JP4644380B2 - Method of detecting contact failure of high frequency induction heating coil - Google Patents

Method of detecting contact failure of high frequency induction heating coil Download PDF

Info

Publication number
JP4644380B2
JP4644380B2 JP2001122064A JP2001122064A JP4644380B2 JP 4644380 B2 JP4644380 B2 JP 4644380B2 JP 2001122064 A JP2001122064 A JP 2001122064A JP 2001122064 A JP2001122064 A JP 2001122064A JP 4644380 B2 JP4644380 B2 JP 4644380B2
Authority
JP
Japan
Prior art keywords
matching
induction heating
frequency induction
heating coil
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001122064A
Other languages
Japanese (ja)
Other versions
JP2002319478A (en
Inventor
横尾  敏浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denki Kogyo Co Ltd
Original Assignee
Denki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kogyo Co Ltd filed Critical Denki Kogyo Co Ltd
Priority to JP2001122064A priority Critical patent/JP4644380B2/en
Publication of JP2002319478A publication Critical patent/JP2002319478A/en
Application granted granted Critical
Publication of JP4644380B2 publication Critical patent/JP4644380B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、被加熱体または被焼入体としてのワーク、例えばクランクシャフト、またはカムシャフト等を高周波加熱するときの高周波誘導加熱コイルの接触不良検出方法に関し、特に、前記ワークの複数箇所を同時に高周波加熱するとき、加熱中の高周波誘導加熱コイルと高周波電力を給電するディスク形変成器との間の接触異常を検出する前記高周波誘導加熱コイルの接触不良検出方法に関する。
【0002】
【従来の技術】
図4に示すように、例えば、ガソリンエンジン(またはディーゼルエンジン)用の4気筒のワーク(クランクシャフト)100は、鍛造加工によりピン部120,140,160,180とジャーナル部110,130,150,170,190とが一体成型されている。
従来、前記ワーク(クランクシャフト)100のピン部120,140,160,180とジャーナル部110,130,150,170,190の高周波焼入れは、該ワーク(クランクシャフト)100を中心軸Xのまわりに回転させながら、該ピン部120,140,160,180とジャーナル部110,130,150,170,190に、それぞれ高周波誘導加熱コイル(以下、単に高周波加熱コイルという)を載置し、転に追従して加熱、冷却を行い高周波焼入れを施工している。
【0003】
被焼入体としてのワークである、前記ワーク(クランクシャフト)100の高周波誘導加熱において、複数箇所を同時に加熱することは、生産性と焼入れ品質の向上から進められていることである。
今、図5に示すように、図示しない高周波発振機と、例えば4個の高周波加熱コイル2a,2b,2c,2dとの間に介挿され、該高周波発振機から出力される高周波加熱電力を前記高周波加熱コイル2a,2b,2c,2dに給電するそれぞれの整合部3a,3b,3c,3dのディスク形変成器Tは、前記ワーク(クランクシャフト)100のピン部120,140,160,180およびジャーナル部110,130,150,170,190の複数箇所を同時に加熱するため、できるだけ厚さを薄くしたものが使用されている。
【0004】
そして、前記ディスク形変成器Tと前記高周波加熱コイル2a,2b,2c,2dとのそれぞれの接続部8は、図5のA部およびA部拡大図に示すように、前記ディスク形変成器Tの2次側T2に円錐台形の凸部状に形成された接触凸部8a,8bが、前記高周波加熱コイル2a,2b,2c,2d側のそれぞれに断面が円錐台形の凹部状に形成された接触凹部8c,8dに嵌合するように、接続されており、この接触凸部8a,8bと接触凹部8c,8dとのそれぞれの接続により高周波電流が、前記ディスク形変成器Tから前記高周波加熱コイル2a,2b,2c,2dに流れることになる。
【0005】
【発明が解決しようとする課題】
しかしながら、従来、前記ディスク形変成器Tの前記接触凸部8a,8bと前記高周波加熱コイル2a,2b,2c,2dの接触凹部8c,8dとのそれぞれの接触子面目視確認は、該ディスク形変成器Tと前記高周波加熱コイル2a,2b,2c,2dとのレイアウトを考えると難しいまた、該ディスク形変成器Tと前記高周波加熱コイル2a,2b,2c,2dとの接触状態が良好に見える場合でも、電気的な接触は不十分な場合もあり、実際に高周波加熱をした上で、前記ワーク(クランクシャフト)100の焼入れ状態を目視による確認をしている。
【0006】
また、単数箇所の高周波加熱の場合は、電源としての高周波発振機からの加熱条件(高周波出力電圧、電流、電力または駆動周波数)を比較するか、または電源自身に内蔵されている保護回路等のアラームにより、異常状態を判断できるが、複数箇所の同時加熱の場合は、加熱条件によっては電源内蔵アラーム回路が動作することなく前記高周波加熱が完了することがある。このような状態では、加熱の良否をひとつひとつ目視で確認しなければならず、大変な労力を必要とする問題点があった。
【0007】
本発明はかかる点を鑑みなされたもので、その目的は前記問題点を解消し、前記ワーク(クランクシャフト)100の複数箇所を同時に高周波誘導加熱するとき、整合部の、前記ディスク形変成器と前記高周波加熱コイル2a,2b,2c,2dとの電気的な接触状態の不良を検出する高周波加熱コイルの接触不良検出方法を提案することにある。
【0008】
【課題を解決するための手段】
前記目的を達成するための本発明の構成は、高周波加熱コイル2a,2b,2c,2dにより、被加熱体としてのワーク(クランクシャフト)100の複数箇所を同時に高周波誘導加熱するに際し、次のとおりである。
【0009】
本発明は、高周波発振機から複数の整合部を介して、それぞれの高周波誘導加熱コイルに電力を供給して、前記ワークを高周波誘導加熱中に、前記複数の整合部のそれぞれ入力される入力電流を検出し、1)前記複数の整合部のうちのひとつの整合部への入力電流の値が、あらじめ設定された電流値を超える過電流であるか、または、2)複数の整合部のうちのひとつの整合部への力電流の値と、前記複数の整合部へ入力される入力電流の総和を前記複数の整合部の総数で除算した平均入力電流値との差が、あらじめ設定された許容アンバランス電流値を超えるアンバランス電流であるとき、ひとつの整合部と、それに接続される前記高周波誘導加熱コイルとの接触不良が検出される方法である。
【0010】
本発明は、前記接触不良が検出された後、さらに該接触不良が検出された前記ひとつの整合部に対して、高周波誘導加熱を停止するためのアラーム信号が出力される方法である。
【0011】
本発明は、前記複数の整合部のそれぞれが、整合コンデンサとディスク形変成器とが並列共振回路に形成される方法である。
【0012】
本発明は、前記複数の整合部のそれぞれに入力される入力電流は、ロゴスキーの電流検出手段により検出される方法である。
【0013】
本発明は、前記ディスク形変成器と無効電力補償用の整合部コンデンサとで前記整合部を構成し、該整合部の入力側、すなわち該整合部の前記ディスク形変成器の1次側に高周波電流検出器を配設して、常時、この入力電流を監視することにより、整合部入力電流検出回路部により、前記ディスク形変成器と前記高周波加熱コイルとの電気的な接触不良検出を行う方法である。
【0014】
【発明の実施の形態】
以下、図面に基づいて本発明の好適な実施の形態を例示的に詳しく説明する。
[第1実施例]
図1は、本発明の高周波焼入方法のひとつ実施の形態を示す回路図で、それぞれの整合部を経て高周波加熱コイルへの入力電流を、前記整合部側から監視する図であり、図2は、図1中の整合部入力電流検出回路部の構成回路図である。
【0015】
本高周波焼入方法の実施の形態である高周波焼入装置は、被加熱材として、材質が鋼材または炭素鋼材からなる4気筒エンジンのワーク(クランクシャフト)を、高周波焼入するものである本発明は、前記ワーク(クランクシャフト)100の各ピン部120,140,160,180およびジャーナル部110,130,150,170,190の円柱部の外周上に高周波加熱コイル群2を載置し、該ワーク(クランクシャフト)100をその中心軸Xを中心に回転せしめて前記高周波加熱コイル群2を前記円柱部外周に追従させつつ、前記円柱部(または該円柱部、フィレットR部およびフィレット部)を高周波誘導加熱し、しかる後に前記ピン部およびジャーナル部を冷却手段により冷却して、前記ピン部およびジャーナル部の表面を焼入する装置である。
【0016】
図1の回路図は、1台の高周波発振機(1kHz〜30kHz高周波電力を出力)から出力される高周波加熱電力を、前記高周波加熱コイル群2の4個の高周波加熱コイル2a,2b,2c,2dのそれぞれに対し、それぞれ接続される整合部3a,3b,3c,3dを介して、図示しない制御装置により切り替えられるそれぞれの切替器11a,11b,11c,11dを経て、供給するように接続されている。同時に、それぞれの前記整合部3a,3b,3c,3dへの入力電流を監視するため、図2に示す整合部入力電流検出回路部30が接続されている。
【0017】
前記4個の切替器11a,11b,11c,11d以後は、前記ワーク(クランクシャフト)100の前記ピン部および前記ジャーナル部を加熱するため、図1に示すように、それぞれ、整合コンデンサCとディスク型変成器Tからなる整合部3a,3b,3c,3dと、前記4個の前記高周波加熱コイル2a,2b,2c,2dが接続されている。ここでは、前記整合部3a,3b,3c,3dとそれぞれ接続される前記高周波加熱コイル2a,2b,2c,2dについては、4個、すなわち4加熱箇所としているがこれはいくつでも構わない。
【0018】
そして、前記整合部3a,3b,3c,3dのそれぞれへの入力電流を検出するため、該整合部3a,3b,3c,3dのそれぞれの入力側に、図3(a)に示すロゴスキーの高周波電流検出器20a,20b,20c,20dが、それぞれ配設、接続されており、該高周波電流検出器20a,20b,20c,20dから得られる、それぞれの前記入力電流を検出する信号21a,21b,21c,21dを、前記整合部入力電流検出回路部30に出力する。
【0019】
前記整合部入力電流検出回路部30は、図2に示すように、前記入力電流信号21a,21b,21c,21dが入力されており、前記入力電流の、過電流検出回路31、平均電流検出回路32および電流バランス検出回路33のほか、過電流異常検出回路34の4回路から構成されている。
そして、前記過電流検出回路31には入力過電流値設定信号が入力され、電流バランス検出回路33には許容アンバランス電流値設定信号が入力される。
【0020】
前記整合部入力電流検出回路部30に入力される、それぞれの前記高周波電流検出器20a,20b,20c,20dからの入力電流信号21a,21b,21c,21dは、前記過電流検出回路31、平均電流検出回路32および電流バランス検出回路33に入力され、前記過電流検出回路31により入力過電流設定値以上の場合は、前記入力電流信号に対応して、入力過電流信号41a,41b,41c,41dが、前記平均電流検出回路32からはそれぞれの入力電流信号21a,21b,21c,21dの平均電流値信号42が、また前記電流バランス検出回路33からは、前記平均電流検出回路32から出力された平均電流値信号42と、前記それぞれの入力電流信号21a,21b,21c,21dとのバランス値を比較して、許容アンバランス電流設定値以上のとき、前記入力電流信号に対応して、それぞれアンバランス電流信号43a,43b,43c,43dが出力される。
【0021】
さらに、前記過電流検出回路31と前記電流バランス検出回路33から、それぞれ出力された入力過電流信号41a,41b,41c,41dとアンバランス電流信号43a,43b,43c,43dとは前記過電流異常検出回路34に入力され、これらの両信号を監視し、どちらかの信号が入力されたときに、前記入力電流信号に対応して、それぞれの前記整合部3a,3b,3c,3dの過電流異常アラーム信号44a,44b,44c,44dを外部に出力している。
【0022】
ここで、前記整合部3a,3b,3c,3dと前記高周波加熱コイル2a,2b,2c,2dとの電気的な接触状態が不良の場合、前記整合部3a,3b,3c,3dのそれぞれのディスク形変成器Tの入力側から測定されるインダクタンスは、前記高周波加熱コイル2a,2b,2c,2dと前記ワーク(クランクシャフト)100との間のインダクタンス値とはならず、前記ディスク形変成器Tの1次側のインダクタンス値となる。その値は、定常値である場合は数十μHであるのに対し、数mHとなる。
【0023】
そのため、前記整合部3a,3b,3c,3dのディスク形変成器Tと前記高周波加熱コイル2a,2b,2c,2dとのそれぞれの接触状態が不良であると、該整合部3a,3b,3c,3dの共振状態は定常状態から大きく相違し、そのような状態で前記ワーク(クランクシャフト)100の複数箇所を同時加熱した場合、並列共振回路の構成となっている前記整合部3a,3b,3c,3dへの入力電流は、定常値よりも大きな値となる。
【0024】
この場合、前記高周波発振機6の出力状態は、複数箇所の加熱の状態にもよるが、加熱段階が多いほど、前記高周波発振機6での加熱条件、すなわち高周波電圧、電流、電力および駆動周波数の変化は、定常値よりも少なくなる。このような場合には、前記整合部入力電流検出回路部30が有効であり、前記整合部3a,3b,3c,3dへの入力電流は、定常値よりも大きな値であることから、前記入力過電流設定値を適正値とすることで、異常を検出して前記過電流異常アラーム信号44a,44b,44c,44dを出力し、速やかに高周波誘導加熱を停止することができる。
【0025】
次に、図3(a)に示す前記高周波電流検出器20a,20b,20c,20dは、前記整合部3a,3b,3c,3dへの入力電流を検出するロゴスキー式プローブ22をそれぞれ有し、該ロゴスキー式プローブ22は、図3(b)に示すように、前記整合部3a,3b,3c,3dへの入力給電線に1回巻き付けられている。
それぞれの前記高周波電流検出器20a,20b,20c,20dは、1本の細い長い可撓性の中空チューブ22a内に導電線23を貫通し、該中空チューブ22aの貫通端23bから、該導電線23により該中空チューブ22aの外周面に一定な間隔でコイル状に巻回された前記ロゴスキー式プローブ22を有するものである。使用され前記中空チューブ22aの材質は絶縁性の高いものを使用し、該中空チューブ22aの外周面に巻回される前記導電線23も、前記高周波加熱コイル2a,2b,2c,2dの電圧値のよりも高い電圧に対して十分な耐電圧値を有するものが使用される。
【0026】
前記高周波電流検出器20a,20b,20c,20dは、前記ロゴスキー式プローブ22の出力端に50Ωの同軸ケーブル24を接続するとともに、50Ωの終端抵抗を接続して、前記整合部3a,3b,3c,3dへの入力電流値を電圧値に変換している。前記整合部3a,3b,3c,3dへの入力電流と電圧の変換比率は、前記中空チューブ22aに巻回されるコイルの回数で決定される。また、前記ロゴスキー式プローブ22を、図3(b)に示すように、前記整合部3a,3b,3c,3dへのそれぞれの入力給電線に1回巻き付けるため、前記中空チューブ22aと前記同軸ケーブル24の一端との接続点に、該中空チューブ22aの巻き始めの先端部分を機械的に接続するための筒状の保持部材26が設けられている。前記同軸ケープル24の他端には、BNCコネクタ25が接続されている。
ここで、使用される前記高周波電流検出器20a,20b,20c,20dは、図1に示す前記整合部3a,3b,3c,3dのディスク型変成器T内に設置することも可能である。前記ロゴスキー式プローブ22の取り替えも必要がなくなる。
【0027】
以上の説明のように、本実施の形態によれば、前記整合部3a,3b,3c,3dと前記高周波加熱コイル2a,2b,2c,2dとの電気的な接触状態を目視、または加熱後の前記ワーク(クランクシャフト)100焼入れ状態の目視確認の必要はなく、極めて容易に前記接触状態の不良を検出することができる。
【0028】
以上、本発明の技術は、前記実施の形態における技術に限定されるものではなく、同様な機能を果たす他の態様の手段によってもよく、また、本発明の技術は、前記構成の範囲内において、種々の変更、付加が可能である。
【0029】
【発明の効果】
以上の説明から明らかなように本発明の高周波焼入方法によれば、高周波発振機ら複数の整合部を介して、それぞれの高周波加熱コイルに電力を供給して、前記ワーク(クランクシャフト)100を高周波誘導加熱中に、前記複数の整合部のそれぞれ入力される入力電流を検出し、1)前記複数の整合部のうちのひとつの整合部への入力電流の値が、あらじめ設定された電流値を超える過電流であるか、または、2)前記複数の整合部のうちのひとつの整合部への力電流の値と、前記複数の整合部へ入力される入力電流の総和を前記複数の整合部の総数で除算した平均入力電流値との差が、あらじめ設定された許容アンバランス電流値を超えるアンバランス電流であるとき、ひとつの整合部と、それに接続される前記高周波加熱コイルとの接触不良が検出されるので、前記ワーク(クランクシャフト)100の複数箇所を同時に高周波誘導加熱するとき、整合部の、前記ディスク形変成器の接触子と前記高周波加熱コイルの接触部との電気的な接触状態の不良を検出することができる。
【0030】
特に、加熱中において前記整合部への入力電流を監視しながら、前記接触不良を検出できるため、連続生産における焼入品質の不良品の発生を防止することができ、生産効率を向上させることができるという優れた効果を奏する。
【図面の簡単な説明】
【図1】 本発明の高周波焼入方法のひとつ実施の形態を示す回路図で、それぞれの整合部を経て高周波加熱コイルへの入力電流を、前記整合部側から監視する図である。
【図2】 図1のなかの整合部入力電流検出回路部の構成回路図である。
【図3】 図3(a)は、整合部への入力電流を検出するロゴスキープローブを有する高周波電流検出器の外観図、図3(b)は、該高周波電流検出器の使用状態を示す図である。
【図4】 4気筒エンジンのクランクシャフトの正面図である。
【図5】 それぞれの整合部と高周波加熱コイルとの接続を示す構成外観図である。
【符号の説明】
高周波加熱コイル群
2a,2b,2c,2d 高周波加熱コイル
3a,3b,3c,3d 整合部5
6 高周波発振機
8 接続部
8a,8b 接触凸部
8c,8d 接触凹部
11a,11b,11c,11d 切替器
20a,20b,20c,20d 高周波電流検出器(ロゴスキー
21a,21b,21c,21d 入力電流信号
22 ロゴスキー式プローブ
23 導電線
24 同軸ケーブル
25 BNCコネクタ
26 保持部材
30 整合部入力電流検出回路部
31 過電流検出回路
32 平均電流検出回路
33 電流バランス検出回路
34 過電流異常検出回路
41a,41b,41c,41d 入力過電流信号
42 平均電流値信号
43a,43b,43c,43d アンバランス電流信号
44a,44b,44c,44d 過電流異常アラーム信号
100 ワーク(クランクシャフト)
C 整合コンデンサ
T ディスク形変成器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for detecting a contact failure of a high-frequency induction heating coil when a workpiece to be heated or a workpiece to be hardened, such as a crankshaft or a camshaft, is heated at a high frequency. when high-frequency heating, to contact failure detecting method of the high-frequency induction heating coil for detecting a contact abnormality between the disk-shaped transformer to power the high-frequency induction pressure heat coil and the high-frequency power during heating.
[0002]
[Prior art]
As shown in FIG. 4, for example, four-cylinder gasoline engine (or diesel engines) work (crankshaft) 100, the pin portions 120,140,160,180 and the journal portion 110, 130, and 150 by forging, 170 and 190 are integrally formed.
Conventionally, induction hardening of the pin portions 120, 140, 160, 180 and the journal portions 110, 130, 150, 170, 190 of the workpiece (crankshaft) 100 is performed around the central axis X with respect to the workpiece (crankshaft) 100. while rotating, to the pin portion 120,140,160,180 and a journal portion 110,130,150,170,190, respectively high-frequency induction heating coil (hereinafter, simply referred to as high-frequency heating coil) is placed on, the rotation Followed by heating and cooling, induction hardening is applied.
[0003]
In high-frequency induction heating of the workpiece (crankshaft) 100, which is a workpiece to be hardened, simultaneously heating a plurality of locations is progressing from the improvement of productivity and quenching quality.
Now, as shown in FIG. 5, the high-frequency heating power output from the high-frequency oscillator is inserted between a high-frequency oscillator (not shown) and, for example, four high-frequency heating coils 2a, 2b, 2c, and 2d. The disk-shaped transformer T of each of the matching portions 3a, 3b, 3c, 3d that supplies power to the high-frequency heating coils 2a, 2b, 2c , 2d is a pin portion 120, 140, 160, 180 of the workpiece (crankshaft) 100. Further, in order to simultaneously heat a plurality of locations of the journal portions 110, 130, 150, 170, and 190, those having a thickness as thin as possible are used.
[0004]
Each of the connection portions 8 of the disk-shaped transformer T and the high-frequency heating coils 2a, 2b, 2c , and 2d is connected to the disk-shaped transformer T as shown in the A and A enlarged views of FIG. The contact convex portions 8a and 8b formed in the shape of a truncated cone on the secondary side T2 are formed in the shape of a truncated cone on the high-frequency heating coils 2a, 2b, 2c and 2d, respectively. The contact recesses 8c and 8d are connected so as to be fitted, and a high-frequency current is supplied from the disk-shaped transformer T to the high-frequency heating by the connection between the contact protrusions 8a and 8b and the contact recesses 8c and 8d. It will flow to the coils 2a, 2b, 2c and 2d.
[0005]
[Problems to be solved by the invention]
However, conventionally, the contact convex portions 8a of the disk-shaped transformer T, 8b and the high-frequency heating coil 2a, 2b, 2c, the contact recess 8c of 2d, the visual confirmation of the respective contact child surface with 8d, the disc shape transformer T and the high-frequency heating coil 2a, 2b, 2c, considering the layout of the 2d difficult. Even if the contact state between the disk-shaped transformer T and the high-frequency heating coils 2a, 2b, 2c , and 2d looks good, the electrical contact may be insufficient. Thus, the hardened state of the workpiece (crankshaft) 100 is visually confirmed.
[0006]
In the case of high frequency heating at a single location, the heating conditions (high frequency output voltage, current, power, or drive frequency) from the high frequency oscillator as the power source are compared, or a protection circuit incorporated in the power source itself, etc. Although an abnormal state can be determined by an alarm, in the case of simultaneous heating at a plurality of locations, depending on the heating conditions, the high-frequency heating may be completed without an alarm circuit with a built- in power supply operating. In such a state, one by one the quality of the heating must be confirmed with the naked eye, there is a problem that requires a great effort.
[0007]
The present invention has been made in view of such a point, and the object thereof is to solve the above-mentioned problem, and when a plurality of locations of the work (crankshaft) 100 are simultaneously subjected to high-frequency induction heating, the disc-shaped transformer T of the alignment portion is provided. and the high-frequency heating coil 2a, 2b, 2c, is to propose a contact failure detection method of the high circumferential NamiKa heat coil for detecting a failure of the electrical contact between 2d.
[0008]
[Means for Solving the Problems]
Upon the configuration of the present invention for achieving the object, high-frequency NamiKa heat coils 2a, 2b, 2c, by 2d, simultaneously high frequency induction heating the plurality of positions of the workpiece (crankshaft) 100 of the object to be heated, It is as follows.
[0009]
The present invention, through the matching portion of the high-frequency oscillator or al multiple, supplies power to each of the high-frequency induction heating coil, the workpiece during high frequency induction heating, is input to each of the plurality of matching portions that detects an input current, 1) the value of the input current to the matching portion of one of said plurality of matching portions, or an over-current exceeding the roughness or dimethyl set current value, or, 2) the value of one of the input current to the matching portion of the front Symbol plurality of matching portions, the plurality of average input current value of the sum of the input current inputted divided by the total number of said plurality of matching portions to matching unit the difference between the, when an unbalanced current exceeding a rough or set beforehand has been allowed unbalance current, previous SL and one of the matching portion, the contact failure is detected with the high-frequency induction heating coil connected thereto It is a method.
[0010]
The present invention is a method in which, after the contact failure is detected, an alarm signal for stopping high-frequency induction heating is output to the one matching portion in which the contact failure is further detected.
[0011]
The present invention is a method in which each of the plurality of matching units includes a matching capacitor and a disk-type transformer formed in a parallel resonant circuit.
[0012]
The present invention is a method in which an input current input to each of the plurality of matching units is detected by a Rogowski type current detecting means.
[0013]
In the present invention, the disk-shaped transformer and a matching capacitor for reactive power compensation constitute the matching section, and a high frequency is provided on the input side of the matching section, that is, on the primary side of the disk-shaped transformer of the matching section. by arranging the current detector at all times by monitoring the input current, the matching unit input current detecting circuit unit, an electrical contact not Yoken unloading of the high frequency heating coil and the disk-shaped transformer How to do it.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, exemplary embodiments of the invention will be described in detail with reference to the drawings.
[First embodiment]
FIG. 1 is a circuit diagram showing an embodiment of the induction hardening method of the present invention , and is a diagram for monitoring the input current to the high frequency heating coil through each matching section from the matching section side. FIG. 2 is a configuration circuit diagram of a matching unit input current detection circuit unit in FIG. 1.
[0015]
Induction hardening NyuSo location in an embodiment of the present induction hardening method, a material to be heated, a four-cylinder engine which material consists of steel or a carbon steel workpiece (crankshaft) is for induction hardening. In the present invention , the high-frequency heating coil group 2 is placed on the outer periphery of the cylindrical portion of each of the pin portions 120, 140, 160, 180 and the journal portions 110, 130, 150, 170, 190 of the workpiece (crankshaft) 100. The work piece (crankshaft) 100 is rotated about its central axis X so that the high-frequency heating coil group 2 follows the outer circumference of the cylindrical part, while the cylindrical part (or the cylindrical part, fillet R part and fillet part). ) Is then induction-heated, and then the pins and journals are cooled by cooling means to quench the surfaces of the pins and journals.
[0016]
The schematic of FIG. 1, one of the high-frequency oscillator 6 and the high-frequency heating power output from the (1KHz~30kHz output RF power), the high-frequency NamiKa heat four high-frequency heating coil 2a of the coil groups 2 , 2b, 2c, and 2d are supplied via respective switching units 11a, 11b, 11c, and 11d that are switched by a control device (not shown) via matching units 3a, 3b, 3c, and 3d connected thereto, respectively. To be connected. At the same time, a matching unit input current detection circuit unit 30 shown in FIG. 2 is connected to monitor the input currents to the matching units 3a, 3b, 3c, and 3d.
[0017]
After the four switching devices 11a, 11b, 11c , and 11d, the pin portion and the journal portion of the work (crankshaft) 100 are heated, and as shown in FIG. Matching portions 3a, 3b, 3c and 3d made of a mold transformer T and the four high-frequency heating coils 2a, 2b, 2c and 2d are connected. Here, the number of the high-frequency heating coils 2a, 2b, 2c , and 2d connected to the matching portions 3a, 3b, 3c , and 3d is four, that is, four heating points.
[0018]
Then, for detecting the input current to the matching unit 3a, 3b, 3c, each 3d,該整engagement portion 3a, 3b, 3c, the respective input side of the 3d, Rogowski type shown in FIG. 3 (a) High-frequency current detectors 20a, 20b, 20c, and 20d are respectively disposed and connected, and signals 21a, 21a, 20b, 20c , and 20d for detecting the respective input currents obtained from the high-frequency current detectors 20a, 20b, 20c , and 20d. 21b, 21c, and 21d are output to the matching unit input current detection circuit unit 30.
[0019]
As shown in FIG. 2, the matching unit input current detection circuit unit 30 is supplied with the input current signals 21a, 21b, 21c and 21d, and an overcurrent detection circuit 31 and an average current detection circuit for the input current. 32 and the current balance detection circuit 33, and an overcurrent abnormality detection circuit 34.
The overcurrent detection circuit 31 receives an input overcurrent value setting signal, and the current balance detection circuit 33 receives an allowable unbalance current value setting signal.
[0020]
Input current signals 21a, 21b, 21c , and 21d from the high-frequency current detectors 20a, 20b, 20c, and 20d that are input to the matching unit input current detection circuit unit 30 are the overcurrent detection circuit 31 and the average. When input to the current detection circuit 32 and the current balance detection circuit 33 and the overcurrent detection circuit 31 exceeds the input overcurrent set value, the input overcurrent signals 41a, 41b, 41c, 41d is output from the average current detection circuit 32, and the average current value signal 42 of each of the input current signals 21a, 21b, 21c , 21d is output from the average current detection circuit 32 from the current balance detection circuit 33. and the average current value signal 42, compared the respective input current signals 21a, 21b, 21c, the balance value of the 21d When exceeding the allowable unbalance current setpoint, in response to the input current signal, the unbalance current signal 43a, respectively, 43 b, 43c, 43d is outputted.
[0021]
Furthermore, the input overcurrent signals 41a, 41b, 41c and 41d and the unbalanced current signals 43a, 43b, 43c and 43d respectively outputted from the overcurrent detection circuit 31 and the current balance detection circuit 33 are the overcurrent abnormalities. is input to the detection circuit 34 monitors both of these signals, when either signal is input, in response to the input current signal, each of the matching portion 3a, 3b, 3c, 3d overcurrent Abnormal alarm signals 44a, 44b, 44c, and 44d are output to the outside.
[0022]
Here, when the electrical contact state between the matching portions 3a, 3b, 3c , 3d and the high-frequency heating coils 2a, 2b, 2c , 2d is poor, the matching portions 3a, 3b, 3c , 3d The inductance measured from the input side of the disk-shaped transformer T is not an inductance value between the high-frequency heating coils 2a, 2b, 2c , 2d and the workpiece (crankshaft) 100, but the disk-shaped transformer. This is the inductance value on the primary side of T. The value is several mH compared to several tens of μH in the case of a steady value.
[0023]
Therefore, if the contact state between the disk-shaped transformer T of the matching portions 3a, 3b, 3c and 3d and the high frequency heating coils 2a, 2b, 2c and 2d is poor, the matching portions 3a, 3b and 3c , 3d is greatly different from the steady state, and when a plurality of locations of the workpiece (crankshaft) 100 are simultaneously heated in such a state, the matching sections 3a, 3b, The input currents to 3c and 3d are larger than the steady values.
[0024]
In this case, although the output state of the high-frequency oscillator 6 depends on the heating state at a plurality of locations, the heating conditions in the high-frequency oscillator 6, that is, the high-frequency voltage, current, power, and drive frequency, as the number of heating stages increases. Is less than the steady state value. In such a case, the matching unit input current detection circuit unit 30 is effective, and the input current to the matching units 3a, 3b, 3c , and 3d is larger than a steady value. by a proper value overcurrent setting value, the detected abnormal overcurrent abnormality alarm signal 44a, and outputs 44b, 44c, and 44d, it is possible to quickly stop the high-frequency induction pressure heat.
[0025]
Next, each of the high-frequency current detectors 20a, 20b, 20c, and 20d shown in FIG. 3A has a Rogowski probe 22 that detects an input current to the matching portions 3a, 3b, 3c , and 3d. As shown in FIG. 3B, the Rogowski probe 22 is wound around the input power supply line to the matching portions 3a, 3b, 3c , and 3d once.
Each of the high-frequency current detectors 20a, 20b, 20c , and 20d passes through the conductive wire 23 in one thin long flexible hollow tube 22a, and the conductive wire extends from the through end 23b of the hollow tube 22a. 23 has the Rogowski probe 22 wound around the outer peripheral surface of the hollow tube 22a in a coil shape at a constant interval. The material of the hollow tube 22a that is used is used having a high insulating property, the conductive wire 23, the high-frequency heating coil 2a, 2b, 2c, 2d voltage wound around the outer peripheral surface of the hollow tube 22a The one having a sufficient withstand voltage value for a voltage higher than the value is used.
[0026]
The high-frequency current detectors 20a, 20b, 20c , and 20d have a 50Ω coaxial cable 24 connected to the output end of the Rogowski probe 22 and a 50Ω termination resistor connected to the matching sections 3a, 3b, The input current value to 3c and 3d is converted into a voltage value. The conversion ratio between the input current and voltage to the matching sections 3a, 3b, 3c and 3d is determined by the number of coils wound around the hollow tube 22a. In addition, as shown in FIG. 3B, the Rogowski probe 22 is wound around the input tube to each of the matching portions 3a, 3b, 3c , and 3d once, so that it is coaxial with the hollow tube 22a. the connection point between one end of the cable 24, tubular holding member 26 for mechanically connecting the winding tip of the beginning of the hollow tube 22a is provided. A BNC connector 25 is connected to the other end of the coaxial cable 24.
Here, SL before being used high-frequency current detector 20a, 20b, 20c, 20d, it is also possible to install the matching unit 3a, 3b, 3c, 3d disc type transformer in T that shown in FIG. 1 is there. The Rogowski probe 22 need not be replaced.
[0027]
As described above, according to the present embodiment, the electrical contact state between the matching portions 3a, 3b, 3c , 3d and the high-frequency heating coils 2a, 2b, 2c , 2d is visually observed or after heating. There is no need for visual confirmation of the hardened state of the workpiece (crankshaft) 100 , and the contact state defect can be detected very easily.
[0028]
As described above, the technology of the present invention is not limited to the technology in the above-described embodiment, and may be a means of another aspect that performs the same function, and the technology of the present invention is within the scope of the above configuration. Various modifications and additions are possible.
[0029]
【The invention's effect】
According to the induction hardening method of the present invention As apparent from the above description, through the matching portion of the high-frequency oscillator 6 or al multiple, supplies power to each of the high-frequency NamiKa heat coils, the the workpiece (crankshaft) 100 during high frequency induction heating, detects an input current input to each of the plurality of matching portions, 1) the value of one of the input current to the matching portion of the plurality of matching portions but whether the overcurrent exceeds a rough or dimethyl set current value, or, 2) the value of one of the input current to the matching portion of the plurality of matching portions, to said plurality of matching portions when the sum of the input current inputted difference between the average input current value divided by the total number of said plurality of matching portions are unbalanced current exceeding a rough or set beforehand has been allowed unbalance current value, before Symbol and one of the matching portion, the high-frequency connected thereto Since poor contact between the pressurized heat coil is detected, when at the same time high-frequency induction heating plurality of locations of said workpiece (crankshaft) 100, a matching section, in contact with the disc-shaped transformer contacts of the high-frequency heating coil It is possible to detect a failure in electrical contact with the part.
[0030]
In particular, since the contact failure can be detected while monitoring the input current to the matching section during heating, it is possible to prevent the occurrence of defective products with quenching quality in continuous production, and to improve production efficiency. There is an excellent effect of being able to.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing an embodiment of an induction hardening method according to the present invention, in which an input current to a high frequency heating coil through each matching section is monitored from the matching section side.
2 is a configuration circuit diagram of a matching unit input current detection circuit unit in FIG. 1; FIG.
[3] FIG. 3 (a) is an external view of a high-frequency current detector having a Rogowski type probe for detecting an input current to the matching section, FIG. 3 (b), the use state of the high-frequency current detector FIG.
FIG. 4 is a front view of a crankshaft of a four-cylinder engine.
FIG. 5 is a structural external view showing the connection between each matching section and the high-frequency heating coil.
[Explanation of symbols]
2 high-frequency heating coil groups 2a, 2b, 2c, 2d high-frequency heating coils 3a, 3b, 3c, 3d matching section 5
6 High-frequency oscillator 8 Connection portion 8a, 8b Contact convex portion 8c, 8d Contact concave portion 11a, 11b, 11c, 11d Switching device 20a, 20b, 20c, 20d High-frequency current detector (Rogowski type )
21a, 21b, 21c, 21d Input current signal
22 Rogowski probe
23 Conductive wire
24 Coaxial cable
25 BNC connector
26 Holding member 30 Matching section input current detection circuit section 31 Overcurrent detection circuit 32 Average current detection circuit 33 Current balance detection circuit 34 Overcurrent abnormality detection circuits 41a, 41b, 41c, 41d Input overcurrent signal 42 Average current value signal 43a, 43b, 43c, 43d Unbalance current signal 44a, 44b, 44c, 44d Overcurrent abnormality alarm signal 100 Workpiece (crankshaft)
C Matching capacitor T Disc type transformer

Claims (4)

高周波誘導加熱コイルにより、被加熱体としてのワークの複数箇所を同時に高周波誘導加熱するに際し、高周波発振機から複数の整合部を介して、それぞれの高周波誘導加熱コイルに電力を供給して、前記ワークを高周波誘導加熱中に、前記複数の整合部のそれぞれ入力される入力電流を検出し、
1)前記複数の整合部のうちのひとつの整合部への入力電流の値が、あらじめ設定された電流値を超える過電流であるか、または
2)複数の整合部のうちのひとつの整合部への力電流の値と、前記複数の整合部へ入力される入力電流の総和を前記複数の整合部の総数で除算した平均入力電流値との差が、あらじめ設定された許容アンバランス電流値を超えるアンバランス電流であるとき、
前記ひとつの整合部と、それに接続される前記高周波誘導加熱コイルとの接触不良が検出されることを特徴とする高周波誘導加熱コイルの接触不良検出方法。
By high-frequency induction heating coil, when simultaneously high frequency induction heating the plurality of positions of the workpiece as the body to be heated, through the matching portion of the high-frequency oscillator or al multiple, supplies power to each of the high-frequency induction heating coil, the workpiece during high frequency induction heating, detects an input current input to each of the plurality of matching portions,
1) the value of the input current of the plurality to one of the matching portion of the matching portion, whether the overcurrent exceeds a rough or dimethyl set current value, or 2) of the previous SL plurality of matching portions the value of the input current to one of the matching portion of the difference between the average input current value divided by the total number of said plurality of matching portions of the sum of the input current inputted to said plurality of matching portions, Flip or rough When the unbalance current exceeds the set allowable unbalance current value,
A contact failure detection method for a high frequency induction heating coil, wherein a contact failure between the one matching portion and the high frequency induction heating coil connected thereto is detected.
前記接触不良が検出された後、さらに該接触不良が検出された前記ひとつの整合部に対して、高周波誘導加熱を停止するためのアラーム信号が出力されることを特徴とする請求項1に記載の高周波誘導加熱コイルの接触不良検出方法。 The alarm signal for stopping the high frequency induction heating is output to the one matching portion where the contact failure is further detected after the contact failure is detected. Of detecting poor contact of high-frequency induction heating coil. 前記複数の整合部のそれぞれが、整合コンデンサとディスク形変成器とが並列共振回路に形成されることを特徴とする請求項1に記載の高周波誘導加熱コイルの接触不良検出方法。  The contact failure detection method for a high frequency induction heating coil according to claim 1, wherein each of the plurality of matching portions includes a matching capacitor and a disk-type transformer formed in a parallel resonance circuit. 前記複数の整合部のそれぞれに入力される入力電流は、ロゴスキーの電流検出手段により検出されることを特徴とする請求項1に記載の高周波誘導加熱コイルの接触不良検出方法。The method for detecting contact failure of a high-frequency induction heating coil according to claim 1, wherein an input current input to each of the plurality of matching portions is detected by a Rogowski type current detection means.
JP2001122064A 2001-04-20 2001-04-20 Method of detecting contact failure of high frequency induction heating coil Expired - Fee Related JP4644380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001122064A JP4644380B2 (en) 2001-04-20 2001-04-20 Method of detecting contact failure of high frequency induction heating coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001122064A JP4644380B2 (en) 2001-04-20 2001-04-20 Method of detecting contact failure of high frequency induction heating coil

Publications (2)

Publication Number Publication Date
JP2002319478A JP2002319478A (en) 2002-10-31
JP4644380B2 true JP4644380B2 (en) 2011-03-02

Family

ID=18971834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001122064A Expired - Fee Related JP4644380B2 (en) 2001-04-20 2001-04-20 Method of detecting contact failure of high frequency induction heating coil

Country Status (1)

Country Link
JP (1) JP4644380B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022097972A (en) * 2020-12-21 2022-07-01 電気興業株式会社 High-frequency induction heating device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101110789B1 (en) * 2010-04-09 2012-02-24 쿠쿠전자주식회사 Malfunction detecting apparatus of heater in induction heating cooker

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03133085A (en) * 1989-10-17 1991-06-06 Nissan Motor Co Ltd Device for detecting unburned state in induction heating
JPH0745363A (en) * 1993-07-30 1995-02-14 Tokin Corp Load circuit's abnormality detecting apparatus
JPH0794265A (en) * 1993-09-24 1995-04-07 Fuji Denshi Kogyo Kk Abnormality detecting method for a plurality of high frequency heating coils

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03133085A (en) * 1989-10-17 1991-06-06 Nissan Motor Co Ltd Device for detecting unburned state in induction heating
JPH0745363A (en) * 1993-07-30 1995-02-14 Tokin Corp Load circuit's abnormality detecting apparatus
JPH0794265A (en) * 1993-09-24 1995-04-07 Fuji Denshi Kogyo Kk Abnormality detecting method for a plurality of high frequency heating coils

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022097972A (en) * 2020-12-21 2022-07-01 電気興業株式会社 High-frequency induction heating device

Also Published As

Publication number Publication date
JP2002319478A (en) 2002-10-31

Similar Documents

Publication Publication Date Title
JP5611710B2 (en) Magnetic resonance imaging system
US11796709B2 (en) Detection coil, detection apparatus, and detection system
JP4644380B2 (en) Method of detecting contact failure of high frequency induction heating coil
KR20090039080A (en) Noncontact measurement method of current on superconductor wires connected in parallel
JP4713757B2 (en) Induction hardening method
Stella et al. The RFX magnet system
KR20190133973A (en) Method for skinning coil of motor
EP1465215B1 (en) Manufacture of shim windings
JP2002363639A (en) Method for detecting defective follow-up of induction heating coil
JPH0727812A (en) Insulation diagnosing device
JP2002181850A (en) Current detector
JP2745101B2 (en) High frequency heating equipment
JP2878333B2 (en) Unburned detector for induction heating
JPS625024Y2 (en)
JPH10123194A (en) Detecting method for defect of insulated wire
JP2009087545A (en) Induction heating device
JPS62177207A (en) Melt-spinning method
JP3762551B2 (en) Induction heating coil for heating inner peripheral surface of cylindrical body
JPH05304745A (en) Stator iron core abnormality detector
JP3623815B2 (en) Induction heating device for annular ring
JP3502799B2 (en) Heating method and heating device for inner surface of hole
JPH1073631A (en) Method and apparatus for detecting defect of insulated wire
JPH02267215A (en) High frequency heating coil and surface quenching apparatus using the coil
JPS62222542A (en) Method and device for inspecting magnetron
JP2019001342A (en) Method and device for detecting abnormality of tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101206

R150 Certificate of patent or registration of utility model

Ref document number: 4644380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees