JP4639373B2 - Radiation-modified polytetrafluoroethylene and method for producing the same - Google Patents

Radiation-modified polytetrafluoroethylene and method for producing the same Download PDF

Info

Publication number
JP4639373B2
JP4639373B2 JP2000155902A JP2000155902A JP4639373B2 JP 4639373 B2 JP4639373 B2 JP 4639373B2 JP 2000155902 A JP2000155902 A JP 2000155902A JP 2000155902 A JP2000155902 A JP 2000155902A JP 4639373 B2 JP4639373 B2 JP 4639373B2
Authority
JP
Japan
Prior art keywords
polytetrafluoroethylene
irradiated
irradiation
ionizing radiation
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000155902A
Other languages
Japanese (ja)
Other versions
JP2001335643A (en
Inventor
昂 宇田川
明博 大島
Original Assignee
独立行政法人 日本原子力研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人 日本原子力研究開発機構 filed Critical 独立行政法人 日本原子力研究開発機構
Priority to JP2000155902A priority Critical patent/JP4639373B2/en
Publication of JP2001335643A publication Critical patent/JP2001335643A/en
Application granted granted Critical
Publication of JP4639373B2 publication Critical patent/JP4639373B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ポリテトラフルオロエチレンの電離放射線照射による改質に関し、更に詳しくはポリテトラフルオロエチレンを穏和な条件下で電離放射線照射により改質する方法に関し、更に特定的にはポリテトラフルオロエチレンに対して空気中で穏和な温度条件下、例えば常温付近、殊に室温において、0.5〜1.5kGyの範囲内の比較的低い線量で電離放射線を照射することによりその引き裂き強度を増大させることを特徴とする機械的性質が改善されたポリテトラフルオロエチレンを製造する方法に関する。
【0002】
【従来の技術】
ポリテトラフルオロエチレンは、耐熱性、耐薬品性、電気絶縁性、撥水性、潤滑性などの優れた諸性質を持つ故に広範な応用分野で使用されてきている。ポリテトラフルオロエチレンの用途の中で重要なものの一つとして、金属、特に鉄鋼製のパイプ、タンク、容器等の基体表面(内及び/または外表面)に粉体ポリテトラフルオロエチレンを塗装技術により塗布し、あるいはポリテトラフルオロエチレンシートをライニング技術により貼り付けることがなされている。またポリテトラフルオロエチレンは、チューブ、パッキン、摺動部材等の工業材料あるいは耐熱性絶縁材としても既に定着している。同様に日常生活で身近に多用されるアイロンのような家庭用品、フライパンのような調理器具にもコーティングされている。
【0003】
しかしながら、他の高分子材料と異なり、ポリテトラフルオロエチレンは単独で種々の形に成型して用いられることは少ない。この理由は、ポリテトラフルオロエチレンはその耐熱性や耐薬品性が高いことが災いして、熱や溶媒で溶かして成形加工することが困難であるためであり、さらにはその単体の成形品が柔らかくかつ脆い性質を示すためである。従って、ポリテトラフルオロエチレンは全てに優れているわけではなく、成形加工性や機械的特性に関して欠点が認められる。例えば、図1中に示されるように、ポリテトラフルオロエチレンを短冊状試験片と成して、その一方の長辺縁に切り込みを付けて引っ張ると弱い力で簡単に切れてしまう欠点がある。すなわち、図1のグラフは、切り込み付きポリテトラフルオロエチレン試験片の引っ張り強度(及び破断伸び率)がその切り込みの深さに殆んど関係なく極度に低減して、殆んど伸びなくなることを示している。この性質は、少しの傷をきっかけにして簡単に引き裂かれたり、切れたり、折れたりすること(脆性的破壊)を意味し、ポリテトラフルオロエチレンの実用上の弱点となっている。
【0004】
従って、このようなポリテトラフルオロエチレンの好ましくない性質を改善してその加工性を向上させるための種々の試みがなされてきている。そのような試みの有力な候補手段の一つとして、従来種々の高分子材料について適用された放射線照射による改質がある。しかしながら、種々の高分子材料の中でもポリテトラフルオロエチレンは、放射線照射をうけた場合に、最も劣化し易く、引張り強度と破断伸びは照射線量の増大とともに著しく低下することが古くから知られている。そのために種々の研究、試験の結果からの一般的な認識として、ポリテトラフルオロエチレンは特殊な条件を採用しなければ材料特性を放射線照射によって改善できないとされている。そのような特殊条件を用いる最近開発された方法は、ポリテトラフルオロエチレンを高温(融点付近)、無酸素雰囲気中で放射線架橋することからなる。
【0005】
【発明が解決しようとする課題】
上記の如き従来技術において実現された特殊条件下でのポリテトラフルオロエチレンの放射線照射による材料特性改善を、更に容易、簡便な条件下での放射線照射により可能とし、それによってポリテトラフルオロエチレンの加工応用性を改善し、利用分野を拡大することは大いに望ましいことである。
【0006】
そこで、本発明は、ポリテトラフルオロエチレン成形体が僅かな傷、ヒビ等をきっかけにして簡単に引き裂かれたり、切れたり、折れたりする本来の性質から、改質されて根本的に粘り強い機械的性質を備えるように放射線改質するために容易、簡便な条件下での照射を可能とすることを主要な目的とする。
【0007】
本発明の一目的は、放射線照射により機械的性質が改善されたポリテトラフルオロエチレンを提供することであり、本発明の他の一目的は容易、簡便な条件下での放射線照射により機械的性質が改善されたポリテトラフルオロエチレンを製造する方法を提供することであり、本発明の更なる一目的は容易、簡便な条件下での放射線照射により機械的性質が改善された成形用ポリテトラフルオロエチレン粉体またはポリテトラフルオロエチレン成形体を提供することである。
【0008】
【課題を解決するための手段】
本発明者は、ポリテトラフルオロエチレンの放射線改質と照射諸条件との関係を広範に研究、検討した結果、空気雰囲気中であっても、しかも高温度を採用しなくても、極めて少ない線量の放射線を照射することにより、本来ならば(すなわち従前の学術研究報告から常識的に信じられる線量と伸び・引張り強度の関係から推定すれば)著しく低下する筈の伸びが顕著に増大する線量範囲が存在するという予想外の事実を見出し、本発明を完成するに至った。すなわち、本発明は、この伸びが増大する通常0.5〜1.5kGyの線量範囲でポリテトラフルオロエチレン成形体に直接、または成形前に原料となるポリテトラフルオロエチレン粉体に、空気中で電離放射線を照射することにより容易にポリテトラフルオロエチレンの機械的性質、殊に伸び特性の改善を達成する。
【0009】
かくして本発明は、その一態様において、ポリテトラフルオロエチレンに対して空気中で0.5〜1.5kGyの範囲内の線量で電離放射線を照射することによりその引き裂き強度を増大させることを特徴とする機械的性質が改善されたポリテトラフルオロエチレンの製造方法を提供する。
【0010】
この照射処理は、従来法の高温条件(融点付近)と比較して低温で、一般的には、例えば常温付近、殊に室温で実施でき、殆どの場合に温度制御装置/操作は実質的に不要である。しかしながら、特殊な効果あるいは正確な製品品質の達成のために、やや加熱した空気雰囲気ややや低温とした空気雰囲気を使用すること、あるいは照射中の全期間または一部の期間にわたり特定温度値を維持または変動せしめる温度制御を行うことも本発明の範囲内である。
【0011】
また本発明では、従来法における無酸素雰囲気中ではなく、空気中で照射を行うことができるので、一般的には特別の組成の雰囲気を準備、維持する必要がない。しかし、例えば空気にある割合の窒素、アルゴン等のような不活性ガスを添加した雰囲気組成を用いて、照射ポリテトラフルオロエチレンにおいてある特定のの性質を発現させたり、強調し、あるいは弱めることも本発明の範囲内である。従って本発明において「空気」とは、通常の大気圏空気のみならず、上記ように意図的に組成を調整ないし改変した空気をも包含するものである。
【0012】
本発明において、電離放射線とは、γ線、電子線、X線、中性子線、高エネルギーイオンの単独、または2以上の混合放射線を包含する。
【0013】
かくして本発明の改質ポリテトラフルオロエチレンは、未照射時の降伏点強度の値を保持したまま、もはや傷をきっかけとする脆性的な破壊がなくなる引張り特性が達成される0.5〜1.5kGyの電離放射線を大気中で照射することにより得られる。この照射は常温、例えば室温で都合よく行うことができるが、これよりも高い温度及び低い温度での実施も可能である。ポリテトラフルオロエチレンに対する電離放射線の照射は、チューブ、パイプ、シート、テープなどの成形体に直接行うほか、成形前の原料粉体に照射処理を行い、しかる後にこれを用いて所望の成形体を得ることもできる。
【0014】
後者の原料粉体照射法は、本発明をより効果的に利用することができ、特に好ましい。この場合、加工すべき原料のポリテトラフルオロエチレン粉体は、100%が本発明によって照射処理を受けた粉体である必要はなく、適宜な割合で未照射の粉体と混合して使用しても本発明の効果、目的を達成できる。ここで、粉体を用いて成形加工するプロセスは、何ら従来法を改変する必要はない。
【0015】
通常、ポリテトラフルオロエチレンのテープあるいはシートに対して本発明による線量範囲で電離放射線を空気中で照射すると、例えば1kGyの照射で引張り強度は初期値の3分の1程度まで低下する。ところが本発明に基づいて照射した原料粉体から成形したシートあるいはテープは、未照射の原料粉体から成形したものの引張り強度の値の80%程度以上の引張り強度を保持したまま、引き裂き強度が大幅に向上する。このような引き裂き強度の改善は、本発明の最大の特徴である。
【0016】
【実施例】
以下にいくつかの実施例を揚げて本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例に具体的に示された事項、数値等に限定されるものではない。
【0017】
実施例1
原料粉体試料として平均粒子系350μmの市販ポリテトラフルオロエチレンモールディングパウダー(旭ガラスフロロポリマー株式会社製;「G350」)を紙封筒に入れ、空気中室温で、線量率2kGy/hのγ線を0.5時間にわたり照射した。かくして1kGyの線量(線量率×照射時間)照射した粉体を300kg/cm2の圧力下に1時間予備成形した後に、360℃で30分間焼結し、厚さ0.5mmのシートに成形した。比較のために、照射を受けない同じ粉体試料を同様に予備成形、焼結に付してシートに成形した。このように調製した両者のシートの引張り強度をインストロン試験機で測定した。これらの結果を表1に示す。
【0018】
ポリテトラフルオロエチレンの引張り強度は、従来の空気中室温条件下での照射法で、通常1kGy照射すると未照射の場合の約3分の1まで低下するところ、本発明によって1kGy照射して成形したシートの破断強度は、未照射の場合の約80%を保持し、そして破断伸びは未照射の場合の約1.3倍に向上した。
【0019】
【表1】

Figure 0004639373
【0020】
実施例2
実施例1同様に処理して成形したシートの引き裂き強度を測定したところ、同じ厚さの未処理シート(比較試料)の最大荷重が151.0kgfであったのに対して、本発明により1kGy照射して成形したシートは248.6kgfの値を示し、約1.7倍まで向上した。
【0021】
実施例3
実施例1同様、本発明により1kGy照射したポリテトラフルオロエチレン粉体と未照射のポリテトラフルオロエチレン粉体とを、重量比1:1で混合した。この混合物を実施例1の成形操作によりシートとしたものの引き裂き強度は、最大荷重252.6kgfであり、同じ厚さの未処理シートの値と比較して約2.7倍に向上し、実施例2同様の効果が認められた。
【0022】
参考例4
厚さ約0.05mmの市販ポリテトラフルオロエチレンテープ(ニチアス株式会社製;「ナフロンテープ」)に線量率70Gy/hのγ線を空気中で照射し(研究室室温)、照射時間(線量)のことなる試料を調製した。これらの照射テープ試料を図1に示すような短冊試験片寸法とし、各試験片の全幅に対して20%の切り込みを付けた。このような切り込み付き試験片についてインストロン引張り試験機により引張り速度200mm/minの降伏点強度及び破断伸びを測定した。比較のために未照射の試料についても同様な測定を行った。これらの測定結果を表2にまとめて示す。この表から明らかなように、未照射試料が殆ど伸びることなく脆性的に破断するのに対して、本発明の線量範囲では線量の増加に伴って直線的に伸びが増大し、破壊は一層延性的に変化した。
【0023】
【表2】
Figure 0004639373
【0024】
参考例5
参考例4同様に、空気中で線量率70Gy/hのγ線を照射したポリテトラフルオロエチレンテープを幅2cm、長さ5cmの短冊試験片と成し、短辺の中央に長さ方向へ2cmの切り込みを付け、残る3cmの部分をインストロン引張り試験機により引き裂き試験した。その引き裂き最大荷重は、未照射試料テープ(比較)が2.26kgfであったのに対して、本発明により照射した試料テープの値は980Gy照射で25.79kgfに増大し(約11倍強)、そして1400Gy照射で未照射の場合の約20倍に相当する44.13kgfにまで大幅に増大した。
【0025】
【発明の効果】
本発明による照射方法によりポリテトラフルオロエチレンの引き裂き強度や破断伸びを、共重合などの化学的手段によることなく、著しく高めることができ、これにより従来狭められていたポリテトラフルオロエチレンの用途の有効な拡大が期待でき、更には加工性の改善が実現される。かくして改質されたポリテトラフルオロエチレンは、高延伸倍率を達成するための手段として、また放射線架橋の原料や、他の高分子材料と分子複合材を形成するための効果的な原料となり得るものである。
【図面の簡単な説明】
【図1】 ポリテトラフルオロエチレンテープの切り込み付き引張り試験片(未照射)の切り込み長さの割合(横軸)と引張り強度(左縦軸)及び破断伸び(右縦軸)の関係を示すグラフであり、右上余白部に引張り試験片平面図を含む。
【符号の説明】
P 試験片引張り力[0001]
BACKGROUND OF THE INVENTION
The present invention relates to modification of polytetrafluoroethylene by ionizing radiation irradiation, and more particularly to a method of modifying polytetrafluoroethylene by ionizing radiation irradiation under mild conditions, more specifically to polytetrafluoroethylene. On the other hand, increasing the tear strength by irradiating with ionizing radiation at a relatively low dose in the range of 0.5 to 1.5 kGy under moderate temperature conditions in the air, for example, near normal temperature, especially at room temperature. And a process for producing polytetrafluoroethylene with improved mechanical properties.
[0002]
[Prior art]
Polytetrafluoroethylene has been used in a wide range of applications because it has excellent properties such as heat resistance, chemical resistance, electrical insulation, water repellency, and lubricity. As one of the important applications of polytetrafluoroethylene, powder polytetrafluoroethylene is applied to the surface of the substrate (inner and / or outer surface) of metals, especially steel pipes, tanks, containers, etc. by coating technology. It is applied or a polytetrafluoroethylene sheet is pasted by a lining technique. Polytetrafluoroethylene has already been established as an industrial material such as a tube, packing, sliding member, or a heat-resistant insulating material. Similarly, it is coated on household items such as irons and cooking utensils such as frying pans that are frequently used in daily life.
[0003]
However, unlike other polymer materials, polytetrafluoroethylene is rarely used alone in various forms. This is because polytetrafluoroethylene suffers from its high heat resistance and chemical resistance, and is difficult to be molded by melting with heat or a solvent. This is to show a soft and brittle nature. Therefore, polytetrafluoroethylene is not excellent in all, and there are drawbacks regarding moldability and mechanical properties. For example, as shown in FIG. 1, when polytetrafluoroethylene is formed into a strip-shaped test piece and one long side edge is cut and pulled, there is a drawback that it is easily cut by a weak force. That is, the graph of FIG. 1 shows that the tensile strength (and elongation at break) of the polytetrafluoroethylene test piece with notch is extremely reduced regardless of the depth of the notch, and hardly stretches. Show. This property means that it can be easily torn, cut or broken (brittle fracture) after a few scratches, which is a practical weakness of polytetrafluoroethylene.
