JPS61146522A - Preparation of porous body made of polytetrafluoroethylene resin - Google Patents

Preparation of porous body made of polytetrafluoroethylene resin

Info

Publication number
JPS61146522A
JPS61146522A JP26743984A JP26743984A JPS61146522A JP S61146522 A JPS61146522 A JP S61146522A JP 26743984 A JP26743984 A JP 26743984A JP 26743984 A JP26743984 A JP 26743984A JP S61146522 A JPS61146522 A JP S61146522A
Authority
JP
Japan
Prior art keywords
ptfe
film
temperature
polytetrafluoroethylene resin
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26743984A
Other languages
Japanese (ja)
Inventor
Kenji Shimizu
清水 賢司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Valqua Industries Ltd
Nihon Valqua Kogyo KK
Original Assignee
Nippon Valqua Industries Ltd
Nihon Valqua Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Valqua Industries Ltd, Nihon Valqua Kogyo KK filed Critical Nippon Valqua Industries Ltd
Priority to JP26743984A priority Critical patent/JPS61146522A/en
Publication of JPS61146522A publication Critical patent/JPS61146522A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To obtain a porous film provided with uniform perforations each having an almost real circular shape and excellent in mechanical strength, by irradiating a baked body, which was obtained from a molding grade polytetrafluoroethylene resin (PTFE) powder prepared by a suspension polymerization method, with ionizable radioactive rays before stretching. CONSTITUTION:A molding grade PTFE powder with an average particle size of 25mu obtained by a suspension polymerization method is preparatorily molded in a mold and the molded one is baked at 350 deg.C for 1hr to form a molded body which is, in turn, cut into a cut film with a thickness of 0.1mm. Next, this PTFE cut film is irradiated with gamma rays from cobalt 60 in an irradiation dose of 10<4> rad at room temp. in air and stretched 6 times on the basis of the original length to obtain a PTFE porous film.

Description

【発明の詳細な説明】 (技術分野) 本発明は、ポリテトラフルオロエチレン樹脂製多孔質体
の製造方法に関し、さらに詳しくは機械的強度に優れ、
しかも円形に近く比較的均一な孔径を有する多孔質体の
製造方法に関する。
Detailed Description of the Invention (Technical Field) The present invention relates to a method for producing a porous body made of polytetrafluoroethylene resin, and more specifically, a porous body made of polytetrafluoroethylene resin, which has excellent mechanical strength,
Moreover, the present invention relates to a method for manufacturing a porous body having a nearly circular pore size and a relatively uniform pore diameter.

(発明の技術的背景ならびにその問題点)ポリテトラフ
ルオロエチレン樹脂(以下8丁FEと略記することがあ
る)は、優れた耐薬品性。
(Technical background of the invention and its problems) Polytetrafluoroethylene resin (hereinafter sometimes abbreviated as 8-FE) has excellent chemical resistance.

耐熱性9機械的特性を有するため、種々の分野で用いら
れている。たとえば、PTFEからなる多孔質体は上記
のような特性を利用して、腐食性物質あるいは高温物質
のフィルターとして広く用いられており、また電解隔躾
、燃料電池などとしても用いられている。
Because it has heat resistance and mechanical properties, it is used in various fields. For example, porous bodies made of PTFE are widely used as filters for corrosive substances or high-temperature substances by utilizing the above-mentioned characteristics, and are also used in electrolytic separators, fuel cells, and the like.

従来、PTFE樹脂からの多孔質体の製造方法としでは
、テトラフルオロエヂレンの乳化重合により得られるフ
ァインパウダーと称されるPTFE微粒子に液状潤滑剤
を配合して予備成形し、これを押出または圧延または両
者を含む方法によりフィルム状とし、次いで得られたフ
ィルム状のPTFE膜から液状mtrtt剤を除去した
後、通常加熱条件下で少なくとも一軸方向に延伸する方
法がよ1く知られている。あるいはまた、焼成されたP
TFEWを327℃以上に加熱した後、除冷し、その結
晶化度が80%以上になるように熱処理し、次いで25
〜260℃の温度において延伸倍率1゜5〜4倍に一軸
延伸することを特徴とするPTFE多孔質体の製造方法
が、特公昭53−42974号公報に開示されている。
Conventionally, the method for manufacturing porous bodies from PTFE resin involves mixing PTFE fine particles called fine powder obtained by emulsion polymerization of tetrafluoroethylene with a liquid lubricant, preforming the mixture, and then extruding or rolling it. Alternatively, a well-known method is to form a PTFE membrane into a film by a method including both methods, then remove the liquid mtrtt agent from the obtained film-like PTFE membrane, and then stretch it in at least one axis under normal heating conditions. Alternatively, fired P
After heating TFEW to 327°C or higher, it is slowly cooled, heat-treated so that its crystallinity becomes 80% or higher, and then heated at 25°C.
Japanese Patent Publication No. 53-42974 discloses a method for producing a porous PTFE material, which is characterized by uniaxial stretching at a temperature of -260 DEG C. and a stretching ratio of 1.5 to 4 times.

ところがこのような方法により製造されたPTFE製多
孔質体は、孔を真円に近い形状にしかも孔径を所定の大
きさに製造することが難かしいという問題があった。ま
た該多孔質体の機械的強度も充分であるとは言えないと
いう問題点もあった。
However, the PTFE porous body manufactured by such a method has a problem in that it is difficult to manufacture the pores to have a nearly perfect circular shape and a predetermined pore diameter. Further, there was also the problem that the mechanical strength of the porous body was not sufficient.

本発明者らは、上記の問題点を解決するため、鋭意研究
したところ、懸濁重合で得られるPTFEのモールディ
ングパウダーを原料とした成形体は、乳化重合で得られ
る前述のファインパウダーを原料とする成形体よりも伸
び率が低く加工性がきわめて悪いにもかかわらず、製造
された多孔質体の孔特性および強度が優れていることが
わかった。さらにまた、本発明者らはモールディングパ
ウダーを原料とするPTFE成形体に電離性放射線を照
射したところ、その照射量が103〜10Bラドである
場合には、電離性放射線を全く照射しない場合と比較し
て、PTFEの延伸率を大きくすることができるという
事実を見出し、これらの事実に基いてポリテトラフルオ
ロエチレン樹脂製多孔質体の製造方法をさらに研究して
本発明を完成するに至った。
In order to solve the above problems, the present inventors conducted extensive research and found that a molded article made from PTFE molding powder obtained by suspension polymerization was made from the above-mentioned fine powder obtained by emulsion polymerization. It was found that the produced porous body had excellent pore characteristics and strength, although it had a lower elongation rate and extremely poor workability than the molded body produced by the same method. Furthermore, the present inventors irradiated a PTFE molded body made from molding powder with ionizing radiation, and found that when the irradiation dose was 103 to 10 Brad, compared to a case where no ionizing radiation was irradiated at all. As a result, they discovered the fact that the stretching ratio of PTFE can be increased, and based on these facts, they further researched a method for producing a porous body made of polytetrafluoroethylene resin and completed the present invention.

(発明の目的ならびにその概要) 本発明は、上記のような問題点を解決しようとするもの
であって、以下のような目的を有する。
(Objects of the Invention and Summary thereof) The present invention is intended to solve the above-mentioned problems, and has the following objects.

(a )真円形に近い孔を有し、しかもその孔径を所定
の大きさに均一に制御することが可能なPTFE製多孔
質体の製造方法を提供すること。
(a) To provide a method for producing a porous body made of PTFE, which has pores that are close to a perfect circle and whose pore diameter can be uniformly controlled to a predetermined size.

(b)ファインパウダーを原料とするPTFE多孔質模
と比較して、機械的強度に優れたPTFE多孔質膜の製
造方法を提供すること。
(b) To provide a method for producing a porous PTFE membrane that has superior mechanical strength compared to a porous PTFE membrane made from fine powder.

本発明に係る第1の態様のPTFE製多孔質体の製造方
法は、懸濁重合法によって得られるPTFE成形用粉末
を圧縮成形してPTFE予備成形体を作成し、この予備
成形体を327℃以上の温度で焼成し、得られたPTF
E樹脂成形体に電離性放射線を照射した後、327℃以
下の温度で一軸または2軸延伸することを特徴としてい
る。
In the first aspect of the method for producing a porous PTFE body according to the present invention, a PTFE molding powder obtained by a suspension polymerization method is compression-molded to create a PTFE preform, and the preform is heated at 327°C. PTF obtained by firing at a temperature above
The E resin molded product is characterized by being uniaxially or biaxially stretched at a temperature of 327° C. or lower after being irradiated with ionizing radiation.

また、本発明に係る第2の態様のPTFE製多孔質体の
製造方法は、懸濁重合法によって得られるPTFE成形
用粉末を圧縮成形してPTFE予備成形体を作成し、得
られたPTFE樹脂成形体に電離性放射線を照射した後
に、このポリテトラフルオロエチレン樹脂成形体327
℃以上の温度で再焼成し、次いで327℃以下の温度で
一軸または二軸延伸することを特徴としている。
Further, in the second aspect of the method for producing a porous body made of PTFE according to the present invention, a PTFE molding powder obtained by a suspension polymerization method is compression molded to create a PTFE preform, and the obtained PTFE resin is After irradiating the molded body with ionizing radiation, this polytetrafluoroethylene resin molded body 327
It is characterized in that it is re-fired at a temperature of 327° C. or higher, and then uniaxially or biaxially stretched at a temperature of 327° C. or lower.

(発明の詳細な説明) 本発明に係るPTFE製多孔質体を製造する際に用いら
れるPTFEは、懸濁重合法によって得られるPTFE
成形用粉末であり、その平均粒子径は1〜900μが好
ましく、さらに好ましくは10〜50μのPTFEの成
形用粉末であることが望ましい。
(Detailed Description of the Invention) The PTFE used in manufacturing the PTFE porous body according to the present invention is a PTFE obtained by a suspension polymerization method.
It is a powder for molding, and the average particle size thereof is preferably 1 to 900 microns, more preferably 10 to 50 microns.

このようなPTFE成形用粉末を金型中などで、成形圧
100〜300 kg/ cs2で予備成形するとPT
FE予備成形体が得られる。次いでこの予備成形体を3
27℃以上好ましくは350〜380℃の温度で焼成し
た侵冷却することによって、所望形状たとえばフィルム
形状の成形体が得られる。
When such PTFE molding powder is preformed in a mold at a molding pressure of 100 to 300 kg/cs2, PT
An FE preform is obtained. Next, this preformed body was
By firing at a temperature of 27° C. or higher, preferably from 350 to 380° C. and cooling, a molded article having a desired shape, such as a film shape, can be obtained.

前記予備成形体からたとえばフィルム状成形体を得るに
は、予備成形体を円筒形状とし、これを適当な厚さに切
削すればよい。上記においてはPTFEフィルムは、P
TFE予備成形体を焼成した後、切削により得られてい
るが、本発明においては、切削以外の方法によって得ら
れるPTFEフィルムを用いることもできる。また、本
発明に適用できる成形体の形状はチューブ状であっても
よい。
In order to obtain, for example, a film-like molded product from the preform, the preform may be made into a cylindrical shape and cut to an appropriate thickness. In the above, the PTFE film is P
Although the PTFE film is obtained by cutting after firing the TFE preform, in the present invention, a PTFE film obtained by a method other than cutting can also be used. Further, the shape of the molded body applicable to the present invention may be a tube shape.

要するに本発明において用いられるPTFE成形体は懸
濁重合法によって得られるPTFE成形用粉末を圧縮成
形した後焼成して得られるものであればよい。
In short, the PTFE molded body used in the present invention may be one obtained by compression molding a PTFE molding powder obtained by a suspension polymerization method, followed by firing.

このようにして得られたPTFE成形体に、ガンマ−線
、電子線などの電離性放射線を照射する。
The PTFE molded body thus obtained is irradiated with ionizing radiation such as gamma rays and electron beams.

一般的にポリテトラフルオロエチレンにガンマ−線ある
いは電子線などの電離性放射線を照射すると崩壊反応が
起こり、重合度が減少して分子量が低下し、引張り強さ
などの機械的強度は減少する。
Generally, when polytetrafluoroethylene is irradiated with ionizing radiation such as gamma rays or electron beams, a decay reaction occurs, resulting in a decrease in the degree of polymerization, a decrease in molecular weight, and a decrease in mechanical strength such as tensile strength.

しかし、PTFE成形体に、1x103〜1x106ラ
ドの照射量範囲で電子性放射線を照射すると、全く意外
にも、その照射量の範囲内におい−では、放射線を全く
照射しない場合と比較して、延伸時の延伸率を大きくす
ることができ、しかも強度的にも実用上問題のないこと
がわかった。
However, when a PTFE molded body is irradiated with electronic radiation at a dose range of 1 x 103 to 1 x 106 rad, it is quite surprising that within that irradiation dose range, there is less stretching compared to when no radiation is irradiated at all. It was found that it was possible to increase the stretching ratio at the time, and there was no problem in terms of strength in practical use.

電離性放射線の照射量は、1x103〜1x106であ
るが、好ましくは1x104〜1x106ラドであるこ
とが望ましい。この照射量が1X103ラド未満である
と、延伸時に延伸率の向上効果は、はとんど認められず
、一方1x108ラドを越えて照射すると崩壊反応がさ
らに進行し、分子間結合がほとんど切断され、引張り強
さ、伸びなどの機械的特性が極端に低下してしまうため
好ましくない。
The dose of ionizing radiation is 1x103 to 1x106, preferably 1x104 to 1x106 rad. If the irradiation amount is less than 1 x 103 rad, the effect of improving the stretching ratio during stretching will hardly be observed, while if the irradiation exceeds 1 x 108 rad, the collapse reaction will proceed further and most of the intermolecular bonds will be severed. , tensile strength, elongation, and other mechanical properties are extremely reduced.

また、本発明においては、上記のように焼成して得られ
たPTFE成形体を、327℃以上好ましくは350〜
390℃の温度に再度焼成して冷却後に、前述のように
、電離線放射線を照射し、次いで327℃以下の1度で
一軸または二軸延伸することによってPTFE多孔質体
を製造してもよい。このように、いったん焼成したPT
FEに成形体をさらに327℃以上に再度焼成すること
によって、たとえばPTFEフィルム作成時に発生した
微細な傷などを再度融着することができ、したがって、
延伸の際に微細な傷に起因する破壊を防止することがで
きる。
In addition, in the present invention, the PTFE molded body obtained by firing as described above is heated at a temperature of 327°C or higher, preferably 350°C or higher.
A PTFE porous body may be produced by firing again to a temperature of 390°C and cooling, followed by irradiation with ionizing radiation as described above, followed by uniaxial or biaxial stretching at a temperature of 327°C or less. . In this way, once fired PT
By further baking the molded body in FE at a temperature of 327°C or higher, for example, fine scratches that occurred during the production of the PTFE film can be fused again, and therefore,
Breakage caused by minute scratches during stretching can be prevented.

また、再焼成時における冷却は、除冷でもよいし急冷で
あってもよい。たとえば70’C/hrIJ、上の冷却
速度で急冷すると、後に得られるPTFE多孔質体の孔
径が真円形状に近くなる傾向が認められる。また、除冷
により冷却すれば、後に得られるPTFE多孔質体の気
孔率が高くなる傾向が認められる。
Further, cooling during re-firing may be gradual cooling or rapid cooling. For example, when the material is rapidly cooled at a cooling rate of 70'C/hrIJ, it is observed that the pore diameter of the PTFE porous material obtained later tends to become close to a perfect circle. Furthermore, if the material is cooled by gradual cooling, the porosity of the PTFE porous body obtained later tends to increase.

本発明での一軸または二軸延伸は、前述のようにPTF
E成形体に電離性放射線を照射した後に行なわれるが、
この延伸は327℃以下、好ましくは100℃〜320
℃、さらに好ましくは200〜250℃の温度にPTF
E成形体を加熱しながら、1.3〜8.0倍延伸して行
なう。延伸に際してPTFE成形体の温度が320’C
以上であると得られるPTFE多孔質体に均一な孔径を
有する孔が生じないため好ましくない。
The uniaxial or biaxial stretching in the present invention is performed using PTF as described above.
This is done after irradiating the E molded body with ionizing radiation.
This stretching is 327°C or less, preferably 100°C to 320°C.
℃, more preferably at a temperature of 200-250℃
E The molded body is stretched 1.3 to 8.0 times while heating it. The temperature of the PTFE molded body during stretching was 320'C.
If it is more than that, pores having a uniform pore diameter will not be formed in the resulting PTFE porous body, which is not preferable.

PTFE成形体(7) [神佑率は、1.3〜8.0倍
であるこが好ましく、この延伸倍率が8.0倍を越える
とPTFE成形体にピンホールが発生したり、延伸時に
成形体が破壊したりする恐れがあるため好ましくない。
PTFE molded product (7) [The stretching ratio is preferably 1.3 to 8.0 times; if this stretching ratio exceeds 8.0 times, pinholes may occur in the PTFE molded product or the molding will be damaged during stretching. This is not desirable as it may cause damage to the body.

一方延伸倍率が1.3倍未満である。と、所望孔径の微
細孔が得られないため、好ましくない。
On the other hand, the stretching ratio is less than 1.3 times. This is not preferable because fine pores with the desired pore diameter cannot be obtained.

このような延伸は、−軸または二軸方向に行なれるが、
好ましくは二軸方向に行なわれる。PTFE成形体に二
軸延伸を行なうことによって、得られるPTFE多孔質
体の孔が真円に近づくという効果が認められる。
Such stretching can be carried out in the -axial or biaxial direction, but
Preferably it is carried out biaxially. By subjecting the PTFE molded body to biaxial stretching, the pores of the resulting porous PTFE body become closer to a perfect circle.

また本発明に係る第2の態様のPTFE多孔質体の製!
方法では、前述のように焼成されたPT    ′FE
成形体に電離性放射線を照射した後に、ざらにPTFE
成形体を327℃以上の温度で再焼成し、次いで前述の
ように327℃以下の温度で一軸または二軸延伸するこ
とを特徴としている。この場合にも、PTFE成形体を
延伸する前に327℃以上の温度に再焼成することによ
って、PTFEフィルム作成時に発生した微細な傷など
を再度融着することができ、したがって延伸の際に微細
な傷に起因する破壊を防止することができる。
Moreover, the production of the PTFE porous body according to the second aspect of the present invention!
In the method, PT′FE calcined as described above
After irradiating the molded body with ionizing radiation, the PTFE is roughly
The molded body is characterized by being refired at a temperature of 327°C or higher, and then uniaxially or biaxially stretched at a temperature of 327°C or lower as described above. In this case as well, by re-firing the PTFE molded body to a temperature of 327°C or higher before stretching, it is possible to re-fuse the fine scratches that occurred during the creation of the PTFE film. Destruction caused by scratches can be prevented.

また上記の再焼成後の冷却に関しても上記の同様の効果
が認められ、急冷の場合には、孔形が真円形状に近くな
り、一方除冷の場合には、気孔率が高くなる傾向が認め
られる。
In addition, the same effect as mentioned above was observed regarding the cooling after re-firing. In the case of rapid cooling, the pore shape becomes close to a perfect circle, while in the case of slow cooling, the porosity tends to increase. Is recognized.

また、本発明により得られるPTFE多孔質体に形成さ
れる孔は、電子顕微鏡写爽により確められるが、延伸に
近い形状を有している。
Further, the pores formed in the PTFE porous body obtained according to the present invention have a shape similar to that of a stretched pore, as confirmed by electron microscopy.

11へ11 本発明に係るPTFE多孔質体の製造方法は、327℃
以上の温度で焼成されたPTFE成形体に電離性放射線
を照射した後に327℃以下の温度で一軸または二軸延
伸するか、あるいは327℃以上の温度で焼成されたP
TFE成形体に電離性放射線を照射した後に327℃以
上の温度で再焼成し次いで327℃以下のvAr!Iで
一軸または二軸延伸しているので、電離性放射線を全く
照射しない場合と比較として、延伸率を大きくすること
が可能となり、次のような効果を有する。
11 to 11 The method for producing a PTFE porous body according to the present invention is performed at a temperature of 327°C.
A PTFE molded body fired at a temperature above 327°C is uniaxially or biaxially stretched at a temperature of 327°C or lower after being irradiated with ionizing radiation, or a PTFE molded body fired at a temperature of 327°C or higher is
After irradiating the TFE molded body with ionizing radiation, it is refired at a temperature of 327°C or higher, and then vAr! Since the film is uniaxially or biaxially stretched at I, it is possible to increase the stretching ratio compared to the case where no ionizing radiation is irradiated, and the following effects are obtained.

(d )真円形状に近い孔を有し、しかもその孔径が均
一なPTFE多孔質体が得られる。
(d) A porous PTFE body having pores that are nearly perfectly circular in shape and having uniform pore diameters can be obtained.

(b)孔径および孔形状の制御が一層容易である。(b) Control of pore diameter and pore shape is easier.

(C)fFられるPTFE多孔質体は、ファインパウダ
ーを原料とするPTFE多孔質膜と比較して、機械的強
度に優れている。
(C) The PTFE porous body produced by fF has excellent mechanical strength compared to a PTFE porous membrane made from fine powder.

以下、本発明を実施例により説明するが、本発明はこれ
らの実施例に限定されるものではない。
EXAMPLES The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples.

fi 懸濁重合法によって得られた平均粒子径25μのPTF
E成形体粉末(ポリフロンM12.ダイキン(株)製)
を、金型中で150 ko/ Q10の成形圧で予備成
形した後350℃で1時間焼成してPTFE成形体を作
成した。このPTFE成形体を切削して肉厚0.1ml
のPTFE切削フ、イルムを作成した。この切削フィル
ムの伸びは、インストロンで測定したところ410%で
あった。
fi PTF with an average particle size of 25μ obtained by suspension polymerization method
E molded body powder (Polyflon M12. Manufactured by Daikin Corporation)
was preformed in a mold at a molding pressure of 150 ko/Q10, and then fired at 350°C for 1 hour to create a PTFE molded body. This PTFE molded body was cut to a thickness of 0.1ml.
A PTFE cutting film was created. The elongation of this cut film was 410% as measured by Instron.

次にこのPTFE切削フィルムに、空温、空気中でコバ
ルト−60のガンマ−線を104ラドの照射量で照射し
た。この切削フィルムの伸びはインストロンによって測
定したところ、550%であった。次に二の、照射後の
PTFE切削フィルムを200℃の温度にて、もとの長
さの6倍になるまで延伸してPTFE多孔質躾を得た。
Next, this PTFE cutting film was irradiated with cobalt-60 gamma rays at a dose of 104 rad in air at room temperature. The elongation of this cut film was measured by Instron and was 550%. Next, the irradiated cut PTFE film was stretched at a temperature of 200° C. to six times its original length to obtain a porous PTFE film.

実施例1で得たPTFE切削フィルムを350℃の炉中
で1時間再焼成して急冷却した後、これに室温、空気中
でコバルト−60のガンマ−線を104ラド照射した。
The PTFE cut film obtained in Example 1 was re-baked in a 350° C. furnace for 1 hour and rapidly cooled, and then irradiated with cobalt-60 gamma rays of 104 rad at room temperature in air.

次に照射後の該フィルムを250℃で二軸延伸にてX、
Y方向に各々3.0倍まで延伸してPTFE多孔質膜を
製造した。
Next, the film after irradiation was biaxially stretched at 250°C with
A PTFE porous membrane was produced by stretching each film up to 3.0 times in the Y direction.

得られたPTFE多孔質膜は孔径0.5μ−以下の真円
に近い形状の孔を多数有していた。
The obtained porous PTFE membrane had many pores having a shape close to a perfect circle and having a pore diameter of 0.5 μm or less.

なお、ガンマ線を照射後のPTFE切削フィルムの伸び
は、460%であった。
Note that the elongation of the PTFE cut film after irradiation with gamma rays was 460%.

友mf!4 3 実施例1で得たPTFE切削フィルムを360℃の炉中
で1時間再焼成し、70℃/hr以下の冷却速度で除冷
後、これに室温、空気中でコバルト−60のガンマ−線
を104ラド照射した。次に照射後の該フィルムを25
0℃で二軸延伸機にてX、Y方向に各々3.0倍まで延
伸してPTFE多孔質膜を製造した。
Friend mf! 4 3 The PTFE cut film obtained in Example 1 was re-baked in a 360°C furnace for 1 hour, and after being slowly cooled at a cooling rate of 70°C/hr or less, it was coated with cobalt-60 gamma in air at room temperature. The beam was irradiated with 104 rad. Next, the film after irradiation was
A PTFE porous membrane was produced by stretching the film in the X and Y directions up to 3.0 times in each direction using a biaxial stretching machine at 0°C.

得られたPTFE多孔質膜は孔径0.5μm以下の真円
に近い形状の孔を多数有していた。
The obtained porous PTFE membrane had many pores having a shape close to a perfect circle and having a pore diameter of 0.5 μm or less.

なおガンマ線を照射後のP丁FE切削フィルムの伸びは
、600%であった。
Note that the elongation of the P-cho FE cutting film after irradiation with gamma rays was 600%.

実施例1で得たPTFE切削フィルムに室温、空気中で
コバルト−60のガンマ−線を104ラド照射した。次
にこのフィルムを360’Cの炉中で1時間再焼成した
後、トリクレン中にて急冷処理を施した。次に該フィル
ムを250℃で二軸延伸機にてX、Y方向に各々3.0
倍まで延伸してPTFE多孔質膜を製造した。
The PTFE cut film obtained in Example 1 was irradiated with cobalt-60 gamma rays at 104 rad at room temperature in air. Next, this film was refired in a 360'C furnace for 1 hour, and then rapidly cooled in Trichlorene. Next, the film was stretched at 250°C with a biaxial stretching machine of 3.0% in each of the X and Y directions.
A porous PTFE membrane was produced by stretching the membrane to double the original length.

なお、ガンマ−線を照射した後のPTFE切削フィルム
の伸びは、550%であった。
Note that the elongation of the PTFE cutting film after irradiation with gamma rays was 550%.

L1九−二 実施例1で得たPTFE切削フィルムを、電離性放射線
を照射することなしに、二軸延伸機にてX、Y方向に各
々の1.7倍まで延伸したところ、多数のピンホールが
発生していた。
L19-2 When the PTFE cut film obtained in Example 1 was stretched to 1.7 times in the X and Y directions using a biaxial stretching machine without irradiating it with ionizing radiation, a large number of pins appeared. A hole was occurring.

Claims (1)

【特許請求の範囲】 1、327℃以上の温度で焼成されたポリテトラフルオ
ロエチレン樹脂成形体に電離性放射線を照射した後、3
27℃以下の温度で一軸または二軸延伸することを特徴
とするポリテトラフルオロエチレン樹脂製多孔質体の製
造方法。 2、電離性放射線の照射量が10^3〜10^6ラドで
あることを特徴とする特許請求の範囲第1項に記載のポ
リテトラフルオロエチレン樹脂製多孔質体の製造方法。 3、327℃以上の温度で焼成されたポリテトラフルオ
ロエチレン樹脂成形体に電離性放射線を照射した後に、
前記ポリテトラフルオロエチレン樹脂成形体を327℃
以上の温度で再焼成し、次いで327℃以下の温度で一
軸または二軸延伸することを特徴とするポリテトラフル
オロエチレン樹脂製多孔質体の製造方法。 4、電離性放射線の照射量が10^3〜10^6ラドで
ある特許請求の範囲第3項に記載のポリテトラフルオロ
エチレン樹脂製多孔質体の製造方法。
[Claims] 1. After irradiating a polytetrafluoroethylene resin molded product fired at a temperature of 327° C. or higher with ionizing radiation, 3.
A method for producing a porous body made of polytetrafluoroethylene resin, which comprises uniaxially or biaxially stretching at a temperature of 27°C or lower. 2. The method for producing a porous body made of polytetrafluoroethylene resin according to claim 1, wherein the ionizing radiation dose is 10^3 to 10^6 rad. 3. After irradiating a polytetrafluoroethylene resin molded body fired at a temperature of 327°C or higher with ionizing radiation,
The polytetrafluoroethylene resin molded body was heated to 327°C.
A method for producing a porous body made of polytetrafluoroethylene resin, which comprises re-firing at a temperature above and then uniaxially or biaxially stretching at a temperature below 327°C. 4. The method for producing a porous body made of polytetrafluoroethylene resin according to claim 3, wherein the ionizing radiation dose is 10^3 to 10^6 rad.
JP26743984A 1984-12-20 1984-12-20 Preparation of porous body made of polytetrafluoroethylene resin Pending JPS61146522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26743984A JPS61146522A (en) 1984-12-20 1984-12-20 Preparation of porous body made of polytetrafluoroethylene resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26743984A JPS61146522A (en) 1984-12-20 1984-12-20 Preparation of porous body made of polytetrafluoroethylene resin

Publications (1)

Publication Number Publication Date
JPS61146522A true JPS61146522A (en) 1986-07-04

Family

ID=17444855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26743984A Pending JPS61146522A (en) 1984-12-20 1984-12-20 Preparation of porous body made of polytetrafluoroethylene resin

Country Status (1)

Country Link
JP (1) JPS61146522A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06116423A (en) * 1992-10-05 1994-04-26 Rei Tec:Kk Modified polytetrafluoroethylene and production thereof
JP2001335643A (en) * 2000-05-26 2001-12-04 Japan Atom Energy Res Inst Radiation-reformed polytetrafluoroethylene and production method of the same
JP2009078562A (en) * 2008-11-26 2009-04-16 Sumitomo Electric Fine Polymer Inc Tetrafluoro-ethylene resin fine powder and its extruded product
US8715559B2 (en) 2005-09-15 2014-05-06 Sumitomo Electric Fine Polymer, Inc. Non-porous sinter molded article of tetrafluoroethylene resin, expanded tetrafluoroethylene resin molded article, producing methods therefor, composite member, filter, impact deformation absorber and sealing material
US9266984B2 (en) 2008-09-30 2016-02-23 Raytech Corporation Polytetrafluoroethylene resins that can be processed by shaping, shaped products thereof, and processes for producing the resins and shaped products

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06116423A (en) * 1992-10-05 1994-04-26 Rei Tec:Kk Modified polytetrafluoroethylene and production thereof
JP2001335643A (en) * 2000-05-26 2001-12-04 Japan Atom Energy Res Inst Radiation-reformed polytetrafluoroethylene and production method of the same
US8715559B2 (en) 2005-09-15 2014-05-06 Sumitomo Electric Fine Polymer, Inc. Non-porous sinter molded article of tetrafluoroethylene resin, expanded tetrafluoroethylene resin molded article, producing methods therefor, composite member, filter, impact deformation absorber and sealing material
US9266984B2 (en) 2008-09-30 2016-02-23 Raytech Corporation Polytetrafluoroethylene resins that can be processed by shaping, shaped products thereof, and processes for producing the resins and shaped products
JP2009078562A (en) * 2008-11-26 2009-04-16 Sumitomo Electric Fine Polymer Inc Tetrafluoro-ethylene resin fine powder and its extruded product

Similar Documents

Publication Publication Date Title
JPS6116840A (en) Manufacture of porous film of polytetrafluoroethylene
JP3305006B2 (en) Battery separator using organic electrolyte and method for producing the same
US5071609A (en) Process of manufacturing porous multi-expanded fluoropolymers
US4710331A (en) Process for the production of polytetrafluoroethylene porous membranes
JP5860521B2 (en) Polytetrafluoroethylene resin that can be molded, applied products, and manufacturing method thereof
JP2001523548A (en) Microporous membrane and method for producing the same
US5426128A (en) Porous polytetrafluoroethylene and a process for the production thereof
JPH0533650B2 (en)
EP0247771B1 (en) Porous ptfe
JPS61146522A (en) Preparation of porous body made of polytetrafluoroethylene resin
US3242246A (en) Method of preparing polytetrafluoroethylene articles
JPH0288649A (en) Finely porous flat membrane and production thereof
JPH1135716A (en) Production of porous polytetrafluoroethylene film
WO2004078831A1 (en) Porous polytetrafluoroethylene resin body and process for producing the same
JPH0262604B2 (en)
JP3456284B2 (en) Porous tetrafluoroethylene resin laminate and method for producing the same
JP4261091B2 (en) Fluororesin porous body and method for producing the same, tetrafluoroethylene resin fine powder, or extrusion molded article using the same
JPH10316795A (en) Production of porous film
JP2801658B2 (en) Polytetrafluoroethylene porous body and method for producing the same
JP2780113B2 (en) Method for producing porous polytetrafluoroethylene
JPH0679659B2 (en) Method for producing porous polypropylene hollow fiber or film
JPH0829232B2 (en) Method to give pressure resistance to filtration membrane
JP2004142106A (en) Method for manufacturing tetrafluoroethylene resin porous body
JPS647856B2 (en)
JPH07316327A (en) Porous material of ethylene tetrafluoride resin and production thereof