacturing a wood-cement board
WO2003089383A1 (en) Non-heating clay composites for building materials
JP2002293600A (en) Fire proof, humidity conditionable building material
JP3903190B2 (en) Hygroscopic gypsum hardened body
JP2003096930A (en) Humidity-adjustable fire-protective building material and method for producing the same
JP2006001794A (en) Moisture absorbing/releasing building material and method for producing the same
JP3212591B1 (en) Humidity control building materials
JP2587306B2 (en) Fiber reinforced composite material
JPH10100308A (en) Reinforced hard gypsum board and its manufacture
KR101264117B1 (en) method of manufacturing story flooring
JP2001058884A (en) Production of calcium silicate hardened body
JP2002338327A (en) Method for producing moisture control building material
JP4197363B2 (en) Humidity control plaster, method for producing the same, and cured gypsum
JP4424891B2 (en) Refractory composition
JP3564450B2 (en) Energy-saving production method of ceramic moldings and moldings
JPH06321599A (en) Refractory coating material
JP2005306665A (en) Building material and method of manufacturing building material
JP2002255615A (en) Building material provided with moisture conditioning property and production process of the same building material
JP2003286088A (en) Moisture absorbing/releasing building material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140119

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees