JP4645114B2 - Wiring board manufacturing method - Google Patents

Wiring board manufacturing method Download PDF

Info

Publication number
JP4645114B2
JP4645114B2 JP2004274662A JP2004274662A JP4645114B2 JP 4645114 B2 JP4645114 B2 JP 4645114B2 JP 2004274662 A JP2004274662 A JP 2004274662A JP 2004274662 A JP2004274662 A JP 2004274662A JP 4645114 B2 JP4645114 B2 JP 4645114B2
Authority
JP
Japan
Prior art keywords
plane
nickel
wiring board
peak intensity
diffraction peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004274662A
Other languages
Japanese (ja)
Other versions
JP2006093271A (en
Inventor
清智 中村
勇人 井田
智枝 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2004274662A priority Critical patent/JP4645114B2/en
Publication of JP2006093271A publication Critical patent/JP2006093271A/en
Application granted granted Critical
Publication of JP4645114B2 publication Critical patent/JP4645114B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は半導体素子収納用パッケージ等に用いられる配線基板とこれを実装する基板との間のはんだ接合に関し、鉛を含まないはんだと接合する電極の電解めっきによる表面処理に関するものである。   The present invention relates to solder bonding between a wiring board used for a package for housing a semiconductor element and a board on which the wiring board is mounted, and relates to surface treatment by electrolytic plating of an electrode to be bonded to solder not containing lead.

現在、環境への影響の観点から、配線基板などの実装に使用されるはんだは、錫と鉛からなるはんだから鉛を含まない鉛フリーはんだへ移行している。鉛フリーはんだは、鉛を含まないはんだの事で、さまざまな元素の組み合わせのはんだが研究され市場に出始めている。   Currently, from the viewpoint of environmental impact, the solder used for mounting a wiring board or the like is shifting from a solder composed of tin and lead to a lead-free solder containing no lead. Lead-free solder is a solder that does not contain lead, and various combinations of elements have been researched and are now on the market.

半導体素子収納用パッケージの周辺部材として使用される関係上、融点は半導体素子の駆動温度よりも高い必要がある。そのため本発明にかかわる鉛フリーはんだとしては、一般に高温鉛フリーはんだと呼ばれる、錫、銀の2元系、もしくはこれに任意の元素を加えた3元系の組成のことを指すこととする。   The melting point needs to be higher than the driving temperature of the semiconductor element because it is used as a peripheral member of the semiconductor element storage package. Therefore, the lead-free solder according to the present invention refers to a binary composition of tin or silver, or a ternary composition obtained by adding an arbitrary element to this, generally called high-temperature lead-free solder.

また、この鉛フリーはんだと接続される電極は、電解めっき法もしくは無電解めっき法で、信号層である銅層上にニッケル層と金層を順次形成するのが一般的である。
日本鍍金材料共同組合作成 2000めっき手帳めっき技術要覧P5
In general, an electrode connected to the lead-free solder is formed by sequentially forming a nickel layer and a gold layer on a copper layer as a signal layer by an electrolytic plating method or an electroless plating method.
Created by Japan Metallurgical Materials Cooperative Association 2000 Plating Notebook Plating Technology Handbook P5

はんだの鉛フリー化への移行にともない、はんだ接合が従来よりも困難になってきている。すなわち、高温鉛フリーはんだの組成では、はんだ自体の機械強度が高いためはんだの変形が起こりにくく、接続界面への応力集中が大きくなることによって、曲げや落下衝撃などの変形に対して界面剥がれの現象が多く見られるようになっている。   With the shift to lead-free solder, solder joining has become more difficult than before. In other words, the composition of high-temperature lead-free solder does not easily deform the solder because of the high mechanical strength of the solder itself, and the stress concentration on the connection interface increases, so that the interface peels off against deformation such as bending and drop impact. Many phenomena have been seen.

本発明は、従来の配線基板における上記問題点に鑑み案出されたもので、その課題は、配線基板の電極と鉛フリーはんだの界面が応力により剥離するのを防止し、電気的接続を確実、強固に維持することが出来る長期信頼性に優れた配線基板の製造方法を提供することにある。   The present invention has been devised in view of the above problems in the conventional wiring board, and the problem is that the interface between the electrode of the wiring board and the lead-free solder is prevented from peeling off due to stress, and the electrical connection is ensured. Another object of the present invention is to provide a method for manufacturing a wiring board that can be maintained firmly and has excellent long-term reliability.

請求項1の発明は、錫と銀の少なくとも2種の金属元素からなる、鉛を含まないはんだと接続されるための電極を有する配線基板の製造方法において、該電極は少なくとも(a)少なくとも硫酸ニッケル6水和物、塩化ニッケル6水和物、ホウ酸を含む水溶液をニッケルめっき液とし、液温40〜55℃にて、70mA/cmよりも大きいカソード電流密度で電解ニッケルめっきを行う工程、(b)電解金めっきを行う工程、により形成され、得られたニッケル層の結晶配向において、X線回折装置で測定される(111)、(200)、(220)、(311)のピークのうち、(200)面の回折ピーク強度の比率が、(111)面、(200)面、(220)面、(311)面の回折ピーク強度の合計の30/100を超えることを特徴とする配線基板の製造方法である。
The invention according to claim 1 is a method of manufacturing a wiring board having an electrode for connecting to a lead-free solder composed of at least two metal elements of tin and silver, wherein the electrode is at least (a) at least sulfuric acid A process of performing electrolytic nickel plating at a cathode current density higher than 70 mA / cm 2 at a liquid temperature of 40 to 55 ° C. using an aqueous solution containing nickel hexahydrate, nickel chloride hexahydrate and boric acid as a nickel plating solution (B ) The peak of (111), (200), (220), (311) measured by an X-ray diffractometer in the crystal orientation of the obtained nickel layer formed by the step of performing electrolytic gold plating. of, (200) ratio of the diffraction peak intensity of plane, (111) plane, (200) plane, (220) plane, from exceeding the 30/100 of the total of the diffraction peak intensity of the (311) plane A method of manufacturing a wiring substrate characterized.

請求項2の発明は、錫と銀の少なくとも2種の金属元素からなる、鉛を含まないはんだと接続されるための電極を有する配線基板の製造方法において、該電極は少なくとも(a)1リットル当たり、少なくとも硫酸ニッケル6水和物200〜250g、塩化ニッケル6水和物30〜50g、ホウ酸25〜35gを含む水溶液をニッケルめっき液とし、液温40〜55℃にて、70mA/cmよりも大きいカソード電流密度で電解ニッケルめっきを行う工程、(b)電解金めっきを行う工程、により形成され、得られたニッケル層の結晶配向において、X線回折装置で測定される(111)、(200)、(220)、(311)のピークのうち、(200)面の回折ピーク強度の比率が、(111)面、(200)面、(220)面、(311)面の回折ピーク強度の合計の30/100を超えることを特徴とする配線基板の製造方法である。 According to a second aspect of the present invention, there is provided a method of manufacturing a wiring board comprising an electrode for connecting to a lead-free solder composed of at least two metallic elements of tin and silver, wherein the electrode is at least (a) 1 liter An aqueous solution containing at least nickel sulfate hexahydrate 200 to 250 g, nickel chloride hexahydrate 30 to 50 g, and boric acid 25 to 35 g is used as a nickel plating solution at a liquid temperature of 40 to 55 ° C. and 70 mA / cm 2. A step of performing electrolytic nickel plating at a larger cathode current density than (b) a step of performing electrolytic gold plating, and the crystal orientation of the obtained nickel layer is measured with an X-ray diffractometer (111), (200), (220), among the peaks of (311), the ratio of the diffraction peak intensity of (200) plane, (111) plane, (200) plane, (220) plane, ( 11) a method of manufacturing a wiring substrate characterized in that more than 30/100 of the total of the diffraction peak intensity of the plane.

錫と銀の少なくとも2種類の金属元素からなる、鉛を含まないはんだと接続されるための電極を有する配線基板において、該電極上にニッケル層と金層が順次形成され、かつ該ニッケル層の結晶配向において、X線回折装置で測定される(111)、(200)、(220)、(311)のピークのうち、(200)面の回折ピーク強度の比率が、(111)面、(200)面、(220)面、(311)面の回折ピーク強度の合計の30/100を超えれば、鉛フリー半田ボール接合強度は十分なものであるが、30/100以下のときは、鉛フリー半田ボール接合強度が低下してしまう。本発明の製造方法によれば、X線回折装置で測定される(111)、(200)、(220)、(311)のピークについて、(200)面の回折ピーク強度の比率が、(111)面、(200)面、(220)面、(311)面の回折ピーク強度の合計の30/100を超えることが達成できる。   In a wiring board having an electrode to be connected to a lead-free solder composed of at least two kinds of metallic elements of tin and silver, a nickel layer and a gold layer are sequentially formed on the electrode, and the nickel layer In the crystal orientation, among the peaks of (111), (200), (220), and (311) measured with an X-ray diffractometer, the ratio of the diffraction peak intensity of the (200) plane is (111) plane, ( If the total diffraction peak intensity of the (200) plane, (220) plane, and (311) plane exceeds 30/100, the lead-free solder ball bonding strength is sufficient, but if it is 30/100 or less, lead Free solder ball bonding strength is reduced. According to the production method of the present invention, with respect to the peaks of (111), (200), (220), and (311) measured with an X-ray diffractometer, the ratio of the diffraction peak intensity on the (200) plane is (111 ), (200) plane, (220) plane, and (311) plane diffraction peak intensities exceeding 30/100 can be achieved.

回折ピーク強度は、ニッケルめっき液の組成にもよるが、ニッケル層の形成条件、例えば、ニッケルめっきの電流密度により変化する。そして、電流密度を高めた場合には、(200)面の強度は増加し、はんだ接合強度が上昇する。   Although depending on the composition of the nickel plating solution, the diffraction peak intensity varies depending on the nickel layer formation conditions, for example, the current density of the nickel plating. When the current density is increased, the strength of the (200) plane increases and the solder joint strength increases.

鉛フリーハンダで接合される配線基板における、電極(信号層)上にニッケル層と金層を順次形成する電極構造について、高温になる鉛フリーはんだと直接接合されるニッケル層の(200)面の回折ピーク強度の比率が、(111)面、(200)面、(220)面、(311)面の回折ピーク強度の合計の30/100を超えるならば、その電極と接合されたはんだボールの接合強度が増大することとなる。ひいては鉛フリーはんだに対し電気的接続を長期間にわたり確実に強固に維持することができる。   In an electrode structure in which a nickel layer and a gold layer are sequentially formed on an electrode (signal layer) in a wiring board to be joined with lead-free solder, the (200) surface of the nickel layer that is directly joined with high-temperature lead-free solder If the ratio of the diffraction peak intensity exceeds 30/100 of the total diffraction peak intensity of the (111) plane, (200) plane, (220) plane, and (311) plane, the solder ball bonded to that electrode Bonding strength will increase. As a result, the electrical connection with respect to the lead-free solder can be securely maintained over a long period of time.

本発明の配線基板の製造方法によれば、上述の高温になる鉛フリーはんだと直接接合されるニッケル層の(200)面の回折ピーク強度の比率が、(111)面、(200)面、(220)面、(311)面の回折ピーク強度の合計の30/100を超えるように形成できるので、その電極と接合されたハンダボールの接合強度が増大するため、ひいては鉛フリーはんだに対し電気的接続を長期間にわたり確実に強固に維持することができる。   According to the method for manufacturing a wiring board of the present invention, the ratio of the diffraction peak intensity of the (200) plane of the nickel layer that is directly bonded to the above-described high temperature lead-free solder is (111) plane, (200) plane, Since it can be formed so as to exceed 30/100 of the total diffraction peak intensity of the (220) plane and (311) plane, the bonding strength of the solder ball bonded to the electrode is increased. Connection can be reliably maintained over a long period of time.

本発明は、半導体素子収納用パッケージ等に用いられる配線基板のほか、半導体素子の搭載に鉛フリー半田を用いる場合においてはその搭載電極にも適用でき、それに相対する半導体素子上の電極に対しても適応できる。また該配線基板を実装する母基板の実装用電極にも適用できる。   The present invention can be applied to a mounting electrode in the case of using lead-free solder for mounting a semiconductor element, in addition to a wiring board used for a package for housing a semiconductor element, etc. Can also be adapted. The present invention can also be applied to mounting electrodes on a mother board on which the wiring board is mounted.

図1は本発明の実施例を示す配線基板の断面図である。図1中の1は絶縁基材、2は配線層(ソルダーレジストから露出している部分が電極となる)、3はニッケル層、4は金層、5はソルダーレジストで、構成される。絶縁基材1はセラミック系絶縁基材や、有機系絶縁基材を任意に使用できる。配線層2は銅が好ましいが、金属ペーストの焼結体などでも良い。ニッケル層3はニッケルを主成分とする層のことで、その形成方法としては電解めっき法が一般的であり、本発明に係わる製造方法も電解めっき法についてである。金層4は金を主成分とする層のことで、厚さについては任意であり、これによって本発明は影響を受けるものではない。   FIG. 1 is a cross-sectional view of a wiring board showing an embodiment of the present invention. In FIG. 1, 1 is an insulating substrate, 2 is a wiring layer (the portion exposed from the solder resist is an electrode), 3 is a nickel layer, 4 is a gold layer, and 5 is a solder resist. As the insulating substrate 1, a ceramic insulating substrate or an organic insulating substrate can be arbitrarily used. The wiring layer 2 is preferably copper, but may be a sintered body of a metal paste or the like. The nickel layer 3 is a layer containing nickel as a main component, and an electroplating method is generally used as a method for forming the nickel layer 3, and a manufacturing method according to the present invention is also an electroplating method. The gold layer 4 is a layer containing gold as a main component, and the thickness thereof is arbitrary, and the present invention is not affected by this.

本発明で用いることのできるニッケルめっき液は、所定量のニッケルイオンを含む水溶液である。ニッケルイオンの供給源としては硫酸ニッケル6水和物、スルファミン酸ニッケル4水和物、塩化ニッケル6水和物等が挙げられ、好ましくはニッケルめっき液1リットル当たり、硫酸ニッケル6水和物150〜300g、より好ましくは200〜250g、塩化ニッケル6水和物30〜50gを含むものである。あるいはニッケルめっき液1リットル当たり、スルファミン酸ニッケル4水和物300〜550g、より好ましくは400〜500g、塩化ニッケル6水和物1〜5gを含むものである。このとき、ニッケルめっき液の水素イオン濃度はpH3.0〜4.5の範囲で調整されていることが好ましく、ニッケルめっき液1リットル当たりホウ酸25〜35gを含むことが好ましい。   The nickel plating solution that can be used in the present invention is an aqueous solution containing a predetermined amount of nickel ions. Examples of the nickel ion supply source include nickel sulfate hexahydrate, nickel sulfamate tetrahydrate, nickel chloride hexahydrate, and the like, and preferably, nickel sulfate hexahydrate 150- It contains 300 g, more preferably 200 to 250 g, and nickel chloride hexahydrate 30 to 50 g. Alternatively, it contains 300 to 550 g of nickel sulfamate tetrahydrate, more preferably 400 to 500 g, and 1 to 5 g of nickel chloride hexahydrate per liter of nickel plating solution. At this time, the hydrogen ion concentration of the nickel plating solution is preferably adjusted in the range of pH 3.0 to 4.5, and preferably contains 25 to 35 g of boric acid per liter of the nickel plating solution.

ニッケルめっきワット浴(硫酸ニッケル6水和物を用いた場合)でめっきを行う場合は、銅電極上にニッケルめっきを施す条件は、40〜55℃の範囲で、70mA/cmよりも大きいカソード電流密度で行う必要がある。カソード電流密度が70mA/cm以下であると、このニッケルめっきによって形成されたニッケル層の上に金めっきを施し、電極とした場合、鉛フリーハンダを接合した際に、十分な接合強度が得られず、電極がハンダで覆われない、界面剥がれが発生する等の問題がある。
これは、形成されるニッケル層の(200)面の回折ピーク強度の比率が、(111)面、(200)面、(220)面、(311)面の回折ピーク強度の合計の30/100以下であるためである。
ニッケルめっきスルファミン酸浴でニッケルめっきを行った場合は、電流密度によらず形成されるニッケル層の(200)面の回折ピーク強度の比率が、(111)面、(200)面、(220)面、(311)面の回折ピーク強度の合計の30/100以上であるニッケル層を形成できる。
いずれの場合においても、液温は40℃〜55℃の範囲で調整されていることが好ましい。アノードとしては含硫黄ニッケルを用いることができる。
When plating is performed in a nickel plating watt bath (when nickel sulfate hexahydrate is used), the conditions for applying nickel plating on the copper electrode are in the range of 40 to 55 ° C. and a cathode larger than 70 mA / cm 2. Must be done at current density. When the cathode current density is 70 mA / cm 2 or less, gold plating is performed on the nickel layer formed by the nickel plating to obtain an electrode, and sufficient bonding strength is obtained when lead-free solder is bonded. In other words, the electrodes are not covered with solder, and peeling of the interface occurs.
This is because the ratio of the diffraction peak intensity of the (200) plane of the nickel layer to be formed is 30/100 of the total diffraction peak intensity of the (111) plane, (200) plane, (220) plane, and (311) plane. This is because it is as follows.
When nickel plating is performed in a nickel plating sulfamic acid bath, the ratio of the diffraction peak intensity of the (200) plane of the nickel layer formed regardless of the current density is (111) plane, (200) plane, (220). A nickel layer that is 30/100 or more of the total diffraction peak intensity of the (311) plane can be formed.
In any case, the liquid temperature is preferably adjusted in the range of 40 ° C to 55 ° C. As the anode, sulfur-containing nickel can be used.

以下に本発明の実施例を記し、詳細に説明する。   Examples of the present invention will be described below and will be described in detail.

[配線基板の製造1]
1.6mm厚の両面銅張積層板を脱脂、酸洗し、よく洗浄してから乾燥し、その後片面に、感光性ソルダーレジスト(太陽インキ製造(株)製:PSR_4000)を厚さ30マイクロメートルになるように暗室内でコーティングし、90℃で該感光性液状ソルダーレジストを乾燥させた。
[Manufacture of wiring board 1]
A 1.6 mm thick double-sided copper-clad laminate is degreased, pickled, thoroughly washed and dried, and then a photosensitive solder resist (manufactured by Taiyo Ink Manufacturing Co., Ltd .: PSR_4000) is 30 micrometers thick on one side The photosensitive liquid solder resist was dried at 90 ° C. in a dark room.

次に該感光性ソルダーレジストに直径500マイクロメートルのドットパターンを10個×10個の格子状に配列されるようにパターンを焼き付け、その後1%炭酸ナトリウム水溶液にて現像し、その後150℃で30分間加熱して該ソルダーレジストを完全に硬化させた。   Next, the photosensitive solder resist was baked with a dot pattern having a diameter of 500 micrometers arranged in a 10 × 10 lattice pattern, developed with a 1% aqueous sodium carbonate solution, and then developed at 150 ° C. for 30 minutes. The solder resist was completely cured by heating for a minute.

次に上記パターニングによって露出した銅電極上に、ニッケルめっきワット浴(硫酸ニッケル6水和物:240g/L 塩化ニッケル6水和物:45g/L ホウ酸:30g/L)を使用して、55℃、140mA/cmで5.5マイクロメートルのニッケル層を形成した。 Next, a nickel plating watt bath (nickel sulfate hexahydrate: 240 g / L nickel chloride hexahydrate: 45 g / L boric acid: 30 g / L) was used on the copper electrode exposed by the above patterning. A nickel layer of 5.5 micrometers was formed at 140 ° C./cm 2 .

次に該ニッケル層上に、金ストライクめっき浴(日本高純度化学(株)製:アシッドストライク)を使用して、30℃、3.5Vで約0.02マイクロメートルの金層を形成した。   Next, on the nickel layer, a gold layer having a thickness of about 0.02 micrometer was formed at 30 ° C. and 3.5 V using a gold strike plating bath (manufactured by Nippon High Purity Chemical Co., Ltd .: Acid Strike).

次に該金層上に、金めっき浴(日本高純度化学(株)製:テンペレジスト_EX)を使用して、70℃、0.4A/dmで0.5マイクロメートルの金層を形成し、配線基板を完成させた。 Next, a gold layer of 0.5 μm is formed on the gold layer at 70 ° C. and 0.4 A / dm 2 using a gold plating bath (manufactured by Nippon High Purity Chemical Co., Ltd .: Tempe Resist_EX). The wiring board was completed.

次にこの配線基板のドットパターンの電極に樹脂系フラックス(千住金属(株)製:デルタラックス529D_1)をピンで適量転写しておき、該フラックスを固定材として直径600マイクロメートルの錫_銀_銅の3元系鉛フリーはんだボール(千住金属(株)製:エコソルダーM705)を1個のドットに1個ずつ配置した。   Next, an appropriate amount of resin-based flux (Senju Metal Co., Ltd .: Deltalux 529D_1) is transferred onto the electrode of the dot pattern of this wiring board with a pin, and tin_silver_ with a diameter of 600 micrometers using the flux as a fixing material. One copper ternary lead-free solder ball (Senju Metal Co., Ltd .: Eco Solder M705) was placed on each dot.

次にこの配線基板を160℃、2分間予熱後240℃、30秒間加熱し、はんだボールを溶融させてドットパターンの電極に接合させた。   Next, this wiring board was preheated at 160 ° C. for 2 minutes and then heated at 240 ° C. for 30 seconds to melt the solder balls and bond them to the dot pattern electrodes.

常温まで放冷したところで、はんだボールのシェア強度を測定(使用した装置:デイジ社製ボンドテスタシリーズ4000、測定条件:シェアスピード300マイクロメートル毎秒、シェア高さ20マイクロメートル)したところ、標本数30で最大値1131.0g、最小値968.7g、平均値1069.1gであった。またこのときテスト後の破断面を観察したところ、100個中、ニッケル層が露出したものはなく、すべてはんだで覆われていた。   When the sample was allowed to cool to room temperature, the shear strength of the solder balls was measured (equipment used: Bond tester series 4000 manufactured by Daisy, measurement conditions: shear speed 300 micrometers per second, share height 20 micrometers). The maximum value was 1131.0 g, the minimum value was 968.7 g, and the average value was 1069.1 g. At this time, when the fracture surface after the test was observed, no nickel layer was exposed in 100 pieces, and all were covered with solder.

[結晶回折分析1]
前記と同様な銅張積層板を加工し、ソルダーレジストのパターニングによって露出した銅電極上に、同条件で同膜厚のニッケル層および金層を順次形成し配線基板を完成させた。
[Crystal diffraction analysis 1]
A copper-clad laminate similar to that described above was processed, and a nickel layer and a gold layer having the same thickness were sequentially formed on the copper electrode exposed by solder resist patterning under the same conditions to complete a wiring board.

この配線基板のドットパターン部をX線回折装置を使って結晶回折分析をおこなったところ、ニッケル層の(200)面の回折ピーク強度の比率が、(111)面、(200)面、(220)面、(311)面の回折ピーク強度の合計の40/100であった。   When a crystal diffraction analysis was performed on the dot pattern portion of this wiring board using an X-ray diffractometer, the ratio of the diffraction peak intensity of the (200) plane of the nickel layer was (111) plane, (200) plane, (220 ) Plane and (311) plane diffraction peak intensity was 40/100.

[配線基板の製造2]
実施例1と同様に銅張積層板を加工し、ソルダーレジストのパターニングによって露出した銅電極上に、実施例1と同組成のニッケルめっきワット浴を使用して、55℃、100mA/cmで5.5マイクロメートルのニッケル層を形成し、その後実施例1と同様金ストライクめっきにより0.02マイクロメートル、および金めっきにより0.5マイクロメートルの金層を順次形成して配線基板を作製した。
[Manufacture of wiring boards 2]
A copper-clad laminate was processed in the same manner as in Example 1, and on a copper electrode exposed by solder resist patterning, using a nickel plating watt bath having the same composition as in Example 1, at 55 ° C. and 100 mA / cm 2 . A nickel layer having a thickness of 5.5 μm was formed, and then a gold substrate of 0.02 μm by gold strike plating and 0.5 μm by gold plating were sequentially formed in the same manner as in Example 1 to produce a wiring board. .

次に実施例1と同組成のはんだボールを同条件で該配線基板に接合させ、常温まで放冷したところで、はんだボールのシェア強度を測定したところ、標本数30で最大値1092.6g、最小値955.8g、平均値1029.7gであった。またこのときテスト後の破断面を観察したところ、100個中、ニッケル層が露出したものはなく、すべてはんだで覆われていた。   Next, a solder ball having the same composition as in Example 1 was bonded to the wiring board under the same conditions, and when allowed to cool to room temperature, the shear strength of the solder ball was measured. The value was 955.8 g, and the average value was 1029.7 g. At this time, when the fracture surface after the test was observed, no nickel layer was exposed in 100 pieces, and all were covered with solder.

[結晶回折分析2]
実施例1と同様な銅張積層板を加工し、ソルダーレジストのパターニングによって露出した銅電極上に、同条件で同膜厚のニッケル層および金層を順次形成し配線基板を完成させた。
[Crystal diffraction analysis 2]
A copper-clad laminate similar to that of Example 1 was processed, and a nickel layer and a gold layer having the same thickness were sequentially formed under the same conditions on the copper electrode exposed by the solder resist patterning to complete the wiring board.

この配線基板のドットパターン部をX線回折装置を使って結晶回折分析をおこなったところ、ニッケル層の(200)面の回折ピーク強度の比率が、(111)面、(200)面、(220)面、(311)面の回折ピーク強度の合計の37/100であった。
(参考例1)
When a crystal diffraction analysis was performed on the dot pattern portion of this wiring board using an X-ray diffractometer, the ratio of the diffraction peak intensity of the (200) plane of the nickel layer was (111) plane, (200) plane, (220 ) Plane and (311) plane diffraction peak intensity was 37/100.
(Reference Example 1)

[配線基板の製造3]
実施例1と同様に銅張積層板を加工し、ソルダーレジストのパターニングによって露出した銅電極上に、ニッケルめっきスルファミン酸浴(スルファミン酸ニッケル4水和物:450g/L 塩化ニッケル6水和物:3g/L ホウ酸:30g/L)を使用して、50℃、140mA/cmで5.5マイクロメートルのニッケル層を形成し、その後実施例1と同様金ストライクめっきにより0.02マイクロメートル、および金めっきにより0.5マイクロメートルの金層を順次形成して配線基板を作製した。
[Manufacture of wiring board 3]
A copper-clad laminate was processed in the same manner as in Example 1, and a nickel plating sulfamic acid bath (nickel sulfamate tetrahydrate: 450 g / L nickel chloride hexahydrate: 3 g / L boric acid: 30 g / L) was used to form a nickel layer of 5.5 micrometers at 50 ° C. and 140 mA / cm 2 , and then 0.02 micrometers by gold strike plating as in Example 1. Then, a gold substrate of 0.5 μm was sequentially formed by gold plating to produce a wiring board.

次に実施例1と同組成のはんだボールを同条件で該配線基板に接合させ、常温まで放冷したところで、はんだボールのシェア強度を測定したところ、標本数30で最大値1135.2g、最小値973.5g、平均値1070.5gであった。またこのときテスト後の破断面を観察したところ、100個中、ニッケル層が露出したものはなく、すべてはんだで覆われていた。   Next, solder balls having the same composition as in Example 1 were bonded to the wiring board under the same conditions, and when allowed to cool to room temperature, the shear strength of the solder balls was measured. The value was 973.5 g, and the average value was 1070.5 g. At this time, when the fracture surface after the test was observed, no nickel layer was exposed in 100 pieces, and all were covered with solder.

[結晶回折分析3]
実施例1と同様に銅張積層板を加工し、ソルダーレジストのパターニングによって露出した銅電極上に、配線基板の製造3と同条件で同膜厚のニッケル層および金層を順次形成し配線基板を完成させた。
[Crystal diffraction analysis 3]
A copper-clad laminate is processed in the same manner as in Example 1, and a nickel layer and a gold layer having the same film thickness are sequentially formed on the copper electrode exposed by patterning of the solder resist under the same conditions as in production of the wiring substrate 3. Was completed.

この配線基板のドットパターン部をX線回折装置を使って結晶回折分析をおこなったところ、ニッケル層の(200)面の回折ピーク強度の比率が、(111)面、(200)面、(220)面、(311)面の回折ピーク強度の合計の40/100であった。
(参考例2)
When a crystal diffraction analysis was performed on the dot pattern portion of this wiring board using an X-ray diffractometer, the ratio of the diffraction peak intensity of the (200) plane of the nickel layer was (111) plane, (200) plane, (220 ) Plane and (311) plane diffraction peak intensity was 40/100.
(Reference Example 2)

[配線基板の製造4]
実施例1と同様に銅張積層板を加工し、ソルダーレジストのパターニングによって露出した銅電極上に、配線基板の製造3と同組成のニッケルめっきスルファミン酸浴を用いて、50℃100mA/cmで5.5マイクロメートルのニッケル層を形成し、その後実施例1と同様金ストライクめっきにより0.02マイクロメートル、および金めっきにより0.5マイクロメートルの金層を順次形成して配線基板を作製した。
[Manufacture of wiring board 4]
A copper-clad laminate was processed in the same manner as in Example 1, and on the copper electrode exposed by solder resist patterning, using a nickel-plated sulfamic acid bath having the same composition as in production of wiring board 3, 50 ° C. and 100 mA / cm 2. Then, a nickel layer of 5.5 μm is formed, and then a gold substrate of 0.02 μm by gold strike plating and 0.5 μm by gold plating are sequentially formed in the same manner as in Example 1 to produce a wiring board. did.

次に実施例1と同組成のはんだボールを同条件で該配線基板に接合させ、常温まで放冷したところで、はんだボールのシェア強度を測定したところ、標本数30で最大値1130.2g、最小値976.0g、平均値1079.1gであった。またこのときテスト後の破断面を観察したところ、100個中、ニッケル層が露出したものはなく、すべてはんだで覆われていた。   Next, a solder ball having the same composition as in Example 1 was joined to the wiring board under the same conditions, and when allowed to cool to room temperature, the shear strength of the solder ball was measured. The value was 976.0 g, and the average value was 1079.1 g. At this time, when the fracture surface after the test was observed, no nickel layer was exposed in 100 pieces, and all were covered with solder.

[結晶回折分析4]
実施例1と同様に銅張積層板を加工し、ソルダーレジストのパターニングによって露出した銅電極上に、配線基板の製造4と同条件で同膜厚のニッケル層および金層を順次形成し配線基板を完成させた。
[Crystal diffraction analysis 4]
A copper-clad laminate is processed in the same manner as in Example 1, and a nickel layer and a gold layer having the same film thickness are sequentially formed on the copper electrode exposed by patterning of the solder resist under the same conditions as in production of the wiring substrate 4. Was completed.

この配線基板のドットパターン部をX線回折装置を使って結晶回折分析をおこなったところ、ニッケル層の(200)面の回折ピーク強度の比率が、(111)面、(200)面、(220)面、(311)面の回折ピーク強度の合計の43/100であった。
(参考例3)
When a crystal diffraction analysis was performed on the dot pattern portion of this wiring board using an X-ray diffractometer, the ratio of the diffraction peak intensity of the (200) plane of the nickel layer was (111) plane, (200) plane, (220 ) Plane and (311) plane diffraction peak intensity was 43/100.
(Reference Example 3)

[配線基板の製造5]
実施例1と同様に銅張積層板を加工し、ソルダーレジストのパターニングによって露出した銅電極上に、配線基板の製造3と同組成のニッケルめっきスルファミン酸浴を用いて、50℃、70mA/cmで5.5マイクロメートルのニッケル層を形成し、その後実施例1と同様金ストライクめっきにより0.02マイクロメートル、および金めっきにより0.5マイクロメートルの金層を順次形成して配線基板を作製した。
[Manufacture of wiring board 5]
A copper-clad laminate was processed in the same manner as in Example 1, and on the copper electrode exposed by solder resist patterning, a nickel-plated sulfamic acid bath having the same composition as in production of wiring board 3 was used, at 50 ° C. and 70 mA / cm. Then, a nickel layer of 5.5 μm is formed in Step 2 , and then a gold layer of 0.02 μm is formed in succession by gold strike plating and a gold layer of 0.5 μm is formed by gold plating in the same manner as in Example 1. Produced.

次に実施例1と同組成のはんだボールを同条件で該配線基板に接合させ、常温まで放冷したところで、はんだボールのシェア強度を測定したところ、標本数30で最大値1098.7g、最小値977.7g、平均値1068.9gであった。またこのときテスト後の破断面を観察したところ、100個中、ニッケル層が露出したものはなく、すべてはんだで覆われていた。   Next, solder balls having the same composition as in Example 1 were joined to the wiring board under the same conditions, and when allowed to cool to room temperature, the shear strength of the solder balls was measured. The value was 977.7 g, and the average value was 1068.9 g. At this time, when the fracture surface after the test was observed, no nickel layer was exposed in 100 pieces, and all were covered with solder.

[結晶回折分析5]
実施例1と同様に銅張積層板を加工し、ソルダーレジストのパターニングによって露出した銅電極上に、配線基板の製造5と同条件で同膜厚のニッケル層および金層を順次形成し配線基板を完成させた。
[Crystal diffraction analysis 5]
A copper-clad laminate is processed in the same manner as in Example 1, and a nickel layer and a gold layer having the same film thickness are sequentially formed on the copper electrode exposed by patterning of the solder resist under the same conditions as in manufacturing the wiring board 5 Was completed.

この配線基板のドットパターン部をX線回折装置を使って結晶回折分析をおこなったところ、ニッケル層の(200)面の回折ピーク強度の比率が、(111)面、(200)面、(220)面、(311)面の回折ピーク強度の合計の50/100であった。
(参考例4)
When a crystal diffraction analysis was performed on the dot pattern portion of this wiring board using an X-ray diffractometer, the ratio of the diffraction peak intensity of the (200) plane of the nickel layer was (111) plane, (200) plane, (220 ) Plane and (311) plane were 50/100 of the total diffraction peak intensity.
(Reference Example 4)

[配線基板の製造6]
実施例1と同様に銅張積層板を加工し、ソルダーレジストのパターニングによって露出した銅電極上に、配線基板の製造3と同組成のニッケルめっきスルファミン酸浴を用いて、50℃、20mA/cmで5.5マイクロメートルのニッケル層を形成し、その後実施例1と同様金ストライクめっきにより0.02マイクロメートル、および金めっきにより0.5マイクロメートルの金層を順次形成して配線基板を作製した。
[Manufacture of wiring board 6]
The copper-clad laminate was processed in the same manner as in Example 1, and the copper electrode exposed by solder resist patterning was subjected to 50 ° C. and 20 mA / cm using a nickel-plated sulfamic acid bath having the same composition as in production of wiring board 3. 2 to form a nickel layer of 5.5 micrometer, then 0.02 micrometers in the same gold strike plating as in example 1, and sequentially formed to the wiring board gold layer of 0.5 micrometer of gold plating Produced.

次に実施例1と同組成のはんだボールを同条件で該配線基板に接合させ、常温まで放冷したところで、はんだボールのシェア強度を測定したところ、標本数30で最大値1102.2g、最小値967.4g、平均値1070.1gであった。またこのときテスト後の破断面を観察したところ、100個中、ニッケル層が露出したものはなく、すべてはんだで覆われていた。   Next, solder balls having the same composition as in Example 1 were bonded to the wiring board under the same conditions, and when allowed to cool to room temperature, the shear strength of the solder balls was measured. The value was 967.4 g, and the average value was 1070.1 g. At this time, when the fracture surface after the test was observed, no nickel layer was exposed in 100 pieces, and all were covered with solder.

[結晶回折分析6]
実施例1と同様に銅張積層板を加工し、ソルダーレジストのパターニングによって露出した銅電極上に、配線基板の製造6と同条件で同膜厚のニッケル層および金層を順次形成し配線基板を完成させた。
[Crystal diffraction analysis 6]
A copper-clad laminate is processed in the same manner as in Example 1, and a nickel layer and a gold layer having the same film thickness are sequentially formed on the copper electrode exposed by patterning of the solder resist under the same conditions as in manufacturing the wiring substrate 6. Was completed.

この配線基板のドットパターン部をX線回折装置を使って結晶回折分析をおこなったところ、ニッケル層の(200)面の回折ピーク強度の比率が、(111)面、(200)面、(220)面、(311)面の回折ピーク強度の合計の67/100であった。   When a crystal diffraction analysis was performed on the dot pattern portion of this wiring board using an X-ray diffractometer, the ratio of the diffraction peak intensity of the (200) plane of the nickel layer was (111) plane, (200) plane, (220 ) Plane and (311) plane diffraction peak intensity was 67/100.

<比較例1>
[配線基板の製造7]
実施例1と同様に銅張積層板を加工し、ソルダーレジストのパターニングによって露出した銅電極上に、実施例1と同組成のニッケルめっきワット浴を使用して、55℃、70mA/cmで5.5マイクロメートルのニッケル層を形成し、その後実施例1と同様金ストライクめっきにより0.02マイクロメートル、および金めっきにより0.5マイクロメートルの金層を順次形成して配線基板を作製した。
<Comparative Example 1>
[Manufacture of wiring boards 7]
A copper-clad laminate was processed in the same manner as in Example 1, and the copper electrode exposed by solder resist patterning was used at 55 ° C. and 70 mA / cm 2 using a nickel plating watt bath having the same composition as in Example 1. A nickel layer having a thickness of 5.5 μm was formed, and then a gold substrate of 0.02 μm by gold strike plating and 0.5 μm by gold plating were sequentially formed in the same manner as in Example 1 to produce a wiring board. .

次に実施例1と同組成のはんだボールを同条件で該配線基板に接合させ、常温まで放冷したところで、はんだボールのシェア強度を測定したところ、標本数30で最大値1085.2g、最小値912.2g、平均値991.6gであった。またこのときテスト後の破断面を観察したところ、100個中4個でニッケル層の一部が露出した。   Next, solder balls having the same composition as in Example 1 were bonded to the wiring board under the same conditions, and when allowed to cool to room temperature, the shear strength of the solder balls was measured. The value was 912.2 g, and the average value was 991.6 g. Moreover, when the fracture surface after a test was observed at this time, a part of nickel layer was exposed in four out of 100 pieces.

[結晶回折分析7]
実施例1と同様に銅張積層板を加工し、ソルダーレジストのパターニングによって露出した銅電極上に、配線基板の製造7と同条件で同膜厚のニッケル層および金層を順次形成し配線基板を完成させた。
[Crystal diffraction analysis 7]
A copper-clad laminate is processed in the same manner as in Example 1, and a nickel layer and a gold layer having the same film thickness are sequentially formed on the copper electrode exposed by patterning of the solder resist under the same conditions as in manufacturing the wiring board 7. Was completed.

この配線基板のドットパターン部をX線回折装置を使って結晶回折分析をおこなったところ、ニッケル層の(200)面の回折ピーク強度の比率が、(111)面、(200)面、(220)面、(311)面の回折ピーク強度の合計の30/100であった。   When a crystal diffraction analysis was performed on the dot pattern portion of this wiring board using an X-ray diffractometer, the ratio of the diffraction peak intensity of the (200) plane of the nickel layer was (111) plane, (200) plane, (220 ) Plane and (311) plane diffraction peak intensity was 30/100 of the total.

<比較例2>
[配線基板の製造8]
実施例1と同様に銅張積層板を加工し、ソルダーレジストのパターニングによって露出した銅電極上に、実施例1と同組成のニッケルめっきワット浴を使用して、55℃、20mA/cmで5.5マイクロメートルのニッケル層を形成し、その後実施例1と同様金ストライクめっきにより0.02マイクロメートル、および金めっきにより0.5マイクロメートルの金層を順次形成して配線基板を作製した。
<Comparative Example 2>
[Manufacture of wiring boards 8]
A copper-clad laminate was processed in the same manner as in Example 1, and a nickel plating watt bath having the same composition as in Example 1 was used on the copper electrode exposed by solder resist patterning at 55 ° C. and 20 mA / cm 2 . A nickel layer having a thickness of 5.5 μm was formed, and then a gold substrate of 0.02 μm by gold strike plating and 0.5 μm by gold plating were sequentially formed in the same manner as in Example 1 to produce a wiring board. .

次に実施例1と同組成のはんだボールを同条件で該配線基板に接合させ、常温まで放冷したところで、はんだボールのシェア強度を測定したところ、標本数30で最大値1071.2g、最小値901.4g、平均値975.6gであった。またこのときテスト後の破断面を観察したところ、100個中39個でニッケル層の一部が露出した。   Next, solder balls having the same composition as in Example 1 were joined to the wiring board under the same conditions, and when allowed to cool to room temperature, the shear strength of the solder balls was measured. The value was 901.4 g, and the average value was 975.6 g. Moreover, when the fracture surface after a test was observed at this time, a part of nickel layer was exposed by 39 out of 100 pieces.

[結晶回折分析8]
実施例1と同様に銅張積層板を加工し、ソルダーレジストのパターニングによって露出した銅電極上に、配線基板の製造8と同条件で同膜厚のニッケル層および金層を順次形成し配線基板を完成させた。
[Crystal diffraction analysis 8]
A copper-clad laminate is processed in the same manner as in Example 1, and a nickel layer and a gold layer having the same film thickness are sequentially formed on the copper electrode exposed by patterning of the solder resist under the same conditions as in manufacturing the wiring board 8. Was completed.

この配線基板のドットパターン部をX線回折装置を使って結晶回折分析をおこなったところ、ニッケル層の(200)面の回折ピーク強度の比率が、(111)面、(200)面、(220)面、(311)面の回折ピーク強度の合計の28/100であった。   When a crystal diffraction analysis was performed on the dot pattern portion of this wiring board using an X-ray diffractometer, the ratio of the diffraction peak intensity of the (200) plane of the nickel layer was (111) plane, (200) plane, (220 ) Plane and (311) plane were 28/100 of the total diffraction peak intensity.

本発明にかかわる配線基板の説明図である。It is explanatory drawing of the wiring board concerning this invention.

符号の説明Explanation of symbols

1…絶縁基材
2…配線層
3…ニッケル層
4…金層
5…ソルダーレジスト
DESCRIPTION OF SYMBOLS 1 ... Insulation base material 2 ... Wiring layer 3 ... Nickel layer 4 ... Gold layer 5 ... Solder resist

Claims (2)

錫と銀の少なくとも2種の金属元素からなる、鉛を含まないはんだと接続されるための電極を有する配線基板の製造方法において、該電極は少なくとも
(a)少なくとも硫酸ニッケル6水和物、塩化ニッケル6水和物、ホウ酸を含む水溶液をニッケルめっき液とし、液温40〜55℃にて、70mA/cmよりも大きいカソード電流密度で電解ニッケルめっきを行う工程、
(b)電解金めっきを行う工程、
により形成され、
得られたニッケル層の結晶配向において、X線回折装置で測定される(111)、(200)、(220)、(311)のピークのうち、(200)面の回折ピーク強度の比率が、(111)面、(200)面、(220)面、(311)面の回折ピーク強度の合計の30/100を超えることを特徴とする配線基板の製造方法。
In a method of manufacturing a wiring board having an electrode to be connected to a lead-free solder composed of at least two metal elements of tin and silver, the electrode comprises at least (a) at least nickel sulfate hexahydrate, chloride A step of performing electrolytic nickel plating at a cathode current density greater than 70 mA / cm 2 at a liquid temperature of 40 to 55 ° C. using an aqueous solution containing nickel hexahydrate and boric acid as a nickel plating solution;
(B) a step of performing electrolytic gold plating;
Formed by
Of the peaks of (111), (200), (220), and (311) measured with an X-ray diffractometer in the crystal orientation of the obtained nickel layer, the ratio of the diffraction peak intensity on the (200) plane is A method of manufacturing a wiring board, wherein the total diffraction peak intensity of (111) plane, (200) plane, (220) plane, and (311) plane exceeds 30/100.
錫と銀の少なくとも2種の金属元素からなる、鉛を含まないはんだと接続されるための電極を有する配線基板の製造方法において、該電極は少なくとも
(a)1リットル当たり、少なくとも硫酸ニッケル6水和物200〜250g、塩化ニッケル6水和物30〜50g、ホウ酸25〜35gを含む水溶液をニッケルめっき液とし、液温40〜55℃にて、70mA/cmよりも大きいカソード電流密度で電解ニッケルめっきを行う工程、
(b)電解金めっきを行う工程、
により形成され、
得られたニッケル層の結晶配向において、X線回折装置で測定される(111)、(200)、(220)、(311)のピークのうち、(200)面の回折ピーク強度の比率が、(111)面、(200)面、(220)面、(311)面の回折ピーク強度の合計の30/100を超えることを特徴とする配線基板の製造方法。
In a method of manufacturing a wiring board having an electrode to be connected to a lead-free solder composed of at least two metal elements of tin and silver, the electrode is at least (a) at least nickel sulfate 6 water per liter An aqueous solution containing 200 to 250 g of Japanese product, 30 to 50 g of nickel chloride hexahydrate and 25 to 35 g of boric acid is used as a nickel plating solution, and the cathode current density is higher than 70 mA / cm 2 at a liquid temperature of 40 to 55 ° C. A process of performing electrolytic nickel plating,
(B) a step of performing electrolytic gold plating;
Formed by
Of the peaks of (111), (200), (220), and (311) measured with an X-ray diffractometer in the crystal orientation of the obtained nickel layer, the ratio of the diffraction peak intensity on the (200) plane is A method of manufacturing a wiring board, wherein the total diffraction peak intensity of (111) plane, (200) plane, (220) plane, and (311) plane exceeds 30/100.
JP2004274662A 2004-09-22 2004-09-22 Wiring board manufacturing method Expired - Fee Related JP4645114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004274662A JP4645114B2 (en) 2004-09-22 2004-09-22 Wiring board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004274662A JP4645114B2 (en) 2004-09-22 2004-09-22 Wiring board manufacturing method

Publications (2)

Publication Number Publication Date
JP2006093271A JP2006093271A (en) 2006-04-06
JP4645114B2 true JP4645114B2 (en) 2011-03-09

Family

ID=36233966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004274662A Expired - Fee Related JP4645114B2 (en) 2004-09-22 2004-09-22 Wiring board manufacturing method

Country Status (1)

Country Link
JP (1) JP4645114B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7891091B2 (en) * 2008-11-25 2011-02-22 Yonggang Li Method of enabling selective area plating on a substrate
JP2011228422A (en) * 2010-04-19 2011-11-10 Dainippon Printing Co Ltd Wiring board incorporating components, and method of manufacturing the same
CN105239112A (en) * 2015-11-03 2016-01-13 江苏梦得电镀化学品有限公司 Electroplating process for high-performance direct-plating nickel plating solutions
TWI743970B (en) * 2020-08-28 2021-10-21 巨擘科技股份有限公司 Surface finish structure of multi-layer substrate and method for manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251294A (en) * 1984-05-28 1985-12-11 Toppan Printing Co Ltd Nickel plating apparatus
JPS63173389A (en) * 1987-01-13 1988-07-16 古河電気工業株式会社 Method of plating contact terminal of flexible printed wiring
JPH01259506A (en) * 1988-04-11 1989-10-17 Rohm Co Ltd Nickel-plating of electronic component
JPH03141683A (en) * 1989-10-27 1991-06-17 Furukawa Electric Co Ltd:The Printed circuit board
JPH04259392A (en) * 1991-02-15 1992-09-14 Brother Ind Ltd Formation of electroformed film
JP2002302790A (en) * 2001-04-06 2002-10-18 Ishihara Chem Co Ltd Tin-copper alloy plating method
JP2003347716A (en) * 2002-05-27 2003-12-05 Toppan Printing Co Ltd Wiring board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251294A (en) * 1984-05-28 1985-12-11 Toppan Printing Co Ltd Nickel plating apparatus
JPS63173389A (en) * 1987-01-13 1988-07-16 古河電気工業株式会社 Method of plating contact terminal of flexible printed wiring
JPH01259506A (en) * 1988-04-11 1989-10-17 Rohm Co Ltd Nickel-plating of electronic component
JPH03141683A (en) * 1989-10-27 1991-06-17 Furukawa Electric Co Ltd:The Printed circuit board
JPH04259392A (en) * 1991-02-15 1992-09-14 Brother Ind Ltd Formation of electroformed film
JP2002302790A (en) * 2001-04-06 2002-10-18 Ishihara Chem Co Ltd Tin-copper alloy plating method
JP2003347716A (en) * 2002-05-27 2003-12-05 Toppan Printing Co Ltd Wiring board

Also Published As

Publication number Publication date
JP2006093271A (en) 2006-04-06

Similar Documents

Publication Publication Date Title
JP5428667B2 (en) Manufacturing method of semiconductor chip mounting substrate
TWI462253B (en) Lead frame board, method of forming the same
TWI479626B (en) Lead frame board, method of forming the same, and semiconductor device
JP2007031826A (en) Connection terminal and substrate for mounting semiconductor having the same
US6677056B2 (en) Method for producing tin-silver alloy plating film, the tin-silver alloy plating film and lead frame for electronic parts having the plating film
JP4639964B2 (en) Wiring board manufacturing method
JP4645114B2 (en) Wiring board manufacturing method
JP3075484B2 (en) Manufacturing method of printed wiring board
JP2005123598A (en) Circuit board
JPH05327187A (en) Printed circuit board and manufacture thereof
JP2004289052A (en) Wiring board and its manufacturing method
JP5682678B2 (en) Semiconductor chip mounting substrate and manufacturing method thereof
JP5145626B2 (en) Wiring board
JP7364755B2 (en) Plating material and its manufacturing method
JP2003347716A (en) Wiring board
JP5174733B2 (en) Metal core substrate, conductive member for metal plate, and manufacturing method thereof
JP5302139B2 (en) Removal method of displacement plating layer
JP2012195465A (en) Through hole electrode substrate and manufacturing method of the same
JP4038985B2 (en) Tape carrier for semiconductor devices
JP2002057240A (en) Film carrier tape for mounting electronic component
JP2000251043A (en) Ic card and terminal board for ic card
JP4002913B2 (en) Convex connection terminal of printed wiring board and method for manufacturing the same
JP2001185836A (en) Wiring board, method and device for producing wiring board
JP3045697U (en) Package substrate for chip mounting
JP2002280728A (en) Wiring board with solder ball and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4645114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees