JP4645548B2 - Method for removing organic substance on silicon wafer surface - Google Patents

Method for removing organic substance on silicon wafer surface Download PDF

Info

Publication number
JP4645548B2
JP4645548B2 JP2006202864A JP2006202864A JP4645548B2 JP 4645548 B2 JP4645548 B2 JP 4645548B2 JP 2006202864 A JP2006202864 A JP 2006202864A JP 2006202864 A JP2006202864 A JP 2006202864A JP 4645548 B2 JP4645548 B2 JP 4645548B2
Authority
JP
Japan
Prior art keywords
wafer
atmosphere
heat treatment
silicon wafer
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006202864A
Other languages
Japanese (ja)
Other versions
JP2008034419A (en
Inventor
辰己 草場
信之 森本
昭彦 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2006202864A priority Critical patent/JP4645548B2/en
Publication of JP2008034419A publication Critical patent/JP2008034419A/en
Application granted granted Critical
Publication of JP4645548B2 publication Critical patent/JP4645548B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)

Description

本発明は、貼り合わせウェーハの製造に際し、貼り合わせ用ウェーハの表面に付着する有機物を効果的に分解除去する方法に関するものである。   The present invention relates to a method for effectively decomposing and removing organic substances adhering to the surface of a wafer for bonding when manufacturing a bonded wafer.

一般的な貼り合わせウェーハの製造方法としては、酸化膜(絶縁膜)が形成された一枚のシリコンウェーハに、もう一枚のシリコンウェーハを貼り合わせ、この貼り合わせたシリコンウェーハを研削・研磨してSOI層を形成する方法(研削研磨法)や、SOI層側となるシリコンウェーハ(活性層用ウェーハ)の表層部に、水素イオン等を打ち込んでイオン注入層を形成したのち、支持基板用のシリコンウェーハを貼り合わせ、ついで熱処理により上記のイオン注入層で剥離することによって、SOI層を形成する方法(スマートカット法)が知られている。   As a general method of manufacturing a bonded wafer, another silicon wafer is bonded to one silicon wafer on which an oxide film (insulating film) is formed, and the bonded silicon wafer is ground and polished. After forming an ion-implanted layer by implanting hydrogen ions or the like into the surface layer part of the silicon wafer (active layer wafer) on the SOI layer side (grind polishing method) A method of forming an SOI layer (smart cut method) by bonding a silicon wafer and then peeling off the above-described ion-implanted layer by heat treatment is known.

特に後者のスマートカット法は、従来の貼り合わせ技術とは異なり、貼り合わせた後に剥離することによって、その剥離した残部をウェーハとして再利用できるという利点がある。この再利用により、貼り合わせウェーハでありながら、そのうちの1枚のウェーハ(活性層用ウェーハ)を複数回使用することが可能となるため、材料コストを大幅に削減することができるだけでなく、スマートカット法により製造したウェーハは、膜厚均一性に優れているという利点もあり、将来性のある製造方法として注目されている。   In particular, the latter smart cut method has an advantage that unlike the conventional bonding technique, the peeled remaining part can be reused as a wafer by peeling after bonding. This reuse makes it possible to use a single wafer (active layer wafer) multiple times even though it is a bonded wafer. A wafer manufactured by the cutting method has an advantage of excellent film thickness uniformity, and has attracted attention as a promising manufacturing method.

ところで、上記、貼り合わせ技術では、貼り合わせ用ウェーハの表面に付着した有機物が、ボイド及びブリスター不良の原因の一つであることが知られている。
図1(a), (b)に、貼り合わせ欠陥であるボイドとブリスターを模式で示すが、これらが発生すると、貼り合わせウェーハとしては致命的な欠陥となる。
図中、番号1は支持基板用ウェーハ、2はBOX層、3はSOI層、4は活性層用ウェーハであり、5がボイド、6がブリスターである。
By the way, in the bonding technique described above, it is known that the organic matter adhering to the surface of the bonding wafer is one of the causes of voids and blister defects.
FIGS. 1A and 1B schematically show voids and blisters that are bonding defects, and if these occur, they become fatal defects as a bonded wafer.
In the figure, reference numeral 1 is a support substrate wafer, 2 is a BOX layer, 3 is an SOI layer, 4 is an active layer wafer, 5 is a void, and 6 is a blister.

このため、貼り合わせ直前のウェーハ処理として、ウェーハ洗浄やウェーハ表面プラズマ処理が施されている。
しかしながら、シリコンウェーハの貼り合わせ直前洗浄では、ウェーハ表面に洗浄液の薬品雰囲気が残り、やはりボイドおよびブリスター不良の原因となっていた。また、プラズマ処理は減圧状態で行われるため、大気圧に戻す工程においてパーティクルが発生し、これがボイドおよびブリスター不良の原因となっていた。
For this reason, wafer cleaning and wafer surface plasma processing are performed as wafer processing immediately before bonding.
However, in the cleaning immediately before the bonding of the silicon wafer, the chemical atmosphere of the cleaning liquid remains on the wafer surface, which again causes voids and blister defects. Further, since the plasma treatment is performed in a reduced pressure state, particles are generated in the step of returning to atmospheric pressure, which causes voids and blister defects.

本発明は、上記の問題を有利に解決するもので、貼り合わせに先立って、シリコンウェーハの表面に付着した有機物を効果的に除去することにより、ボイドやブリスター等の発生のない高品質の貼り合わせウェーハを得ることができるシリコンウェーハ表面の有機物除去方法を提案することを目的とする。   The present invention advantageously solves the above-mentioned problems. Prior to bonding, high-quality bonding without generation of voids or blisters can be achieved by effectively removing organic substances adhering to the surface of the silicon wafer. An object of the present invention is to propose a method for removing organic substances on the surface of a silicon wafer that can obtain a bonded wafer.

さて、発明者らは、上記の目的を達成すべく鋭意検討を重ねた結果、適量の酸素を含有する不活性雰囲気中にて適切な条件で熱処理を施すことによって、有機物を効果的に分解除去することができ、その結果、有機物に起因した欠陥の発生を格段に低減できることの知見を得た。
本発明は、上記の知見に立脚するものである。
As a result of intensive studies to achieve the above object, the inventors have effectively decomposed and removed organic substances by performing heat treatment under appropriate conditions in an inert atmosphere containing an appropriate amount of oxygen. As a result, it was found that the occurrence of defects due to organic substances can be remarkably reduced.
The present invention is based on the above findings.

すなわち、本発明は、活性層用および支持基板用の2枚のシリコンウェーハを、絶縁膜を介して貼り合わせたのち、活性層用のシリコンを研削または層内部で剥離することによって貼り合わせウェーハを製造するに際し、
上記貼り合わせに先立ち、活性層用および支持基板用の2枚のシリコンウェーハそれぞれに対し、酸素を0.5〜5vol%含有する不活性雰囲気中にて300℃以上で1分以上の熱処理を施して上記シリコンウェーハの表面に付着した有機物を分解除去し、ついで不活性雰囲気または熱処理雰囲気のまま、50℃/min以上の速度で室温まで急冷することを特徴とするシリコンウェーハ表面の有機物除去方法である。
That is, in the present invention, after bonding two silicon wafers for the active layer and the support substrate through the insulating film, the silicon for the active layer is ground or peeled inside the layer to bond the bonded wafers. In manufacturing,
Prior to the bonding, each of the two silicon wafers for the active layer and the support substrate is subjected to heat treatment at 300 ° C. or higher for 1 minute or longer in an inert atmosphere containing 0.5 to 5 vol% oxygen. A method for removing organic substances on a surface of a silicon wafer, wherein organic substances adhering to the surface of the silicon wafer are decomposed and removed , and then rapidly cooled to room temperature at a rate of 50 ° C./min or more in an inert atmosphere or a heat treatment atmosphere .

本発明によれば、貼り合わせウェーハの製造に際し、従来懸念された有機物に起因した欠陥の発生を格段に低減することができ、その結果、欠陥のない貼り合わせウェーハを安定して得ることができる。   According to the present invention, in the production of a bonded wafer, it is possible to significantly reduce the occurrence of defects due to organic matter that has been a concern in the past, and as a result, a bonded wafer having no defects can be stably obtained. .

以下、本発明を具体的に説明する。
図2に従来法に従う、貼り合わせウェーハの製造プロセスを、また図3には本発明に従う有機物除去工程を含む、貼り合わせウェーハの製造プロセスを、それぞれ比較して示す。なお、この製造プロセスは、代表的な貼り合わせウェーハの製造方法であるスマートカット法を例に採ったものである。
Hereinafter, the present invention will be specifically described.
FIG. 2 shows a bonded wafer manufacturing process according to a conventional method, and FIG. 3 shows a bonded wafer manufacturing process including an organic substance removing process according to the present invention. This manufacturing process is an example of a smart cut method, which is a typical method for manufacturing a bonded wafer.

図2に示したとおり、従来は、活性側基板および支持側基板いずれについても、洗浄後に、貼り付けを行っていた。
しかしながら、かような処理では、基板表面に付着した有機物を完全には除去できなかったことは前述したとおりである。
As shown in FIG. 2, conventionally, both the active side substrate and the support side substrate are pasted after cleaning.
However, as described above, the organic substances adhering to the substrate surface could not be completely removed by such treatment.

これに対し、図3に示したように、洗浄後、貼り付け処理に先立って、貼り付け用の2枚のシリコンウェーハそれぞれに適切な条件下で熱処理することにより、基板表面に付着した有機物を効果的に分解除去することができる。
上記したように、基板表面に付着した有機物を効果的に分解除去するには、当該熱処理における処理条件(温度、時間および雰囲気)が重要である。
On the other hand, as shown in FIG. 3, after cleaning, prior to the bonding process, each of the two silicon wafers for bonding is subjected to a heat treatment under appropriate conditions to thereby remove the organic matter adhering to the substrate surface. It can be effectively decomposed and removed.
As described above, the treatment conditions (temperature, time, and atmosphere) in the heat treatment are important for effectively decomposing and removing organic substances adhering to the substrate surface.

まず、処理温度および時間については、300℃以上、1分以上とする必要がある。というのは、処理温度が300℃に満たないと、十分に満足のいく有機物の分解除去効果が得られないからである。この点は、処理時間が1分に満たない場合も同様である。
一方、処理温度があまりに高くなると、水素注入剥離工程を含むスマートカット法においては、注入した水素が凝集して剥離現象が起きるおそれがある。すなわち、貼り合わせ後に剥離ができない状態になる場合があるので、少なくともスマートカット法においては処理温度の上限は450℃程度とすることが望ましい。また、処理時間が10分を超えると、同様に注入した水素の凝集に起因した剥離現象が起きるおそれがあるので、処理時間の上限は10分程度とするのが好適である。
なお、かような処理温度および処理時間については、貼り合わせウェーハの製造を研削研磨法によって行う場合には、上限の制限はない。
First, the treatment temperature and time must be 300 ° C. or higher and 1 minute or longer. This is because if the processing temperature is less than 300 ° C., a sufficiently satisfactory decomposition and removal effect of organic substances cannot be obtained. This is the same when the processing time is less than 1 minute.
On the other hand, when the processing temperature is too high, in the smart cut method including the hydrogen injection and separation step, the injected hydrogen may aggregate to cause a separation phenomenon. That is, since there may be a case where peeling cannot be performed after bonding, it is desirable that the upper limit of the processing temperature be about 450 ° C. at least in the smart cut method. In addition, if the treatment time exceeds 10 minutes, there is a risk that a peeling phenomenon due to the aggregation of the injected hydrogen will occur, so the upper limit of the treatment time is preferably about 10 minutes.
In addition, about such a processing temperature and processing time, when manufacturing a bonded wafer by a grinding-polishing method, there is no upper limit.

また、この熱処理では、処理雰囲気の調整も重要である。
すなわち、シリコンウェーハに熱処理を施す場合には、通常、ArやN2等の不活性雰囲気や還元性雰囲気が用いられるが、かような不活性または還元性雰囲気では有機物を除去する効果が小さい。特にクリーンルームに多く存在するフタル酸エステル系のDBP(ジブチフタレート)は、還元性雰囲気下では750℃まで昇温しても完全には分解できない。
In this heat treatment, the adjustment of the treatment atmosphere is also important.
That is, when a heat treatment is performed on a silicon wafer, an inert atmosphere such as Ar or N 2 or a reducing atmosphere is usually used, but the effect of removing organic substances is small in such an inert or reducing atmosphere. In particular, phthalate-based DBP (dibutyphthalate), which is often present in clean rooms, cannot be completely decomposed even when the temperature is raised to 750 ° C. in a reducing atmosphere.

しかしながら、かようなDBPであっても、雰囲気中に0.5vol%以上の酸素が含まれていると300℃程度の温度でも分解が促進される。
そこで、本発明では、有機物除去熱処理における雰囲気として、ArやN2等の不活性雰囲気中に酸素を0.5vol%以上含有させるものとした。
しかしながら、雰囲気中の酸素濃度が5vol%を超えると、貼り合わせ用ウェーハの表面、特に表面に酸化膜のないウェーハの表面に酸化膜が数nmも形成され、貼り合わせた場合に酸化膜厚みに不具合が生じるので、雰囲気中の酸素濃度は5vol%以下に制限した。
However, even with such DBP, decomposition is promoted even at a temperature of about 300 ° C. if the atmosphere contains oxygen of 0.5 vol% or more.
Therefore, in the present invention, oxygen is contained in an inert atmosphere such as Ar or N 2 in an amount of 0.5 vol% or more as an atmosphere in the organic matter removal heat treatment.
However, if the oxygen concentration in the atmosphere exceeds 5 vol%, an oxide film of several nanometers is formed on the surface of the wafer for bonding, particularly the surface of the wafer having no oxide film on the surface. Since troubles occur, the oxygen concentration in the atmosphere is limited to 5 vol% or less.

なお、クリーンルーム中に存在する主な有機物としては、次のものが挙げられる。
(1) フタル酸エステル化合物
・DOP(ジオクチルフタレート) 原因:フィルター、Wfパック
・無水フタル酸 原因:Wfパック
・DBP(ジブチフタレート) 原因:Wfパック
(2) シロキサン化合物 原因:シーリング材(付着後にDOPに置換)
In addition, the following are mentioned as main organic substance which exists in a clean room.
(1) Phthalic acid ester compounds / DOP (dioctyl phthalate) Cause: Filter, Wf pack, phthalic anhydride Cause: Wf pack, DBP (dibutyphthalate) Cause: Wf pack
(2) Siloxane compound Cause: Sealing material (Substituted with DOP after adhesion)

図4に、本発明に従い、1%O2−Ar雰囲気中にて有機物除去熱処理を施した場合における、ウェーハ表面に付着した有機物の熱分解量(放出量)について調べた結果を示す。なお、同図には、比較のため、100%Ar雰囲気中にて熱処理を施した場合の結果も併せて示す。
同図から明らかなように、100%Ar雰囲気では、200℃前後でかなりの熱分解がみられたが、400℃以降にわたっても有機物の放出がだらだらと続き、600℃に至っても有機物を完全に分解できていない。
これに対し、本発明に従い、1%O2−Ar雰囲気中で熱処理した場合には、200℃から300℃にかけて大量の有機物が分解し、約500℃で有機物をほぼ完全に分解することができた。
FIG. 4 shows the results of examining the thermal decomposition amount (release amount) of the organic matter adhering to the wafer surface when the organic matter removing heat treatment is performed in a 1% O 2 —Ar atmosphere according to the present invention. For comparison, the figure also shows the results when heat treatment is performed in a 100% Ar atmosphere.
As is clear from the figure, in a 100% Ar atmosphere, considerable thermal decomposition was observed at around 200 ° C, but the release of organic matter continued gradually after 400 ° C, and even at 600 ° C, the organic matter was completely removed. It cannot be disassembled.
In contrast, when heat treatment is performed in a 1% O 2 —Ar atmosphere according to the present invention, a large amount of organic matter is decomposed from 200 ° C. to 300 ° C., and the organic matter can be almost completely decomposed at about 500 ° C. It was.

上述したとおり、酸素濃度が0.5〜5vol%の雰囲気中にて300℃以上で1分以上の熱処理を施することにより、シリコンウェーハの表面に付着した有機物を効果的に分解除去することができる。
しかしながら、このままではウェーハ冷却時およびウェーハ搬送時に、分解した有機物が再びシリコンウェーハ表面に付着するおそれがある。
冷却時におけるかような有機物の再付着を防止するためには、不活性雰囲気または熱処理雰囲気のまま、室温まで急冷する必要がある
具体的には、Ar雰囲気または酸素を5vol%以下で含むAr雰囲気中にて、50℃/min以上の速度で室温まで冷却し、同じ雰囲気下でウェーハ搬送を行うことが必要である
As described above, by performing heat treatment at 300 ° C. or higher for 1 minute or more in an atmosphere having an oxygen concentration of 0.5 to 5 vol%, organic substances attached to the surface of the silicon wafer can be effectively decomposed and removed.
However, in this state, decomposed organic substances may adhere to the silicon wafer surface again during wafer cooling and wafer transfer.
In order to prevent such redeposition of organic matter during cooling, it is necessary to rapidly cool to room temperature in an inert atmosphere or a heat treatment atmosphere.
Specifically, it is necessary to cool the wafer to room temperature at a rate of 50 ° C./min or higher in an Ar atmosphere or an Ar atmosphere containing oxygen at 5 vol% or less, and carry the wafer under the same atmosphere.

ここに、熱処理後のウェーハ表面における有機物付着量の上限を2ng/cm2(ヘキサデカン換算)とし、1ng/cm2(ヘキサデカン換算)以下まで低減することが好ましい。
また、ウェーハ冷却後、貼り合わせるまでの雰囲気中の有機物含有量は2ng/cm2(ヘキサデカン換算)以下に抑制することが好ましい。
Here, it is preferable that the upper limit of the organic substance adhesion amount on the wafer surface after the heat treatment is 2 ng / cm 2 (hexadecane conversion) and is reduced to 1 ng / cm 2 (hexadecane conversion) or less.
Moreover, it is preferable to suppress the organic matter content in the atmosphere until the wafers are bonded after cooling the wafer to 2 ng / cm 2 (in terms of hexadecane) or less.

実施例1
表1に示す種々の有機物を、酸素濃度:1vol%のAr雰囲気中にて300℃で熱処理した時の上記有機物の分解状況について調べた結果を表1に示す。なお、表1には、酸素を含有しない100%Ar雰囲気中にて熱処理した時の有機物の分解状況について調べた結果を併記する。
さらに、表1には、上記の熱処理条件下で30分間熱処理を継続した後のウェーハ表面の有機物付着量について調べた結果も併せて示す。
Example 1
Table 1 shows the results of examining the decomposition state of the organic substances when various organic substances shown in Table 1 were heat-treated at 300 ° C. in an Ar atmosphere having an oxygen concentration of 1 vol%. Table 1 also shows the results of examining the state of decomposition of organic substances when heat-treated in a 100% Ar atmosphere containing no oxygen.
Further, Table 1 also shows the results of examining the amount of organic matter deposited on the wafer surface after the heat treatment was continued for 30 minutes under the above heat treatment conditions.

Figure 0004645548
Figure 0004645548

同表から明らかなように、100%Ar雰囲気中にて熱処理した場合には、DOP(ジオクチルフタレート)および無水フタル酸は分解可能であるものの、DBP(ジブチフタレート)は分解させることができなかった。なお、このDBPは、100%Ar雰囲気中では700℃でも分解できなかった。
これに対し、本発明に従い、Ar雰囲気中に酸素を1vol%含有させた場合には、300℃の熱処理で、全ての有機物を分解させることができた。
そして、この熱処理条件下で30分間熱処理を継続した場合には、ウェーハ表面の有機物付着量を0.05ng/cm2(ヘキサデカン換算)以下まで低減することができた。
As is clear from the table, DOP (dioctyl phthalate) and phthalic anhydride were decomposable when heat-treated in a 100% Ar atmosphere, but DBP (dibutyphthalate) could not be decomposed. . This DBP could not be decomposed even at 700 ° C. in a 100% Ar atmosphere.
On the other hand, when 1 vol% of oxygen was contained in the Ar atmosphere according to the present invention, all organic substances could be decomposed by heat treatment at 300 ° C.
When the heat treatment was continued for 30 minutes under this heat treatment condition, the organic substance adhesion amount on the wafer surface could be reduced to 0.05 ng / cm 2 (hexadecane conversion) or less.

実施例2
図2に示した製造プロセスになるスマートカット法を用いて貼り合わせウェーハを製造した。その製造工程中、貼り合わせに先立つ熱処理を表2の条件で実施した。
熱処理前後における有機物の付着量について調べた結果を表2に併記する。
また、表2には、上記の熱処理後、貼り合わせを行って製造した貼り合わせウェーハの欠陥(ボイド、ブリスター)発生率について調査した結果も併せて示す。ここに、欠陥発生率は、有機物除去熱処理を行わなかった場合の欠陥発生率を不良率:1として、その相対しで示した。
なお、この実施例では、上記の熱処理後、同じ雰囲気中にて50℃/minの速度で常温まで冷却し、さらに同じ雰囲気下でウェーハ搬送を行った。
Example 2
A bonded wafer was manufactured using the smart cut method which is the manufacturing process shown in FIG. During the manufacturing process, heat treatment prior to bonding was performed under the conditions shown in Table 2.
Table 2 also shows the results of examining the amount of organic matter deposited before and after the heat treatment.
Table 2 also shows the results of investigation on the defect (void, blister) occurrence rate of bonded wafers manufactured by bonding after the above heat treatment. Here, the defect occurrence rate is shown relative to the defect occurrence rate when the defect removal rate when the organic substance removing heat treatment is not performed is defined as 1.
In this example, after the above heat treatment, the wafer was cooled to room temperature in the same atmosphere at a rate of 50 ° C./min, and the wafer was transferred in the same atmosphere.

Figure 0004645548
Figure 0004645548

同表に示したとおり、本発明に従い、適量の酸素含有雰囲気中にて適切な条件で熱処理を行った場合には、熱処理後の有機物付着量を有利に低減することができ、その結果、貼り合わせウェーハにおけるボイドやブリスターの発生を大幅に低減することができた。   As shown in the table, in accordance with the present invention, when heat treatment is performed in an appropriate amount of oxygen-containing atmosphere under appropriate conditions, the amount of organic matter deposited after the heat treatment can be advantageously reduced. The generation of voids and blisters in the bonded wafer could be greatly reduced.

貼り合わせ欠陥であるボイド(a)とブリスター(b)を示す模式図である。It is a schematic diagram which shows the void (a) and blister (b) which are bonding defects. 従来法に従う、貼り合わせウェーハの製造プロセスを示した図である。It is the figure which showed the manufacturing process of the bonded wafer according to the conventional method. 本発明に従う有機物除去工程を含む、貼り合わせウェーハの製造プロセスを示した図である。It is the figure which showed the manufacturing process of the bonded wafer including the organic substance removal process according to this invention. 1%O2−Ar雰囲気中にて有機物除去熱処理を施した場合における、ウェーハ表面に付着した有機物の熱分解量(放出量)を、雰囲気が100%Ar雰囲気の場合と比較して示した図である。The figure shows the amount of pyrolysis (release amount) of organic substances adhering to the wafer surface when the organic substance removal heat treatment is performed in a 1% O 2 -Ar atmosphere compared to the case where the atmosphere is 100% Ar atmosphere. It is.

符号の説明Explanation of symbols

1 支持基板用ウェーハ
2 BOX層
3 SOI層
4 活性層用ウェーハ
5 ボイド
6 ブリスター
1 Wafer for support substrate 2 BOX layer 3 SOI layer 4 Wafer for active layer 5 Void 6 Blister

Claims (1)

活性層用および支持基板用の2枚のシリコンウェーハを、絶縁膜を介して、または、絶縁膜なしで直接シリコンウェーハを貼り合わせたのち、活性層用のシリコンを研削または層内部で剥離することによって貼り合わせウェーハを製造するに際し、
上記貼り合わせに先立ち、活性層用および支持基板用の2枚のシリコンウェーハそれぞれに対し、酸素を0.5〜5vol%含有する不活性雰囲気中にて300℃以上で1分以上の熱処理を施して上記シリコンウェーハの表面に付着した有機物を分解除去し、ついで不活性雰囲気または熱処理雰囲気のまま、50℃/min以上の速度で室温まで急冷することを特徴とするシリコンウェーハ表面の有機物除去方法。
Two silicon wafers for the active layer and the support substrate are directly bonded to each other with or without an insulating film, and then the silicon for the active layer is ground or peeled off inside the layer. When manufacturing bonded wafers,
Prior to the bonding, each of the two silicon wafers for the active layer and the support substrate is subjected to heat treatment at 300 ° C. or higher for 1 minute or longer in an inert atmosphere containing 0.5 to 5 vol% oxygen. A method for removing organic substances on a silicon wafer surface, comprising decomposing and removing organic substances adhering to the surface of the silicon wafer, and then rapidly cooling to room temperature at a rate of 50 ° C./min or more in an inert atmosphere or a heat treatment atmosphere .
JP2006202864A 2006-07-26 2006-07-26 Method for removing organic substance on silicon wafer surface Active JP4645548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006202864A JP4645548B2 (en) 2006-07-26 2006-07-26 Method for removing organic substance on silicon wafer surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006202864A JP4645548B2 (en) 2006-07-26 2006-07-26 Method for removing organic substance on silicon wafer surface

Publications (2)

Publication Number Publication Date
JP2008034419A JP2008034419A (en) 2008-02-14
JP4645548B2 true JP4645548B2 (en) 2011-03-09

Family

ID=39123565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006202864A Active JP4645548B2 (en) 2006-07-26 2006-07-26 Method for removing organic substance on silicon wafer surface

Country Status (1)

Country Link
JP (1) JP4645548B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5843277B2 (en) * 2011-07-19 2016-01-13 株式会社東芝 Method and apparatus for supercritical drying of semiconductor substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194520A (en) * 1989-01-23 1990-08-01 Sumitomo Metal Mining Co Ltd Method and apparatus for bonding of semiconductor substrates
JPH11162975A (en) * 1997-11-28 1999-06-18 Nec Corp Manufacture of semiconductor device
JP2001044292A (en) * 1999-07-27 2001-02-16 Hitachi Ltd Semiconductor device and manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194520A (en) * 1989-01-23 1990-08-01 Sumitomo Metal Mining Co Ltd Method and apparatus for bonding of semiconductor substrates
JPH11162975A (en) * 1997-11-28 1999-06-18 Nec Corp Manufacture of semiconductor device
JP2001044292A (en) * 1999-07-27 2001-02-16 Hitachi Ltd Semiconductor device and manufacture thereof

Also Published As

Publication number Publication date
JP2008034419A (en) 2008-02-14

Similar Documents

Publication Publication Date Title
KR102312812B1 (en) Bonded soi wafer manufacturing method
JP3943782B2 (en) Reclaimed wafer reclaim processing method and reclaimed peeled wafer
CN101490806B (en) Method for reusing removed wafer
JP2007149907A (en) Reproductive processing method for peeled-off wafer, and reproductively processed peeled-off wafer according to this method
JP5245380B2 (en) Manufacturing method of SOI wafer
FR2881573A1 (en) Semiconductor substrate manufacture on insulator comprises inserting an insulting layer between semiconductor material and substrate support layer, forming an insulating layer and recovering a cluster gap
JP5780234B2 (en) Manufacturing method of SOI wafer
JP2007149723A (en) Process for manufacturing laminated wafer
JP2008016534A (en) Manufacturing method of laminated wafer
JP5109287B2 (en) Manufacturing method of semiconductor substrate
JP2007317878A (en) Manufacturing method of semiconductor substrate
JP2008004821A (en) Method for manufacturing laminated wafer
JP4645548B2 (en) Method for removing organic substance on silicon wafer surface
JP2007214255A (en) Method of manufacturing laminated soi wafer
JP2012129347A (en) Bonded soi wafer manufacturing method
JP4016701B2 (en) Manufacturing method of bonded substrate
JP5135713B2 (en) Manufacturing method of semiconductor substrate
JP2007266055A (en) Method of manufacturing simox wafer
JP4259881B2 (en) Cleaning method of silicon wafer
JP6607207B2 (en) Manufacturing method of bonded SOI wafer
JP4978544B2 (en) Epitaxial wafer manufacturing method
JP5443819B2 (en) Method for manufacturing a roughened substrate
TWI581321B (en) A method of manufacturing a bonded wafer
JP2010045345A (en) Method for manufacturing laminated wafer
JP2008227207A (en) Bonded wafer manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090616

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090616

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4645548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250