JP4642948B2 - Semi-aromatic polyamideimide resin and method for producing the same - Google Patents

Semi-aromatic polyamideimide resin and method for producing the same Download PDF

Info

Publication number
JP4642948B2
JP4642948B2 JP06693898A JP6693898A JP4642948B2 JP 4642948 B2 JP4642948 B2 JP 4642948B2 JP 06693898 A JP06693898 A JP 06693898A JP 6693898 A JP6693898 A JP 6693898A JP 4642948 B2 JP4642948 B2 JP 4642948B2
Authority
JP
Japan
Prior art keywords
aromatic
formula
semi
aliphatic diamine
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06693898A
Other languages
Japanese (ja)
Other versions
JPH11263840A (en
Inventor
一雅 竹内
憲 七海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP06693898A priority Critical patent/JP4642948B2/en
Publication of JPH11263840A publication Critical patent/JPH11263840A/en
Application granted granted Critical
Publication of JP4642948B2 publication Critical patent/JP4642948B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polyurethanes Or Polyureas (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、脂肪族ジアミンと無水トリメリット酸を反応させて得られるジイミドジカルボン酸の混合物と芳香族ジイソシアネートとを反応させて得られる半芳香族ポリアミドイミド樹脂及びその製造方法に関する。
【0002】
【従来の技術】
ポリアミドイミド樹脂は、通常、無水トリメリット酸と芳香族ジイソシアネートとの反応によるイソシアネート法で合成されるか、芳香族ジアミンとトリメリット酸クロライドとの反応による酸クロライド法で合成されている。イソシアネート法では、工業的に製造され市販されている芳香族ジイソシアネートの種類が少なく制限されるために製造できるポリアミドイミド樹脂も制限されてしまい特性に幅を持たせることができにくい。一方、酸クロライド法は、副生成するHClを脱離する工程が必要となり、これを除去する等の精製コストが必要となり、高価になるという問題を抱えている。特開平3−181511号公報には、芳香族トリカルボン酸無水物とエーテル結合を有するジアミンとをアミン成分過剰の状態で反応させ、次いで、ジイソシアネートを反応させる二段法を特徴とするポリアミドイミド樹脂の製造方法が提案されている。また、特開平4−182466号公報には、芳香族ジアミンと無水トリメリット酸を反応させ純度の高いジイミドジカルボン酸を製造する方法が提案されている。この方法を用いて製造したジイミドジカルボン酸とジイソシアネートを反応させれば、種類の多い芳香族ジアミンをそのまま使用することができること、酸クロライド法のようにHClが副生成することもなく、容易にポリアミドイミドが合成できること、また、副生成物が少なく充分な分子量のポリアミドイミド樹脂が合成できることなどが考えられる。
芳香族系のジアミンと芳香族トリカルボン酸無水物と芳香族系のジイソシアネートから上記の方法で得られるポリアミドイミド樹脂は弾性率は高いが、低弾性率化が要求される用途には使用できなかった。耐熱性を有するポリアミドイミド樹脂の接着性を維持したまま低弾性率化することが望まれていたがポリアミドイミド樹脂の従来の製造法では実現できていなかった。
【0003】
【発明が解決しようとする課題】
芳香族トリカルボン酸無水物とエーテル結合を有するジアミンとをアミン成分過剰の状態で反応させ、次いでジイソシアネートを反応させる特開平3−181511号公報に提案の方法では、第一段の反応で酸無水物とアミノ基の反応の他にカルボン酸とアミノ基の反応を必要とし、実際、脱水剤を使用している。従って、第一段の反応ですでにオリゴマー化し、第二段のジイソシアネートとの反応では、種々の分子量のオリゴマーとジイソシアネートが反応することになり、複数の反応が競争反応になることから、副生成物ができることが避けられず、特性的に充分な分子量を持つポリアミドイミド樹脂が生成できない問題点があった。また、特開平4−182466号公報の方法を用いて、製造したジイミドジカルボン酸とジイソシアネートを反応させれば、工業的に製造され、市販されている種類の多い芳香族ジアミンを使用することができ、得られるポリアミドイミド樹脂も目的に応じて改質でき、酸クロライド法のようにHClが副生成することもなく、容易にポリアミドイミド樹脂を合成することができる。しかし、芳香族環が2個以下のジアミンを用いると特開平4−182466号公報に記載されているように、生成したジイミドジカルボン酸が、合成溶媒に不溶になるために、ジイミドジカルボン酸の段階で、ろ過しなければならなくなり、ろ過の工程や精製の工程が増え、コストアップの要因になっている。また、精製したジイミドジカルボン酸の溶解性が低いため、該ジイミドジカルボン酸と芳香族ジイソシアネートを反応させようとしても、分子量が大きくならず、そのワニスをフィルム形状に製膜しようとしても、できないという問題があった。
これらの欠点を改良し、芳香環を3個以上含むジアミンと無水トリメリット酸を非プロトン性極性溶媒中で水と共沸可能な芳香族炭化水素とともに反応させ、副生成する水を留去することで、溶解性の高い芳香族ジイミドジカルボン酸を合成し、さらにこのものとジイソシアネートを反応させることで高分子量のポリアミドイミド樹脂が合成されている。しかしながらこの方法で上記の芳香環を3個以上含むジアミンを脂肪族ジアミンに置き換えて、合成をしても充分な分子量の半芳香族ポリアミドイミド樹脂は得られなかった。
本発明は、上記のような事情に鑑み、低弾性率でしかも可とう性のある半芳香族ポリアミドイミド樹脂とその製造方法を提供することにある。
【0004】
【課題を解決するための手段】
本発明者は、ろ過工程が不要で、高分子量の半芳香族ポリアミドイミド樹脂の合成を鋭意検討した結果、本発明に到達した。本発明は、一般式(1式)で示される脂肪族ジアミンと無水トリメリット酸を反応させて得られる一般式(2式)で示されるジイミドジカルボン酸と一般式(3式)で示される芳香族ジイソシアネートを反応させて得られる半芳香族ポリアミドイミド樹脂であって、前記脂肪族ジアミンが、末端アミノ化ポリプロピレングリコールである半芳香族ポリアミドイミド樹脂である。
【0005】
【化4】
2N−R1−NH2 (1式)
(ここでR1は置換基を有していてもよくC,O,Hからなる2価の脂肪族基を示す)
【0006】
【化5】

Figure 0004642948
【0007】
【化6】
Figure 0004642948
【0008】
すなわち、一般式(1式)で示される脂肪族ジアミンに無水トリメリット酸を反応させた場合、反応生成物として得られるジイミドジカルボン酸も溶解性が高く、次の段階で溶液状態でジイソシアネートと反応させることが可能となり、合成効率が向上する。このとき一般式(1式)で示される脂肪族ジアミンのmol数に対し2.05〜2.30倍molの無水トリメリット酸を反応させ、続くジイソシアネートはジアミンのmol数の1.05〜1.50倍mol好ましくは1.20〜1.30倍molの量を反応させることで触媒などを添加することなく高分子量の半芳香族ポリアミドイミド樹脂を合成することが可能となる。
本発明は、一般式(1式)で示される脂肪族ジアミンと無水トリメリット酸とのmol比を脂肪族ジアミン/無水トリメリット酸=1/2.05〜1/2.30で反応させて得られる一般式(2式)で示されるジイミドジカルボン酸を含む混合物と一般式(3式)で示される芳香族ジイソシアネートとを脂肪族ジアミンと芳香族ジイソシアネートのmol比が脂肪族ジアミン/芳香族ジイソシアネート=1/1.05〜1/1.50で反応させて得られる半芳香族ポリアミドイミド樹脂である。
さらに、本発明は、前記の一般式(1式)で示される脂肪族ジアミンと無水トリメリット酸をmol比で脂肪族ジアミン/無水トリメリット酸=1/2.05〜1/2.30で非プロトン性極性溶媒の存在下に、50〜90℃で反応させ、さらに水と共沸可能な芳香族炭化水素を非プロトン性極性溶媒の0.1〜0.5重量比で投入し、120〜180℃で反応を行い一般式(2式)で示されるジイミドジカルボン酸を含む混合物を製造した後、その溶液から芳香族炭化水素を除去し、一般式(3式)で示される芳香族ジイソシアネートの反応を行う半芳香族ポリアミドイミド樹脂の製造方法である。そして、非プロトン性極性溶媒がN−メチル−2−ピロリドンであり、水と共沸可能な芳香族炭化水素がトルエンであると好ましい半芳香族ポリアミドイミド樹脂の製造方法である。
【0009】
【発明の実施の形態】
本発明においては、前記の脂肪族ジアミンのmol量に対し2.05〜2.30倍mol量の無水トリメリット酸を反応させてジイミドジカルボン酸を含む混合物を合成する。この脂肪族ジイミドジカルボン酸を含む混合物を製造するに際し、非プロトン性極性溶媒と水と共沸可能な芳香族炭化水素の混合溶液を使用する。反応終了後は芳香族炭化水素は蒸留などにより除去し続いて芳香族ジイソシアネートと反応させてポリアミドイミド樹脂を生成するが、生成した半芳香族ポリアミドイミド樹脂は前記の非プロトン性極性溶媒に溶解し、溶媒のワニスとして製品となる。
【0010】
本発明で用いる一般式(1式)で示されるジアミンとしては末端アミノ化ポリプロピレングリコールある。末端アミノ化ポリプロピレングリコールとしては分子量の異なるジェファーミンD−230,D−400,D−2000,D−4000(テキサコケミカル社製商品名)が入手できる。これらの脂肪族ジアミンを無水トリメリット酸(以下、TMAと略す)と反応させる。本発明の半芳香族ポリアミドイミド樹脂の製造方法で用いる非プロトン性極性溶媒と芳香族炭化水素溶媒は、脂肪族ジアミン及びTMAと反応しない有機溶媒であり、使用する混合溶液の種類とその混合比は重要である。
【0011】
本発明で使用する非プロトン性極性溶媒として、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド、N−メチル−2−ピロリドン、4−ブチロラクトン、スルホラン、シクロヘキサノン等が例示できる。イミド化反応には、高温を要するため沸点の高い、N−メチル−2−ピロリドン(以下NMPと略す)が、特に好ましい。これらの溶媒中に含まれる水分量はTMAが水和して生成するトリメリット酸により、充分に反応が進行せず、ポリマの分子量低下の原因になるため0.2重量%以下で管理されていることが好ましい。また、本発明で使用する非プロトン性極性溶媒の量は、特に制限されないが、芳香族ジアミンと無水トリメリット酸を合わせた重量の割合が、多いとTMAの溶解性が低下し充分な反応が行えなくなることや、少ないとコストアップの要因になることから、10重量%〜70重量%の範囲になることが好ましい。
【0012】
本発明で使用する水と共沸可能な芳香族炭化水素として、ベンゼン、キシレン、エチルベンゼン、トルエン等の芳香族炭化水素が例示でき、特に沸点が比較的低く、作業環境上有害性の少ないトルエンが好ましく、使用量は、非プロトン性極性溶媒の0.1〜0.5重量比の範囲が好ましい。
芳香族炭化水素の使用量が上記の範囲未満であると共沸蒸留による水の除去効果が低下し、さらに、芳香族ジイミドジカルボン酸の生成促進も低下する。
芳香族炭化水素の使用量が上記の範囲を超えると反応中間体の脂肪族アミドカルボン酸や生成した脂肪族ジイミドジカルボン酸が析出してしまうおそれがある。
芳香族炭化水素はジイミドジカルボン酸を製造する際、副生成した水を共沸させて、系外に水を除去するために用いる。このため水と溶媒が同時に留去し溶媒中の芳香族炭化水素量が減少するおそれがある。したがって、反応系内に存在する芳香族炭化水素溶媒量を一定割合に維持するために、例えばコック付きの水分定量受器等を用いて系外に流出した溶媒を水と分離した後に系内に戻したり、補充する方法等を行うことが好ましい。
【0013】
本発明での反応条件は、はじめに、脂肪族ジアミンと無水トリメリット酸の反応において非プロトン性極性溶媒の存在下に、50〜90℃で反応させなければならない。そしてこの反応の後、芳香族炭化水素を投入し、水と共沸する温度で反応させる。このときの反応温度は芳香族炭化水素量やコック付きの水分定量受器の容量によって変化するが、特に、120〜180℃で反応させることが好ましい。
反応は、反応系で水が副生しなくなるまで行われ、特に、水が理論量留去していることを確認することが好ましい。
反応溶液は芳香族炭化水素を含んだ状態でも良いが、上記の反応後、温度を上げて芳香族ジイソシアネートと反応させるため、さらに温度を上げて芳香族炭化水素を留去してから次の反応を行うことが好ましい。得られたジイミドジカルボン酸を含む混合物は、芳香族ジイソシアネートと反応させることで分子量の高い半芳香族ポリアミドイミド樹脂を生成することができる。本発明で用いる芳香族ジイソシアネートとして、4,4’−ジフェニルメタンジイソシアネート(以下MDIと略す)、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、ナフタレン−1,5−ジイソシアネート、2,4−トリレンダイマー等が例示できる。これらは単独でまたは組み合わせて用いることができる。特にMDIは、分子構造においてイソシアネート基が離れており、ポリアミドイミドの分子中におけるアミド基やイミド基の濃度が相対的に低くなり、溶解性が向上するため好ましい。反応温度は、低いと反応時間が長くなることや、高すぎるとイソシアネート同士で反応するのでこれらを防止するため、100〜200℃で反応させることが好ましい。
【0014】
【実施例】
次に実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
環流冷却器を連結したコック付き25mlの水分定量受器、温度計、撹拌器を備えた1リットルのセパラブルフラスコに脂肪族ジアミンとしてジェファーミンD−230(テキサコケミカル社製、アミン当量8.25)48.4g(0.20mol)、TMA(無水トリメリット酸)80.7g(0.42mol)を、非プロトン性極性溶媒としてNMP(N−メチル−2−ピロリドン)350gを仕込み、80℃で30分間撹拌した。そして水と共沸可能な芳香族炭化水素としてトルエン100mlを投入してから温度を上げ約160℃で2時間環流させた。水分定量受器に水が約7.2ml以上たまっていること、水の流出が見られなくなっていることを確認し、水分定量受器にたまっている流出液を除去しながら、約190℃まで温度を上げて、トルエンを除去した。その後、溶液を室温に戻し、芳香族ジイソシアネートとしてMDI(4,4’−ジフェニルメタンジイソシアネート)60.1g(0.24mol)を投入し、190℃で2時間反応させた。反応終了後、半芳香族ポリアミドイミド樹脂のNMP溶液を得た。
【0015】
(実施例2〜3、参考例1
環流冷却器を連結したコック付き25mlの水分定量受器、温度計、撹拌器を備えた1リットルのセパラブルフラスコに脂肪族ジアミンとして表1に示したジアミンを0.1mol、TMA(無水トリメリット酸)40.3g(0.21mol)を、非プロトン性極性溶媒としてNMPを表1に示した量を仕込み、80℃で30分間撹拌した。そして水と共沸可能な芳香族炭化水素としてトルエン100mlを投入してから温度を上げ約160℃で2時間環流させた。水分定量受器に水が約3.6ml以上たまっていること、水の流出が見られなくなっていることを確認し、水分定量受器にたまっている流出液を除去しながら、約190℃まで温度を上げて、トルエンを除去した。その後、溶液を室温に戻し、芳香族ジイソシアネートとしてMDI(4,4’−ジフェニルメタンジイソシアネート)30.0g(0.12mol)を投入し、190℃で2時間反応させた。反応終了後、半芳香族ポリアミドイミド樹脂のNMP溶液を得た。
【0016】
(比較例1)
環流冷却器を連結したコック付き25mlの水分定量受器、温度計、撹拌器を備えた1リットルのセパラブルフラスコに芳香族ジアミンとしてBAPP(2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン)、82.1g(0.20mol)、TMA(無水トリメリット酸)76.9g(0.40mol)、非プロトン性極性溶媒としてNMP390gを仕込み、80℃で30分間撹拌した。そして水と共沸可能な芳香族炭化水素としてトルエン100mlを投入してから温度を上げ約160℃で2時間環流させた。水分定量受器に水が約7.2ml以上たまっていること、水の流出が見られなくなっていることを確認し、水分定量受器にたまっている流出液を除去しながら、約190℃まで温度を上げて、トルエンを除去した。その後、溶液を室温に戻し、芳香族ジイソシアネートとしてMDI(4,4’−ジフェニルメタンジイソシアネート)50.0g(0.20mol)を投入し、190℃で2時間反応させた。反応終了後、芳香族ポリアミドイミド樹脂のNMP溶液を得た。
【0017】
実施例1〜3、参考例1及び比較例1で得られた溶液ワニスをガラス板に塗布し150℃で30分乾燥した後、フィルムをガラス板から剥がして、さらに180℃で1時間加熱し、厚さ約60μmの半芳香族ポリアミドイミド樹脂のフィルムを得た。そしてこのフィルムのガラス転移温度、引っ張り強さ、破断伸び及び常温における引っ張り弾性率を測定した。ガラス転移温度は得られたフィルムを用いDVE(広域動的粘弾性測定装置、測定周波数10Hz)によりtanδの最大値の値を用いた。また、引っ張り強さ、破断伸び及び常温における引っ張り弾性率は、得られたフィルムを10mm幅の短冊にカットし、引っ張り試験器により、クロスヘッドスピード50mm/分で測定した。分子量は得られたワニス50mgを採取し、ジメチルホルムアミド/テトラヒドロフラン=1/1(リン酸0.06M、臭化リチウム0.03M含有)溶液5mlを加えGPCにより測定し、標準ポリスチレンに換算して求めた。これらの結果を表2に示した。
【0018】
【表1】
Figure 0004642948
【0019】
【表2】
Figure 0004642948
【0020】
【発明の効果】
本発明の半芳香族ポリアミドイミド樹脂及びその製造方法は、樹脂膜に低弾性率が要求されるワニス、接着剤及び接着フィルム等に使用できる。それは従来の製造方法に比べ、脂肪族ジアミン及び脂肪族ジイミドジカルボン酸が溶媒に可溶であり、またそれと芳香族ジイソシアネートを反応させて得られる半芳香族ポリアミドイミド樹脂も溶媒に可溶であるためである。また、副生物がないため、ろ過や精製工程が不要であり、分子量の大きい半芳香族ポリアミドイミド樹脂が製造できるので、製膜性や樹脂特性に優れ工業的に有用である。実施例に記載したように、脂肪族ジイミドを主鎖に導入したポリアミドイミド樹脂は、芳香族ジイミドを持つポリアミドイミド樹脂に比べて弾性率が低くなっている。従って熱応力の低減が要求される配線板用途、半導体材料などに応用することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semi-aromatic polyamideimide resin obtained by reacting a mixture of diimidedicarboxylic acid obtained by reacting an aliphatic diamine and trimellitic anhydride with an aromatic diisocyanate, and a method for producing the same.
[0002]
[Prior art]
Polyamideimide resins are usually synthesized by an isocyanate method by reaction of trimellitic anhydride and aromatic diisocyanate, or by an acid chloride method by reaction of aromatic diamine and trimellitic acid chloride. In the isocyanate method, since the types of aromatic diisocyanates that are industrially produced and marketed are limited, the polyamideimide resin that can be manufactured is also limited, and it is difficult to provide a wide range of characteristics. On the other hand, the acid chloride method has a problem in that it requires a step of eliminating HCl produced as a by-product, which requires a purification cost such as removing it, and is expensive. JP-A-3-181511 discloses a polyamide-imide resin characterized by a two-step process in which an aromatic tricarboxylic acid anhydride and a diamine having an ether bond are reacted in an excess of an amine component and then reacted with a diisocyanate. Manufacturing methods have been proposed. Japanese Patent Application Laid-Open No. 4-182466 proposes a method for producing diimide dicarboxylic acid having a high purity by reacting an aromatic diamine and trimellitic anhydride. If diimide dicarboxylic acid produced using this method is reacted with diisocyanate, many kinds of aromatic diamines can be used as they are, and HCl is not generated as a by-product unlike the acid chloride method, and polyamides can be easily used. It is conceivable that an imide can be synthesized and that a polyamideimide resin having a sufficient molecular weight with few by-products can be synthesized.
Polyamideimide resin obtained by the above method from aromatic diamine, aromatic tricarboxylic acid anhydride and aromatic diisocyanate has high elastic modulus, but could not be used for applications requiring low elastic modulus. . Although it has been desired to reduce the modulus of elasticity while maintaining the adhesion of the heat-resistant polyamideimide resin, it has not been realized by the conventional production method of polyamideimide resin.
[0003]
[Problems to be solved by the invention]
In the method proposed in Japanese Patent Laid-Open No. 3-181511 in which an aromatic tricarboxylic acid anhydride and a diamine having an ether bond are reacted in an amine component excess state and then a diisocyanate is reacted, the acid anhydride is reacted in the first stage reaction. In addition to the reaction between the carboxylic acid and the amino group, a reaction between the carboxylic acid and the amino group is required, and a dehydrating agent is actually used. Therefore, it is already oligomerized in the first stage reaction, and in the reaction with the second stage diisocyanate, oligomers of various molecular weights react with the diisocyanate. There is a problem that it is unavoidable that a product can be formed, and a polyamideimide resin having a molecular weight sufficient in characteristics cannot be produced. Moreover, if the diimide dicarboxylic acid and diisocyanate which were manufactured using the method of Unexamined-Japanese-Patent No. 4-182466 are made to react, many industrially manufactured and commercially available aromatic diamines can be used. The obtained polyamide-imide resin can also be modified according to the purpose, and the polyamide-imide resin can be easily synthesized without HCl being by-produced unlike the acid chloride method. However, when a diamine having 2 or less aromatic rings is used, as described in JP-A-4-182466, the produced diimide dicarboxylic acid becomes insoluble in the synthesis solvent. Therefore, it has to be filtered, which increases the number of filtration processes and purification processes, resulting in increased costs. In addition, because the solubility of the purified diimide dicarboxylic acid is low, the molecular weight does not increase even if the diimide dicarboxylic acid and the aromatic diisocyanate are reacted, and the varnish cannot be formed into a film shape. was there.
To improve these disadvantages, a diamine containing 3 or more aromatic rings and trimellitic anhydride are reacted with an aromatic hydrocarbon azeotropic with water in an aprotic polar solvent to distill off the by-product water. Thus, a high-molecular-weight polyamide-imide resin is synthesized by synthesizing highly soluble aromatic diimide dicarboxylic acid and further reacting this with diisocyanate. However, even if the diamine containing three or more aromatic rings is replaced with an aliphatic diamine by this method, a semi-aromatic polyamideimide resin having a sufficient molecular weight cannot be obtained.
In view of the circumstances as described above, it is an object of the present invention to provide a semi-aromatic polyamideimide resin having a low elastic modulus and flexibility and a method for producing the same.
[0004]
[Means for Solving the Problems]
The present inventor has arrived at the present invention as a result of intensive studies on the synthesis of a high-molecular-weight semi-aromatic polyamide-imide resin without requiring a filtration step. The present invention provides a diimide dicarboxylic acid represented by the general formula (formula 2) obtained by reacting an aliphatic diamine represented by the general formula (formula 1) with trimellitic anhydride and an aromatic represented by the general formula (formula 3). A semi-aromatic polyamideimide resin obtained by reacting an aromatic diisocyanate , wherein the aliphatic diamine is a terminally aminated polypropylene glycol .
[0005]
[Formula 4]
H 2 N—R 1 —NH 2 (1 set)
(Here, R 1 represents a divalent aliphatic group consisting of C, O and H which may have a substituent)
[0006]
[Chemical formula 5]
Figure 0004642948
[0007]
[Chemical 6]
Figure 0004642948
[0008]
In other words, when trimellitic anhydride is reacted with the aliphatic diamine represented by the general formula (formula 1), diimide dicarboxylic acid obtained as a reaction product is also highly soluble and reacts with diisocyanate in a solution state in the next stage. It is possible to improve the synthesis efficiency. At this time, 2.05 to 2.30 times mol of trimellitic anhydride is reacted with respect to the mol number of the aliphatic diamine represented by the general formula (formula 1), and the subsequent diisocyanate is 1.05 to 1 mol number of the diamine. It is possible to synthesize a high-molecular-weight semi-aromatic polyamide-imide resin by adding an amount of .50 times mol, preferably 1.20 to 1.30 times mol, without adding a catalyst or the like.
In the present invention, the molar ratio of the aliphatic diamine represented by the general formula (formula 1) to trimellitic anhydride is reacted at aliphatic diamine / trimellitic anhydride = 1 / 2.05 to 1 / 2.30. The resulting mixture containing the diimide dicarboxylic acid represented by the general formula (formula 2) and the aromatic diisocyanate represented by the general formula (formula 3) have an aliphatic diamine / aromatic diisocyanate molar ratio of aliphatic diamine / aromatic diisocyanate. = Semi-aromatic polyamideimide resin obtained by reacting at 1 / 1.05 to 1 / 1.50.
Further, in the present invention, the aliphatic diamine represented by the general formula (formula 1) and trimellitic anhydride are in a molar ratio of aliphatic diamine / trimellitic anhydride = 1 / 2.05 to 1 / 2.30. In the presence of an aprotic polar solvent, the reaction is carried out at 50 to 90 ° C., and an aromatic hydrocarbon azeotroped with water is added in an amount of 0.1 to 0.5 weight ratio of the aprotic polar solvent, After reacting at ˜180 ° C. to produce a mixture containing diimidedicarboxylic acid represented by the general formula (formula 2), the aromatic hydrocarbon is removed from the solution, and the aromatic diisocyanate represented by the general formula (formula 3) It is a manufacturing method of the semi-aromatic polyamideimide resin which performs reaction of these. And it is a manufacturing method of a preferable semi-aromatic polyamide-imide resin in which the aprotic polar solvent is N-methyl-2-pyrrolidone and the aromatic hydrocarbon azeotropic with water is toluene.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a mixture containing diimidedicarboxylic acid is synthesized by reacting 2.05 to 2.30 times the amount of trimellitic anhydride with respect to the mol amount of the aliphatic diamine. In producing the mixture containing the aliphatic diimide dicarboxylic acid, a mixed solution of an aprotic polar solvent and an aromatic hydrocarbon azeotropic with water is used. After completion of the reaction, the aromatic hydrocarbon is removed by distillation or the like and subsequently reacted with an aromatic diisocyanate to produce a polyamideimide resin. The produced semiaromatic polyamideimide resin is dissolved in the aprotic polar solvent. It becomes a product as a solvent varnish.
[0010]
The diamine represented by general formula (1 type) used in the present invention is a youngest end aminated polypropylene glycols. As the terminal aminated polypropylene glycol, Jeffamine D-230, D-400, D-2000, and D-4000 (trade names, manufactured by Texaco Chemical Co., Ltd.) having different molecular weights are available. These aliphatic diamines are reacted with trimellitic anhydride (hereinafter abbreviated as TMA). The aprotic polar solvent and the aromatic hydrocarbon solvent used in the method for producing the semi-aromatic polyamideimide resin of the present invention are organic solvents that do not react with aliphatic diamine and TMA, and the type and mixing ratio of the mixed solution to be used Is important.
[0011]
Examples of the aprotic polar solvent used in the present invention include dimethylacetamide, dimethylformamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone, 4-butyrolactone, sulfolane, and cyclohexanone. N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP), which has a high boiling point because it requires a high temperature, is particularly preferable. The amount of water contained in these solvents is controlled to 0.2% by weight or less because the reaction does not proceed sufficiently due to trimellitic acid produced by hydration of TMA and the molecular weight of the polymer is reduced. Preferably it is. The amount of the aprotic polar solvent used in the present invention is not particularly limited. However, if the proportion of the combined weight of the aromatic diamine and trimellitic anhydride is large, the solubility of TMA decreases and sufficient reaction occurs. Since it becomes impossible to carry out, and if it becomes small, it becomes a factor of cost increase, It is preferable to become the range of 10 weight%-70 weight%.
[0012]
Examples of aromatic hydrocarbons that can be azeotroped with water used in the present invention include aromatic hydrocarbons such as benzene, xylene, ethylbenzene, and toluene. In particular, toluene having a relatively low boiling point and less harmful to the working environment is used. Preferably, the amount used is in the range of 0.1 to 0.5 weight ratio of the aprotic polar solvent.
If the amount of aromatic hydrocarbon used is less than the above range, the effect of removing water by azeotropic distillation is reduced, and further, the promotion of production of aromatic diimide dicarboxylic acid is also reduced.
If the amount of aromatic hydrocarbon used exceeds the above range, the reaction intermediate aliphatic amide carboxylic acid or the generated aliphatic diimide dicarboxylic acid may be precipitated.
Aromatic hydrocarbons are used for removing water out of the system by azeotropically forming water produced as a by-product when diimide dicarboxylic acid is produced. For this reason, water and a solvent may be distilled off at the same time, and the amount of aromatic hydrocarbons in the solvent may be reduced. Therefore, in order to maintain the amount of the aromatic hydrocarbon solvent present in the reaction system at a certain ratio, for example, after separating the solvent flowing out of the system from water using a moisture metering receiver with a cock, It is preferable to perform a method of returning or supplementing.
[0013]
As the reaction conditions in the present invention, first, the reaction between an aliphatic diamine and trimellitic anhydride must be carried out at 50 to 90 ° C. in the presence of an aprotic polar solvent. After this reaction, an aromatic hydrocarbon is added and reacted at a temperature azeotropic with water. The reaction temperature at this time varies depending on the amount of aromatic hydrocarbons and the capacity of a moisture meter with a cock, but it is particularly preferable to react at 120 to 180 ° C.
The reaction is carried out until no water is by-produced in the reaction system, and it is particularly preferable to confirm that the theoretical amount of water has been distilled off.
The reaction solution may contain aromatic hydrocarbons, but after the above reaction, in order to react with the aromatic diisocyanate by raising the temperature, the temperature is further raised to distill off the aromatic hydrocarbons before the next reaction. It is preferable to carry out. The mixture containing the obtained diimide dicarboxylic acid can react with aromatic diisocyanate to produce a semi-aromatic polyamideimide resin having a high molecular weight. As the aromatic diisocyanate used in the present invention, 4,4′-diphenylmethane diisocyanate (hereinafter abbreviated as MDI), 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, naphthalene-1,5-diisocyanate, 2,4 -Tolylene dimer etc. can be illustrated. These can be used alone or in combination. In particular, MDI is preferable because isocyanate groups are separated in the molecular structure, and the concentration of amide groups and imide groups in the polyamideimide molecule is relatively low, so that solubility is improved. If the reaction temperature is low, the reaction time becomes long, and if it is too high, the isocyanates react with each other, so that these are preferably reacted at 100 to 200 ° C. in order to prevent them.
[0014]
【Example】
EXAMPLES Next, the present invention will be specifically described by way of examples, but the present invention is not limited to these.
Example 1
A 1-liter separable flask equipped with a faucet connected to a reflux condenser with a faucet, a thermometer, and a stirrer was charged with Jeffamine D-230 (manufactured by Texaco Chemical, amine equivalent of 8.25) as an aliphatic diamine. ) 48.4 g (0.20 mol), 80.7 g (0.42 mol) of TMA (trimellitic anhydride), 350 g of NMP (N-methyl-2-pyrrolidone) as an aprotic polar solvent, and at 80 ° C. Stir for 30 minutes. Then, 100 ml of toluene was added as an aromatic hydrocarbon azeotropic with water, and the temperature was raised and refluxed at about 160 ° C. for 2 hours. Confirm that water has accumulated in the moisture metering receiver about 7.2ml or more and that no water has flowed out, and remove the effluent accumulated in the moisture metering receiver, up to about 190 ° C. The temperature was raised to remove toluene. Thereafter, the solution was returned to room temperature, 60.1 g (0.24 mol) of MDI (4,4′-diphenylmethane diisocyanate) was added as an aromatic diisocyanate, and the mixture was reacted at 190 ° C. for 2 hours. After completion of the reaction, an NMP solution of semi-aromatic polyamideimide resin was obtained.
[0015]
(Examples 2 and 3, Reference Example 1 )
A 25-ml water meter with a cock connected to a reflux condenser, a thermometer, and a 1-liter separable flask equipped with a stirrer were 0.1 mol of the diamine shown in Table 1 as an aliphatic diamine, TMA (trimellitic anhydride Acid) 40.3 g (0.21 mol) was charged with the amount of NMP shown in Table 1 as an aprotic polar solvent, and the mixture was stirred at 80 ° C. for 30 minutes. Then, 100 ml of toluene was added as an aromatic hydrocarbon azeotropic with water, and the temperature was raised and refluxed at about 160 ° C. for 2 hours. Confirm that water has accumulated about 3.6 ml or more in the moisture determination receiver and that no outflow of water has been observed, and remove the effluent that has accumulated in the moisture determination receiver to about 190 ° C. The temperature was raised to remove toluene. Thereafter, the solution was returned to room temperature, 30.0 g (0.12 mol) of MDI (4,4′-diphenylmethane diisocyanate) was added as an aromatic diisocyanate, and the mixture was reacted at 190 ° C. for 2 hours. After completion of the reaction, an NMP solution of semi-aromatic polyamideimide resin was obtained.
[0016]
(Comparative Example 1)
BAPP (2,2-bis [4- (4-aminophenoxy) as an aromatic diamine was added to a 1-liter separable flask equipped with a 25 ml water meter with a cock connected to a reflux condenser, a thermometer, and a stirrer. Phenyl] propane), 82.1 g (0.20 mol), TMA (trimellitic anhydride) 76.9 g (0.40 mol), and NMP 390 g as an aprotic polar solvent were charged and stirred at 80 ° C. for 30 minutes. Then, 100 ml of toluene was added as an aromatic hydrocarbon azeotropic with water, and the temperature was raised and refluxed at about 160 ° C. for 2 hours. Confirm that water has accumulated in the moisture metering receiver about 7.2ml or more and that no water has flowed out, and remove the effluent accumulated in the moisture metering receiver, up to about 190 ° C. The temperature was raised to remove toluene. Thereafter, the solution was returned to room temperature, and 50.0 g (0.20 mol) of MDI (4,4′-diphenylmethane diisocyanate) was added as an aromatic diisocyanate, followed by reaction at 190 ° C. for 2 hours. After completion of the reaction, an NMP solution of an aromatic polyamideimide resin was obtained.
[0017]
After applying the solution varnish obtained in Examples 1 to 3, Reference Example 1 and Comparative Example 1 to a glass plate and drying at 150 ° C. for 30 minutes, the film was peeled off from the glass plate and further heated at 180 ° C. for 1 hour. A film of semi-aromatic polyamideimide resin having a thickness of about 60 μm was obtained. And the glass transition temperature of this film, tensile strength, breaking elongation, and the tensile elasticity modulus in normal temperature were measured. As the glass transition temperature, the maximum value of tan δ was used by DVE (wide area dynamic viscoelasticity measuring apparatus, measurement frequency 10 Hz) using the obtained film. In addition, the tensile strength, elongation at break, and tensile modulus at room temperature were measured by cutting the obtained film into 10 mm width strips and using a tensile tester at a crosshead speed of 50 mm / min. The molecular weight was determined by taking 50 mg of the obtained varnish, adding 5 ml of a dimethylformamide / tetrahydrofuran = 1/1 (containing phosphoric acid 0.06M, lithium bromide 0.03M) solution, measuring by GPC, and converting to standard polystyrene. It was. These results are shown in Table 2.
[0018]
[Table 1]
Figure 0004642948
[0019]
[Table 2]
Figure 0004642948
[0020]
【The invention's effect】
The semi-aromatic polyamideimide resin and the method for producing the same of the present invention can be used for varnishes, adhesives, adhesive films and the like that require a low elastic modulus for the resin film. Compared to conventional production methods, aliphatic diamines and aliphatic diimide dicarboxylic acids are soluble in solvents, and semi-aromatic polyamideimide resins obtained by reacting them with aromatic diisocyanates are also soluble in solvents. It is. Further, since there are no by-products, filtration and purification steps are unnecessary, and a semi-aromatic polyamideimide resin having a large molecular weight can be produced. Therefore, it is excellent in film forming properties and resin properties and industrially useful. As described in the Examples, the polyamideimide resin having an aliphatic diimide introduced into the main chain has a lower elastic modulus than the polyamideimide resin having an aromatic diimide. Accordingly, the present invention can be applied to wiring board applications and semiconductor materials that require a reduction in thermal stress.

Claims (4)

一般式(1式)で示される脂肪族ジアミンと無水トリメリット酸を反応させて得られる一般式(2式)で示されるジイミドジカルボン酸と一般式(3式)で示される芳香族ジイソシアネートを反応させて得られる半芳香族ポリアミドイミド樹脂であって、前記脂肪族ジアミンが、末端アミノ化ポリプロピレングリコールである半芳香族ポリアミドイミド樹脂。
Figure 0004642948
(ここでRは置換基を有していてもよくC,O,Hからなる2価の脂肪族基を示す)
Figure 0004642948
Figure 0004642948
Reaction of the diimide dicarboxylic acid represented by the general formula (formula 2) obtained by reacting the aliphatic diamine represented by the general formula (formula 1) with trimellitic anhydride and the aromatic diisocyanate represented by the general formula (formula 3) A semi-aromatic polyamide-imide resin obtained by causing the aliphatic diamine to be terminally aminated polypropylene glycol .
Figure 0004642948
(Here, R 1 represents a divalent aliphatic group consisting of C, O and H which may have a substituent)
Figure 0004642948
Figure 0004642948
一般式(1式)で示される脂肪族ジアミンと無水トリメリット酸とのmol比を脂肪族ジアミン/無水トリメリット酸=1/2.05〜1/2.30で反応させて得られる一般式(2式)で示されるジイミドジカルボン酸を含む混合物と一般式(3式)で示される芳香族ジイソシアネートとを脂肪族ジアミンと芳香族ジイソシアネートのmol比が脂肪族ジアミン/芳香族ジイソシアネート=1/1.05〜1/1.50で反応させて得られる半芳香族ポリアミドイミド樹脂であって、前記脂肪族ジアミンが、末端アミノ化ポリプロピレングリコールである半芳香族ポリアミドイミド樹脂。General formula obtained by reacting the molar ratio of the aliphatic diamine represented by the general formula (formula 1) and trimellitic anhydride with aliphatic diamine / trimellitic anhydride = 1 / 2.05 to 1 / 2.30 The mixture of the diimide dicarboxylic acid represented by (Formula 2) and the aromatic diisocyanate represented by the general formula (Formula 3) has a molar ratio of aliphatic diamine to aromatic diisocyanate of aliphatic diamine / aromatic diisocyanate = 1/1. A semi-aromatic polyamideimide resin obtained by reacting at 0.05 to 1 / 1.50 , wherein the aliphatic diamine is terminally aminated polypropylene glycol . 一般式(1式)で示される脂肪族ジアミンと無水トリメリット酸をmol比で脂肪族ジアミン/無水トリメリット酸=1/2.05〜1/2.30で非プロトン性極性溶媒の存在下に、50〜90℃で反応させ、さらに水と共沸可能な芳香族炭化水素を非プロトン性極性溶媒の0.1〜0.5重量比で投入し、120〜180℃で反応を行いジイミドジカルボン酸を含む混合物を製造した後、その溶液から芳香族炭化水素を除去し、これと芳香族ジイソシアネートとの反応を行う工程を有する半芳香族ポリアミドイミド樹脂の製造方法であって、前記脂肪族ジアミンが、末端アミノ化ポリプロピレングリコールであることを特徴とする半芳香族ポリアミドイミド樹脂の製造方法。In the presence of an aprotic polar solvent, the aliphatic diamine represented by the general formula (formula 1) and trimellitic anhydride in a molar ratio of aliphatic diamine / trimellitic anhydride = 1 / 2.05 to 1 / 2.30 The reaction is carried out at 50 to 90 ° C., and an aromatic hydrocarbon azeotropic with water is added in an aprotic polar solvent at a ratio of 0.1 to 0.5 wt. A method for producing a semi-aromatic polyamide-imide resin comprising a step of producing a mixture containing a dicarboxylic acid, removing aromatic hydrocarbons from the solution, and reacting the mixture with an aromatic diisocyanate. A method for producing a semi-aromatic polyamide-imide resin, wherein the diamine is a terminal aminated polypropylene glycol . 非プロトン性極性溶媒がN−メチル−2−ピロリドンであり、水と共沸可能な芳香族炭化水素がトルエンである請求項3に記載の半芳香族ポリアミドイミド樹脂の製造方法。  The method for producing a semi-aromatic polyamide-imide resin according to claim 3, wherein the aprotic polar solvent is N-methyl-2-pyrrolidone, and the aromatic hydrocarbon azeotropic with water is toluene.
JP06693898A 1998-03-17 1998-03-17 Semi-aromatic polyamideimide resin and method for producing the same Expired - Lifetime JP4642948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06693898A JP4642948B2 (en) 1998-03-17 1998-03-17 Semi-aromatic polyamideimide resin and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06693898A JP4642948B2 (en) 1998-03-17 1998-03-17 Semi-aromatic polyamideimide resin and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008067577A Division JP2008189935A (en) 2008-03-17 2008-03-17 Adhesive film and method for producing adhesive film

Publications (2)

Publication Number Publication Date
JPH11263840A JPH11263840A (en) 1999-09-28
JP4642948B2 true JP4642948B2 (en) 2011-03-02

Family

ID=13330458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06693898A Expired - Lifetime JP4642948B2 (en) 1998-03-17 1998-03-17 Semi-aromatic polyamideimide resin and method for producing the same

Country Status (1)

Country Link
JP (1) JP4642948B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1324085C (en) 2001-09-05 2007-07-04 日立化成工业株式会社 Flame-retardant heat-resistant resin composition and adhesive film comprising the same
JP4834962B2 (en) * 2004-05-07 2011-12-14 日立化成工業株式会社 Polyamideimide resin and method for producing the same
JP2008189935A (en) * 2008-03-17 2008-08-21 Hitachi Chem Co Ltd Adhesive film and method for producing adhesive film
AR082304A1 (en) * 2010-07-21 2012-11-28 Basf Se A SUPPORT AGENT

Also Published As

Publication number Publication date
JPH11263840A (en) 1999-09-28

Similar Documents

Publication Publication Date Title
JP3810800B2 (en) Imide oligomers and co-oligomers containing protruding phenylethynyl groups, and polymers derived therefrom
KR100872676B1 (en) Fluorinated diamine and polymer made from the same
JP3651210B2 (en) Siloxane-containing polyamideimide and varnish containing the same
US3609113A (en) Poly-(arylene-triketoimidazolidines and process for preparing the same
JPS61162525A (en) New copolyamideimide, its production and prepolymer thereof and its production
JP4642948B2 (en) Semi-aromatic polyamideimide resin and method for producing the same
JP3687178B2 (en) Aromatic polyesterimide, process for producing the same and varnish containing the same
JP3947944B2 (en) Siloxane-containing polyamideimide, process for producing the same and varnish containing the same
JP3829354B2 (en) Aromatic polyamideimide, process for producing the same and varnish containing the same
JP4845241B2 (en) Siloxane-containing polyamideimide, process for producing the same and varnish containing the same
JP2932052B2 (en) Novel polyimide and method for producing the same
JP4305689B2 (en) Method for producing polyamideimide, polyamideimide obtained thereby and varnish containing the same
JP2008189935A (en) Adhesive film and method for producing adhesive film
US5886131A (en) Method for preparing 1,4-Bis(4-aminophenoxy)naphthalene and its polymers
JPH0967438A (en) New polyimide and its production
JP4182367B2 (en) Siloxane-containing brominated polyamideimide resin, varnish and process for producing the same
EP0294302B1 (en) Imide-amide and urea-siloxane blocks containing thermostabile blockcopolymers
JP2001122964A (en) Method for producing siloxane-containing polyamideimide, siloxane-containing polyamideimide obtained thereby and varnish containing the same
JP3985787B2 (en) Siloxane-containing polyamideimide, process for producing the same and varnish containing the same
JP4096210B2 (en) Siloxane-containing polyesterimide, process for producing the same, and varnish containing the same
JPS6249884B2 (en)
JPS5867723A (en) Preparation of polyamide
JP2004059602A (en) Method for producing modified polyamideimide resin, modified polyamideimide resin obtained by the same and varnish comprising the same
JPH11263842A (en) Bromine-containing polyamideimide resin, varnish containing same, and production of same
JPS5952898B2 (en) Method for producing polyimide precursor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term