JP2004142106A - Method for manufacturing tetrafluoroethylene resin porous body - Google Patents

Method for manufacturing tetrafluoroethylene resin porous body Download PDF

Info

Publication number
JP2004142106A
JP2004142106A JP2002306256A JP2002306256A JP2004142106A JP 2004142106 A JP2004142106 A JP 2004142106A JP 2002306256 A JP2002306256 A JP 2002306256A JP 2002306256 A JP2002306256 A JP 2002306256A JP 2004142106 A JP2004142106 A JP 2004142106A
Authority
JP
Japan
Prior art keywords
tetrafluoroethylene resin
temperature
porous
tape
irradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002306256A
Other languages
Japanese (ja)
Inventor
Takashi Udagawa
宇田川 昂
Shigetoshi Ikeda
池田 重利
Toshiaki Yagi
八木 敏明
Tamami Udagawa
宇田川 珠美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PLACT CORP
Original Assignee
PLACT CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PLACT CORP filed Critical PLACT CORP
Priority to JP2002306256A priority Critical patent/JP2004142106A/en
Publication of JP2004142106A publication Critical patent/JP2004142106A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an industrially advantageous method for efficiently manufacturing a tetrafluoroethylene resin porous body of which the pore size and void are controlled. <P>SOLUTION: A tetrafluoroethylene resin molded body, which is irradiated with ionizing radiation in a dose of 20-300 Gy at 27°C or lower, is subjected to stretching treatment and the stretched molded body is subsequently sintered to manufacture the tetrafluoroethylene resin porous body. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、四フッ化エチレン樹脂多孔質体の製造方法に関する。さらに詳しくは、本発明は、ガス分離膜、液体分離膜、各種フィルター、電池用隔膜、人工血管、カテーテルなどの用途に用いられる四フッ化エチレン樹脂多孔質体を、その用途に応じた孔径及び気孔率が得られるように、効率よく、かつ工業的にも有利に製造する方法に関するものである。
【0002】
【従来の技術】
従来、四フッ化エチレン樹脂多孔質体は、耐熱性及び耐薬品性に優れる上、微細で均質な多孔質構造が得られやすいことから、広範な分野において利用されている。代表的な用途としては、ガス分離膜、液体分離膜、各種フィルター、電池用隔膜、人工血管、カテーテルなどがある。
この四フッ化エチレン樹脂多孔質体は、一般に、四フッ化エチレン樹脂の微粉末を用いてペースト押出法により成形し、得られた押出成形品を延伸処理して多孔質化したのち、燒結することにより製造されている。この際、延伸処理は、通常200℃前後にて行われ、また燒結は、四フッ化エチレン樹脂の融点(327℃)以上に加熱して行われる。
さらに、四フッ化エチレン樹脂多孔質体の製造においては、その用途に応じて要求される平均孔径、透過率、透過流量、強度などの特性を満たす必要がある。例えば、該多孔質体をフィルターとして用いる場合には、主として、透過すべき気体や液体の透過流量と、ろ過分別される粒子の大きさに対する能力、すなわち孔径がその性能を決定する。この二つの性能については、一般に、前者は気孔率で、また後者はアルコール中での空気の透過開始圧力を示すバブルポイントを測定した値で評価される。すなわち、該多孔質体における空気の割合が大きいほど、気孔率が高くなり、一方、バブルポイントが大きいほど、孔径が小さくなる。
【0003】
また、四フッ化エチレン樹脂の前記押出成形品は、成形条件によって若干異なるが、通常1000%以上の延伸が可能であり、その温度依存性については、100℃付近に伸びが最大となるピークが存在するなだらかな曲線を描く。一般に、気孔率と孔径は延伸倍率に依存し、延伸倍率が高くなると気孔率と孔径は大きくなる。また、延伸速度や延伸温度によっても気孔率と孔径を制御することができるが、狭い範囲で延伸倍率を変える手段に頼らざるを得ず、気孔率や孔径の制御には、製法上の自由度はあまりないのが実状である。
したがって、孔径を小さくしたい場合には、従来技術では延伸倍率を下げる手法がとられている。しかしながら、この場合半導体工業などで必要とされる高いろ過性能が得られない。すなわち小孔径のフィルターを製造しようとすれば、自ずとろ過処理能力の極めて小さい多孔質体となるのを免れないという問題が生じる。
【0004】
一方、四フッ化エチレン樹脂の微粉末又はその未延伸・未焼成の押出成形品に対して、電離放射線を照射する技術が知られている(例えば、特許文献1、2参照)が、この技術は、専ら高温で伸びが低下する現象、すなわち延伸可能な量が制限された状態を応用する技術であって、本発明のように、孔径及び気孔率が制御された四フッ化エチレン樹脂多孔質体を製造する技術とは、根本的に異なるものである。
【0005】
【特許文献1】
特開2002−256080号公報(第2頁)
【特許文献2】
特開2001−335643号公報(第2頁)
【0006】
【発明が解決しようとする課題】
本発明は、このような状況下で、孔径及び気孔率が制御された四フッ化エチレン樹脂多孔質体を効率よく製造する工業的に有利な方法を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、ある温度以下にて、電離放射線が特定の線量で照射されてなる四フッ化エチレン樹脂成形体を、延伸処理し、さらに燒結することにより、その目的を達成し得ることを見出した。本発明は、かかる知見に基づいて完成したものである。
すなわち、本発明は、
(1)27℃以下の温度において、電離放射線が20〜300Gyの線量で照射されてなる四フッ化エチレン樹脂成形体を延伸処理し、次いで燒結することを特徴とする四フッ化エチレン樹脂多孔質体の製造方法、
(2)電離放射線が照射されてなる四フッ化エチレン樹脂成形体が、四フッ化エチレン樹脂成形体に、27℃以下の温度において、電離放射線を20〜300Gyの線量で照射したものである上記(1)の四フッ化エチレン樹脂多孔質体の製造方法、
【0008】
(3)電離放射線が照射されてなる四フッ化エチレン樹脂成形体が、四フッ化エチレン樹脂粉末に、27℃以下の温度において、電離放射線を20〜300Gyの線量で照射し、これを成形したものである上記(1)の四フッ化エチレン樹脂多孔質体の製造方法、
(4)延伸処理を140℃以下の温度で行う上記(1)、(2)、(3)の四フッ化エチレン樹脂多孔質体の製造方法、
(5)焼結を成形体の融点以上400℃以下の温度で行う上記(1)〜(4)の四フッ化エチレン樹脂多孔質体の製造方法、及び
(6)四フッ化エチレン樹脂成形体が、四フッ化エチレン樹脂粉末をペースト押出成形することにより得られたものである上記(1)〜(5)の四フッ化エチレン樹脂多孔質体の製造方法、
を提供するものである。
【0009】
【発明の実施の形態】
本発明の方法で得られる多孔質体の素材樹脂である四フッ化エチレン樹脂としては特に制限はなく、従来公知の方法、例えば乳化重合又は懸濁重合などの方法で得られた四フッ化エチレン樹脂を用いることができる。
本発明の方法においては、前記四フッ化エチレン樹脂の成形体を延伸処理し、次いで焼結するが、上記延伸処理には、電離放射線が照射されてなる成形体が用いられる。ここで、電離放射線とは、電子線、X線、γ線、中性子線、高エネルギーイオンなどを指し、これらの電離放射線は一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。また、成形体の形状としては、延伸処理し得る形状であればよく、特に制限されず、例えばテープ、シート、チューブ、ロットなどを挙げることができる。このような成形体は、四フッ化エチレン樹脂粉末を用い、ペースト押出法により成形して作製することが好ましい。
【0010】
電離放射線の照射は、四フッ化エチレン樹脂粉末に対して行ってもよいし、該粉末を成形してなる成形体に行ってもよいが、作業性などの点から、成形体に電離放射線を照射するのが有利である。
本発明においては、27℃以下の温度において、20〜300Gyの線量で電離放射線を照射することが必要である。なお、線量とは、単位時間当たりの電離放射線の照射量のことである。
電離放射線の照射が、27℃より高い温度で行われると、四フッ化エチレン樹脂の結晶形態が一次転移を起こし、本発明の目的が達せられない。電離放射線照射時の好ましい温度は25℃以下であり、特に20℃以下が好ましい。さらに、電離放射線照射時の状態をよりよく保持するためには、延伸処理を施すまでの四フッ化エチレン樹脂を同様の温度下に維持することが好ましい。
電離放射線の照射は大気中で行うことができる。また、電離放射線の照射線量が20Gy未満では電離放射線の照射効果が十分に発揮されず、一方300Gyを超えると四フッ化エチレン樹脂成形体の機械的強度が低下し、所望の倍率で延伸処理することが困難となり、本発明の目的が達せられない。好ましい照射線量は50〜200Gyの範囲である。
【0011】
このように、電離放射線が照射されてなる四フッ化エチレン樹脂成形体は、未照射成形体よりも50〜100℃程度低い温度でも十分に延伸することができる。そして電離放射線照射成形体を、未照射成形体よりも50〜100℃程度低い温度で、未照射成形体と同一倍率に延伸処理した場合、得られた多孔質体の気孔率は、開孔密度が高いために、未照射成形体から得られた多孔質体の気孔率よりも、自ずと高くなる。また、電離放射線照射成形体から得られた多孔質体は、未照射成形体から得られた多孔質体に比べ、延伸倍率を同じ割合で増加させた場合、気孔率の増加率がはるかに大きい。
このように、これまで常識的に得られなかった高い気孔率をもつ四フッ化エチレン樹脂多孔質体を、低い延伸温度と低い延伸倍率においても容易に作製することができる。
【0012】
本発明の最大の特徴は、後述の図1に示すように、電離放射線を照射することにより、延伸処理において、成形体の伸び率が最大となる温度を低温側へシフトさせることにある。本発明においては、電離放射線の照射線量は、150Gy付近が特に好ましく、この際の最大伸びを与える温度のピークは約80℃であり、かつ伸び率は、未照射の場合の2割程度増大する。また、電離放射線照射成形体の伸び率は、最大伸びを与える温度を超えると未照射成形体の伸び率よりも大幅に低下する。したがって、延伸温度は、所望の延伸倍率に延伸できる伸び率を有する温度を選択することが好ましい。すなわち、本発明においては、電離放射線が照射されてなる四フッ化エチレン樹脂成形体の延伸処理は、好ましくは140℃以下、より好ましくは60〜130℃、さらに好ましくは70〜120℃の範囲の温度で行うことが望ましい。また、延伸倍率は、電離放射線の照射線量、延伸温度などに左右されるが、通常1.5〜7倍、好ましくは2〜6倍の範囲である。
なお、成形体がシートである場合、一軸延伸処理のみでなく、二軸延伸処理することもできる。
【0013】
本発明においては、電離放射線の照射線量、延伸温度及び延伸倍率を適切に選択することにより、多孔質体の孔径及び気孔率を制御することができる。
本発明においては、このようにして電離放射線が照射されてなる四フッ化エチレン樹脂成形体を延伸処理したのち、収縮しないように固定して、好ましくは、成形体の融点以上400℃以下の温度で焼結を行うことにより、所望の四フッ化エチレン樹脂多孔質体を得ることができる。このようにして得られた多孔質体の気孔率は、通常25〜90%、好ましくは60〜90%であり、一方バブルポイントは、通常0.15〜3.0好ましくは2.0〜3.0である。なお、気孔率及びバブルポイントの測定方法については、後で説明する。
【0014】
【実施例】
次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
なお、四フッ化エチレン樹脂テープの気孔率及びバブルポイントは、下記の方法に従って測定した。
(1)気孔率
気孔率は、多孔質膜材の体積と重量から求めた密度と、四フッ化エチレン樹脂本来の密度(2.2g/cm)との比から、計算により求めた。
(2)バブルポイント
バブルポイントは、PMI社製の細孔径分布測定器を用いて、ASTMF316−86に準拠した測定により求めた。
参考例1
四フッ化エチレン樹脂微粉末[ダイキン工業(株)製、「ポリフロンF104」]を用いて、ペースト押出法により厚さ約0.3mmのテープを成形した。次いで、このテープに、室温(15℃)、大気中でコバルト60のγ線を各線量にて照射した。各線量における伸びが最大になる温度と、その際の伸び率(破断伸び)を、インストロン4302引張試験機(インストロン ジャパン社製)により調べた。その結果を第1表に示す。また、150Gy照射及び未照射テープにおける温度と破断伸びとの関係を、図1にグラフで示す。
【0015】
【表1】

Figure 2004142106
【0016】
第1表から分かるように、伸びが最大となる温度は、150Gyで80℃であり、未照射の場合の該温度(103℃)に比べて低くなる。逆に伸び率は、80℃で最大1500%であり、未照射の場合の伸び率(1300%)に比べて高くなる。また、照射線量が150Gyを超えると伸びが最大となる温度と伸び率は、いずれも低下する傾向があり、高延伸倍率の多孔質体を製造するためには、線量に限界があることを示している。
【0017】
実施例1
参考例1と同様に成形したテープに、室温(15℃)、大気中でコバルト60のγ線を150Gyの線量で照射した。次に、このテープを、90℃の空気循環恒温槽中にて、初期の長さ(40mm)の3.5倍まで毎分30cmの速度で延伸処理したのち、延伸方向の長さを固定して、355℃で焼結した。この延伸、焼結多孔質テープの気孔率は78%であった。
また、比較のため、未照射のテープを、上記と同様に150℃で3.5倍に延伸処理し、焼結した多孔質テープの気孔率は74%であった。
【0018】
実施例2
実施例1において、照射テープを110℃で4倍に延伸処理した以外は、実施例1と同様にして、延伸、焼結多孔質テープを作製した。この多孔質テープの気孔率は82%であった。
また、比較のため、未照射のテープを、同様に150℃で4倍に延伸処理し、焼結した多孔質テープの気孔率は77%であった。
実施例3
実施例1において、照射テープを3倍に延伸処理した以外は、実施例1と同様にして延伸、焼結多孔質テープを作製した。この多孔質テープの気孔率は70%であった。
また、比較のため、未照射のテープを、同様に150℃で3倍に延伸処理し、焼結した多孔質テープの気孔率は72%であった。
本実施例と実施例1とを比較して分かるように、150Gyの線量で照射したテープは、90℃の延伸において、延伸率0.5倍増加で、気孔率が8%増大したのに対し、150℃における未照射テープの延伸では、延伸率0.5倍の増加で、僅か2%の増大しか認められなかった。
【0019】
実施例4
実施例2において、照射テープを3.5倍に延伸処理した以外は、実施例2と同様にして延伸、焼結多孔質テープを作製した。この多孔質テープの気孔率は74%であった。
また、比較のため、未照射のテープを、同様に150℃で3.5倍に延伸処理し、焼結してなる多孔質テープの気孔率は74%であった。
本実施例と実施例2とを比較して分かるように、150Gyの線量で照射したテープは、110℃の延伸において、延伸率0.5倍増加で、気孔率が8%増大したのに対し、150℃における未照射テープの延伸では、延伸率0.5倍の増加で、僅か3%の増大しか認められなかった。
【0020】
実施例5
参考例1と同様に成形したテープに、室温(15℃)、大気中でコバルト60のγ線を300Gyの線量で照射した。次に、このテープを、100℃の空気循環恒温槽中にて、初期の長さ(40mm)の4倍まで毎分30cmの速度で延伸処理したのち、延伸方向の長さを固定して、355℃で焼結を試みたが、焼結の段階で溶融切断した。延伸温度を80℃に下げたところ、気孔率80%の延伸、焼結多孔質テープを作製することができた。
また、80℃で延伸した際の降伏点強度は、未照射テープが6MPaであったのに対し、300Gyの線量で照射したテープは3.4MPaであり、未照射テープの200℃における降伏点強度2.3MPaに近い値であった。このことは、照射テープを低温域で延伸処理するに際し、不必要な応力がかかる心配のないことを示している。
【0021】
実施例6
参考例1と同様に成形したテープに、室温(15℃)、大気中でコバルト60のγ線を150Gyの線量で照射した。次に、このテープを、90℃の空気循環恒温槽中にて、初期の長さ(40mm)の2.5倍まで毎分30cmの速度で延伸処理したのち、延伸方向の長さを固定して、355℃で焼結した。この延伸、焼結多孔質テープの気孔率は72%であり、そのバブルポイントは1.4であった。
また、比較のため、未照射テープを、上記と同様に150℃で2.5倍に延伸処理し、焼結してなる多孔質テープの気孔率は74%、バブルポイントは0.7であった。すなわち、本発明の方法によれば、小孔径で比較的高い気孔率を有する多孔質テープが得られることが分かる。
【0022】
【発明の効果】
本発明によれば、電離放射線が照射されてなる四フッ化エチレン樹脂成形体を、延伸処理、次いで焼結することにより、孔径と気孔率が制御された四フッ化エチレン樹脂多孔質体を、効率よく、工業的にも有利に製造することができる。
本発明の方法で得られた四フッ化エチレン樹脂多孔質体は、例えばガス分離膜、液体分離膜、各種フィルター、電池用隔膜、人工血管、カテーテルなどの用途に好適に用いられる。
【図面の簡単な説明】
【図1】電離放射線が150Gyの線量で照射されたテープ及び未照射テープにおける温度と破断伸びとの関係の一例を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a porous tetrafluoroethylene resin material. More specifically, the present invention provides a gas separation membrane, a liquid separation membrane, various filters, a membrane for batteries, an artificial blood vessel, a porous body of a polytetrafluoroethylene resin used for applications such as a catheter, a pore size and a pore size according to the use. The present invention relates to a method for producing the porosity efficiently and industrially advantageously so as to obtain a porosity.
[0002]
[Prior art]
BACKGROUND ART Conventionally, porous polytetrafluoroethylene resins have been used in a wide range of fields because they have excellent heat resistance and chemical resistance and can easily obtain a fine and uniform porous structure. Typical applications include gas separation membranes, liquid separation membranes, various filters, diaphragms for batteries, artificial blood vessels, catheters, and the like.
This porous body of ethylene tetrafluoride resin is generally formed by a paste extrusion method using fine powder of ethylene tetrafluoride resin, and the obtained extruded product is stretched to be porous, and then sintered. It is manufactured by. At this time, the stretching treatment is usually performed at about 200 ° C., and the sintering is performed by heating to a temperature not lower than the melting point of the tetrafluoroethylene resin (327 ° C.).
Furthermore, in the production of a porous tetrafluoroethylene resin, it is necessary to satisfy characteristics such as an average pore diameter, a transmittance, a permeation flow rate, and strength required according to the use. For example, when the porous body is used as a filter, its performance is mainly determined by the permeation flow rate of gas or liquid to be permeated and the capacity for the size of the particles to be filtered and separated, that is, the pore size. In general, the former is evaluated by the porosity of the former, and the latter is measured by a value obtained by measuring a bubble point indicating an onset pressure of air permeation in alcohol. That is, the porosity increases as the proportion of air in the porous body increases, while the pore size decreases as the bubble point increases.
[0003]
The extruded product of the tetrafluoroethylene resin is slightly different depending on the molding conditions, but is usually stretchable by 1000% or more. Regarding the temperature dependence, a peak at which the elongation is maximum near 100 ° C. Draw a gentle curve that exists. Generally, the porosity and the pore size depend on the stretching ratio, and the higher the stretching ratio, the larger the porosity and the pore size. In addition, the porosity and the pore size can be controlled by the stretching speed and the stretching temperature. The fact is that there is not much.
Therefore, when it is desired to reduce the pore diameter, a technique of lowering the draw ratio has been adopted in the prior art. However, in this case, the high filtration performance required in the semiconductor industry or the like cannot be obtained. That is, if a filter having a small pore diameter is to be manufactured, a problem arises that a porous body having a very small filtration capacity cannot be avoided.
[0004]
On the other hand, a technique of irradiating ionizing radiation to a fine powder of a tetrafluoroethylene resin or an unstretched / unfired extruded product thereof is known (for example, see Patent Documents 1 and 2). Is a technology that applies the phenomenon that elongation is reduced only at high temperatures, that is, the state where the amount that can be stretched is limited. As in the present invention, a porous polytetrafluoroethylene resin having a controlled pore size and porosity is used. The technology for making the body is fundamentally different.
[0005]
[Patent Document 1]
JP-A-2002-256080 (page 2)
[Patent Document 2]
JP 2001-335643 A (page 2)
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide an industrially advantageous method for efficiently producing a porous tetrafluoroethylene resin having a controlled pore size and porosity under such circumstances.
[0007]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object, and as a result, at a certain temperature or lower, ionizing radiation is irradiated with a specific dose of a tetrafluoroethylene resin molded article, and stretched, Further, it has been found that the object can be achieved by sintering. The present invention has been completed based on such findings.
That is, the present invention
(1) Porous tetrafluoroethylene resin, characterized in that a molded article of tetrafluoroethylene resin irradiated with ionizing radiation at a dose of 20 to 300 Gy at a temperature of 27 ° C. or less is stretched and then sintered. Body manufacturing method,
(2) The above-mentioned tetrafluoroethylene resin molded article irradiated with ionizing radiation is obtained by irradiating the tetrafluoroethylene resin molded article with ionizing radiation at a temperature of 27 ° C. or less at a dose of 20 to 300 Gy. (1) a method for producing a porous tetrafluoroethylene resin material,
[0008]
(3) The tetrafluoroethylene resin molded body irradiated with ionizing radiation was irradiated with ionizing radiation at a dose of 20 to 300 Gy to the tetrafluoroethylene resin powder at a temperature of 27 ° C. or less. A method for producing a porous tetrafluoroethylene resin according to the above (1),
(4) The method for producing a porous tetrafluoroethylene resin material according to (1), (2), or (3), wherein the stretching treatment is performed at a temperature of 140 ° C. or lower;
(5) The method for producing a porous tetrafluoroethylene resin material according to any one of (1) to (4), wherein the sintering is performed at a temperature not lower than the melting point of the molded product and not higher than 400 ° C .; Is a method for producing a porous tetrafluoroethylene resin material according to any one of the above (1) to (5), which is obtained by subjecting a tetrafluoroethylene resin powder to paste extrusion molding;
Is provided.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
There is no particular limitation on the tetrafluoroethylene resin which is the material resin of the porous body obtained by the method of the present invention, and conventionally known methods, for example, ethylene tetrafluoride obtained by a method such as emulsion polymerization or suspension polymerization. Resin can be used.
In the method of the present invention, the molded article of the ethylene tetrafluoride resin is subjected to a stretching treatment and then sintered. In the stretching treatment, a molded article irradiated with ionizing radiation is used. Here, ionizing radiation refers to electron beams, X-rays, γ-rays, neutron rays, high-energy ions, and the like, and these ionizing radiations may be used alone or in combination of two or more. Good. The shape of the molded body is not particularly limited as long as it can be subjected to a stretching treatment, and examples thereof include a tape, a sheet, a tube, and a lot. It is preferable that such a molded body is formed by molding using a tetrafluoroethylene resin powder by a paste extrusion method.
[0010]
Irradiation with ionizing radiation may be performed on the tetrafluoroethylene resin powder, or may be performed on a molded product obtained by molding the powder, but from the viewpoint of workability and the like, ionizing radiation is applied to the molded product. Irradiation is advantageous.
In the present invention, it is necessary to apply ionizing radiation at a dose of 20 to 300 Gy at a temperature of 27 ° C. or lower. Here, the dose refers to the irradiation amount of ionizing radiation per unit time.
If the irradiation of ionizing radiation is performed at a temperature higher than 27 ° C., the crystal form of the tetrafluoroethylene resin undergoes a first order transition, and the object of the present invention cannot be achieved. The preferred temperature at the time of ionizing radiation irradiation is 25 ° C. or lower, particularly preferably 20 ° C. or lower. Further, in order to better maintain the state at the time of ionizing radiation irradiation, it is preferable to maintain the ethylene tetrafluoride resin at the same temperature until the stretching treatment is performed.
Irradiation with ionizing radiation can be performed in the atmosphere. When the irradiation dose of ionizing radiation is less than 20 Gy, the effect of irradiation with ionizing radiation is not sufficiently exerted. On the other hand, when the irradiation dose exceeds 300 Gy, the mechanical strength of the ethylene tetrafluoride resin molded article is reduced, and the film is stretched at a desired magnification. This makes it difficult to achieve the object of the present invention. Preferred irradiation doses are in the range of 50-200 Gy.
[0011]
As described above, the molded article of the tetrafluoroethylene resin irradiated with the ionizing radiation can be sufficiently stretched even at a temperature lower by about 50 to 100 ° C. than the unirradiated molded article. When the ionized radiation-irradiated molded body is stretched to the same magnification as the unirradiated molded body at a temperature lower by about 50 to 100 ° C. than the unirradiated molded body, the porosity of the obtained porous body is determined by the pore density. Is higher than the porosity of the porous body obtained from the unirradiated molded body. In addition, the porous body obtained from the ionized radiation-irradiated molded body has a much higher porosity increase rate when the stretching ratio is increased at the same ratio as compared with the porous body obtained from the unirradiated molded body. .
As described above, it is possible to easily produce a porous body of ethylene tetrafluoride resin having a high porosity, which has not been obtained by common sense until now, even at a low stretching temperature and a low stretching ratio.
[0012]
The greatest feature of the present invention is that, as shown in FIG. 1 to be described later, the temperature at which the elongation of the molded article is maximized is shifted to a lower temperature side in the stretching treatment by irradiating with ionizing radiation. In the present invention, the irradiation dose of the ionizing radiation is particularly preferably around 150 Gy. In this case, the peak of the temperature giving the maximum elongation is about 80 ° C., and the elongation rate is increased by about 20% in the case of no irradiation. . Further, the elongation percentage of the ionized radiation-irradiated molded article is significantly lower than the elongation percentage of the unirradiated molded article when the temperature exceeds the maximum elongation temperature. Therefore, as the stretching temperature, it is preferable to select a temperature having an elongation percentage that allows stretching to a desired stretching ratio. That is, in the present invention, the stretching treatment of the tetrafluoroethylene resin molded article irradiated with ionizing radiation is preferably performed at 140 ° C. or lower, more preferably 60 to 130 ° C., and even more preferably 70 to 120 ° C. It is desirable to carry out at a temperature. The stretching magnification depends on the irradiation dose of ionizing radiation, the stretching temperature and the like, but is usually in the range of 1.5 to 7 times, preferably 2 to 6 times.
When the molded article is a sheet, not only uniaxial stretching but also biaxial stretching can be performed.
[0013]
In the present invention, the pore diameter and porosity of the porous body can be controlled by appropriately selecting the irradiation dose of ionizing radiation, the stretching temperature, and the stretching ratio.
In the present invention, after stretching the tetrafluoroethylene resin molded article irradiated with ionizing radiation in this manner, the molded article is fixed so as not to shrink, preferably at a temperature not lower than the melting point of the molded article and not higher than 400 ° C. By performing sintering, a desired porous body of ethylene tetrafluoride resin can be obtained. The porosity of the porous body thus obtained is usually 25 to 90%, preferably 60 to 90%, while the bubble point is usually 0.15 to 3.0, preferably 2.0 to 3%. 0.0. The method of measuring the porosity and the bubble point will be described later.
[0014]
【Example】
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
The porosity and bubble point of the tetrafluoroethylene resin tape were measured according to the following methods.
(1) Porosity The porosity was calculated from the ratio of the density obtained from the volume and weight of the porous membrane material to the original density of the tetrafluoroethylene resin (2.2 g / cm 3 ).
(2) Bubble Point The bubble point was determined by a measurement based on ASTM F316-86 using a pore size distribution measuring device manufactured by PMI.
Reference Example 1
A tape having a thickness of about 0.3 mm was formed by paste extrusion using fine powder of polytetrafluoroethylene resin ["Polyflon F104" manufactured by Daikin Industries, Ltd.]. Then, the tape was irradiated with γ-rays of cobalt 60 at room temperature (15 ° C.) in the air at various doses. The temperature at which the elongation at each dose was maximized and the elongation rate (elongation at break) at that time were examined using an Instron 4302 tensile tester (manufactured by Instron Japan). Table 1 shows the results. FIG. 1 is a graph showing the relationship between the temperature and the elongation at break in the 150 Gy irradiated and unirradiated tape.
[0015]
[Table 1]
Figure 2004142106
[0016]
As can be seen from Table 1, the temperature at which the elongation is maximum is 80 ° C. at 150 Gy, which is lower than the temperature (103 ° C.) in the case of no irradiation. Conversely, the elongation is a maximum of 1500% at 80 ° C., which is higher than the elongation (1300%) in the case of no irradiation. Further, when the irradiation dose exceeds 150 Gy, the temperature at which the elongation is maximized and the elongation rate both tend to decrease, indicating that there is a limit to the dose in order to produce a porous body with a high stretching ratio. ing.
[0017]
Example 1
The tape molded in the same manner as in Reference Example 1 was irradiated with γ-rays of cobalt 60 at room temperature (15 ° C.) in the air at a dose of 150 Gy. Next, this tape is stretched at a speed of 30 cm / min up to 3.5 times its initial length (40 mm) in an air circulating thermostat at 90 ° C., and the length in the stretching direction is fixed. And sintered at 355 ° C. The porosity of this stretched and sintered porous tape was 78%.
For comparison, the unirradiated tape was stretched 3.5 times at 150 ° C. in the same manner as described above, and the porosity of the sintered porous tape was 74%.
[0018]
Example 2
A stretched and sintered porous tape was produced in the same manner as in Example 1 except that the irradiation tape was stretched 4 times at 110 ° C. in Example 1. The porosity of this porous tape was 82%.
For comparison, a non-irradiated tape was similarly stretched 4 times at 150 ° C., and the porosity of the sintered porous tape was 77%.
Example 3
A stretched and sintered porous tape was produced in the same manner as in Example 1, except that the irradiation tape was stretched three times. The porosity of this porous tape was 70%.
For comparison, a non-irradiated tape was similarly stretched three times at 150 ° C., and the porosity of the sintered porous tape was 72%.
As can be seen from a comparison between the present example and Example 1, the tape irradiated at a dose of 150 Gy increased the porosity by 8% and increased the porosity by 8% in the stretching at 90 ° C., while the porosity increased by 8%. In the stretching of the unirradiated tape at 150 ° C., only a 2% increase was observed when the stretching ratio was increased by a factor of 0.5.
[0019]
Example 4
A stretched and sintered porous tape was produced in the same manner as in Example 2 except that the irradiation tape was stretched 3.5 times in Example 2. The porosity of this porous tape was 74%.
For comparison, a porous tape obtained by similarly stretching a non-irradiated tape 3.5 times at 150 ° C. and sintering it had a porosity of 74%.
As can be seen from a comparison between the present example and Example 2, the tape irradiated at a dose of 150 Gy increased the porosity by 8% at a stretching ratio of 0.5 times and increased by 8% at 110 ° C. In stretching the unirradiated tape at 150 ° C., only a 3% increase was observed with a 0.5% increase in the stretching ratio.
[0020]
Example 5
The tape formed in the same manner as in Reference Example 1 was irradiated with γ-rays of cobalt 60 at room temperature (15 ° C.) in the air at a dose of 300 Gy. Next, this tape was stretched at a speed of 30 cm / min up to four times its initial length (40 mm) in an air circulating thermostat at 100 ° C., and the length in the stretching direction was fixed. Sintering was attempted at 355 ° C., but was melt-cut at the stage of sintering. When the stretching temperature was lowered to 80 ° C., a stretched and sintered porous tape having a porosity of 80% could be produced.
The yield point strength when stretched at 80 ° C. was 6 MPa for the unirradiated tape, whereas the tape irradiated at a dose of 300 Gy was 3.4 MPa, and the yield point strength of the unirradiated tape at 200 ° C. The value was close to 2.3 MPa. This indicates that unnecessary stress is not applied when the irradiation tape is stretched in a low temperature range.
[0021]
Example 6
The tape molded in the same manner as in Reference Example 1 was irradiated with γ-rays of cobalt 60 at room temperature (15 ° C.) in the air at a dose of 150 Gy. Next, this tape is stretched at a speed of 30 cm / min up to 2.5 times its initial length (40 mm) in an air circulating thermostat at 90 ° C., and the length in the stretching direction is fixed. And sintered at 355 ° C. The porosity of this stretched and sintered porous tape was 72%, and its bubble point was 1.4.
For comparison, the porous tape obtained by stretching the unirradiated tape 2.5 times at 150 ° C. and sintering it in the same manner as described above had a porosity of 74% and a bubble point of 0.7. Was. That is, according to the method of the present invention, it is found that a porous tape having a small pore diameter and a relatively high porosity can be obtained.
[0022]
【The invention's effect】
According to the present invention, a tetrafluoroethylene resin molded body irradiated with ionizing radiation is subjected to a stretching treatment and then sintering to form a porous tetrafluoroethylene resin porous body having a controlled pore diameter and porosity. It can be produced efficiently and industrially advantageously.
The porous tetrafluoroethylene resin obtained by the method of the present invention is suitably used for applications such as gas separation membranes, liquid separation membranes, various filters, battery diaphragms, artificial blood vessels, and catheters.
[Brief description of the drawings]
FIG. 1 is a graph showing an example of the relationship between temperature and elongation at break in a tape irradiated with ionizing radiation at a dose of 150 Gy and an unirradiated tape.

Claims (6)

27℃以下の温度において、電離放射線が20〜300Gyの線量で照射されてなる四フッ化エチレン樹脂成形体を延伸処理し、次いで燒結することを特徴とする四フッ化エチレン樹脂多孔質体の製造方法。A method for producing a porous tetrafluoroethylene resin, comprising: stretching a tetrafluoroethylene resin molded article irradiated with ionizing radiation at a dose of 20 to 300 Gy at a temperature of 27 ° C. or less, and then sintering the molded article. Method. 電離放射線が照射されてなる四フッ化エチレン樹脂成形体が、四フッ化エチレン樹脂成形体に、27℃以下の温度において、電離放射線を20〜300Gyの線量で照射したものである請求項1記載の四フッ化エチレン樹脂多孔質体の製造方法。2. The tetrafluoroethylene resin molded article irradiated with ionizing radiation is obtained by irradiating the tetrafluoroethylene resin molded article with ionizing radiation at a temperature of 27 [deg.] C. or less at a dose of 20 to 300 Gy. Method for producing a porous body of ethylene tetrafluoride resin. 電離放射線が照射されてなる四フッ化エチレン樹脂成形体が、四フッ化エチレン樹脂粉末に、27℃以下の温度において、電離放射線を20〜300Gyの線量で照射し、これを成形したものである請求項1記載の四フッ化エチレン樹脂多孔質体の製造方法。An ionized radiation-irradiated tetrafluoroethylene resin molded article is obtained by irradiating an ionized radiation with a dose of 20 to 300 Gy to the ethylene tetrafluoride resin powder at a temperature of 27 ° C. or less and molding this. A method for producing a porous body of an ethylene tetrafluoride resin according to claim 1. 延伸処理を140℃以下の温度で行う請求項1、2又は3記載の四フッ化エチレン樹脂多孔質体の製造方法。The method for producing a porous tetrafluoroethylene resin material according to claim 1, wherein the stretching treatment is performed at a temperature of 140 ° C or lower. 燒結を成形体の融点以上400℃以下の温度で行う請求項1〜4のいずれかに記載の四フッ化エチレン樹脂多孔質体の製造方法。The method for producing a porous body of ethylene tetrafluoride resin according to any one of claims 1 to 4, wherein the sintering is performed at a temperature of from the melting point of the molded body to 400C or less. 四フッ化エチレン樹脂成形体が、四フッ化エチレン樹脂粉末をペースト押出成形することにより得られたものである請求項1〜5のいずれかに記載の四フッ化エチレン樹脂多孔質体の製造方法。The method for producing a porous tetrafluoroethylene resin article according to any one of claims 1 to 5, wherein the polytetrafluoroethylene resin article is obtained by subjecting a tetrafluoroethylene resin powder to paste extrusion molding. .
JP2002306256A 2002-10-21 2002-10-21 Method for manufacturing tetrafluoroethylene resin porous body Pending JP2004142106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002306256A JP2004142106A (en) 2002-10-21 2002-10-21 Method for manufacturing tetrafluoroethylene resin porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002306256A JP2004142106A (en) 2002-10-21 2002-10-21 Method for manufacturing tetrafluoroethylene resin porous body

Publications (1)

Publication Number Publication Date
JP2004142106A true JP2004142106A (en) 2004-05-20

Family

ID=32453093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002306256A Pending JP2004142106A (en) 2002-10-21 2002-10-21 Method for manufacturing tetrafluoroethylene resin porous body

Country Status (1)

Country Link
JP (1) JP2004142106A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007012486A1 (en) * 2005-07-26 2007-02-01 Herbert Maslanka Medical instrument and method for its production by sintering of plastic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007012486A1 (en) * 2005-07-26 2007-02-01 Herbert Maslanka Medical instrument and method for its production by sintering of plastic

Similar Documents

Publication Publication Date Title
JP5008850B2 (en) Tetrafluoroethylene resin molded body, stretched tetrafluoroethylene resin molded body, manufacturing method thereof, composite, filter, impact deformation absorbing material, and sealing material
JP4699207B2 (en) Hydrophilic microporous membrane
TW581709B (en) Heat-resistant microporous film
JPS6116840A (en) Manufacture of porous film of polytetrafluoroethylene
JP2022078151A (en) Production method of porous fluorine-based resin membrane
JPS61293830A (en) Manufacture of polytetrafluoroethylene porous film
JP2015009221A (en) Method for producing porous polytetrafluoroethylene membrane
JP2004016930A (en) Microporous membrane and its production method
KR20200020460A (en) Porous fluorine resin film
JP2004142106A (en) Method for manufacturing tetrafluoroethylene resin porous body
JP6782788B2 (en) Porous membrane and method for producing porous membrane
EP4035763A1 (en) Polytetrafluoroethylene porous film having high strength and small pore diameter
WO2004078831A1 (en) Porous polytetrafluoroethylene resin body and process for producing the same
WO2018221688A1 (en) Polytetrafluoroethylene porous film
JP3456284B2 (en) Porous tetrafluoroethylene resin laminate and method for producing the same
WO2017090247A1 (en) Polytetrafluoroethylene porous film
JP4261091B2 (en) Fluororesin porous body and method for producing the same, tetrafluoroethylene resin fine powder, or extrusion molded article using the same
JPS61146522A (en) Preparation of porous body made of polytetrafluoroethylene resin
JP4812826B2 (en) Polytetrafluoroethylene resin fine powder or its extrusion
KR20200043759A (en) Porous fluorine resin film and method for preparing the same
JPH07316327A (en) Porous material of ethylene tetrafluoride resin and production thereof
KR102160652B1 (en) Porous fluorine resin film
JP4822596B2 (en) Method for producing microporous membrane
JPWO2019220960A1 (en) Fine pore size film and its manufacturing method, porous resin film complex and filter element
JPS62221401A (en) Porous hollow yarn made of polyethylene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070703