JPS62221401A - Porous hollow yarn made of polyethylene - Google Patents
Porous hollow yarn made of polyethyleneInfo
- Publication number
- JPS62221401A JPS62221401A JP6481386A JP6481386A JPS62221401A JP S62221401 A JPS62221401 A JP S62221401A JP 6481386 A JP6481386 A JP 6481386A JP 6481386 A JP6481386 A JP 6481386A JP S62221401 A JPS62221401 A JP S62221401A
- Authority
- JP
- Japan
- Prior art keywords
- hollow fiber
- polyethylene
- temp
- yarn
- porous hollow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004698 Polyethylene Substances 0.000 title claims abstract description 16
- -1 polyethylene Polymers 0.000 title claims abstract description 16
- 229920000573 polyethylene Polymers 0.000 title claims abstract description 16
- 238000000034 method Methods 0.000 claims abstract description 27
- 239000012510 hollow fiber Substances 0.000 claims description 67
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 32
- 230000035699 permeability Effects 0.000 claims description 20
- 239000011148 porous material Substances 0.000 claims description 19
- 238000002844 melting Methods 0.000 claims description 12
- 230000008018 melting Effects 0.000 claims description 12
- 239000000835 fiber Substances 0.000 claims description 5
- 230000001954 sterilising effect Effects 0.000 abstract description 22
- 238000004659 sterilization and disinfection Methods 0.000 abstract description 22
- 229920001903 high density polyethylene Polymers 0.000 abstract description 5
- 239000004700 high-density polyethylene Substances 0.000 abstract description 5
- 239000002994 raw material Substances 0.000 abstract description 5
- 238000000137 annealing Methods 0.000 abstract description 3
- 230000001105 regulatory effect Effects 0.000 abstract 4
- 210000002381 plasma Anatomy 0.000 description 13
- 238000009998 heat setting Methods 0.000 description 11
- 239000012528 membrane Substances 0.000 description 9
- 238000009987 spinning Methods 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 7
- 210000000601 blood cell Anatomy 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 241000283690 Bos taurus Species 0.000 description 3
- 206010018910 Haemolysis Diseases 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 230000017531 blood circulation Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 230000008588 hemolysis Effects 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 102000004506 Blood Proteins Human genes 0.000 description 2
- 108010017384 Blood Proteins Proteins 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- RCJVRSBWZCNNQT-UHFFFAOYSA-N dichloridooxygen Chemical compound ClOCl RCJVRSBWZCNNQT-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010622 cold drawing Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000004388 gamma ray sterilization Methods 0.000 description 1
- 230000005291 magnetic effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000011146 sterile filtration Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Landscapes
- External Artificial Organs (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Artificial Filaments (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、医療用の血漿分離器、あるI/%lよ除菌用
の癌過器等に用いる中空糸膜に関し、更に詳しくは、ポ
リエチレンを用いた延伸開孔法により得られる中空糸で
、高圧蒸気滅菌が可撓であり、高温水濾過等の用途に使
用しうる耐熱性にすぐれた多孔質中空糸に関する。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a hollow fiber membrane used in a medical plasma separator, a cancer filter for sterilization with a certain I/%l, and more specifically, The present invention relates to a porous hollow fiber obtained by a stretching method using polyethylene, which is flexible in high-pressure steam sterilization, and has excellent heat resistance that can be used for applications such as high-temperature water filtration.
(従来技術)
延伸開孔法によるポリエチレン製多孔質中空糸は、例え
ば特開昭52−137026、特開昭57−42919
、特開昭57−66114等において既に知られている
。(Prior art) Porous hollow fibers made of polyethylene produced by the stretching method are disclosed in, for example, JP-A-52-137026 and JP-A-57-42919.
, JP-A-57-66114, and the like.
延伸開孔法は、ポリマーに溶剤、添加剤を加える相転換
法と異なり、溶剤や添加剤を必要としないため、特に医
療用途においては、安全性の高い方法として有用である
。この方法によって得られる中空糸の滅菌方法としては
、エチレンオキサイドガス滅菌を用いることが一般的で
ある。しかし、この滅菌方法は、ガスの残留による副作
用が懸念され、また、水を充填するタイプの、分離器に
は適用できないなどの欠点を有している。また、他の滅
菌方法としてγ線滅菌法が考えられるが、ポリマーの劣
化分解による、溶出物の発生や性能の低下を示し、適当
でない。したがってこのような欠点のない高圧蒸気滅菌
法は、優れた方法である。しかし、ポリエチレン製多孔
質中空糸については、これまで実用化されていなかった
。即ち、延伸開孔法によるポリエチレン製多孔質中空糸
の高圧蒸気滅菌については、特開昭57−84702に
、その可能性が示唆されており、また特開昭60−25
7804に、放射線照射による耐熱性改良について開示
されている程度である。Unlike the phase conversion method in which a solvent and additives are added to the polymer, the stretch hole method does not require a solvent or additives, and therefore is useful as a highly safe method, especially in medical applications. Ethylene oxide gas sterilization is generally used to sterilize the hollow fibers obtained by this method. However, this sterilization method has drawbacks such as concerns about side effects due to residual gas and inability to be applied to water-filled separators. Furthermore, as another sterilization method, gamma ray sterilization is considered, but it is not suitable because it generates eluates and degrades performance due to deterioration and decomposition of the polymer. Therefore, an autoclave sterilization method that does not have these drawbacks is an excellent method. However, porous hollow fibers made of polyethylene have not been put to practical use so far. In other words, the possibility of high-pressure steam sterilization of polyethylene porous hollow fibers by the stretched pore method is suggested in JP-A-57-84702, and in JP-A-60-25.
No. 7804 discloses improvement in heat resistance by radiation irradiation.
(発明が解決しようとする問題点)
特開昭57−84702には、110℃±10℃での高
圧蒸気滅菌が可能であると記述されている。しかし、米
国薬局方(第XXI)には、高圧蒸気滅菌は、121’
o、15分を基準としており、また「微生物の滅菌、殺
菌、防磁技術」 (衛生技術会、昭和57年)には、1
21℃、15分で滅菌すべきことが記載されている。従
って11O′C±10℃の温度範囲は、実用上不十分で
ある。(Problems to be Solved by the Invention) JP-A-57-84702 describes that high-pressure steam sterilization at 110°C±10°C is possible. However, the United States Pharmacopeia (Chapter XXI) states that autoclaving is
o, 15 minutes as the standard, and "sterilization, sterilization, and magnetic shielding technology for microorganisms" (Sanitation Technology Society, 1981) states that 15 minutes is the standard.
It is stated that it should be sterilized at 21°C for 15 minutes. Therefore, a temperature range of 110'C±10°C is insufficient for practical use.
さらに、本発明者らが、特開昭57−84702に記述
されている条件により得られた中空糸を用いて分離器を
作成し、121℃l2O分の高圧蒸気滅菌を行ったとこ
ろ、中空糸の切断が発生し、使用できるものは得られな
かった。尚、高圧蒸気滅菌は、日本薬局方の基準に従い
、121℃、20分を用いた。Furthermore, when the present inventors created a separator using the hollow fibers obtained under the conditions described in JP-A-57-84702 and performed high-pressure steam sterilization at 121°C 12O, the hollow fibers Cutting occurred and no usable product was obtained. Note that high-pressure steam sterilization was performed at 121° C. for 20 minutes in accordance with the standards of the Japanese Pharmacopoeia.
一方、特開昭60−257804に開示されている方法
は、放射線照射により、ポリエチレンの架橋処理を行う
ことで、耐熱性を向上させる方法である。On the other hand, the method disclosed in JP-A No. 60-257804 is a method of crosslinking polyethylene by irradiation with radiation to improve heat resistance.
この方法では、確かに耐熱性は改良されるものの、その
処理に10 M r a d以上という高い放射線量を
必要とするため、その影響による素材の分解と溶出物の
発生、あるいは素材の着色という問題が懸念され、特に
医療分野においては、不適当なものである。さらに、工
業的に行うためには、大規模な設備を必要という問題が
ある。本発明の目的は、これらの問題を解決し、121
℃において高圧蒸気滅菌の可能な、延伸開孔法によるポ
リエチレン製多孔質中空糸を提供することにある。Although this method does improve heat resistance, the treatment requires a high radiation dose of 10 Mrad or more, which can cause decomposition of the material, generation of eluates, or coloring of the material. There are concerns about this and it is inappropriate, especially in the medical field. Furthermore, there is a problem in that large-scale equipment is required for industrial implementation. The purpose of the present invention is to solve these problems and
The object of the present invention is to provide a porous hollow fiber made of polyethylene that can be sterilized with high-pressure steam at a temperature of 0.degree.
(問題点を解決するための手段)
延伸開孔法によるポリエチレン製多孔質中空糸は、例え
ば特開昭57−42919に示されている様に、まず原
料に結晶性の高い高密度ポリエチレンを用い、これを高
ドラフト下で溶融紡糸し、中空糸に賦形したのち、アニ
ール処理により結晶を成長させ未延伸中空原糸を得る。(Means for solving the problem) Polyethylene porous hollow fibers produced by the stretched pore method are first manufactured by using high-density polyethylene with high crystallinity as a raw material, as shown in JP-A-57-42919, for example. This is melt-spun under high draft and shaped into hollow fibers, and then annealed to grow crystals to obtain undrawn hollow fibers.
引き続いて、糸長方向への冷延伸により、結晶間を開裂
させ。Subsequently, the crystals are cleaved by cold stretching in the filament length direction.
ざらに熱延伸により、その間隙を拡大した、多孔質中空
糸である。従って、得られた中空糸は、結晶性が高く、
その結晶融点より低い温度範囲での熱処理には、その空
孔構造を維持しうる可能性が考えられる。しかしながら
、結晶化は100%ではなく、またその開孔原理から、
延伸時に糸長方向での張力が必要であり、そのため得ら
れた中空糸は、その構造内に残留する内部歪を有する。It is a porous hollow fiber whose gaps have been expanded by rough hot stretching. Therefore, the obtained hollow fibers have high crystallinity and
It is thought that heat treatment in a temperature range lower than the crystal melting point may maintain the pore structure. However, crystallization is not 100%, and due to the pore opening principle,
Tension in the fiber length direction is required during stretching, and the resulting hollow fibers therefore have residual internal strain within their structure.
したがって高温雰囲気下において、その残留する内部歪
が収縮力として働き中空糸の切断や、接着剤の変形、あ
るいは接着面の剥離といった問題が発生する。Therefore, in a high-temperature atmosphere, the residual internal strain acts as a contraction force, causing problems such as cutting of the hollow fibers, deformation of the adhesive, and peeling of the adhesive surface.
本発明者らは、この点について鋭意検討した結果、以下
の特徴を有する多孔質中空糸により、これらの問題点を
解決したものである。すなわち。As a result of intensive studies on this point, the present inventors have solved these problems with a porous hollow fiber having the following characteristics. Namely.
本発明の要旨は、延伸開孔法により得られる透過平均孔
径が0.01〜2gmの多孔質中空糸において、その融
点が130℃以上150℃未満であり、且つ121℃に
おける無緊張下の糸長方向の収縮率が10%以下のもの
である。ここで、121℃における無緊張下の糸長方向
の収縮率(以下「121℃での収縮率」という)とは、
前述した残留内部歪の、大きさを示す指標であり、本発
明における最も重要な条件である。また、121 ’0
での収縮率は、高圧蒸気滅菌への耐性を示すために用い
た基準である。前述した特開昭57−84702による
中空糸の121 ’Oでの収縮率は、22%であった0
本発明者らは多孔質中空糸の121℃での収縮率と分離
器の121℃、20分の高圧蒸気滅菌耐性との関係につ
いて検討した結果、この121℃での収縮率が、10%
以下となれば121 ’0120分にて滅菌可能な分離
器が得られること、さらに好ましくは、121℃での収
縮率が7%以下において、性能低下のない満足しうる分
離器が得られることを解明した。The gist of the present invention is to provide a porous hollow fiber having an average permeation pore diameter of 0.01 to 2 gm obtained by a stretching pore method, the melting point of which is 130°C or more and less than 150°C, and a fiber under no tension at 121°C. The shrinkage rate in the longitudinal direction is 10% or less. Here, the contraction rate in the yarn length direction under no tension at 121°C (hereinafter referred to as "shrinkage rate at 121°C") is:
This is an index indicating the magnitude of the residual internal strain described above, and is the most important condition in the present invention. Also, 121'0
The shrinkage rate is the criterion used to indicate resistance to autoclaving. The shrinkage rate of the hollow fiber at 121'O according to JP-A-57-84702 mentioned above was 22%.
The present inventors investigated the relationship between the shrinkage rate of porous hollow fibers at 121°C and the high-pressure steam sterilization resistance of the separator at 121°C for 20 minutes, and found that the shrinkage rate at 121°C was 10%.
A separator that can be sterilized in 121'0120 minutes can be obtained if the following conditions are met, and more preferably, a satisfactory separator can be obtained with no deterioration in performance when the shrinkage rate at 121°C is 7% or less. I figured it out.
(実施態様及び作用)
本発明における、透過平均孔径は、ハーゲン=ボアゼイ
ユの式
から求められる値である。ここで、ηは粘度、tは孔の
長さく膜厚)、Jは透水量、Prは空孔率、Δpは差圧
である。孔径0 、 OI JLm未満では得られる血
漿蛋白濃度が小さいため、本発明が目的とする利用分野
には適さず、2gmを超えると血球の洩れや溶血を起し
、不適当である。より好ましい孔径範囲は、0.1〜0
.6gmであり、この範囲では、膜面への血球のめり込
み、あるいは蛋白の目詰りによる経時劣化の少ない良好
な血漿分離■りが得られる。(Embodiments and Effects) In the present invention, the permeation average pore diameter is a value determined from the Hagen-Boiseuille equation. Here, η is viscosity, t is pore length (film thickness), J is water permeability, Pr is porosity, and Δp is differential pressure. If the pore size is less than 0 and the OI is less than JLm, the obtained plasma protein concentration will be small, making it unsuitable for the field of application aimed at by the present invention, and if it exceeds 2 gm, leakage of blood cells or hemolysis will occur, making it unsuitable. A more preferable pore size range is 0.1 to 0.
.. 6 gm, and within this range, good plasma separation can be obtained with little deterioration over time due to blood cell penetration into the membrane surface or protein clogging.
次に、本発明中空糸の融点はDSCを用い、常法′によ
りX1ll定される結晶の融解点の温度を示す。Next, the melting point of the hollow fiber of the present invention indicates the temperature of the melting point of the crystal determined by a conventional method using DSC.
融点が1306C以上150℃未満とは、中空糸が架橋
等の特殊な処理をしていない一般的な高密度ポリエチレ
ンより成ることを示す。The melting point of 1306C or higher and lower than 150C indicates that the hollow fibers are made of general high-density polyethylene that has not undergone any special treatment such as crosslinking.
本発明の中空糸としては、以下の要件を持つものがさら
に好ましい、すなわち、空孔率が0.50〜0.75、
透水量が5〜30n/rrr * h r *mmHg
であり、且つ空孔率当り透水量が0.111rrf会h
r・mmHg以上のものである。ここで空孔率とは、中
空糸の見かけ密度の測定から、求められる値である。0
.50未満では濾過容量が小さく、目詰りし易く、0.
75を超えると、中空糸の強度が低下し好ましくない、
透水量とは、中空糸の内側より一定の条件下で純水が通
過する速度であり、膜性能を示す指標として用いられる
。It is more preferable that the hollow fiber of the present invention has the following requirements, namely, a porosity of 0.50 to 0.75,
Water permeability is 5-30n/rrr *hr *mmHg
, and the water permeability per porosity is 0.111rrf
It is more than r・mmHg. Here, the porosity is a value obtained from measurement of the apparent density of hollow fibers. 0
.. If it is less than 50, the filtration capacity is small and clogging occurs easily;
If it exceeds 75, the strength of the hollow fiber decreases, which is undesirable.
Water permeability is the rate at which pure water passes from the inside of a hollow fiber under certain conditions, and is used as an indicator of membrane performance.
ここで、透水量51/rrfm h r * mmHg
未満のものは、血漿分離において血漿分離速度が不十分
であり、好ましくない。Here, water permeability 51/rrfm h r * mmHg
If it is less than that, the plasma separation rate will be insufficient in plasma separation and is not preferable.
ざらに空孔率当り透水量とは、上記の透水量を空孔率で
除した値であり、空孔の有効な使用を示す指標と考えら
れる。延伸開孔法による中空糸は、糸長方向に配向した
構造を有するため、引張り強度は高いが、例えば、糸の
折れ、曲がり、つぶれ、中空の偏平部が起こり易いもの
であるが、より小さい空孔率で同一の透過性崗が得られ
れば、この欠点の改良となる。従来の延伸開孔法による
ポリエチレン中空糸では、0.IJL/m″・hr*m
m’Hg未満のものしか知られてなかったが、本発明の
O,li/rn’*hremmHg以上の中空糸により
、初めて透過性と取り扱い性が共に優れた中空糸が可能
となった。Roughly speaking, the amount of water permeation per porosity is the value obtained by dividing the amount of water permeation described above by the porosity, and is considered to be an index indicating the effective use of pores. Hollow fibers produced by the stretched hole method have a structure oriented in the fiber length direction, so they have high tensile strength, but are prone to bending, bending, crushing, and hollow flattened parts. If a permeable layer with the same porosity could be obtained, this drawback would be improved. In polyethylene hollow fibers produced by the conventional stretching hole method, 0. IJL/m″・hr*m
Although only those with a value of less than m'Hg were known, the hollow fiber of the present invention with a value of more than O,li/rn'*hremmHg has become possible for the first time to provide a hollow fiber with excellent permeability and ease of handling.
次に、本発明で用いる物性値の測定方法について述べる
。Next, a method for measuring physical property values used in the present invention will be described.
(1)収、縮率
高圧蒸気滅菌器(東洋製作所型5VS−20型)を用い
、中空糸(長さ交1)を121℃、20分処理し、十分
に冷却したのち、長さくlz )を測定し、式
示差走査熱量計(以下DSCという)[島津製作所製D
T−30型]を用い、昇温速度10”C!/分にて、得
られる融解ピークの頂点の温度として求めた。(1) Shrinkage ratio Using a high-pressure steam sterilizer (Toyo Seisakusho model 5VS-20), process the hollow fiber (length 1) at 121°C for 20 minutes, cool it thoroughly, and then reduce the length to lz). was measured using a differential scanning calorimeter (hereinafter referred to as DSC) [D
T-30 type] at a heating rate of 10"C!/min, and the temperature was determined as the top temperature of the resulting melting peak.
(3)空孔率
中空糸の外内径及び長さより見掛けの体積を求め、さら
にその重量から見かけ密度(ρ1)を計算し、次式より
算出した
ここでρ。は原料ポリエチレンの密度である。(3) Porosity: Obtain the apparent volume from the outer and inner diameters and lengths of the hollow fibers, and further calculate the apparent density (ρ1) from the weight, where ρ is calculated from the following formula. is the density of raw polyethylene.
(4)透水量
中空糸50本を束ね、両末端を接着固化して、有効長さ
13cmの、両末端で中空糸端が開口したミニモジュー
ルを製作し、37℃の水中にて、50mmHHの圧力で
、純水15mJlの透過時間を測定し、内径基準当りの
量として算出した。(4) Water permeability A mini-module with an effective length of 13 cm and hollow fiber ends opened at both ends was made by bundling 50 hollow fibers and bonding and solidifying both ends. The permeation time of 15 mJl of pure water was measured under pressure and calculated as the amount per inner diameter standard.
本発明の中空糸は例えば以下の方法により製造される。The hollow fiber of the present invention is manufactured, for example, by the following method.
(1)密度0.95以上好ましくは0,96以上の高密
度ポリエチレンを原料とし、
(2)融点〜融点+50℃の温度範囲でドラフト比10
0以上で紡糸冷却したのち、
(3)90℃〜125℃でアニール処理し、(4)50
℃以下の温度で10〜50%の倍率の冷延伸と、引き続
き90〜125℃の温度で総延伸倍率が300〜700
%の、一段または多段熱延伸を行い、
(5)125℃以上、130℃未満の温度、緩和率20
%〜50%、好ましくは30%〜50%で、一段または
多段の熱セットを行う。(1) Made of high-density polyethylene with a density of 0.95 or more, preferably 0.96 or more, (2) Draft ratio of 10 in the temperature range of melting point to melting point + 50°C
After cooling the spinning at a temperature of 0 or higher, (3) annealing at 90°C to 125°C, (4) 50°C
Cold stretching at a temperature of 10-50% at a temperature below ℃, followed by a total stretching ratio of 300-700 at a temperature of 90-125℃
%, one-stage or multi-stage hot stretching, (5) temperature of 125°C or higher and lower than 130°C, relaxation rate 20
% to 50%, preferably 30% to 50%, single or multi-stage heat setting is performed.
ここで、本発明で述べる緩和とは、長さ方向に中空糸を
緩め、その内部歪を減少させる手段であり、例えば中空
糸の供給ロールと引き取りロールを用い、引き取りロー
ル速度(Ri)を供給ロール速度(R2)より遅くする
ことにより行なわれるものである。また緩和率とは、こ
の緩和の程度上述の方法において、特に熱セツト条件は
1本発明の中空糸を実現する上で極めて重要である。Here, the relaxation described in the present invention is a means of loosening the hollow fiber in the length direction and reducing its internal strain. For example, using a hollow fiber supply roll and a take-up roll, the take-up roll speed (Ri) is This is done by lowering the roll speed (R2). In addition, the relaxation rate refers to the degree of relaxation in the above-mentioned method, and especially the heat setting conditions are extremely important in realizing the hollow fiber of the present invention.
従来知られている熱セツト温度は、100℃〜125℃
(特開昭57−66114)であったが、本発明では1
25℃以上、130℃以下の限定した条件を用い、同時
に20%〜50%という高い緩和率を併用することによ
り、本発明の多孔質中空糸を得ることができる。本発明
の中空糸の製法について更に詳述すれば、原料ポリエチ
レンは、密度0.95以上、好ましくは、0.96以−
ヒで、メルトインデックスは特に限定されないが紡糸上
1〜10が好ましい。この原料ポリエチレンを、二重管
状紡口を用いて融点〜融点+50℃の温度で溶融押出し
し、中空状となし、ドラフト比100以上の高ドラフト
下で紡糸することにより未処理原糸を得る0次に、この
未処理原糸を90°0−125℃加熱槽中でアニール処
理することにより、結晶を成長させた未延伸原糸を得る
。The conventionally known heat set temperature is 100°C to 125°C.
(Japanese Unexamined Patent Publication No. 57-66114), but in the present invention, 1
The porous hollow fiber of the present invention can be obtained by using the limited conditions of 25° C. or higher and 130° C. or lower and a high relaxation rate of 20% to 50%. To explain in more detail the method for manufacturing the hollow fiber of the present invention, the raw material polyethylene has a density of 0.95 or more, preferably 0.96 or more.
Although the melt index is not particularly limited, it is preferably 1 to 10 on spinning. This raw material polyethylene is melt-extruded using a double tubular spinneret at a temperature between the melting point and the melting point +50°C to form a hollow shape, and is spun under a high draft with a draft ratio of 100 or more to obtain an unprocessed yarn. Next, this untreated yarn is annealed in a 90° 0-125° C. heating bath to obtain an undrawn yarn in which crystals have grown.
この未延伸原糸を50℃以下にて10〜50%ロール間
冷延伸することにより、結晶の間を開裂させ、引き続き
、1段または多段で、総延伸量300〜700%の熱延
伸を行うことにより、内面から外面に連続した中空糸壁
をもった多孔質体を得る。この熱延伸の温度は、膜の開
孔状態に大きく関与し、通常90−125℃が用いられ
る。この温度より低いと、十分な多孔質体が得られず、
またこの温度範囲より高いと、延伸操作時に糸切れ等の
問題を起こす、熱延伸操作に引き続いて、本発明の重要
点である熱セツト処理を行い、耐熱性を付与する。熱セ
ツト温度は、■25℃25°030℃未満を用いる。1
25℃未満では、121℃における収縮率10%以下は
得られず、また130℃以上では、中空糸の細化、透明
化がみられ、断面寸法のバラツキが大きくなり、また透
過性能も低下し好ましくない、加熱手段としては特定さ
れないが、十分に温度制御し、均一化した熱風を用いる
のが簡便である。加熱時間は特に限定されるものではな
いが、1秒以上、1分以下が処理の均一性と工業的な実
用性を兼ねた範囲と言える。同時に重要な要素は緩和す
ることであり、20%〜50%、好ましくは、30%〜
50%の緩和率を用いる。20%未満では、L 2 t
”cでの収縮率が10%以下のものは得られず、50
%以上は、実用上困難である。熱セットは、1段または
多段のどちらでもよいが、セットの均一性から、2〜3
段の多段処理が好ましい。本発明による多孔質中空糸膜
は、血球と血漿の分離あるいは、無菌用の濾過に用いる
のに適しているが、さらに、一般に精密濾過11りが利
用されている分野に有効である。特に素材が耐薬品性に
優れたポリエチレンよりなり、さらに、耐熱性を改良さ
れたものであることから、半導体プロセス用薬品の精密
濾過、電力、原子力施設でのプロセス水の処理、表面処
理排水の処理、医薬食品分野での生成物の濃縮、精製等
の用途に有効に用いられる。以下実施例によって、本発
明を説明する。This undrawn yarn is cold-stretched between rolls by 10-50% at 50°C or lower to cleave the crystals, and then hot-stretched in one stage or in multiple stages to a total stretching amount of 300-700%. By this, a porous body having hollow fiber walls continuous from the inner surface to the outer surface is obtained. The temperature of this hot stretching greatly affects the open pore state of the membrane, and is usually 90-125°C. If the temperature is lower than this, a sufficient porous body cannot be obtained;
Further, if the temperature is higher than this range, problems such as thread breakage may occur during the stretching operation.Successively after the hot stretching operation, a heat setting treatment, which is an important point of the present invention, is performed to impart heat resistance. The heat setting temperature is 25°C and less than 25°C and 30°C. 1
At temperatures below 25°C, a shrinkage rate of 10% or less at 121°C cannot be obtained, and at temperatures above 130°C, the hollow fibers become thinner and transparent, the cross-sectional dimensions become more uneven, and the transmission performance decreases. Although the undesirable heating means is not specified, it is convenient to use homogenized hot air with sufficient temperature control. Although the heating time is not particularly limited, a range of 1 second or more and 1 minute or less is considered to be a range that provides both uniformity of treatment and industrial practicality. At the same time, an important factor is to moderate, 20% to 50%, preferably 30% to
A relaxation rate of 50% is used. Below 20%, L 2 t
"It is not possible to obtain a shrinkage ratio of less than 10% at c.
% or more is practically difficult. Heat setting may be done in one stage or in multiple stages, but from the viewpoint of uniformity of setting, heat setting is performed in 2 to 3 stages.
Multi-stage processing is preferred. The porous hollow fiber membrane according to the present invention is suitable for use in the separation of blood cells and plasma or in sterile filtration, and is also effective in fields where microfiltration is generally used. In particular, it is made of polyethylene, which has excellent chemical resistance, and has improved heat resistance, so it can be used for precision filtration of semiconductor process chemicals, electric power, process water treatment at nuclear facilities, and surface treatment wastewater. It is effectively used for processing, concentration and purification of products in the pharmaceutical and food fields. The present invention will be explained below with reference to Examples.
(実施例1)
高密度ポリエチレン(ρ=o、9sa、MI=5.5.
ハイゼックスー2208J)を原料とし、中空二重紡口
を用い、ポリマー押出量16g/分、中空N2量23m
Jl/分、紡速200m/分、紡糸ドラフト比3400
にて溶融紡糸した。(Example 1) High density polyethylene (ρ=o, 9sa, MI=5.5.
Using Hi-ZEX-2208J) as raw material, using a hollow double spinneret, polymer extrusion rate 16g/min, hollow N2 amount 23m
Jl/min, spinning speed 200m/min, spinning draft ratio 3400
It was melt-spun.
得られた中空糸をオーブン中で115℃にて2hrアニ
ール処理し、未延伸原糸を得た。The obtained hollow fibers were annealed in an oven at 115° C. for 2 hours to obtain undrawn fibers.
この未延伸原糸を用いて、以下連続的に、冷延伸、熱延
伸、熱セットを行った。すなわち、室温下で30%の冷
延伸を行い、つづいて102℃で200%、115℃で
、さらに43%の2段熱延伸を行ったのち、128℃空
気加熱槽中で、ロール間の速度調整により、2段熱セツ
トを行った。Using this undrawn yarn, cold drawing, hot drawing, and heat setting were successively performed. That is, after cold stretching of 30% at room temperature, followed by two-stage hot stretching of 200% at 102°C and 43% at 115°C, the speed between the rolls was adjusted in an air heating tank at 128°C. A two-stage heat set was performed by adjustment.
第1段が27%、第2段が17%、計40%の緩和率に
て、多孔質中空糸を得た0次に該中空糸の121℃での
収縮率を測定した。まず、中空糸をエタノールで湿潤化
したのち、水に置換し、長さ20cmに切断した。これ
を含水状態を保持したまま、オートクレーブ中で、12
1℃、20分間の熱処理を行った。冷却後長さを測定し
、収縮率を求めたところ、6.5%であった。該中空糸
は内径378gm、膜圧は49gm、空孔率は0.68
、透水量はio、3fL/m’*hr11mmHgであ
った。空孔率当り透水量は、0.151/rrfahr
*mrnHg、透過平均孔径は、0.18Bmであった
。該中空糸のDSCによるピーク融点は、133℃であ
った。この中空糸は、直状に優れ、取り扱い易いもので
あった。また、この中空糸を70℃1時間水で抽出し、
溶出物を測定したが全く認められなかった。A porous hollow fiber was obtained at a relaxation rate of 27% in the first stage and 17% in the second stage, a total of 40%, and the shrinkage rate at 121° C. of the hollow fiber was measured. First, the hollow fiber was moistened with ethanol, then replaced with water, and cut into a length of 20 cm. This was placed in an autoclave while keeping it hydrated for 12 hours.
Heat treatment was performed at 1° C. for 20 minutes. After cooling, the length was measured and the shrinkage rate was found to be 6.5%. The hollow fiber has an inner diameter of 378 gm, a membrane pressure of 49 gm, and a porosity of 0.68.
The water permeability was io, 3 fL/m'*hr, 11 mmHg. Water permeability per porosity is 0.151/rrfahr
*mrnHg, permeation average pore diameter was 0.18 Bm. The peak melting point of the hollow fiber by DSC was 133°C. This hollow fiber had excellent straightness and was easy to handle. In addition, this hollow fiber was extracted with water at 70°C for 1 hour,
I measured the eluate, but it was not detected at all.
該中空糸を1700本用いて、ポリカーボネート製の容
器に挿入し、両端をウレタンにて接着固定し、有効長さ
13cmの血漿分離器を製作した。70%エタノールで
親水化したのち、純水で十分洗浄し、含水状態で、12
1℃、20分の高圧蒸気滅菌を行った。滅菌後の分離器
について外観上の異常はみられず、接着部に変形も認め
られなかった。充填水を生理食塩水に置換し、Ht40
%の新鮮牛血液を流したところ血球の洩れはみられす、
血液流量60m文/分のとき、血漿流量13mJL/分
が得られた。また、得られた血漿に溶血は認められなか
った。Using 1,700 hollow fibers, they were inserted into a polycarbonate container and both ends were adhesively fixed with urethane to produce a plasma separator with an effective length of 13 cm. After making it hydrophilic with 70% ethanol, it was thoroughly washed with pure water and left in a hydrated state for 12 hours.
High-pressure steam sterilization was performed at 1° C. for 20 minutes. No abnormality was observed in the appearance of the separator after sterilization, and no deformation was observed in the adhesive part. Filling water was replaced with physiological saline, Ht40
% of fresh bovine blood was poured, and no blood cells leaked.
At a blood flow rate of 60 mJL/min, a plasma flow rate of 13 mJL/min was obtained. Moreover, no hemolysis was observed in the obtained plasma.
(実施例2)
実施例1と同様に延伸開孔させたのち、128℃で、第
1段32%、第2段26%、計50%の2段熱セツトを
行った。得られた中空糸は、121 ’C! テ(7)
収縮率3.0%、内径386Bm、膜厚51gm、空孔
率0.63、透水量10 、417m’ 拳h r・m
mHgであり、透過平均孔径は0゜20ルm、空孔率当
り透水量は0.17交/m″・hr・mmHgであった
。(Example 2) After opening the holes by stretching in the same manner as in Example 1, two-stage heat setting was performed at 128° C., with the first stage at 32% and the second stage at 26%, for a total of 50%. The obtained hollow fiber has a temperature of 121'C! Te (7)
Shrinkage rate 3.0%, inner diameter 386Bm, membrane thickness 51gm, porosity 0.63, water permeability 10, 417m' fist hr・m
mHg, the permeation average pore diameter was 0°20 lm, and the water permeation amount per porosity was 0.17 cross/m''·hr·mmHg.
実施例1と同様に分離器を製作し、牛血液を流したとこ
ろ、血球の洩れはなく、血液流量60m文/分のとき血
漿流量12mJL/分が得られ、溶血は認められなかっ
た。When a separator was manufactured in the same manner as in Example 1 and bovine blood was passed through it, there was no leakage of blood cells, a plasma flow rate of 12 mJL/min was obtained when the blood flow rate was 60 mJL/min, and no hemolysis was observed.
(比較例1)
実施例1と同様に紡糸延伸したのち、緩和せずに128
℃の熱セットを行った。得られた中空糸は、内径370
gm、膜厚48gm、空孔率0゜77、透水量7.1
1/m″*hr@mmHgであり、透過平均孔径は0.
15Bm、空孔率当り透水量は0.09u/ln’・h
r*mmHgであった。また、中空糸は、折れ、偏平の
起こりやすいもので、121”Oでの収縮率は、19%
と大きく、実施例1と同様に分離器を製作し、121℃
l2O分の高圧蒸気滅菌を行ったところ、接着剤のポリ
ウレタン部に凹みがみられ、また、中空糸の切断も観察
された。(Comparative Example 1) After spinning and drawing in the same manner as in Example 1, 128
The temperature was set to ℃. The obtained hollow fiber had an inner diameter of 370
gm, membrane thickness 48 gm, porosity 0°77, water permeability 7.1
1/m''*hr@mmHg, and the average permeation pore diameter is 0.
15Bm, water permeability per porosity is 0.09u/ln'・h
It was r*mmHg. In addition, hollow fibers are prone to bending and flattening, and the shrinkage rate at 121"O is 19%.
A separator was manufactured in the same manner as in Example 1, and the temperature was 121℃.
When high-pressure steam sterilization was performed for 120 minutes, dents were observed in the polyurethane portion of the adhesive, and breakage of the hollow fibers was also observed.
(実施例3)
実施例1で製作した血漿分離器を用い、耐圧ステンレス
容器中で、全体を真空にしたのち、脱気水を充填し、2
0kg/Crn’に加圧して、膜孔を湿潤化した。この
血漿分離器を121℃、20分の高圧蒸気滅菌したが、
中空糸の切断はみられなかった。さらに、Ht36%の
牛血液を流したところ、血球の洩れはなく、血流5H6
0m l /分で、血漿流量18mA/分が得られた。(Example 3) Using the plasma separator produced in Example 1, the whole was evacuated in a pressure-resistant stainless steel container, then filled with degassed water, and
A pressure of 0 kg/Crn' was applied to moisten the membrane pores. This plasma separator was autoclaved at 121°C for 20 minutes.
No breakage of the hollow fibers was observed. Furthermore, when cow blood with 36% Ht was poured, there was no leakage of blood cells, and the blood flow was 5H6.
At 0 ml/min, a plasma flow rate of 18 mA/min was obtained.
血漿蛋白の透過率は、95%と高い値を示した。The permeability of plasma proteins was as high as 95%.
(実施例4)
実施例1と同様に紡糸延伸したのち、セット温度125
℃で緩和率30%の1段熱セツトを行い、多孔質中空糸
を得た。(Example 4) After spinning and drawing in the same manner as in Example 1, the set temperature was set to 125.
A one-stage heat setting was performed at a relaxation rate of 30% at .degree. C. to obtain a porous hollow fiber.
この中空糸は、内径362u、m、Ili厚50=m、
空孔率0.69.透水量10.2jL/rn”*hr
* mmHgであり、空孔率当り透水量は、0゜154
17rn’s h r e mmHgであった。また1
21”Cl2O分の高圧蒸気滅菌時の収縮率は、7゜0
%であり、該減菌後の透水量は、9.7見/rn’eh
r曇mmHgと殆ど変化していなかった。This hollow fiber has an inner diameter of 362u, m, an Ili thickness of 50=m,
Porosity 0.69. Water permeability 10.2jL/rn"*hr
* mmHg, and water permeability per porosity is 0°154
17rn's hre mmHg. Also 1
The shrinkage rate during high-pressure steam sterilization of 21” Cl2O is 7°0
%, and the water permeability after sterilization is 9.7 min/rn'eh
There was almost no change in r cloudy mmHg.
(実施例5)
実施例1の紡糸条件において、ポリマー吐出量を14.
5g/分、中空N2量を20m1/分とした以外は同一
の紡糸、アニール処理を行い、未延伸中空糸を得た。(Example 5) Under the spinning conditions of Example 1, the polymer discharge amount was set to 14.
An undrawn hollow fiber was obtained by performing the same spinning and annealing treatment except that the amount of hollow N2 was 5 g/min and the amount of hollow N2 was 20 m1/min.
この中空糸を、室温で、30%の冷延伸を行ったのち、
104℃で、200%、115℃で、さらに43%の熱
延伸を行い、さらに、 i!1m的に128℃で、第1
段19%、第2段14%1合計緩和率30%の2段熱セ
ツトを行った。得られた中空糸の内径を20点測定した
ところ、平均値は326xm、fi大値と最小値の差は
、19終mであり2膜厚は48 Bm、空孔率0.67
、透水1tO、51/nf * h r * mmHg
、空孔率当り透水量は0.161L/rn”* hr*
mmHg、透過平均孔径は、0.18pm、121”O
での収縮率は。After cold-stretching this hollow fiber by 30% at room temperature,
Hot stretching was performed at 104°C to 200%, and at 115°C to 43%, and further, i! 1m at 128℃, the first
A two-stage heat setting was performed with a first stage of 19% and a second stage of 14% and a total relaxation rate of 30%. When the inner diameter of the obtained hollow fiber was measured at 20 points, the average value was 326 x m, the difference between the maximum fi value and the minimum value was 19 m, the 2-layer thickness was 48 Bm, and the porosity was 0.67.
, water permeability 1tO, 51/nf * h r * mmHg
, water permeability per porosity is 0.161L/rn”*hr*
mmHg, permeation average pore diameter is 0.18 pm, 121”O
The shrinkage rate is .
3.7%であった。It was 3.7%.
(比較例2)
実施例5と同条件で紡糸延伸を行ったのち、熱セツト条
件中の温度を131”0として中空糸を得た。この中空
糸は、熱収縮率は、1.3%と良い値を示したが、内径
は平均283 ILmと小さく。(Comparative Example 2) After spinning and drawing under the same conditions as in Example 5, a hollow fiber was obtained by setting the temperature in the heat setting condition to 131"0. This hollow fiber had a heat shrinkage rate of 1.3%. Although it showed a good value, the inner diameter was small at an average of 283 ILm.
また最大値と最小値の差が15フルmと断面径のバラツ
キの大きいものであった。また、7!i水量は4 、6
41/ln’e h r * mmHgと減少し、実用
性のないものであった。In addition, the difference between the maximum value and the minimum value was 15 full m, which was a large variation in the cross-sectional diameter. Also, 7! iThe amount of water is 4,6
The value decreased to 41/ln'e h r * mmHg, which was not practical.
(発明の効果)
本発明のポリエチレン製、多孔質中空糸は、WA構造や
、11に性能を損なうことなく、優れた耐熱性な示し、
121℃20分の高圧蒸気滅菌が可能である。したがっ
て血漿分離器や、除菌濾過器に安全に用いることができ
、極めて有用である。(Effects of the Invention) The polyethylene porous hollow fiber of the present invention has a WA structure and exhibits excellent heat resistance without impairing performance.
High-pressure steam sterilization at 121°C for 20 minutes is possible. Therefore, it can be safely used in plasma separators and sterilization filters, and is extremely useful.
Claims (2)
1〜2μmの多孔質中空糸において、その融点が130
℃以上150℃未満であり、且つ121℃における無緊
張下の糸長方向の収縮率が10%以下であることを特徴
とするポリエチレン製多孔質中空糸。(1) The average permeation pore diameter obtained by the stretching pore method is 0.0
The melting point of porous hollow fibers of 1 to 2 μm is 130
A porous hollow fiber made of polyethylene, characterized in that the temperature is at least 150°C and the shrinkage rate in the fiber length direction under no tension at 121°C is 10% or less.
l/m^2・hr・mmHgであり、且つ空孔率当り透
水量が0.1l/m^2・hr・mmHg以上である特
許請求の範囲第1項記載のポリエチレン製多孔質中空糸
。(2) Porosity is 0.50-0.75, water permeability is 5-30
1/m^2*hr*mmHg, and a water permeability per porosity of 0.1 l/m^2*hr*mmHg or more, according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61064813A JPH0691945B2 (en) | 1986-03-25 | 1986-03-25 | Polyethylene porous hollow fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61064813A JPH0691945B2 (en) | 1986-03-25 | 1986-03-25 | Polyethylene porous hollow fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62221401A true JPS62221401A (en) | 1987-09-29 |
JPH0691945B2 JPH0691945B2 (en) | 1994-11-16 |
Family
ID=13269058
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61064813A Expired - Fee Related JPH0691945B2 (en) | 1986-03-25 | 1986-03-25 | Polyethylene porous hollow fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0691945B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03205433A (en) * | 1988-05-12 | 1991-09-06 | Hoechst Celanese Corp | Microporous film with increased pore density and its manufacture |
WO2018227941A1 (en) * | 2017-06-13 | 2018-12-20 | 深圳市星源材质科技股份有限公司 | Structurally uniform, highly gas-permeable microporous membrane for filtration and preparation process thereof, flat filter element and gas filtration article |
JP2021169065A (en) * | 2020-04-16 | 2021-10-28 | 三菱ケミカル株式会社 | Porous hollow fiber membrane and method for producing the same, and hollow fiber membrane element |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57119751A (en) * | 1981-01-19 | 1982-07-26 | Sato Kazuo | Self-treatment appliance |
-
1986
- 1986-03-25 JP JP61064813A patent/JPH0691945B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57119751A (en) * | 1981-01-19 | 1982-07-26 | Sato Kazuo | Self-treatment appliance |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03205433A (en) * | 1988-05-12 | 1991-09-06 | Hoechst Celanese Corp | Microporous film with increased pore density and its manufacture |
WO2018227941A1 (en) * | 2017-06-13 | 2018-12-20 | 深圳市星源材质科技股份有限公司 | Structurally uniform, highly gas-permeable microporous membrane for filtration and preparation process thereof, flat filter element and gas filtration article |
US11413564B2 (en) | 2017-06-13 | 2022-08-16 | Shenzhen Senior Technology Material Co., Ltd. | Uniformly structured high-permeability microporous membrane for filtering and method for preparing the same, flat filtering element and gas filtering article |
JP2021169065A (en) * | 2020-04-16 | 2021-10-28 | 三菱ケミカル株式会社 | Porous hollow fiber membrane and method for producing the same, and hollow fiber membrane element |
Also Published As
Publication number | Publication date |
---|---|
JPH0691945B2 (en) | 1994-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5840235A (en) | Biaxially oriented film of high molecular weight polyethylene, process for preparing the same, surface-modified biaxially oriented film of high molecular weight polyethylene and process for preparing the same | |
EP0057328B1 (en) | Porous polyethylene film | |
US4405688A (en) | Microporous hollow fiber and process and apparatus for preparing such fiber | |
GB2041821A (en) | Process for Preparing Hollow Microporous Polypropylene Fibers | |
US5134174A (en) | Polypropylene microporous film | |
US4541981A (en) | Method for preparing a uniform polyolefinic microporous hollow fiber | |
JPH0526528B2 (en) | ||
JPS6335726B2 (en) | ||
JPH0428803B2 (en) | ||
KR20050056245A (en) | Microporous hydrophilic membrane | |
JPS5938322B2 (en) | Microporous hollow fiber and its manufacturing method | |
JPH07121340B2 (en) | Hollow fiber membrane | |
AU601599B2 (en) | Porous hollow-fiber | |
US4563317A (en) | Process of producing porous thermoplastic resin article | |
JPS62221401A (en) | Porous hollow yarn made of polyethylene | |
US5057218A (en) | Porous membrane and production process thereof | |
JPH0262604B2 (en) | ||
JPS60137402A (en) | Membrane with microfine pore | |
JPH022849A (en) | Porous hollow yarn membrane | |
JPS584810A (en) | Microporous hollow fiber | |
JPH0780263A (en) | Production of polypropylene porous hollow fiber membrane | |
JPH04265134A (en) | Hydrophilic polypropyrene hollow fiber membrane and its manufacture | |
JPH044028A (en) | Porous membrane and production thereof | |
JPS6335818A (en) | Microporous hollow fiber membrane | |
JPH07124451A (en) | Production of polyethylene porous hollow yarn membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |