JP4639322B2 - 光造形装置及び方法 - Google Patents

光造形装置及び方法 Download PDF

Info

Publication number
JP4639322B2
JP4639322B2 JP2008072781A JP2008072781A JP4639322B2 JP 4639322 B2 JP4639322 B2 JP 4639322B2 JP 2008072781 A JP2008072781 A JP 2008072781A JP 2008072781 A JP2008072781 A JP 2008072781A JP 4639322 B2 JP4639322 B2 JP 4639322B2
Authority
JP
Japan
Prior art keywords
light spot
light
exposure
optical modeling
exposure area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2008072781A
Other languages
English (en)
Other versions
JP2008201135A (ja
Inventor
真人 荒井
俊樹 新野
威雄 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabtesco Corp
RIKEN Institute of Physical and Chemical Research
Original Assignee
Nabtesco Corp
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabtesco Corp, RIKEN Institute of Physical and Chemical Research filed Critical Nabtesco Corp
Priority to JP2008072781A priority Critical patent/JP4639322B2/ja
Publication of JP2008201135A publication Critical patent/JP2008201135A/ja
Application granted granted Critical
Publication of JP4639322B2 publication Critical patent/JP4639322B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、光硬化性樹脂を用いて3次元形状モデルを作成する光造形装置に関する。
光造形装置について、例えば特許第1827006号を始めとして数多くの発明が知られている。従来の光造形装置は一般に、紫外線レーザを出力するガスレーザ発振器を光源として用いている。
ガスレーザ発振器のサイズはかなり大きく(例えば150cmラ30cmラ30cm)、結果として光造形装置本体のサイズも相当に大型である。加えて、ガスレーザ発振器はそれ自体が高価であり、さらに発振器の種類によっては、200V電源が必要であったり水冷装置(チラー)が必要であったりする。従って、従来の光造形装置の価格は非常に高額である(例えば、数千万円)。
従って、本発明の目的は、小型で安価な光造形装置を提供することにある。
本発明にかかる光造形装置は、光硬化性樹脂の露光領域を多数のピクセルの2次元集合として把握する手段と、光硬化性樹脂の露光領域に光を照射する露光装置と、露光領域内の選択されたピクセルを硬化するよう露光装置を制御する制御装置とを備える。露光領域は、造形物に要求される寸法精度を満たすような細かい多数のピクセルの2次元集合として把握される
本発明の造形装置における露光装置は、オンされたときに光スポットを露光領域に照射する1個以上の光スポット発生器を有しているが、その光スポットのサイズは露光領域のピクセルより大きいものである。そして、露光装置はその光スポット発生器により露光領域を走査し、その走査の間を通じ、制御装置は、選択されたピクセルに光スポットを照射できる位置にある延べ複数個の光スポット発生器をオンする。
本発明の光造形装置では、光スポット発生器から露光領域に照射する光スポットのサイズは、露光領域のピクセル程には微小ではなく、ピクセルより大きいサイズである。また、各ピクセルの露光は、そのピクセルに光スポットを照射することのできる延べ複数個の光スポット発生器を用いて多重に行うので、個々の光スポット発生器の出力は比較的に小さくてもよい。
ここで、「延べ複数個」の光スポット発生器とは、物理的に異なる複数個の光スポット発生器から複数の光スポットを同時に1つのピクセルを照射する場合だけでなく、物理的に1個の光スポット発生器を走査の間に複数回用いて異なる時刻に何回も光スポットを照射することも含む意味である。
上記のこと故に、光スポット発生器の光源には、従来の大型で高価なガスレーザ発振器を用いる必要がなく、小型で安価なLEDのような固体発光素子を用いることが可能である。結果として、従来より大幅に安価な(例えば、従来の数千万円に対して数百万円程度の)光造形装置が提供できる。
露光の効率の面から、光スポット発生器は複数個ある方が望ましい。その場合、上述した多重露光を行えるようにするために、複数の光スポット発生器は露光領域の非走査方向に光スポットの直径より小さい第1のピッチ(典型的にはピクセルのピッチ)で配列されていて、それら複数個の光スポット発生器が露光領域を走査方向に走査するように構成されていることが望ましい。また、非走査方向の全長に亘って、複数の光スポット発生器配列されていれば一層望ましい。
上記のように複数の光スポット発生器を小さい第1のピッチで配列する場合、2個以上の光スポット発生器を、光スポットの直径以上の第2のピッチ1列に並べて成る光スポット発生器アレイを複数本用意して、それらの光スポット発生器アレイを、相互間に非走査方向に沿って上記第1のピッチに等しい変位をもって、走査方向前後に配置することできる。このような配列方法を採ることにより、第1のピッチより光スポット発生器のサイズの方が遥か大きくても、それら大きい光スポット発生器を非走査方向に第1のピッチで配列することが可能となる。
上記の多重露光を可能とするために、制御装置は露光装置を次のように制御することができる。すなわち、制御装置は、まず、造形物の断面形状を示すデータを受け、このデータに所定のオフセット量を適用して断面形状を膨張させる。次に、光スポット発生器が露光領域を走査している間、制御装置は、膨張させた断面形状に含まれる各ピクセルを中心点とした光スポットをそれぞれ照射できる光スポット発生器をオンする。このオフセット膨張処理を取入れた方法によれば、各光スポット発生器を光スポット中心点のピクセルの値に従ってオン/オフするという単純な光スポット駆動方法を行うだけで、造形物の断面形状の全てのピクセルに対して(特に、形状内部のピクセルだけなく輪郭近傍のピクセルに対しても)効果的な多重露光を施すことが可能になる。
前述したように、各光スポット発生器の光源には、LEDのような固体発光素子を用いることができる。望ましくは、各LEDに光ファイバーを接続して、その光ファイバーの先端部から光スポットを露光面に照射するように構成することができる。更に望ましくは、光ファイバーの先端部の先にGRINレンズ(Gradient Index Lens;屈折率分布型レンズ)を配置して、光ファイバーの先端部の像を露光領域に結像させるように構成することができる。このように構成すると、光ファイバーの直径(例えば0.5mm)に相当する小さい直径の光スポットを生成することができる。この程度に小さい光スポットを用いれば、光造形の一般的用途で十分に実用可能な寸法精度をもった造形物を作成することができる。それに加え、従来のガスレーザを用いた光造形装置に比較して価格が桁違いに低く、かつ装置も小型化するため、本発明の光造形装置の実際上のメリットは非常に大きい。
光源としてのLEDは、出来るだけエネルギーの高い(つまり、波長の短い)波長光を発するものが望ましく、その観点から青色LEDを用いる、或いは入手可能ならば紫外線LEDを用いることが望ましい。
尚、光源としてのLEDは、露光領域を走査する光スポット発生器(露光ヘッド)と一体化されていて露光ヘッドと一緒に移動するようになっていてもよいし、後述の実施形態のように露光ヘッドから離れた場所に固定されていて、光ファイバーで露光ヘッドと繋がっている構成であってもよい。
本発明はまた、光造形方法も提供する。この方法では、光硬化性樹脂の露光領域を、そのピクセルより大きいサイズの光スポットを発生し得る1個以上の光スポット発生器で走査しながら、選択されたピクセルに光スポットを照射できる延べ複数個の光スポット発生器をオンする(つまり、多重露光を行う)。この方法により、例えば上述したLEDと光ファイバの組合せのように、ピクセルより大きい光スポットしか発生できず且つ光スポットの出力も小さいが、反面小型で非常に安価である光スポット発生器を用いて、実用的な光造形を行うことができる。
図1は、本発明の一実施形態にかかる光造形装置の全体構成を示す。
この造形装置100は、光造形に必要な機械機構や光源やそれらの駆動装置を含んだ装置本体1と、この本体1の動作を制御するための制御コンピュータ3とを有する。制御コンピュータ3は、Ethernetのような通信ネットワーク9を介して、3次元CADシステム5や、制御データ生成用ワークステーション7などと接続することができる。
3次元CADシステム5は、造形物の3次元モデリングを行って造形物の3次元形状データを生成するものである。制御データ生成用ワークステーション7は、その3次元形状データを多数の薄い層にスライスして各層の2次元形状を生成し、その各層の2次元形状データや厚みデータなどを制御コンピュータ3に供給するものである。
装置本体1内には、樹脂液槽11が設置され、そこに光硬化性樹脂液13が所定液位まで満たされている。液位を制御するために、液面検知センサ31が液位を検知し、その検知信号に基づいて制御コンピュータ3が液面調整駆動装置35を制御し、その制御に従って液面調整駆動装置35が液面調整ボリューム33を機能させる。
樹脂液槽11内にはZ軸エレベータ15があり、このエレベータ15上にトレイ19が置かれる。エレベータ15は、制御コンピュータ3によって制御されるZ軸エレベータ駆動装置21によってZ軸方向(上下方向)に移動させることができる。周知のように、造形中、トレイ19上に造形物17が形成されて行くのにつれて、エレベータ15は徐々に降下していく。
トレイ19の上方の液面上には、液面に硬化用の光を照射する露光ヘッド23が配置されている。図2の斜視図に示すように、露光ヘッド23は、Y軸方向に長く、かつ、制御コンピュータ3により制御されるスキャン軸駆動装置25によってX軸方向に移動させることができる。露光ヘッド23が移動しながらカバーする露光領域24は、この実施形態ではX軸方向64mm及びY軸方向64mmであり、よって、作成可能な造形物17の最大の平面サイズは64mmラ64mmである(但し、後述するオフセット量の適用による膨張のために、実際に作成される造形物17の最大平面サイズは約60mmラ60mmである)。露光ヘッド23は、光ファイバー束39を介して、LED光源37に接続されている。この部分の詳細な構成は後に説明する。
造形物17の露光面(液面)に接して、その露光面(液面)を平らにするためのY軸方向に長いリコータ27が配置されている。リコータ27は、制御コンピュータ3により制御されるリコータ駆動装置29によって、X軸方向に移動させることができる。
樹脂液13の温度を制御するために、複数箇所で温度センサ41、43が樹脂液13の温度を検出し、その検出温度に基づいて制御コンピュータ3が、温度調節器45を制御し、その制御に従って温度調節器45がヒータ47を駆動する。
以上の構成の中で、特に注目すべきものは、光源部分(露光ヘッド23、光ファイバ束39及びLED光源37)の構造と、その光源部分の制御コンピュータ3による制御である。以下、この点に関して詳細に説明する。
3次元CADシステム5で作成された3次元形状モデルは、Z軸方向に例えば0.1mmの幅でスライスされる。スライスされた各層のデータはXY平面における2次元形状データであり、これが光造形装置100の制御コンピュータ3に供給される。制御コンピュータ3は、まず、各層の2次元形状データを1024ビットラ1024ビットのビットマップデータに展開する。このビットマップデータは、XY平面上の上述した露光領域24(64mmラ64mm)のイメージを示している。
換言すれば、このビットマップデータは、露光領域24の64mmラ64mmのイメージを、1024ピクセルラ1024ピクセルのラスタイメージとして表現している。
従って、このビットマップデータの各1ビットは、露光領域24内の62.5・mラ62.5μmの各ピクセルに対応し、各ビットの値"1"及び"0"は、各ピクセルにて樹脂を硬化する(光源をオンする)、及び硬化しない(光源をオフする)をそれぞれ意味する。
LED光源37には、露光領域24のY軸方向の一ラインのピクセル数に相当する1024個のLEDが含まれている。それら1024個のLEDは制御コンピュータ3からの指令で個別にオン/オフできるようになっている。
図3は個々のLEDの構成を示している。図3に示すように、各LED51は、市販のLEDランプ53の頭部のレンズ部分54をカットしたものであり、これに光ファイバー55が接続されており、実質的に出力光の全部が光ファイバー55に入射するように構成されている。各LED53は、できるだけ紫外線に近い短波長の高エネルギー光を発するものが好ましく、この実施形態では、青色光(波長470nm、出力3mW)を発するものを用いている。
LED光源37内の1024個のLED51に接続された1024本の光ファイバー55は、図1に示した光ファイバー束39として、露光ヘッド23へ導かれている。露光ヘッド23では、1024本の光ファイバー55の先端部が、図4を参照して後に説明するような態様で配列されており、その下方に、多数の円柱状のGRINレンズ(屈折率分布型レンズ)を平面状に敷き並べた図3に示すようなGRINレンズ・プレート57が配置されている。このGRINレンズ・プレート57は、個々の光ファイバー55の先端面の像(つまり、光ファイバー55と同径の光スポット)59を、その下方の樹脂液面に結像する。各光ファイバー55の直径は例えば0.5mmであり、よって、GRINレンズ57により結像される各光スポット59の直径も0.5mmである。
図4は、露光ヘッド23における光ファイバー55の先端部の平面配列の一態様を示す。
1024本の光ファイバー55の各々は、露光領域24のY軸に沿った1024個の各ピクセル位置を露光するためのものである。従って、露光ヘッド23における1024本の光ファイバー55の先端部は、露光領域24のピクセルのピッチに等しい62.5μmのピッチでY軸に沿って配列される必要がある。しかし、各光ファイバー55の直径はピクセルピッチ62.5μmより遥かに大きい0.5mmであるため、このピッチで一列に光ファイバー55を配列することは不可能である。
そこで、図4に示すような128本×8行のファイバー配列を採用する。すなわち、128本の光ファイバー55をその直径に等しい0.5mmピッチでY軸方向に一直線に並べて、長さ64mmの1本の光ファイバーアレイ63(1)を作成する。同様にして、全部で8本の光ファイバーアレイ63(1)〜63(8)を用意する。各光ファイバーアレイ63(1)〜63(8)は、具体的には、長さ64mmの溝をもったベース65の溝に128本の光ファイバー55をはめ込むことにより作成することができる。
これらの8本の光ファイバーアレイ63(1)〜63(8)を、それぞれY軸方向に平行に、かつ、相互間でY軸方向にピクセルピッチに等しい62.5μmだけ変位するようにして、X軸方向に適当な間隔で配置する(よって、露光ヘッド23の外観は、図2に示すように、8本のベース65が並んだものとなる)。
図4に示すように8本の光ファイバーアレイ63(1)〜63(8)が並んだ露光ヘッド23をX軸方向に走査させていくことにより、その1024個の光ファイバー55は、露光領域24のY軸に沿った1024個のピクセルの位置をそれぞれ走査することになる。
例えば、その1024個のピクセルに対し端から0番、1番、・・・、1023番と番号を付けたとすると、図4に示す1行目のアレイ63(1)の光ファイバー55は、0番、8番、16番、・というように、0番のピクセルから8ピクセルピッチ置きの128個のピクセルの位置を走査することになり、2行目のアレイ63(2)の光ファイバー55は、1番、9番、17番、・・・・というように、1番のピクセルから8ピクセルピッチ置きの128個のピクセルの位置を走査することになる。
尚、図4に示したファイバー配列は一例であり、別の配列、例えば図5に示すような配列も採用可能である。
図5の配列では、1行目のアレイ63(1)の隣に、図4の配列における5行目のアレイ63(5)が配置されるというように、アレイ間のY方向の変位がファイバー半径である0.25mmに等しい2つのアレイ同士が隣接して配置される。この配置では、隣接するアレイのX方向の間隔を最小にできるので、露光ヘッド23のX軸方向のサイズが最小になる。
図6は、1つの光ファイバー55から樹脂液面に投影された1つの光スポット59と、その樹脂液面ピクセル71との関係を示している。
既に説明した通り、GRINレンズ・プレート57によって樹脂液面に投影された各光スポット59の直径は、各光ファイバー55の直径と同じ0.5mmである。これに対し、個々のピクセル71のサイズは62.5μmラ62.5μmである。そのため、光スポット59は、その中心点に位置するピクセル73(図4を参照したファイバー配列の説明で「各光ファイバー55が走査するピクセル」と説明したピクセル)だけでなく、その周囲の多くのピクセルにも照射されることになる。これを別の側面から見ると、1つのピクセル73には、このピクセル73を中心とする直径0.5mmの範囲内に中心点をもつ多数の光スポットが照射されることがわかる。本実施形態では、このことを利用して、1つのピクセルを多数の光スポットで多重に露光することにより、光源であるLEDの出力光を最大限に利用するようにしている。
図7は、この多重露光の原理を示す。
図7に示すように、或るピクセルを73を硬化させる場合、このピクセル73を中心とする直径0.5mmの範囲内の全てのピクセル(図中「+」印で示したピクセル)位置に中心点をもつ全ての光スポットを点灯させるようにする。この多重露光は、図4や図5に例示したようなピクセルピッチで並ぶ光ファイバーアレイを使用することと、後に説明する造形物の形状に対するオフセット量の適用とによって実現される。
図8は、上述した構成の光源を駆動するための制御処理の流れを示す。
既に説明したように、まず、3次元CADシステム5が、造形物の3次元形状データをモデリングする(ステップS1)。次に、ワークステーション7が、Z軸方向に所定ピッチで3次元形状をスライスして、スライスした各層の2次元形状データを作成し、これを造形装置100の制御コンピュータ3に送る(S2)。
次に、制御コンピュータ3が、各層の2次元形状データに所定のオフセット量を適用して、その2次元形状をオフセット量だけ膨張させる(S3)。例えば、図8に示すように、元の2次元形状が円81であった場合、その半径にオフセット量83を加えて、より大径の円85に膨張させる。また、図示してないが、元の2次元形状が例えば輪であった場合、その外径はオフセット量だけ拡大させるが、内径はオフセット量だけ縮小させる。要するに、輪郭をオフセット量だけ外方へずらすのである。
このオフセット膨張処理を行う理由は次の通りである。すなわち、後述するように各LED51のオン/オフは各光スポット59の中心点のピクセル値によって決められる。そのため、ワークステーション7からの2次元形状データをそのまま用いてLED51のオン/オフを行うと、2次元形状の輪郭(端)近傍のピクセルを露光する光スポット数が少なくなり(何故なら、輪郭線の外側のピクセルを中心点とする光スポットはオフであるから)、上述した多重露光の効果が十分に得られなくなる。そこで、2次元形状の輪郭線上のピクセルに対しても、そのピクセルを中心とする直径0.5mmの範囲内のピクセルを中心点とする全ての光スポットがオンされるように、オフセット量を適用して輪郭線を外側へ移動させるのである。従って、オフセット量は、光スポットの半径である0.25mmが標準である。
しかし、最適なオフセット量は、樹脂の硬化特性や光スポットの点灯時間の調整などに依存するため、マイナス値を含めて任意のオフセット量が設定できるようになっていることが好ましい。
上記処理により膨張させた2次元形状データはコンタ・データと呼ばれる。制御コンピュータ3は、次に、このコンタ・データを1024ビットラ1024ビットのビットマップイメージ87に展開する。ビットマップイメージ87の各ビット値は例えば"1"がLEDオン(ピクセルを硬化する)、“0”がLEDオフ(ピクセルを硬化しない)を意味する(勿論、逆でもよい)。
次に、制御コンピュータ3は、露光ヘッド23の走査を開始し、走査が行われている間、ビットマップイメージ87からビット値を読み出し発光パターンを作成し、これに基づいてLED光源37を駆動する(S5)。
発光パターンは次の方法で作成する。
前提として、光ファイバー55が図4に示した128本ラ8行の配列になっているとする。また、図9に示すように、各光ファイバ55を、露光ヘッド23上での座標(p,q)で識別することにする。ここに、番号p(p=0〜7)は各光ファイバーアレイ63(1)〜63(8)の行番号(p=0〜7)であり、番号q(q=0〜1023)は各光ファイバーアレイ内での各光ファイバー55の位置番号である。
また、露光ヘッド23上での各光ファイバーアレイ63(1)〜63(8)のX軸方向(走査方向)位置を、1行目の光ファイバーアレイ63(1)と各光ファイバーアレイ63(1)〜63(8)との間の間隔をピクセルピッチ62.5μmで割った倍数値Npで表すこととする。例えば、1行目のアレイ63(1)(p=0)についてはN0=0であり、2行目アレイ63(2)(p=1)についてはN1=8(つまり、1行目アレイとの間隔は0.5mm)、3行目アレイ63(3)(p=2)についてはN2=18(つまり、2行目アレイとの間隔は0.625mm)、などとなっている。
また、各ピクセル71を、露光領域24(ビットマップイメージ87)内の座標(i,j)で識別することとする。ここに、番号i、jはそれぞれビットマップイメージ87内の行番号(X座標)及び列番号(Y座標)である。更に、露光ヘッド23の走査は1ピクセルピッチ62.5μmづつX軸方向に移動して行く方法により行われ、走査中の時刻tは、走査開始時点でt=0、以後、mピクセルピッチだけ移動した時点でt=mと表すこととする。
以上の前提の下で、制御コンピュータ3は、走査中の個々の時刻tにおいて、座標(p,q)の光ファイバ55に接続されたLED51を、下式
i=t−Np
j=p+8ラq
で決定される座標(i,j)のピクセル値に基づいてオン/オフする(但し、iがマイナス値又は1024以上のときはLED51はオフである)。
例えば、走査開始時刻t=0では、1行目の光ファイバアレイ63(1)(p=0、Np=0)が露光開始位置に位置している。このとき、この1行目の光ファイバアレイ63(1)に対してのみ発光パターンが与えられる(2行目以降のアレイについてはiがマイナスである)。即ち、この1行目の位置番号q=0、1、2、・・・・、127の各光ファイバ55のLED51に対し、上記式で決定した座標(0,0)、(0,8)、(0,16)、・・・・、(0,1016)のピクセル値の発光パターンが与えられる。
以後、t=1、2、・・・、7の各時点では、1行目アレイ63(1)に対してのみ、上記式で決定した発光パターンが与えられる。
開始から8ピクセルピッチだけ移動したt=8の時点で、2行目の光ファイバーアレイ63(2)(p=1、Np=8)が露光開始位置に来る。この時点から、1行目アレイ63(1)と2行目アレイ63(2)とに対して発光パターンが与えられる(3行目以降のアレイについてはiがマイナスである)。
即ち、1行目の位置番号q=0、1、2、・・・、127の各LED51に対し、上記式で決定した座標(8,0)、(8,8)、(8,16)、・・・、(8,1016)のピクセル値の発光パターンが、また、2行目の位置番号q=0、1、2、・・・、127の各LED51に対し、上記式で決定した座標(0,1)、(0,9)、(0,17)、・・・、(0,1017)のピクセル値の発光パターンが与えられる。
以後、t=9、10、・・・、17の各時点では、1行目と2行目のアレイ63(1)、63(2)に対してのみ、上記式で決定した発光パターンが与えられる。
開始から18ピクセルピッチだけ移動したt=18の時点で、3行目の光ファイバーアレイ63(3)(p=2、Np=18)が露光開始位置に来る。この時点から、1行目アレイ63(1)と2行目アレイ63(2)と3行目のアレイ63(3)とに対して発光パターンが与えられる(4行目以降のアレイについてはiがマイナスである)。この発光パターンも、上記の式に従って決定される。
以下、同様にして、1ピクセルピッチだけ露光ヘッド23が進む度に、上記式により発光パターンが計算されて該当のLED51が駆動される。そして、8行目の光ファイバーアレイ63(8)について上記式で計算したiが1023になるまで(又は、ピクセル値“1”が存在するiの最大値になるまで)、上記制御動作が繰り返され、これで1つの層の露光が終了する。
一つの層の露光が終了すると、制御コンピュータ3は、エレベータ15を層の厚み分だけ降下させ、次の層について、再び同様の制御方法で露光を行う。これを造形物の上端の層まで繰り返す。
図10は、本実施形態で使用可能なLED光源37の別の構成例を示す。
この構成では、図3に示したようなLEDランプは用いずに、半導体基板(又は適当材料の絶縁基板)91上に例えばマトリックス状に、多数の固体発光素子、典型的にはLEDチップ92を形成(又はマウント)したものを用いる。そして、各LED素子92の直上に、各光ファイバー93の一端が、各LED素子92に極めて近接又は接触した状態で、配置されている。各光ファイバー93の先端は露光ヘッド23に導かれる。
この構成によれば、図3のランプを用いる構成より一層効率良く、LED素子92の発光を光ファイバー93に取り込むことができる。
以上、本発明の好適な一実施形態を説明したが、この実施形態は本発明の説明のための例示であって、本発明をこの実施形態にのみに限定する趣旨ではない。本発明は、それ以外の種々の形態でも実施することができる。
産業上の利用分野
本発明により、従来より大幅に安価な(例えば、従来の数千万円に対して数百万円程度の)光造形装置を提供することができる。
本発明の一実施形態にかかる光造形装置の全体構成を示すブロック図。 露光ヘッド23の外観を示す斜視図。 個々のLEDの構成を示す側面図。 露光ヘッド23における光ファイバー55の配列例を示す平面図。 露光ヘッド23における光ファイバー55の別の配列例を示す平面図。 1つの光ファイバー55から樹脂液面に投影された1つの光スポット59と、露光領域のピクセル71との関係を示す平面図。 多重露光の原理を示す平面図。 制御コンピュータ3の処理を示すフローチャート。 発光パターンを生成する方法を説明するために、配列された光ファイバーの座標とピクセルの座標を示した平面図。 LED光源の別の項整理を示す斜視図。
符号の説明
100 光造形装置
1 造形装置本体
3 制御コンピュータ
23 露光ヘッド
24 露光領域
37 LED光源
39 光ファイバー束
51 LEDランプから頭部を除去したもの
55 光ファイバー
57 GRINレンズ・プレート
59 光スポット
63(1)〜63(8) 光ファイバーアレイ
65 ベース
71 ピクセル
73 光スポット中心点のピクセル
81 2次元形状データ
83 オフセット量
85 コンタ・データ(膨張させた2次元形状データ)
91 基板
92 LEDチップ
93 光ファイバー

Claims (15)

  1. 光硬化性樹脂に光を照射して造形を行なう光造形装置であって
    光硬化性樹脂液が満たされている樹脂液槽における液位を制御するために液面検知センサーを有し、且つ、
    光硬化性樹脂の露光領域多数のピクセルの2次元集合として把握する手段と、
    当該露光領域光を照射する露光装置と、
    前記露光領域内の選択されたピクセルを硬化するよう、前記露光装置を制御する制御装置と
    を備え、
    前記露光装置は、オンされたときに各ピクセルより大きいサイズの各光スポットを前記露光領域に照射する1個以上の光スポット発生器を有し、この光スポット発生器により前記露光領域を走査し、
    前記制御装置は、前記光スポット発生器が前記露光領域を走査している間、前記選択されたピクセルに前記光スポットを照射できる位置にある延べ複数個の前記光スポット発生器をオンする
    ことを特徴とする光造形装置。
  2. 前記露光装置は、前記露光領域の非走査方向に前記光スポットの直径より小さい第1のピッチで配列された複数個の光スポット発生器を有し、これら複数個の光スポット発生器により前記露光領域を走査方向に走査する請求項1記載の光造形装置。
  3. 前記第1のピッチが、前記ピクセルのピッチに等しい請求項2記載の光造形装置。
  4. 前記露光装置が、2個以上の光スポット発生器を前記光スポットの直径以上の第2のピッチで非走査方向に1列に並べて成る光スポット発生器アレイを2本以上有し、それら2本以上の光スポット発生器アレイが、相互間に前記非走査方向に沿って前記光スポットの直径より小さい第1のピッチに等しい変位をもって、走査方向に配置されている請求項記載の光造形装置。
  5. 露光装置を制御する制御装置が、
    1)造形物の断面形状を示すデータを受け、このデータに所定のオフセット量を適用して前記断面形状を膨張させ、
    2)前記光スポット発生器が前記露光領域を走査している間、膨張させた断面形状に含まれる各ピクセルを中心点とした前記光スポットを照射できる位置にある前記光スポット発生器をオンする
    請求項1記載の光造形装置。
  6. 各光スポット発生器が、光源として固体発光素子を有している請求項1記載の光造形装置。
  7. 前記固体発光素子がLEDである請求項6記載の光造形装置。
  8. 前記光造形装置が前記固体発光素子に接続された光ファイバーをさらに有し、前記光ファイバーの先端部が前記光スポット発生器に含まれている請求項6記載の光造形装置。
  9. 前記光スポット発生器が、前記固体発光素子からの光を受けて前記光スポットを形成するGRINレンズをさらに有する請求項6記載の光造形装置。
  10. 前記LEDが青色LEDである請求項6記載の光造形装置。
  11. 樹脂液槽内の液面に接して露光される液面を平らにするためのリコータを有する請求項1〜10のいずれか1項記載の光造形装置。
  12. 樹脂液の温度を制御するために、温度センサを有する請求項1〜11のいずれか1項記載の光造形装置。
  13. 光硬化性樹脂に光を照射して造形を行なう光造形方法であって
    光硬化性樹脂液が満たされている樹脂液槽における液位を液面検知センサーで検知して液位を制御すると共に、
    光硬化性樹脂の露光領域多数のピクセルの2次元集合として把握し、当該露光領域を、オンしたときに各ピクセルより大きいサイズの光スポットを前記露光領域に照射する1個以上の光スポット発生器で走査するステップと、
    前記光スポット発生器が前記露光領域を走査している間、前記選択されたピクセルに前記光スポットを照射できる位置にある延べ複数個の前記光スポット発生器をオンするステップと
    を有する光造形方法。
  14. リコータによって樹脂液槽内の露光される液面を平らにする請求項13記載の光造形方法。
  15. 温度センサで樹脂液槽内の樹脂液の温度を検出して、樹脂液の温度を制御する請求項13または14記載の光造形方法。
JP2008072781A 2008-03-21 2008-03-21 光造形装置及び方法 Expired - Lifetime JP4639322B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008072781A JP4639322B2 (ja) 2008-03-21 2008-03-21 光造形装置及び方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008072781A JP4639322B2 (ja) 2008-03-21 2008-03-21 光造形装置及び方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP30859797A Division JP4145978B2 (ja) 1997-11-11 1997-11-11 光造形装置及び方法

Publications (2)

Publication Number Publication Date
JP2008201135A JP2008201135A (ja) 2008-09-04
JP4639322B2 true JP4639322B2 (ja) 2011-02-23

Family

ID=39779085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008072781A Expired - Lifetime JP4639322B2 (ja) 2008-03-21 2008-03-21 光造形装置及び方法

Country Status (1)

Country Link
JP (1) JP4639322B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3572210A1 (en) * 2018-05-14 2019-11-27 Photocentric Limited Stereolithographic 3d printer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9649837B2 (en) * 2013-03-15 2017-05-16 M&R Printing Equipment, Inc. Method and apparatus for preparing a screen printing screen
WO2019124526A1 (ja) * 2017-12-20 2019-06-27 三井化学株式会社 光造形装置、光造形プログラム及び光造形方法
CN110421842A (zh) * 2019-08-20 2019-11-08 杭州德迪智能科技有限公司 一种光固化三维成形装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01237121A (ja) * 1988-03-17 1989-09-21 Mitsui Eng & Shipbuild Co Ltd 多点光源による光学的造形法
JPH04305438A (ja) * 1991-04-02 1992-10-28 Sanyo Electric Co Ltd 光学的立体造形方法
JPH05301293A (ja) * 1992-04-24 1993-11-16 Fujitsu Ltd 光造形法における支持構造体作製方法
JPH07164676A (ja) * 1993-09-20 1995-06-27 Eastman Kodak Co 複数光源使用の感光媒体露光方法および装置
JPH0985836A (ja) * 1995-09-26 1997-03-31 Yoji Marutani 露光装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01237121A (ja) * 1988-03-17 1989-09-21 Mitsui Eng & Shipbuild Co Ltd 多点光源による光学的造形法
JPH04305438A (ja) * 1991-04-02 1992-10-28 Sanyo Electric Co Ltd 光学的立体造形方法
JPH05301293A (ja) * 1992-04-24 1993-11-16 Fujitsu Ltd 光造形法における支持構造体作製方法
JPH07164676A (ja) * 1993-09-20 1995-06-27 Eastman Kodak Co 複数光源使用の感光媒体露光方法および装置
JPH0985836A (ja) * 1995-09-26 1997-03-31 Yoji Marutani 露光装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3572210A1 (en) * 2018-05-14 2019-11-27 Photocentric Limited Stereolithographic 3d printer
US11260594B2 (en) 2018-05-14 2022-03-01 Photocentric Limited Stereolithographic 3D printer

Also Published As

Publication number Publication date
JP2008201135A (ja) 2008-09-04

Similar Documents

Publication Publication Date Title
JP4145978B2 (ja) 光造形装置及び方法
TWI548533B (zh) 立體列印裝置
TW214584B (ja)
JPH0342233A (ja) 光学的造形法
US20230083950A1 (en) System and methods for fabricating a component with laser array
JP4183119B2 (ja) 光造形装置
EP2267534A1 (en) Illumination system
JP7435696B2 (ja) 処理装置、処理方法、マーキング方法、及び、造形方法
JP4639322B2 (ja) 光造形装置及び方法
CN105397281A (zh) 激光加工装置
KR101798533B1 (ko) 3차원 프린터에 의한 조형 장치 및 방법
KR101848823B1 (ko) 광조사 장치
JP6764905B2 (ja) 3d印刷装置
JP6657437B2 (ja) 3d印刷法
CN111465467A (zh) 造型系统、造型方法、计算机程序、记录媒体及控制装置
KR20190088116A (ko) 냉각 기능을 구비한 3차원 프린터
JP5213272B2 (ja) マルチビーム露光走査方法及び装置並びに印刷版の製造方法
KR20190044323A (ko) 음파 부양을 이용한 프린터 장치
JP2003181942A (ja) 光学的立体造形方法および装置
JP6841017B2 (ja) 造形装置および造形物の製造方法
US20120007285A1 (en) Mold making system and mold making method
KR20110081591A (ko) 유브이-엘이디를 이용한 쾌속 광조형장치
JP6664135B2 (ja) 三次元プリンタ
KR100606458B1 (ko) 3차원 조형시스템의 경화장치
CN113325671B (zh) 在工件的不平整表面上激光直接成像的装置及成像方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term