[0004]
Accordingly, various attempts have been made to improve the undesired properties of such polytetrafluoroethylene and improve its processability. One of the promising candidate means for such attempts is a modification by irradiation applied to various polymer materials in the past. However, among various polymer materials, polytetrafluoroethylene has been known for a long time to be most easily degraded when irradiated, and the tensile strength and elongation at break decrease remarkably with increasing irradiation dose. . Therefore, as a general recognition from the results of various studies and tests, it is said that polytetrafluoroethylene cannot improve material properties by irradiation unless special conditions are adopted. A recently developed method using such special conditions consists of radiation-crosslinking polytetrafluoroethylene in a high temperature (near melting point) and oxygen-free atmosphere.
[0005]
[Problems to be solved by the invention]
The material properties improvement by irradiation of polytetrafluoroethylene under the special conditions realized in the prior art as described above can be further facilitated by irradiation under simple conditions, thereby processing the polytetrafluoroethylene. It is highly desirable to improve the applicability and expand the field of use.
[0006]
Therefore, the present invention is a mechanically modified and fundamentally tenacious mechanical material that is easily torn, cut or broken due to slight scratches, cracks, etc. The main purpose is to enable irradiation under easy and simple conditions for radiation modification so as to have properties.
[0007]
One object of the present invention is to provide polytetrafluoroethylene having improved mechanical properties by irradiation, and another object of the present invention is to provide mechanical properties by irradiation under easy and simple conditions. It is another object of the present invention to provide a method for producing polytetrafluoroethylene having improved mechanical properties by irradiation under easy and simple conditions. It is to provide an ethylene powder or a polytetrafluoroethylene molded body.
[0008]
[Means for Solving the Problems]
The present inventor has extensively studied and studied the relationship between the radiation modification of polytetrafluoroethylene and various irradiation conditions. As a result, even in an air atmosphere and without adopting a high temperature, an extremely small dose The dose range in which the elongation of the cocoon is significantly reduced if it is originally irradiated (ie, estimated from the relationship between the dose that is commonly known from previous academic research reports and the relationship between elongation and tensile strength). The present inventors have found an unexpected fact that there is a problem, and have completed the present invention. That is, the present invention increases the elongation in a dose range of 0.5 to 1.5 kGy, usually directly on the polytetrafluoroethylene molded body or on the polytetrafluoroethylene powder as a raw material before molding in the air. By irradiating with ionizing radiation, the mechanical properties of polytetrafluoroethylene, in particular the elongation properties, are easily achieved.
[0009]
Thus, in one aspect, the present invention is characterized in that the tear strength is increased by irradiating polytetrafluoroethylene with ionizing radiation in air at a dose in the range of 0.5 to 1.5 kGy. And a process for producing polytetrafluoroethylene with improved mechanical properties.
[0010]
This irradiation treatment can be carried out at a low temperature compared to the conventional high temperature conditions (near the melting point), generally at, for example, near room temperature, especially at room temperature, and in most cases the temperature control device / operation is substantially It is unnecessary. However, to achieve special effects or accurate product quality, use a slightly heated or slightly cooler air atmosphere, or maintain a specific temperature value over the entire or partial period of irradiation. It is also within the scope of the present invention to perform temperature control that varies.
[0011]
In the present invention, since irradiation can be performed in the air instead of the oxygen-free atmosphere in the conventional method, it is generally unnecessary to prepare and maintain an atmosphere having a special composition. However, certain properties of irradiated polytetrafluoroethylene may be manifested, emphasized, or weakened using an atmospheric composition with an inert gas such as nitrogen, argon, etc. added to the air. It is within the scope of the present invention. Accordingly, in the present invention, “air” includes not only ordinary atmospheric air but also air whose composition is intentionally adjusted or modified as described above.
[0012]
In the present invention, ionizing radiation includes γ-rays, electron beams, X-rays, neutron beams, high-energy ions alone, or mixed radiation of two or more.
[0013]
Thus, the modified polytetrafluoroethylene of the present invention achieves a tensile property that no longer causes brittle fracture caused by scratches while maintaining the value of the yield strength when not irradiated. It is obtained by irradiating ionizing radiation of 5 kGy in the atmosphere. This irradiation can be conveniently performed at room temperature, for example room temperature, but can also be performed at higher and lower temperatures. Irradiation of ionizing radiation to polytetrafluoroethylene is performed directly on the molded body such as tubes, pipes, sheets, tapes, etc., and the raw material powder before molding is irradiated and then used to form the desired molded body. It can also be obtained.
[0014]
The latter raw material powder irradiation method is particularly preferable because the present invention can be used more effectively. In this case, 100% of the raw material polytetrafluoroethylene powder to be processed does not have to be irradiated by the present invention, and is used by mixing with an unirradiated powder at an appropriate ratio. However, the effects and objects of the present invention can be achieved. Here, the process of molding using powder does not require any modification of the conventional method.
[0015]
Normally, when a polytetrafluoroethylene tape or sheet is irradiated with ionizing radiation in air within the dose range according to the present invention, the tensile strength is reduced to about one third of the initial value by irradiation with, for example, 1 kGy. However, the sheet or tape formed from the raw material powder irradiated according to the present invention has a large tear strength while maintaining a tensile strength of about 80% or more of the tensile strength value of the raw material powder formed from the unirradiated raw material powder. To improve. Such improvement in tear strength is the greatest feature of the present invention.
[0016]
【Example】
Hereinafter, the present invention will be described more specifically with reference to some examples. However, the scope of the present invention is not limited to the items, numerical values, and the like specifically shown in these examples.
[0017]
Example 1
As a raw material powder sample, a commercially available polytetrafluoroethylene molding powder (Asahi Glass Fluoropolymer Co., Ltd .; “G350”) with an average particle system of 350 μm is put in a paper envelope, and γ-rays with a dose rate of 2 kGy / h are obtained at room temperature in the air. Irradiated for 0.5 hours. The powder thus irradiated with a dose of 1 kGy (dose rate × irradiation time) was preformed for 1 hour under a pressure of 300 kg / cm 2 , sintered at 360 ° C. for 30 minutes, and formed into a sheet having a thickness of 0.5 mm. . For comparison, the same powder sample that was not irradiated was similarly subjected to preforming and sintering to form a sheet. The tensile strength of both sheets thus prepared was measured with an Instron testing machine. These results are shown in Table 1.
[0018]
The tensile strength of polytetrafluoroethylene is usually reduced to about one third of the unirradiated state when irradiated with 1 kGy in the conventional irradiation method under room temperature conditions in air. The breaking strength of the sheet was kept about 80% when not irradiated, and the breaking elongation was improved about 1.3 times that when not irradiated.
[0019]
[Table 1]
Figure 0004639373
[0020]
Example 2
When the tear strength of a sheet processed and molded in the same manner as in Example 1 was measured, the maximum load of an untreated sheet (comparative sample) of the same thickness was 151.0 kgf, whereas the present invention applied 1 kGy irradiation. The sheet thus formed showed a value of 248.6 kgf and was improved up to about 1.7 times.
[0021]
Example 3
As in Example 1, the polytetrafluoroethylene powder irradiated with 1 kGy according to the present invention and the unirradiated polytetrafluoroethylene powder were mixed at a weight ratio of 1: 1. The tear strength of this mixture made into a sheet by the molding operation of Example 1 is a maximum load of 252.6 kgf, which is about 2.7 times higher than the value of an untreated sheet of the same thickness. 2 The same effect was recognized.
[0022]
Reference example 4
A commercially available polytetrafluoroethylene tape (Nichias Co., Ltd .; “Naflon tape”) with a thickness of about 0.05 mm was irradiated with γ rays at a dose rate of 70 Gy / h in the air (laboratory room temperature), and irradiation time (dose) Different samples were prepared. These irradiated tape samples were made into strip test piece dimensions as shown in FIG. 1, and 20% cuts were made with respect to the full width of each test piece. About such a test piece with a notch, the yield point strength and elongation at break of 200 mm / min were measured with an Instron tensile tester. For comparison, the same measurement was performed on an unirradiated sample. These measurement results are summarized in Table 2. As is apparent from this table, the unirradiated specimen breaks brittlely with little elongation, whereas in the dose range of the present invention, the elongation increases linearly with increasing dose, and the fracture becomes more ductile. Changed.
[0023]
[Table 2]
Figure 0004639373
[0024]
Reference Example 5
As in Reference Example 4, a polytetrafluoroethylene tape irradiated with gamma rays with a dose rate of 70 Gy / h in air was formed into a strip test piece having a width of 2 cm and a length of 5 cm, and 2 cm in the length direction at the center of the short side. The remaining 3 cm portion was subjected to a tear test using an Instron tensile tester. The maximum tearing load of the unirradiated sample tape (comparative) was 2.26 kgf, whereas the value of the sample tape irradiated according to the present invention increased to 25.79 kgf with 980 Gy irradiation (approximately 11 times more). , And increased significantly to 44.13 kgf, corresponding to about 20 times that of unirradiated with 1400 Gy irradiation.
[0025]
【The invention's effect】
By the irradiation method according to the present invention, the tear strength and elongation at break of polytetrafluoroethylene can be remarkably increased without using chemical means such as copolymerization. Expansion can be expected, and further improved workability is realized. The polytetrafluoroethylene thus modified can serve as a means for achieving a high draw ratio, and can also be an effective raw material for forming a molecular composite with a raw material for radiation crosslinking and other polymer materials. It is.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the ratio of notch length (horizontal axis), tensile strength (left vertical axis), and elongation at break (right vertical axis) of a polytetrafluoroethylene tape-notched tensile test piece (unirradiated). And includes a tensile test piece plan view in the upper right margin.
[Explanation of symbols]
P Test specimen tensile force

Claims (4)

ポリテトラフルオロエチレン粉体に対して、室温、空気中で0.5〜1.5kGyの範囲内の線量で電離放射線を照射し、その後、予備成形してから焼成することにより、得られるポリテトラフルオロエチレン成形体の引き裂き強度を増大させることを特徴とするポリテトラフルオロエチレン成形体の製造方法。Polytetrafluoroethylene powder is irradiated with ionizing radiation at a dose in the range of 0.5 to 1.5 kGy in air at room temperature, then preformed and fired to obtain polytetrafluoroethylene powder. A method for producing a polytetrafluoroethylene molded article, characterized by increasing the tear strength of the fluoroethylene molded article. 室温、空気中で0.5〜1.5kGyの範囲内の線量で電離放射線を照射したポリテトラフルオロエチレン粉体と、電離放射線未照射のポリテトラフルオロエチレン粉体と、の混合物を予備成形してから焼成することにより、得られるポリテトラフルオロエチレン成形体の引き裂き強度を増大させることを特徴とするポリテトラフルオロエチレン成形体の製造方法。A mixture of polytetrafluoroethylene powder irradiated with ionizing radiation at a dose in the range of 0.5 to 1.5 kGy in air at room temperature and polytetrafluoroethylene powder not irradiated with ionizing radiation was preformed. A method for producing a polytetrafluoroethylene molded product, wherein the tear strength of the resulting polytetrafluoroethylene molded product is increased by firing the product. 電離放射線を照射したポリテトラフルオロエチレン粉末と、未照射のポリテトラフルオロエチレン粉末とを、重量比1:1で混合することを特徴とする、請求項2に記載の方法。  The method according to claim 2, wherein the polytetrafluoroethylene powder irradiated with ionizing radiation and the non-irradiated polytetrafluoroethylene powder are mixed at a weight ratio of 1: 1. 電離放射線がγ線、電子線、X線、中性子線、高エネルギーイオンの単独、または2以上の混合放射線である請求項1〜3のいずれか1項に記載の方法。  The method according to any one of claims 1 to 3, wherein the ionizing radiation is γ-ray, electron beam, X-ray, neutron beam, high-energy ion alone, or mixed radiation of two or more.
JP2000155902A 2000-05-26 2000-05-26 Radiation-modified polytetrafluoroethylene and method for producing the same Expired - Fee Related JP4639373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000155902A JP4639373B2 (en) 2000-05-26 2000-05-26 Radiation-modified polytetrafluoroethylene and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000155902A JP4639373B2 (en) 2000-05-26 2000-05-26 Radiation-modified polytetrafluoroethylene and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001335643A JP2001335643A (en) 2001-12-04
JP4639373B2 true JP4639373B2 (en) 2011-02-23

Family

ID=18660768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000155902A Expired - Fee Related JP4639373B2 (en) 2000-05-26 2000-05-26 Radiation-modified polytetrafluoroethylene and method for producing the same

Country Status (1)

Country Link
JP (1) JP4639373B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256080A (en) * 2001-02-28 2002-09-11 Japan Atom Energy Res Inst Radiation-modified tetrafluoroethylene resin material and its production method
US8455069B2 (en) * 2006-02-08 2013-06-04 W. L. Gore & Associates, Inc. Surface for a food preparation device
JP5109102B2 (en) * 2006-03-09 2012-12-26 昂 宇田川 PTFE tube manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61146522A (en) * 1984-12-20 1986-07-04 Nippon Valqua Ind Ltd Preparation of porous body made of polytetrafluoroethylene resin
JP3337785B2 (en) * 1993-10-26 2002-10-21 日本原子力研究所 Method for producing modified polytetrafluoroethylene

Also Published As

Publication number Publication date
JP2001335643A (en) 2001-12-04

Similar Documents

Publication Publication Date Title
RU2414327C2 (en) Method of producing metal powder with reduced oxygen content
JPH06116423A (en) Modified polytetrafluoroethylene and production thereof
CA1324928C (en) Corrosion-resistant and heat-resistant aluminum-based alloy thin film and process for producing the same
JP4639373B2 (en) Radiation-modified polytetrafluoroethylene and method for producing the same
Kauling et al. Polypropylene surface modification by active screen plasma nitriding
Zhu et al. Intermediate-temperature mechanical properties of Ni–Si alloys: oxygen embrittlement and its remedies
JP4845017B2 (en) High strength high crystalline tetrafluoroethylene resin compression molding
RU2597913C1 (en) Method for thermo-radiating treatment of polytetrafluoroethylene articles
JPH052100A (en) Electron beam irradiated device and manufacture of electron beam penetration film
JPH07118423A (en) Production of modified polytetrafluoroethylene
KR102026458B1 (en) Method for producing metal sintered body
JP2002256080A (en) Radiation-modified tetrafluoroethylene resin material and its production method
JPS61295371A (en) Production of aluminum material having aluminum nitride layer
CN113956528B (en) High-crosslinking ultrahigh molecular weight polyethylene and preparation method and application thereof
Gupta et al. Hydrogen in stainless steel as killing agent for UHV: A review
EP3348601B1 (en) Polytetrafluoroethylene molded body, and manufacturing method therefor
Li et al. Fracture toughness of the F-82H steel-effect of loading modes, hydrogen, and temperature
RU2211228C2 (en) Method for thermoradiation treatment of polytetrafluoroethylene products
JP4174569B2 (en) Radiation-modified tetrafluoroethylene resin powder and method for producing molded article thereof
Ken Busfield et al. Crosslink enhancement in polypropylene film by gamma irradiation in the presence of acetylene
CN112768151B (en) Preparation method of irradiation-resistant cross-linked polytetrafluoroethylene film for low-noise cable
Kesternich et al. Mechanical properties and microstructure of helium-implanted beryllium
KR101628969B1 (en) Method for coating material of ceramic for reducing oxidation on the surface of graphite or C/C composite and the coating material of ceramic coated graphite or C/C composite thereby
CN114941120A (en) Method for hardening surface of beta titanium alloy
US6620695B2 (en) Method for increasing fracture toughness and reducing brittleness of semi-crystalline polymer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees