JP4638452B2 - Electric dust collector - Google Patents

Electric dust collector Download PDF

Info

Publication number
JP4638452B2
JP4638452B2 JP2007021497A JP2007021497A JP4638452B2 JP 4638452 B2 JP4638452 B2 JP 4638452B2 JP 2007021497 A JP2007021497 A JP 2007021497A JP 2007021497 A JP2007021497 A JP 2007021497A JP 4638452 B2 JP4638452 B2 JP 4638452B2
Authority
JP
Japan
Prior art keywords
electrode
high voltage
resin
dust collection
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007021497A
Other languages
Japanese (ja)
Other versions
JP2008183540A (en
Inventor
拓也 古橋
司 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007021497A priority Critical patent/JP4638452B2/en
Publication of JP2008183540A publication Critical patent/JP2008183540A/en
Application granted granted Critical
Publication of JP4638452B2 publication Critical patent/JP4638452B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、空気中の浮遊粒子である塵埃を捕捉する空気清浄装置の電気集塵デバイスに関するものである。   The present invention relates to an electric dust collection device for an air cleaning device that captures dust that is airborne particles.

近年、建物内や車両内の空気を常に清浄化された状態に維持するために空気清浄装置が広く使用されている。空気清浄装置は産業用の大型装置から家庭用の小型装置まで種々のタイプがあり、空気清浄装置単独で用いたり、送風機を伴った装置の内部に装着されたりしている。
近年普及している空気清浄装置は、気流中の微粒子に対してコロナ放電等により電荷を与えて、この荷電粒子が電荷中を通過する間に静電気力により荷電粒子を集塵して除去するもので、電気集塵デバイスと呼ばれている。
In recent years, air purifiers have been widely used in order to keep the air in buildings and vehicles in a clean state at all times. There are various types of air purifiers, ranging from large industrial devices to small household devices. The air purifiers are used alone or mounted inside a device with a blower.
Air purifiers that have become popular in recent years give fine particles in an air current by corona discharge or the like, and collect and remove charged particles by electrostatic force while the charged particles pass through the charge. Therefore, it is called an electrostatic dust collection device.

従来の空気清浄装置の電気集塵デバイスは、先端が鋭角な放電電極やワイヤ放電電極に平行に接地平板電極を対向電極として配置し、高電圧を先端が鋭角な放電電極やワイヤ放電電極に印加することで電極間にコロナ放電が発生し空気中の微粒子を帯電させるイオン化部を設け、その下流側にイオン化部で帯電した微粒子を捕集するコレクタ部もしくは集塵フィルタを設けて空間の微粒子を除去している(例えば、特許文献1参照)。   The conventional air dust collector electrostatic dust collection device has a ground plate electrode as a counter electrode parallel to the discharge electrode or wire discharge electrode with a sharp tip, and applies a high voltage to the discharge electrode or wire discharge electrode with a sharp tip. In this way, a corona discharge is generated between the electrodes, and an ionization part that charges fine particles in the air is provided, and a collector part or a dust collection filter that collects the fine particles charged in the ionization part is provided downstream of the ionization part. It is removed (see, for example, Patent Document 1).

特許第3516725号公報(段落0025、図2)Japanese Patent No. 3516725 (paragraph 0025, FIG. 2)

一般的に、電気集塵デバイスは、空気中の浮遊粉塵を帯電させるイオン化部と、帯電された浮遊粉塵を捕集するコレクタ部とにより構成され、集塵効率を向上させるためには、如何にイオン化部で浮遊粉塵を帯電させるか、また如何にコレクタ部において帯電した浮遊粉塵をしっかり捕集するかが重要となる。
従来の電気集塵デバイスは、導電性の金属をコレクタ部の高電圧極に使用していたため、高電圧極と集塵電極間の火花放電が発生することがあった。そのため、高電圧極の表面を樹脂で被覆する方法、高電圧極自体を樹脂で構成し、その樹脂の中にカーボンブラックや金属フィラー等の導電性材料を添加する方法がとられていた。しかし、高電圧極の表面を樹脂で被覆した場合、被覆樹脂の劣化やピンホール等により火花放電が発生することがあった。また、高電圧極自体を樹脂で構成し、その樹脂の中にカーボンブラックや金属フィラー等の導電性材料を添加した場合、一定電圧以上を印加した場合、局所的に導電路が形成され、火花放電が発生することがあった。火花放電が発生した場合、不快な音や光が発生すると同時に、火花放電は局所的かつ断続的な限定放電となるため、大幅な集塵効率低下を引き起こす。
In general, an electrostatic dust collection device is composed of an ionization unit that charges floating dust in the air and a collector unit that collects charged floating dust. In order to improve dust collection efficiency, It is important to charge the floating dust in the ionization section and to collect the floating dust charged in the collector section firmly.
Since the conventional electrostatic dust collection device uses conductive metal for the high voltage electrode of the collector portion, spark discharge may occur between the high voltage electrode and the dust collection electrode. Therefore, a method of covering the surface of the high voltage electrode with a resin, a method of forming the high voltage electrode itself with a resin, and adding a conductive material such as carbon black or a metal filler into the resin have been employed. However, when the surface of the high voltage electrode is coated with resin, spark discharge may occur due to deterioration of the coating resin, pinholes, or the like. In addition, when the high voltage electrode itself is made of a resin and a conductive material such as carbon black or a metal filler is added to the resin, a conductive path is locally formed when a certain voltage or more is applied, and a spark is generated. Discharge sometimes occurred. When a spark discharge occurs, unpleasant sound and light are generated, and at the same time, the spark discharge is a localized and intermittent limited discharge, which causes a significant reduction in dust collection efficiency.

また、この問題を解決するために、コレクタ部の高電圧極に例えば、ABS樹脂、ポリエステル樹脂、アクリル樹脂等にポリアミド系、ポバール系、アクリル酸塩系等の吸湿性樹脂を混合したものを使用し、樹脂に吸着された水分により高電圧極の抵抗値を制御し、所定の抵抗値とすることで火花放電を抑制し、集塵効率を増加させる方法が提案されている。しかし、この方法の場合、これらの樹脂は高い吸水性を示し、使用環境中の水分を樹脂が吸着することで、抵抗値が変動するため、抵抗値の制御が困難であった。例えば、乾燥時に低抵抗で制御した場合、高湿度環境ではさらに抵抗値が低下し、火花放電を発生する。また、高湿度環境で高抵抗になるよう制御した場合、乾燥時にはさらに抵抗が高くなり、所定の抵抗値が得られず、集塵効率が大幅に低下する。そのため、家庭用等で夏場と冬場で湿度が大幅に変化する場合、安定した集塵効率を得られないという問題があった。   In order to solve this problem, for example, ABS resin, polyester resin, acrylic resin, etc. mixed with hygroscopic resin such as polyamide, poval, acrylate, etc. are used for the high voltage electrode of the collector section. However, a method has been proposed in which the resistance value of the high voltage electrode is controlled by moisture adsorbed on the resin, and the spark discharge is suppressed and the dust collection efficiency is increased by setting the resistance value to a predetermined value. However, in the case of this method, these resins exhibit high water absorption, and the resistance value fluctuates due to the resin adsorbing moisture in the use environment, so that it is difficult to control the resistance value. For example, when controlling with low resistance during drying, the resistance value further decreases in a high humidity environment, and spark discharge is generated. In addition, when the resistance is controlled to be high in a high humidity environment, the resistance further increases during drying, a predetermined resistance value cannot be obtained, and the dust collection efficiency is greatly reduced. For this reason, there has been a problem that stable dust collection efficiency cannot be obtained when the humidity changes greatly between summer and winter for home use.

この発明は、上記のような課題を解決するためになされたもので、第1の目的は環境に影響されることなく安定して高い集塵効率を得ることが可能であり、火花放電を抑制できる電気集塵デバイスを得るものである。   The present invention has been made to solve the above-described problems. The first object is to stably obtain high dust collection efficiency without being affected by the environment, and to suppress spark discharge. An electrostatic precipitating device that can be obtained is obtained.

この発明に係る電気集塵デバイスは、放電電極と対向電極との間でコロナ放電を生じさせて空気中の塵埃を帯電するイオン化部と、イオン化部によって帯電された塵埃を集塵する集塵電極と対向電極である高電圧極とを有するコレクタ部とを備え、コレクタ部の高電圧極を半導電性のフィラーと分散剤を熱可塑性樹脂に混合させて成る帯電防止性樹脂により一体成形し、高電圧極の体積抵抗は、印加電圧6000V時に1.0E+10Ωcmオーダー以上であり、高電圧極の体積抵抗をXΩcmとし、表面抵抗をYΩ/□としたとき、Yの値はXの値の10分の1であることを特徴とするものである。 An electrostatic dust collection device according to the present invention includes an ionization unit that generates corona discharge between a discharge electrode and a counter electrode to charge dust in the air, and a dust collection electrode that collects dust charged by the ionization unit And a collector portion having a high voltage electrode as a counter electrode, and the high voltage electrode of the collector portion is integrally formed of an antistatic resin formed by mixing a semiconductive filler and a dispersant in a thermoplastic resin, The volume resistance of the high voltage electrode is 1.0E + 10 Ωcm or more when the applied voltage is 6000 V, the volume resistance of the high voltage electrode is X Ωcm , and the surface resistance is YΩ / □, the value of Y is the value of X It is characterized by being 1/10.

この発明の電気集塵デバイスは、上記構成により環境に影響されることなく安定して高い集塵効率を得ることが可能であり、さらに火花放電を抑制できるという効果がある。   The electric dust collection device of the present invention has an effect of being able to stably obtain a high dust collection efficiency without being influenced by the environment and further suppressing spark discharge.

実施の形態.
図1はこの発明の実施の形態における電気集塵デバイスの分解斜視図であり、図2はこの発明の実施の形態における電気集塵デバイスの原理を示す断面図である。
図1に示すように電気集塵デバイスは、ケーシング1、平板上に一体で先端が鋭角な突起を備えた放電電極2、平板状の接地(集塵)電極3、平板状の高電圧極4で構成される。図2では、放電電極2と接地(集塵)電極3の風上部分で空気中の塵埃を帯電するイオン化部5が構成され、複数個積層された高電圧極4、接地(集塵)電極3で、イオン化部5で帯電された塵埃を集塵するコレクタ部6が構成される。接地(集塵)電極3は、イオン化部の接地電極とコレクタ部の集塵電極を一体で構成したものである。放電電極2はステンレスなどの金属で形成され、平板上に一体で先端が鋭角な突起を片側もしくは両側に配置している。放電電極2はタングステン線や酸化タングステン線等のワイヤ線でも良い。また、金メッキ等によるメッキを施しても良い。接地(集塵)電極3はステンレスなどの金属やカーボンファイバーや金属微粒子などが練りこまれた導電性樹脂などの導電性の材質で形成され、体積抵抗1.0E+0〜1.0E+4Ωcm、表面抵抗1.0E+0〜1.0E+4Ω/□の物性をもつ。但し、1.0E+0は1.0×10の0乗を表し、1.0E+4は1.0×10の4乗を表す。接地(集塵)電極3は本実施形態では、一体としたが、イオン化部5とコレクタ部6で分離してそれぞれ接地電極、集塵電極としても良い。高電圧極4は半導電性のフィラーが練りこまれた体積抵抗1.0E+10〜1.0E+15Ωcm、表面抵抗として体積抵抗より1オーダー低い1.0E+9〜1.0E+14Ω/□の半導電性樹脂が使用される。半導電性のフィラーには、カーボン、酸化錫、酸化亜鉛のうち1種類以上を使用すると良い。カーボンの場合は、通常のカーボンブラックやカーボンファイバーよりも抵抗が高く、導電性が低い、半導電性のフィラーを使用することが望ましい。酸化錫、酸化亜鉛はもともと、導電性材料と比較して、抵抗が高く、導電性が低い。これらの物質は、環境中の水分を吸収しにくい物質となっている。これらの物質を練り込む樹脂基材としては、ABS樹脂、ポリエステル樹脂、アクリル樹脂、ポリプロピレン樹脂、PET樹脂、ポリカーボネート樹脂等の熱可塑性樹脂が望ましい。これらの樹脂に、半導電性のフィラーを数十%程度含有させて、所定の体積抵抗を満たすよう構成される。このとき、半導電性のフィラーは分散性が悪いため、樹脂の全体に均一に混合させるために分散剤を使用することが望ましい。また、この樹脂の中に難燃剤等を混合させても良い。難燃剤を含有させた場合、火災に対する安全性を向上させることが可能となる。このように構成された樹脂は、射出成形が可能なため、高電圧極として一体成形が可能である。一般に高電圧極4と接地(集塵)電極3は極間距離を短くし、できるだけ多く積層したほうが集塵面積が大きくなり、集塵効率も高くなる。しかし、極間距離を短くすると導電体同士の場合、火花放電が発生する。ところが、本実施形態では、高電圧極4に半導電性のフィラーが練りこまれた半導電性樹脂を使用するため、火花放電を抑制し、集塵効率を向上させることが可能となる。放電電極2には直流1〜10kVのプラスもしくはマイナスの高電圧を供給するイオン化部高圧電源7が接続され、高電圧極4には同様に直流1〜10kVのプラスもしくはマイナスの高電圧を供給するコレクタ部高圧電源8が接続される。本実施形態では、イオン化部高圧電源7とコレクタ部高圧電源8を別の電源としたが、1つの電源でも良い。接地(集塵)電極3は接地される。
Embodiment.
FIG. 1 is an exploded perspective view of an electrostatic precipitator according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view showing the principle of the electrostatic precipitator according to an embodiment of the present invention.
As shown in FIG. 1, the electrostatic dust collecting device includes a casing 1, a discharge electrode 2 integrally provided on a flat plate and provided with a projection having an acute angle, a flat ground (dust collection) electrode 3, and a flat high voltage electrode 4. Consists of. In FIG. 2, an ionization unit 5 that charges dust in the air is formed at the windward portion of the discharge electrode 2 and the ground (dust collection) electrode 3, and a plurality of stacked high voltage electrodes 4 and ground (dust collection) electrodes are stacked. 3, the collector part 6 which collects the dust charged by the ionization part 5 is comprised. The ground (dust collection) electrode 3 is formed by integrating the ground electrode of the ionization unit and the dust collection electrode of the collector unit. The discharge electrode 2 is formed of a metal such as stainless steel, and a protrusion with an acute angle at one end is arranged on one side or both sides on a flat plate. The discharge electrode 2 may be a wire such as a tungsten wire or a tungsten oxide wire. Further, plating by gold plating or the like may be performed. The grounding (dust collecting) electrode 3 is formed of a conductive material such as a conductive resin in which a metal such as stainless steel, carbon fiber, or metal fine particles is kneaded, and has a volume resistance of 1.0E + 0 to 1.0E + 4Ωcm, a surface resistance of 1 It has physical properties of 0.0E + 0 to 1.0E + 4Ω / □. However, 1.0E + 0 represents 1.0 × 10 0 power and 1.0E + 4 represents 1.0 × 10 4th power. Although the ground (dust collection) electrode 3 is integrated in this embodiment, it may be separated by the ionization unit 5 and the collector unit 6 to be a ground electrode and a dust collection electrode, respectively. The high voltage electrode 4 uses a semiconductive resin with a volume resistance of 1.0E + 10 to 1.0E + 15Ωcm in which a semiconductive filler is kneaded and a surface resistance of 1.0E + 9 to 1.0E + 14Ω / □ which is one order lower than the volume resistance. Is done. As the semiconductive filler, one or more of carbon, tin oxide, and zinc oxide may be used. In the case of carbon, it is desirable to use a semiconductive filler having higher resistance and lower conductivity than ordinary carbon black or carbon fiber. Originally, tin oxide and zinc oxide have higher resistance and lower conductivity than conductive materials. These substances are substances that hardly absorb moisture in the environment. As the resin base material for kneading these substances, thermoplastic resins such as ABS resin, polyester resin, acrylic resin, polypropylene resin, PET resin, and polycarbonate resin are desirable. These resins are configured so as to satisfy a predetermined volume resistance by containing about several tens of percent of a semiconductive filler. At this time, since the semiconductive filler has poor dispersibility, it is desirable to use a dispersant in order to uniformly mix the resin. Moreover, you may mix a flame retardant etc. in this resin. When a flame retardant is contained, safety against fire can be improved. Since the resin thus configured can be injection-molded, it can be integrally molded as a high-voltage electrode. Generally, the high-voltage electrode 4 and the ground (dust collection) electrode 3 have a shorter distance between the electrodes and are stacked as much as possible to increase the dust collection area and increase the dust collection efficiency. However, when the distance between the electrodes is shortened, spark discharge occurs in the case of conductors. However, in the present embodiment, since a semiconductive resin in which a semiconductive filler is kneaded into the high voltage electrode 4 is used, it is possible to suppress spark discharge and improve dust collection efficiency. The discharge electrode 2 is connected to an ionization unit high-voltage power supply 7 for supplying a positive or negative high voltage of 1 to 10 kV direct current, and similarly to the high voltage electrode 4 a positive or negative high voltage of 1 to 10 kV direct current is supplied. A collector high voltage power supply 8 is connected. In this embodiment, the ionization unit high-voltage power source 7 and the collector unit high-voltage power source 8 are separate power sources, but a single power source may be used. The ground (dust collecting) electrode 3 is grounded.

次に動作について説明する。
このように構成された電気集塵デバイスにおいては、流入した塵埃9はイオン化部5において放電電極2の突起先端と接地(集塵)電極3の間で発生するコロナ放電により荷電される。荷電された塵埃9は、コレクタ部に流入し、高電圧極4による反発力と接地(集塵)電極3による吸引力により、接地(集塵)電極3に吸引され付着する。このとき、高電圧極4は半導電性のフィラーが練りこまれた体積抵抗1.0E+10〜1.0E+15Ωcm、表面抵抗1.0E+9〜1.0E+14Ω/□の半導電性樹脂で構成されているため、高電圧極4と接地(集塵)電極3の反発力と吸引力が最大となり、集塵率が最大となる。
Next, the operation will be described.
In the electric dust collection device configured as described above, the dust 9 that has flowed in is charged by corona discharge generated between the projection tip of the discharge electrode 2 and the ground (dust collection) electrode 3 in the ionization unit 5. The charged dust 9 flows into the collector, and is attracted to and attached to the ground (dust collection) electrode 3 by the repulsive force of the high voltage electrode 4 and the suction force of the ground (dust collection) electrode 3. At this time, the high voltage electrode 4 is composed of a semiconductive resin having a volume resistance of 1.0E + 10 to 1.0E + 15 Ωcm and a surface resistance of 1.0E + 9 to 1.0E + 14Ω / □ into which a semiconductive filler is kneaded. The repulsive force and suction force of the high voltage electrode 4 and the ground (dust collection) electrode 3 are maximized, and the dust collection rate is maximized.

実施例1
図3に従来例1として吸湿性樹脂を高電圧極4に使用したときの体積抵抗値の印加電圧依存を示す。吸湿性樹脂としては、ABS樹脂にポリアミド系を数十%混合したものを使用した。この場合、環境中の温度25℃、相対湿度が50%、60%時は、印加電圧に関係なく、体積抵抗は約1.0E+12Ωcmとなっている。従って、この条件下では所定の体積抵抗値であるため、良好な集塵効率を得ることが可能であり、火花放電も抑制可能である。しかし、相対湿度が80%時は、体積抵抗は約1.0E+10Ωcm未満となっており、抵抗値が2桁減少している。さらに相対湿度が90%時は、体積抵抗は約1.0E+8Ωcm未満となっており、火花放電の発生が懸念されることがわかった。このとき、表面抵抗は体積抵抗の1オーダー低い値であった。例えば、環境中の温度25℃、相対湿度が50%、60%時は、印加電圧に関係なく、表面抵抗は約1.0E+11Ω/□となった。また、相対湿度が80%時は、表面抵抗は約1.0E+9Ω/□未満であった。この場合、湿度変化があった場合、表面から水分が吸収されるため、表面抵抗の減少の方が短い時間でおこる。火花放電は、表面で発生するため、環境が変化したとき、表面抵抗の減少が短い時間でおこり、火花放電発生の頻度が高くなる可能性がある。
Example 1
FIG. 3 shows the applied voltage dependence of the volume resistance value when a hygroscopic resin is used for the high voltage electrode 4 as Conventional Example 1. As the hygroscopic resin, a mixture of ABS resin and several tens of% polyamide was used. In this case, when the temperature in the environment is 25 ° C. and the relative humidity is 50% and 60%, the volume resistance is about 1.0E + 12 Ωcm regardless of the applied voltage. Therefore, since it is a predetermined volume resistance value under these conditions, it is possible to obtain a good dust collection efficiency and to suppress spark discharge. However, when the relative humidity is 80%, the volume resistance is less than about 1.0E + 10 Ωcm, and the resistance value is reduced by two orders of magnitude. Further, when the relative humidity was 90%, the volume resistance was less than about 1.0E + 8 Ωcm, and it was found that there was a concern about the occurrence of spark discharge. At this time, the surface resistance was one order lower than the volume resistance. For example, when the ambient temperature is 25 ° C. and the relative humidity is 50% and 60%, the surface resistance is about 1.0E + 11Ω / □ regardless of the applied voltage. When the relative humidity was 80%, the surface resistance was less than about 1.0E + 9Ω / □. In this case, when there is a change in humidity, moisture is absorbed from the surface, so that the surface resistance is reduced in a shorter time. Since spark discharge occurs on the surface, when the environment changes, the surface resistance may decrease in a short time, and the frequency of occurrence of spark discharge may increase.

図4に従来例2としてABS樹脂にカーボンを練り込んだ樹脂を高電圧極4に使用したときの体積抵抗値の印加電圧依存を示す。カーボンは導電性が非常に高く、体積抵抗は約1.0E+1Ωcm以下となっている。従って、導電性樹脂に使用される場合が多い。カーボンを用いて本実施形態に係る体積抵抗値を達成するためには、カーボン含有量を少なくする必要があり、含有量は数%のオーダーとなっている。この場合、カーボンは水を吸いにくいため、環境中の温度湿度に影響されず体積抵抗値および表面抵抗値は一定の値を示す。しかし、カーボンの含有量数%の調整は非常に難しく、少しでもこの値が変化すると、導電性が大きく変化し、火花放電を発生するおそれが高くなるという問題がある。また、カーボンは導電性が非常に高く電圧の影響を受け易いため、印加電圧を増加させることにより、体積抵抗値および表面抵抗値は大きく減少し、数kV以上で火花放電が発生する。図4では、2種類のカーボン練り込み樹脂を使用し、環境中の温度25℃、相対湿度が60%時の体積抵抗値の印加電圧依存を測定した。その結果、印加電圧10Vで体積抵抗値約1.0E+12Ωcmとなっているものが、印加電圧を増加させることで、体積抵抗値約1.0E+9Ωcm以下まで低下し、4kV以上の電圧を印加すると、火花放電を発生した。これは含有するカーボンが、4kV電圧以上の電圧を印加することにより、部分的に短絡し、大電流が流れたことによる。特にカーボンは分散性が悪く、局所的に片寄って分布する場合が多い。そのため、電気集塵デバイスの高電圧極として使用する印加電圧である直流1〜10kVのプラスもしくはマイナスの高電圧を印加した場合、火花放電が発生し、集塵効率も大幅に低下する。従って、カーボン含有量をさらに低下させ、体積抵抗値をさらに上げることが考えられるが、カーボン含有量をさらに低下させた場合、半導電性樹脂としての物性を保てなくなり、絶縁の樹脂と同等となってしまい、集塵することができなくなってしまう。   FIG. 4 shows the applied voltage dependence of the volume resistance when a resin obtained by kneading carbon into ABS resin is used for the high voltage electrode 4 as Conventional Example 2. Carbon has a very high conductivity, and its volume resistance is about 1.0E + 1 Ωcm or less. Therefore, it is often used for conductive resins. In order to achieve the volume resistance value according to the present embodiment using carbon, it is necessary to reduce the carbon content, and the content is on the order of several percent. In this case, since carbon hardly absorbs water, the volume resistance value and the surface resistance value are constant regardless of the temperature and humidity in the environment. However, it is very difficult to adjust the carbon content of several percent, and if this value changes even a little, there is a problem that the conductivity changes greatly and the possibility of generating spark discharge becomes high. Further, since carbon is very conductive and easily affected by voltage, increasing the applied voltage greatly reduces the volume resistance value and the surface resistance value, and spark discharge occurs at several kV or more. In FIG. 4, two types of carbon kneaded resins were used, and the dependency of the volume resistance value on the applied voltage when the ambient temperature was 25 ° C. and the relative humidity was 60% was measured. As a result, when the applied voltage is 10 V, the volume resistance value is about 1.0E + 12 Ωcm. By increasing the applied voltage, the volume resistance value is reduced to about 1.0E + 9 Ωcm or less. When a voltage of 4 kV or more is applied, a spark is generated. Discharge occurred. This is because the contained carbon is partially short-circuited by applying a voltage of 4 kV or higher, and a large current flows. In particular, carbon has poor dispersibility and is often distributed in a locally offset manner. Therefore, when a positive or negative high voltage of 1 to 10 kV direct current, which is an applied voltage used as a high voltage electrode of the electric dust collection device, is applied, spark discharge occurs and the dust collection efficiency is greatly reduced. Therefore, it is conceivable that the carbon content is further reduced and the volume resistance value is further increased. However, when the carbon content is further reduced, the physical properties as a semiconductive resin cannot be maintained, which is equivalent to the insulating resin. It becomes impossible to collect dust.

図5に本発明の実施例としてABS樹脂に半導電性有機フィラーを練り込んだ樹脂を高電圧極4に使用したときの体積抵抗値の印加電圧依存を示す。半導電性有機フィラーとしては、カーボン系のものが使用される。A1、A2、A3と半導電性有機フィラーの練り込み量を変化させて、体積抵抗値を変えた。ここで、有機フィラーの練り込み量の関係は、A1>A2>A3となっている。この場合の練り込み量は多く数十%のオーダーである。この場合、図4のABS樹脂にカーボンを練り込んだ樹脂と同様に、環境中の温度湿度に影響されず体積抵抗値は一定の値を示すが、印加電圧を増加させることにより、体積抵抗値は減少する。しかし、1kV以上の電圧印加時にはほぼ一定の体積抵抗値を示し、実際に使用する直流1〜10kVのプラスもしくはマイナスの高電圧を印加した場合は、ほぼ一定の体積抵抗値となる。またこのとき、練り込み量がA3の場合には、集塵に適した体積抵抗値1.0E+10〜1.0E+15Ωcm、表面抵抗1.0E+9〜1.0E+14Ω/□を維持することができ、高集塵効率を得ることが可能となる。   FIG. 5 shows the applied voltage dependence of the volume resistance value when a resin in which a semiconductive organic filler is kneaded into an ABS resin is used for the high voltage electrode 4 as an example of the present invention. As the semiconductive organic filler, a carbon-based one is used. The volume resistance value was changed by changing the amount of kneading of A1, A2, A3 and the semiconductive organic filler. Here, the relationship of the amount of kneading of the organic filler is A1> A2> A3. In this case, the kneading amount is on the order of several tens of percent. In this case, as in the case of the resin in which carbon is kneaded into the ABS resin in FIG. 4, the volume resistance value shows a constant value regardless of the temperature and humidity in the environment, but the volume resistance value can be increased by increasing the applied voltage. Decrease. However, when a voltage of 1 kV or higher is applied, a substantially constant volume resistance value is exhibited, and when a positive or negative high voltage of 1 to 10 kV actually used is applied, the volume resistance value is substantially constant. At this time, when the kneading amount is A3, the volume resistance value 1.0E + 10 to 1.0E + 15Ωcm and the surface resistance 1.0E + 9 to 1.0E + 14Ω / □ suitable for dust collection can be maintained. It becomes possible to obtain dust efficiency.

また、図6にABS樹脂に半導電性無機フィラーを練り込んだ樹脂を高電圧極4に使用したときの体積抵抗値の印加電圧依存を示す。半導電性無機フィラーとしては、酸化錫、酸化亜鉛等が使用される。B1、B2と半導電性無機フィラーの練り込み量を変化させて、体積抵抗値を変えた。ここで、有機フィラーの練り込み量の関係は、B1>B2となっている。この場合の練り込み量は多く数十%のオーダーである。この場合、図4のABS樹脂にカーボンを練り込んだ樹脂、図5のABS樹脂に半導電性有機フィラーを練り込んだ樹脂と同様に、環境中の温度湿度に影響されず体積抵抗値は一定の値を示す。しかし、印加電圧を増加させることにより、体積抵抗値は減少する。そのため、実際に使用する直流1kV〜10kVのプラスもしくはマイナスの高電圧を印加した場合に、集塵に適した体積抵抗値1.0E+10〜1.0E+15Ωcm、表面抵抗1.0E+9〜1.0E+14Ω/□となるよう、半導電性無機フィラーの練り込み量を制御する。この樹脂を使用した場合、火花放電は発生せず、高集塵効率を得ることが可能となる。
なお、上記図5、図6に示したフィラーの練り込み量A1〜A3、B1〜B2は数十%のオーダーであるため、カーボンの調整の場合と異なり、練り込み量の値が少しならば変化しても導電性に大きな変化がなく火花放電を発生するおそれがない。このため練り込み量の調整が極めて容易である。
FIG. 6 shows the applied voltage dependence of the volume resistance value when a resin in which a semiconductive inorganic filler is kneaded into an ABS resin is used for the high voltage electrode 4. As the semiconductive inorganic filler, tin oxide, zinc oxide or the like is used. The volume resistance value was changed by changing the amount of kneading between B1 and B2 and the semiconductive inorganic filler. Here, the relationship of the amount of kneading of the organic filler is B1> B2. In this case, the kneading amount is on the order of several tens of percent. In this case, the volume resistance value is constant regardless of the temperature and humidity in the environment, similar to the resin kneaded with carbon in the ABS resin in FIG. 4 and the resin kneaded with the semiconductive organic filler in the ABS resin in FIG. Indicates the value of. However, the volume resistance value decreases by increasing the applied voltage. Therefore, when a positive or negative high voltage of DC 1 kV to 10 kV actually used is applied, the volume resistance value suitable for dust collection is 1.0E + 10 to 1.0E + 15Ωcm, the surface resistance is 1.0E + 9 to 1.0E + 14Ω / □. The amount of the semiconductive inorganic filler to be kneaded is controlled so that When this resin is used, spark discharge does not occur and high dust collection efficiency can be obtained.
5 and FIG. 6, the filler kneading amounts A1 to A3 and B1 to B2 are on the order of several tens of percent. Therefore, unlike the adjustment of carbon, if the kneading amount is a little, Even if it changes, there is no big change in conductivity and there is no possibility of generating spark discharge. For this reason, adjustment of the amount of kneading is very easy.

次に、図5および図6で使用した樹脂の諸特性を図7に示す。上記1kV〜10kVの電圧条件の一例として6000Vでの体積抵抗値は、図5、図6に示す通りである。図3に示す吸湿性樹脂の場合は、樹脂に吸着された水分により高電圧極の抵抗値を制御し、所定の抵抗値を得るため、樹脂の吸水率が高くなっているが、図5および図6で使用した樹脂では、吸水率は低くなっている。温度50℃で24時間乾燥した後、温度70℃相対湿度65%環境下に48時間静置した後の重量差を測定した結果、図5および図6で使用した樹脂では0.6%以下であることがわかった。これに対し、図3に示す吸湿性樹脂の場合は、0.7%以上の吸水率であった。従って、図5および図6で使用した樹脂の場合、樹脂への吸水率が低く、環境中の温度湿度に影響されず体積抵抗値は一定の値を示す。   Next, various properties of the resin used in FIGS. 5 and 6 are shown in FIG. As an example of the voltage condition of 1 kV to 10 kV, the volume resistance value at 6000 V is as shown in FIGS. In the case of the hygroscopic resin shown in FIG. 3, the water absorption rate of the resin is high in order to control the resistance value of the high voltage electrode by the moisture adsorbed on the resin and obtain a predetermined resistance value. The resin used in FIG. 6 has a low water absorption rate. As a result of measuring the weight difference after drying for 24 hours at a temperature of 50 ° C. and then standing at a temperature of 70 ° C. and a relative humidity of 65% for 48 hours, the resin used in FIG. 5 and FIG. I found out. On the other hand, in the case of the hygroscopic resin shown in FIG. 3, the water absorption was 0.7% or more. Therefore, in the case of the resin used in FIG. 5 and FIG. 6, the water absorption rate to the resin is low, and the volume resistance value shows a constant value regardless of the temperature and humidity in the environment.

温度20℃相対湿度60%環境下で、図5および図6で使用した樹脂の一点に1000V以上の電圧を印加したとき、電圧印加点から1cm以上離れた電極表面の表面電位が、印加電圧と同オーダーで維持されるか否かを検証した。図8に実験の方法を示す。高電圧極4に各樹脂を使用し、高圧電源10からの1000V以上の高電圧を高電圧極4の一点に接続された給電部11に印加する。このとき高電圧極4の表面の電位変化を表面電位計12で測定した。表面電位計12には測定用のプローブ13が接続されており、プローブ13を高電圧極4の表面に当てることで表面電位を測定することができる。測定の結果、A2、A3、B1では印加電圧と同オーダーの表面電位が維持されることがわかった。B2では、電圧印加点から1cm以上離れることにより、表面電位が低下する。集塵のための高電圧極4による反発力と接地(集塵)電極3による吸引力を得るためには、高電圧極4の表面電位が高いことが必須条件であり、B2は高電圧極としては不適であることがわかった。また、火花放電の有無を検証した結果では、A1では多湿状態で火花放電が発生し、A2、B1でもわずかに火花放電が発生した。A3、B2では火花放電は確認できなかった。A3、B2では高電圧極4と接地(集塵)電極3を接触(短絡)し、直流のプラスもしくはマイナスの10kVを印加しても1μA以下の漏洩電流であり、火花放電が発生する電流に至らないことがわかった。   When a voltage of 1000 V or higher is applied to one point of the resin used in FIGS. 5 and 6 in an environment where the temperature is 20 ° C. and a relative humidity is 60%, the surface potential of the electrode surface 1 cm or more away from the voltage application point is the applied voltage. It was verified whether it was maintained in the same order. FIG. 8 shows the experimental method. Each resin is used for the high voltage electrode 4, and a high voltage of 1000 V or more from the high voltage power supply 10 is applied to the power supply unit 11 connected to one point of the high voltage electrode 4. At this time, the potential change on the surface of the high voltage electrode 4 was measured with the surface potential meter 12. A probe 13 for measurement is connected to the surface potential meter 12, and the surface potential can be measured by applying the probe 13 to the surface of the high voltage electrode 4. As a result of the measurement, it was found that the surface potential of the same order as the applied voltage was maintained in A2, A3, and B1. In B2, the surface potential is lowered by being 1 cm or more away from the voltage application point. In order to obtain a repulsive force by the high voltage electrode 4 for collecting dust and an attractive force by the ground (dust collecting) electrode 3, a high surface potential of the high voltage electrode 4 is essential, and B2 is a high voltage electrode. It turned out to be unsuitable. As a result of verifying the presence or absence of spark discharge, spark discharge occurred in a humid state in A1, and slightly spark discharge occurred in A2 and B1. In A3 and B2, no spark discharge could be confirmed. In A3 and B2, the high voltage electrode 4 and the ground (dust collection) electrode 3 are contacted (short-circuited), and even if DC positive or negative 10 kV is applied, it is a leakage current of 1 μA or less, resulting in a spark discharge current. I knew it would n’t.

以上のように、コレクタ部の高電圧極を半導電性のフィラーと分散剤を熱可塑性樹脂に混合させて成る帯電防止性樹脂により一体成形したことにより、所定の体積抵抗値と表面抵抗値を得ることが可能となり、これにより高い集塵効率を得ることと、火花放電の抑制が可能となる。また、コレクタ部の高電圧極に混合する半導電性のフィラーは、環境中の水分を吸収しにくい物質、例えば、カーボン、酸化錫、酸化亜鉛のうち1種類以上を混合することにより、高電圧極の吸水率を、乾燥状態と、温度70℃相対湿度65%環境下に48時間静置した後の重量差で0.6%以下とし、環境に影響されることなく安定して所定の体積抵抗値と表面抵抗値を得ることが可能となり、これにより高い集塵効率を得ることと、火花放電の抑制が可能となる。
このとき、コレクタ部の高電圧極の体積抵抗は、印加電圧6000V時に1.0E+10Ωcmオーダー以上、表面抵抗は体積抵抗の1オーダー低い値が望ましく、この体積抵抗値に制御することで、火花放電を抑制し、高い集塵効率を得ることが可能となる。さらに、コレクタ部の高電圧極は、温度20℃相対湿度60%環境下で、一点に1000V以上の電圧を印加したとき、電圧印加点から1cm以上離れた電極表面の表面電位が、印加電圧と同オーダーで維持されるように制御したことにより、電極表面に高電位を維持することが可能となり、集塵のための高電圧極による反発力と接地(集塵)電極による吸引力を得て、高い集塵効率を得ることが可能となる。
As described above, a predetermined volume resistance value and surface resistance value are obtained by integrally forming the high voltage electrode of the collector portion with an antistatic resin obtained by mixing a semiconductive filler and a dispersant with a thermoplastic resin. This makes it possible to obtain high dust collection efficiency and to suppress spark discharge. In addition, the semiconductive filler mixed with the high voltage electrode of the collector portion is a high voltage by mixing one or more of materials that hardly absorb moisture in the environment, such as carbon, tin oxide, and zinc oxide. The electrode water absorption is set to 0.6% or less by weight difference after standing for 48 hours in a dry state and in an environment with a temperature of 70 ° C. and a relative humidity of 65%. It becomes possible to obtain a resistance value and a surface resistance value, thereby obtaining high dust collection efficiency and suppressing spark discharge.
At this time, the volume resistance of the high voltage electrode in the collector is preferably 1.0E + 10 Ωcm or more when the applied voltage is 6000 V, and the surface resistance is preferably one order lower than the volume resistance. Can be suppressed, and high dust collection efficiency can be obtained. Furthermore, when a voltage of 1000 V or higher is applied to a high voltage electrode in the collector section at a temperature of 20 ° C. and a relative humidity of 60%, the surface potential of the electrode surface 1 cm or more away from the voltage application point is the applied voltage. By controlling so that it is maintained in the same order, it becomes possible to maintain a high potential on the electrode surface, and to obtain a repulsive force due to the high voltage electrode for dust collection and an attractive force due to the ground (dust collecting) electrode. High dust collection efficiency can be obtained.

この発明の実施の形態の電気集塵デバイスの分解斜視図である。It is a disassembled perspective view of the electrostatic dust collection device of embodiment of this invention. この発明の実施の形態の電気集塵デバイスの原理を示す断面図である。It is sectional drawing which shows the principle of the electrostatic dust collection device of embodiment of this invention. この発明の実施の形態の吸湿性樹脂の体積抵抗値の印加電圧依存図である。It is an applied voltage dependence figure of the volume resistance value of the hygroscopic resin of embodiment of this invention. この発明の実施の形態のカーボン練り込み樹脂の体積抵抗値の印加電圧依存図である。It is an applied voltage dependence figure of the volume resistance value of the carbon kneading resin of embodiment of this invention. この発明の実施の形態の半導電性有機フィラー練り込み樹脂の体積抵抗値の印加電圧依存図である。It is an applied voltage dependence figure of the volume resistance value of the semiconductive organic filler kneaded resin of embodiment of this invention. この発明の実施の形態の半導電性無機フィラー練り込み樹脂の体積抵抗値の印加電圧依存図である。It is an applied voltage dependence figure of the volume resistance value of the semiconductive inorganic filler kneaded resin of embodiment of this invention. この発明の実施の形態の半導電性有機フィラー練り込み樹脂、半導電性無機フィラー練り込み樹脂の諸特性を示す図である。It is a figure which shows the various characteristics of semiconductive organic filler kneaded resin of embodiment of this invention, and semiconductive inorganic filler kneaded resin. この発明の実施の形態の表面電位の測定方法を示す図である。It is a figure which shows the measuring method of the surface potential of embodiment of this invention.

符号の説明Explanation of symbols

1 ケーシング、2 放電電極、3 接地(集塵)電極、4 高電圧極、5 イオン化部、6 コレクタ部、7 イオン化部高圧電源、8 コレクタ部高圧電源、9 塵埃、10 高圧電源、11 給電部、12 表面電位計、13 プローブ。   DESCRIPTION OF SYMBOLS 1 Casing, 2 Discharge electrode, 3 Grounding (dust collection) electrode, 4 High voltage pole, 5 Ionization part, 6 Collector part, 7 Ionization part high voltage power supply, 8 Collector high voltage power supply, 9 Dust, 10 High voltage power supply, 11 Feeding part , 12 Surface electrometer, 13 probe.

Claims (6)

放電電極と対向電極である接地電極を有し、前記放電電極と前記対向電極との間でコロナ放電を生じさせて空気中の塵埃を帯電するイオン化部と、
高電圧極と対向電極である接地電極を有し、前記イオン化部によって帯電された塵埃を前記対向電極に集塵するコレクタ部と、を備え、
前記コレクタ部の高電圧極を半導電性のフィラーと分散剤を熱可塑性樹脂に混合させて成る帯電防止性樹脂により一体成形し、
前記高電圧極の体積抵抗は、印加電圧6000V時に1.0E+10Ωcmオーダー以上であり、
高電圧極の体積抵抗をXΩcmとし、表面抵抗をYΩ/□としたとき、前記Yの値は前記Xの値の10分の1であることを特徴とする電気集塵デバイス。
An ionization unit having a discharge electrode and a ground electrode which is a counter electrode, and charging corona discharge between the discharge electrode and the counter electrode to charge dust in the air;
A high-voltage electrode and a ground electrode that is a counter electrode, and a collector unit that collects dust charged by the ionization unit on the counter electrode,
The high-voltage electrode of the collector part is integrally formed with an antistatic resin formed by mixing a semiconductive filler and a dispersant with a thermoplastic resin,
The volume resistance of the high voltage electrode is 1.0E + 10 Ωcm or more when the applied voltage is 6000 V,
The electrostatic precipitator according to claim 1, wherein when the volume resistance of the high voltage electrode is X Ωcm and the surface resistance is YΩ / □, the value of Y is one tenth of the value of X.
前記半導電性のフィラーは、環境中の水分を吸収しにくい物質で形成されたことを特徴とする請求項1記載の電気集塵デバイス。   2. The electrostatic precipitator according to claim 1, wherein the semiconductive filler is made of a material that hardly absorbs moisture in the environment. 前記半導電性のフィラーは、カーボンブラックまたはカーボンファイバーよりも導電性が低い半導電性のカーボン、酸化錫、酸化亜鉛のうち1種類以上からなることを特徴とする請求項2記載の電気集塵デバイス。 3. The electric dust collector according to claim 2, wherein the semiconductive filler is composed of one or more of semiconductive carbon , tin oxide, and zinc oxide having lower conductivity than carbon black or carbon fiber. device. 前記高電圧極の吸水率は、乾燥状態と、温度70℃相対湿度65%環境下に48時間静置した後の重量差で0.6%以下であることを特徴とする請求項1〜3のいずれかに記載の電気集塵デバイス。   The water absorption rate of the high voltage electrode is 0.6% or less in terms of a weight difference after standing for 48 hours in a dry state and in an environment at a temperature of 70 ° C and a relative humidity of 65%. The electric dust collection device in any one of. 前記高電圧極は、温度20℃相対湿度60%環境下で、一点に1000V以上の電圧を印加したとき、電圧印加点から1cm以上離れた電極表面の表面電位が、印加電圧と同オーダーで維持されることを特徴とする請求項1〜4のいずれかに記載の電気集塵デバイス。   When a voltage of 1000 V or more is applied to a high voltage electrode at a temperature of 20 ° C. and a relative humidity of 60%, the surface potential of the electrode surface 1 cm or more away from the voltage application point is maintained in the same order as the applied voltage. The electrostatic precipitator according to claim 1, wherein 前記高電圧極と接地電極は、対で積層されたことを特徴とする請求項1〜5のいずれかに記載の電気集塵デバイス。   The electrostatic precipitator according to claim 1, wherein the high voltage electrode and the ground electrode are stacked in pairs.
JP2007021497A 2007-01-31 2007-01-31 Electric dust collector Active JP4638452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007021497A JP4638452B2 (en) 2007-01-31 2007-01-31 Electric dust collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007021497A JP4638452B2 (en) 2007-01-31 2007-01-31 Electric dust collector

Publications (2)

Publication Number Publication Date
JP2008183540A JP2008183540A (en) 2008-08-14
JP4638452B2 true JP4638452B2 (en) 2011-02-23

Family

ID=39726916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007021497A Active JP4638452B2 (en) 2007-01-31 2007-01-31 Electric dust collector

Country Status (1)

Country Link
JP (1) JP4638452B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101391170B1 (en) 2012-11-30 2014-05-02 한국기계연구원 Gas dehydration apparatus using soft x-ray and method thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102123794B (en) * 2008-08-21 2013-06-19 松下电器产业株式会社 Electrical dust precipitator
JP5443808B2 (en) * 2009-03-27 2014-03-19 株式会社東芝 Airflow generator
JP5476828B2 (en) * 2009-07-17 2014-04-23 パナソニック株式会社 Dust collector
FI122485B (en) 2009-10-01 2012-02-15 Jorma Keskinen Gas purification method and apparatus
JP5577669B2 (en) * 2009-10-22 2014-08-27 パナソニック株式会社 Dust collector
JP2013107050A (en) * 2011-11-22 2013-06-06 Panasonic Corp Electrical dust collection device, and dust collection member
CN103381392B (en) * 2012-05-03 2017-05-24 余柏民 Electronic net air-filtration device and use thereof
JP2014128203A (en) * 2012-12-28 2014-07-10 Panasonic Corp Flying organism removal device, capturing electrode of the same, capturing electrode member and manufacturing method of the same
JP2016179416A (en) * 2015-03-23 2016-10-13 株式会社富士通ゼネラル Electric dust collector and air conditioner using the same
CN107575940B (en) * 2017-09-11 2024-01-23 广东美的制冷设备有限公司 Electrostatic dust removing device, air purifying equipment and air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004122130A (en) * 2003-12-01 2004-04-22 Midori Anzen Co Ltd High voltage side electrode for electrostatic dust collector
JP2006187739A (en) * 2005-01-07 2006-07-20 Matsushita Electric Ind Co Ltd Dust collector and air-conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004122130A (en) * 2003-12-01 2004-04-22 Midori Anzen Co Ltd High voltage side electrode for electrostatic dust collector
JP2006187739A (en) * 2005-01-07 2006-07-20 Matsushita Electric Ind Co Ltd Dust collector and air-conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101391170B1 (en) 2012-11-30 2014-05-02 한국기계연구원 Gas dehydration apparatus using soft x-ray and method thereof

Also Published As

Publication number Publication date
JP2008183540A (en) 2008-08-14

Similar Documents

Publication Publication Date Title
JP4638452B2 (en) Electric dust collector
JP4960831B2 (en) Electric dust collector
US10744516B2 (en) Electrostatic dust collecting module an electrostatic air purifier thereof
CN206276499U (en) A kind of dust collect plant
CN1261227C (en) Resin electrode and electrostatic dust collector using the same
JP2007007589A (en) Electric dust collection device and air cleaning apparatus incorporating the same
BRPI0919255B1 (en) AIR CLEANING APPLIANCE
KR20100085092A (en) Air processing device
JP2012050982A (en) Improved active field polarized media air cleaner
US20090193976A1 (en) Discharge device and air purifier
JP2003019444A5 (en)
JP2010094635A (en) Electric dust collector
JP2020151634A (en) Dust collection device
JP2007237139A (en) Dust precipitator and air conditioner
CN204481328U (en) The charged film emission electrode in a kind of space
KR101860917B1 (en) Electric Dust Collection Device
US10245593B2 (en) Air-filter arrangement
JP3516725B2 (en) Electrostatic dust collector
JPH08227789A (en) Resin electrode
JP2012096127A (en) Electric dust collector
JP2000218193A (en) Electric dust collector
US20220161273A1 (en) Electrostatic charger and electrostatic precipitator
JP3730645B2 (en) High voltage side electrode for electrostatic precipitator
KR20130022722A (en) Electric precipitator and air cleaner comprising the same
JP7300298B2 (en) Charging device and dust collector

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4638452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250